
Improved Top-Down Techniques in Differential
Cryptanalysis

Itai Dinur1, Orr Dunkelman2,3,?,
Masha Gutman3, and Adi Shamir3

1 Département d’Informatique, École Normale Supérieure, Paris, France
2 Computer Science Department, University of Haifa, Israel

3 Computer Science department, The Weizmann Institute, Rehovot, Israel

Abstract. The fundamental problem of differential cryptanalysis is to
find the highest entries in the Difference Distribution Table (DDT) of a
given mapping F over n-bit values, and in particular to find the highest
diagonal entries which correspond to the best iterative characteristics
of F . The standard bottom-up approach to this problem is to consider
all the internal components of the mapping along some differential char-
acteristic, and to multiply their transition probabilities. However, this
can provide seriously distorted estimates since the various events can be
dependent, and there can be a huge number of low probability charac-
teristics contributing to the same high probability entry. In this paper
we use a top-down approach which considers the given mapping as a
black box, and uses only its input/output relations in order to obtain
direct experimental estimates for its DDT entries which are likely to
be much more accurate. In particular, we describe three new techniques
which reduce the time complexity of three crucial aspects of this prob-
lem: Finding the exact values of all the diagonal entries in the DDT
for small values of n, approximating all the diagonal entries which cor-
respond to low Hamming weight differences for large values of n, and
finding an accurate approximation for any DDT entry whose large value
is obtained from many small contributions. To demonstrate the potential
contribution of our new techniques, we apply them to the SIMON family
of block ciphers, show experimentally that most of the previously pub-
lished bottom-up estimates of the probabilities of various differentials
are off by a significant factor, and describe new differential properties
which can cover more rounds with roughly the same probability for sev-
eral of its members. In addition, we show how to use our new techniques
to attack a 1-key version of the iterated Even-Mansour scheme in the
related key setting, obtaining the first generic attack on 4 rounds of this
well-studied construction.

Keywords: differential cryptanalysis, difference distribution tables, it-
erative characteristics, Even-Mansour, SIMON.

? The second author was supported in part by the Israel Science Foundation through
grants No. 827/12 and No. 1910/12.

1 Introduction

Differential cryptanalysis, which was first proposed in [6], is one of the best
known and most widely used tools for breaking the security of many types of
cryptographic schemes (including block ciphers, stream ciphers, keyed and un-
keyed hash functions, etc). Its main component is a Difference Distribution Table
(abbreviated as DDT) which describes how many times each input difference
is mapped to each output difference by a given mapping F over n-bit values.
The DDT table has exponential size (with 2n rows and 2n columns), but we are
usually interested only in its large entries: When we try to attack an existing
scheme we try to find the largest DDT entry, and when we develop a new cryp-
tographic scheme we try to demonstrate that all the DDT entries are smaller
than some bound.

For large value of n such as 128, it is impractical to find the exact value
of even a single entry in the table, but in most cases we are only interested in
finding a sufficiently good approximation of its large values. There are many
proposed algorithms for computing such approximations, but almost all of them
are bottom-up techniques which start by analyzing the differential properties
of small components such as a single S-box, and then combine them into large
components such as a reduced-round version of the full scheme. To find the best
differential attack, they use the detailed description of the scheme in order to
identify a consistent collection of high probability differential properties of all
the small components, and then multiply all these probabilities. In order to claim
that there are no high probability differentials, they lower bound the number of
multiplied probabilities, e.g., by showing that any differential characteristic has
a large number of active S-boxes.

A second problem is that in most cases, this bottom-up approach concen-
trates on a single differential characteristic and describes one particular way in
which the given input difference can give rise to the given output difference by
specifying all the intermediate differences. Moreover, this approach is also more
susceptible to variations from the Markov cipher model, where dependence be-
tween different rounds can lead to an estimation of probability which is far from
the correct value.

In this paper we follow a different top-down approach, in which we consider
the given mapping as a black box and ignore its internal structure. In particular,
we do not multiply or add a large number of of probabilities associated with its
smallest components, and thus we do not suffer from the three methodological
problems listed above. Our goal is to use the smallest possible number of eval-
uations of the given mapping in order to compute either the precise value or a
sufficiently good approximation of the most interesting entries in its DDT .

A straightforward black box algorithm can calculate the exact value of any
particular entry in the DDT table in 2n time by evaluating the mapping for all
the pairs of inputs with the desired input difference, and counting how many
times we got the desired output difference. When we want to compute a set of
k entries in the DDT , we can always repeat the computation for each entry
separately and thus get a k2n upper bound on the time complexity. However,

2

for some large sets of entries we can do much better. In particular, we can
compute all the k = 2n entries in a single row (which corresponds to a fixed input
difference and arbitrary output differences) with the same 2n time complexity
by using the same algorithm. This also implies that the whole DDT can be
computed in 22n time, whereas a naive algorithm which computes each one of
the 22n entries separately would require 23n time. If the mapping is a permutation
and we are also given its inverse as a black box, we can similarly compute each
column in theDDT (which corresponds to a fixed output difference and arbitrary
input differences) in 2n time by applying the inverse black box to all the pairs
with the desired output difference.

Which other sets of entries in the DDT can be simultaneously computed
faster than via the naive algorithm? The first result we show in this paper is a
new technique called the diagonal algorithm, which can calculate the exact values
of all the 2n diagonal entries in the DDT (whose input and output differences
are equal) with a total time complexity of about 2n. These entries in the DDT
are particularly interesting in differential cryptanalysis, since they describe the
probabilities of all the possible iterative characteristics which can be concate-
nated to themselves an arbitrarily large number of times in a consistent way.
For many well known cryptosystems (such as DES), the best known differential
attack on the scheme is based on such iterative characteristics. We then extend
the diagonal algorithm to generalized diagonals which are defined as sets of 2n

DDT entries in which the input difference and output difference are linearly
related rather than equal. This can be particularly useful in schemes such as
Feistel structures, in which we are often interested in output differences which
are equal to the input differences but with swapped halves.

In many applications of differential cryptanalysis, we can argue that only rows
in the DDT which correspond to input differences with low Hamming weight
can contain large values (and thus lead to efficient attacks). Our next result is a
new top-down algorithm which we call the Hamming Ball algorithm, which can
efficiently identify all the large diagonal entries in the DDT whose input and
output differences have a low Hamming weight, and approximate their values.

Our third result is a new bins-in-the-middle(BITM) algorithm for comput-
ing in a more efficient way an improved approximation for any particular DDT
entry whose high value may be accumulated from a large number of differential
characteristics which have much smaller probabilities. In this algorithm we as-
sume that the given mapping is only quasi black box in the sense that it is the
concatenation of two black boxes which can be computed separately. A typical
example of such a situation is a cryptographic scheme which consists of many
rounds, where we can choose in our analysis how many rounds we want to eval-
uate in the first black box, and then define the remaining rounds as the second
black box.

In our complexity analysis, we assume that most of the DDT entries are
distributed as if the mapping is randomly chosen, but a small number of entries
have unusually large values which we would like to locate and to estimate by eval-
uating the mapping on the smallest possible number of inputs. This is analogous

3

to classical models of random graphs in which we try to identify some planted
structure such as a large clique which was artificially added to the random graph.

To demonstrate the power of our new techniques, we used the relatively new
but extensively studied proposal of the SIMON family of lightweight block ciphers,
which was developed by a team of experienced cryptographers from the NSA.
Several previous papers [1, 2, 9, 28] tried to find the best possible differential
properties of reduced-round variants of SIMON with the bottom-up approach by
analyzing its individual components. By using our new top-down techniques, we
can provide strong experimental evidence that the previous probability estimates
were inaccurate, and in fact we found new differential properties which are either
longer by two rounds or have better probabilities for the same number of rounds
compared to all the previously published results.

The paper is organized as follows. After introducing our notation in Section 2,
we survey in Section 3 the main bottom-up techniques for estimating differential
probabilities which were proposed in the literature. Our three new top-down
techniques are described in Section 4, Section 5, and Section 6. We describe
the application of our new techniques to the SIMON family of block ciphers in
Section 7. Section 8 shows show how to use these top-down techniques in order to
analyze the differential properties of the Even-Mansour scheme (whose random
permutation is only given in the form of a black box), and to find the first generic
attack on its 4-round 1-key version in the related key setting.

2 Notations

In this section, we describe the notations used in the rest of this paper.
Given a function F : GF(2)n → GF(2)n, the difference distribution table

(DDT) is a 2n×2n table, where DDT [∆I][∆O] counts the number of input pairs
to F with an n-bit difference of ∆I whose n-bit output difference is ∆O. More
formally we define DDT [∆I , ∆O] , |{x ∈ GF(2)n : F (x)⊕ F (x⊕∆I) = ∆O}|.

We define the diagonal (DIAG) of the DDT as a vector of length 2n which
contains only the [∆I , ∆O] entries for which ∆O = ∆I , namely DIAG[∆] ,
DDT [∆,∆]. Given an auxiliary function L : GF(2)n → GF(2)n, we define the
generalized diagonal (GDIAG) of the DDT as a table of size 2n, which con-
tains only the [∆I , ∆O] entries for which ∆O = L(∆I), namely GDIAGL[∆] ,
DDT [∆,L(∆)]. Thus, the diagonal is a particular case of the generalized di-
agonal for which the auxiliary function L is the identity. In this paper, we are
mostly interested in generalized diagonals for linear functions L (over GF(2)n),
which can be computed efficiently using our algorithms.

Given an n-bit word x, we denote by ham(x) its Hamming weight. Given two
n-bit words x, y, we denote by dist(x, y) their Hamming distance, i.e. ham(x⊕y).
For an integer 0 ≤ r ≤ n, we denote by Br(y) the Hamming ball of radius r
centered at c, namely Br(c) , {x|dist(x, c) ≤ r}. The number of points in Br(c)

is denoted as Mn
r , |Br(c)| =

r∑
i=0

(
n
i

)
.

We denote the n-bit word with bits i1, ..., ik set to 1 and the rest set to 0 by
ei1,...,ik .

4

3 Previous Work

3.1 Bottom-Up Differential Characteristic Search

Since the early works on differential cryptanalysis (including the original work
of [6]), there was a need to find good differential characteristics. This need was
usually answered in the bottom-up approach: In [21] Matsui described the first
general purpose differential characteristic search algorithm, which uses “bound-
and-branch” approach. Matsui’s algorithm is assured to find the best charac-
teristic, but its running time may be unbounded. Later works in the field was
sometimes applied to specific ciphers (e.g., analyzing FEAL in [3]), or extending
Matsui’s approach using basic properties of the block cipher (notably, the byte-
oriented ciphers studied in [7, 8, 17, 25] or the ARX constructions studied in [10,
14, 20, 22]).

Offering an upper bound on the probability of differential characteristics
dates back to the early works of [26], which suggested bounds for Feistel construc-
tions, based on bounds on the probability of differential characteristics through
the round function. This method is the basis of the approach of counting the
number of active S-boxes (introduced in [13]), which is widely used today. An-
other approach introduced in [24] is the transformation of the problem into a
linear-programming problem, and solving it for constraints. This technique was
later extended in [27, 28].

Finally, we note that [10] also explored the concept of sampling the DDT in
the context of ARX constructions. If the word size is too big to be analyzed to
obtain the full DDT , one may pick a reduced set of entries and compute their
probability (for ARX construction one can usually compute the probability of
the transition without using input pairs).

3.2 Top-Down Algorithms

The first top-down algorithm which we are aware of is due to [5] — the “Shrink-
ing” algorithm that searches for impossible differentials. The main idea behind
the shrinking algorithm is to take a scaled-down version of the cipher (e.g., with
reduced word sizes and S-boxes). Such a scaled-down version allows evaluating
the full difference distribution table, which in turn can be used to automatically
identify impossible differentials. However, we note that many cryptosystems can-
not be scaled down in an obvious way while maintaining properties of their DDT,
and therefore the applicability of this algorithm is limited.

4 The Diagonal Algorithm and its Extensions

4.1 The Diagonal Algorithm

We begin by describing our basic algorithm for calculating the exact values of
all the diagonal entries in the difference distribution table with about the same
time complexity as computing a single entry. The algorithm is given black box

5

access to a function F : GF(2)n → GF(2)n, and outputs the diagonal of the
difference distribution table DIAG[∆] , DDT [∆,∆]. The algorithm is based
on the simple property that the equality x⊕y = F (x)⊕F (y) along the diagonal
is equivalent to the equality x⊕ F (x) = y ⊕ F (y). Therefore, we can efficiently
identify all the (x, y) pairs with equal input and output differences ∆ = x ⊕ y
(which contribute to the DIAG table) by searching for all the collisions between
values of x⊕ F (x) and y ⊕ F (y).

1. Initialize all the entries of the table DIAG to zero, and set DIAG[0] to 2n.

2. For each n-bit value x:

(a) Compute x⊕ F (x), and store the pair (x⊕ F (x), x) in a hash table H,
i.e., add x to the set of values stored at H[x⊕ F (x)].

3. For each n-bit value b:

(a) For each pair (x, y) of distinct values such that x, y ∈ H[b], increment
DIAG[x⊕ y] by 1.

The time complexity of Steps 1 and 2 is 2n each, and the time complexity of
Step 3 is proportional to D, which denotes the total number of pairs (x, y) such
that x ⊕ y = F (x) ⊕ F (y) (which is the same as the sum of all the entries in
DIAG). Note that for a random function F , the expected value of D is about
22n−n = 2n as we have about 22n (x, y) pairs, and the probability that a pair
satisfies the n-bit equality is 2−n. Consequently, the expected time complexity
of the algorithm for a random function is about 2n, and the total memory com-
plexity is also 2n, which is the size of the hash table H and the output table
DIAG.

We note that there are several previous algorithms whose general structure
resembles the diagonal algorithm. One such algorithm is impossible differential
cryptanalysis of Feistel structures [18] and its various extensions, which use a
data structure similar to H to iterate over pairs with related input and output
differences. However, in these algorithmsH is used in order to filter pairs required
to attack specific cryptosystems, and not to explicitly calculate the DDT (as we
do in Step 3.(a)).

4.2 The Generalized Diagonal Algorithm

We now extend the diagonal algorithm to compute a generalized diagonalGDIAGL
for any given linear function L over GF(2)n. In this case, we are interested in
(x, y) pairs such that L(F (x)⊕F (y)) = x⊕y, which is equivalent to the equality
x⊕L(F (x)) = y⊕L(F (y)), since L is linear. Therefore, the generalized diagonal
algorithm is very similar to the diagonal algorithm above, and only differs in
Step 2.(a), where we store the pair (x⊕L(F (x)), x) in the hash table H (instead
of storing the pair (x ⊕ F (x), x)). The complexity analysis of the generalized
diagonal algorithm is essentially identical to the basic diagonal algorithm.

6

5 The Hamming Ball Algorithm

The (generalized) diagonal algorithm computes the exact value of the (general-
ized) diagonal of the DDT of the function F in about 2n time, which is practical
for n = 32 but marginal for n = 64. In fact, it is easy to show that information
theoretically, the only way to compute the precise value of a single DDT entry
is to test all the 2n relevant pairs of inputs or outputs. However, if we assume
that we only want to find large entries on the diagonal and to approximate their
values, we can do much better.

Assume that there exists some entry DDT [∆,L(∆)] with a value of p · 2n
(where 0 < p ≤ 1 is the probability of an input pair with difference ∆ to
have an output difference of L(∆)) for a fixed linear function L. A trivial adap-
tation to the (generalized) diagonal algorithm evaluates and stores the pairs
(x ⊕ L(F (x)), x) for only 0 < C ≤ 2n random values of x. Clearly, we do not
expect to generate a non-zero value in entry DDT [∆,L(∆)] before evaluating
at least p−1 (x, x ⊕ ∆) pairs. This gives a lower bound on C and on the com-
plexity of the algorithm, since after the evaluation of C arbitrary values x, we
expect to have about C2 · 2−n pairs with randomly scattered input differences,
and thus we require C2 · 2−n ≥ p−1 or C ≥ 2n/2 · p−1/2. Therefore, the time and
memory complexity of our adaptation are still somewhat large for big domains,
and in particular it is barely practical for n = 128 even when p is close to 1 (as
C ≥ 2n/2 = 264).

We now describe a more efficient adaptation that requires the stronger as-
sumption that the high probability entries DDT [∆,L(∆)] occur at ∆’s which
have (relatively) low Hamming weight. The motivation behind this assumption
is that we are interested in applying our algorithms to concrete cryptosystems in
which a high probability entry DDT [∆I , ∆O] typically indicates the existence of
a high probability differential characteristic with the corresponding input-output
differences. Such high probability characteristics in SP networks are likely to have
a small number of active Sboxes, and thus ∆I and ∆O are likely to have low
Hamming weights.

In order to consider only DDT [∆,L(∆)] entries where ∆ is of small Hamming
weight, we pick an arbitrary center c and a small radius r, and evaluate F only
for inputs inside the Hamming ball Br(c). All the pairs of points inside the
Hamming ball have a small Hamming distance, and thus for a carefully chosen
value of r, we will obtain a quadratic number of relevant pairs from a linear
number of values which have small Hamming distances d.

It is easy to see that the raw estimates we get with this approach for the
entries in the DDT are biased, since the Hamming ball has more pairs which
differ only in their least significant bit than pairs which differ in their d least
significant bits for d > 1.1 Given a difference ∆ such that ham(∆) = d, an
important measure which is used by our Hamming ball algorithm is the number

1 This claim can be easily supported by the fact that as more bits are changed, the
probability that the new computed value is outside the ball increases.

7

of pairs with difference ∆ in Br(c). This measure, which we denote2 by Pnr,d (it
does not depend on the actual values of c or∆), is used in order to create from the
experimental data unbiased estimates for the values of the entries DDT [∆I , ∆O],
as described below.

1. Initialize the entries of the table GDIAGL to zero.
2. For each n-bit value x ∈ Br(c):

(a) Compute x⊕L(F (x)), and store the pair (x⊕L(F (x)), x) in a hash table
H, i.e., add x to the set of values stored at H[x⊕ L(F (x))].

3. For each n-bit value b such that H[b] contains at least 2 values:
(a) For each pair (x, y) such that x, y ∈ H[b], increment GDIAGL[x⊕ y] by

1.
4. For each n-bit value ∆ such that GDIAGL[∆] > 0:

(a) Denote ham(∆) = d and normalize the entry GDIAGL[∆] by setting
GDIAGL[∆]← GDIAGL[∆] · (2n/Pnr,d).

The time and memory complexities of Step 2 are Mn
r . The time and memory

complexities of steps 3 and 4 are determined by the number of collisions in the
hash table H, which depends on F . For a random function, we expect to have
(Mn

r)2 ·2−n ≤Mn
r such collisions, and therefore we generally do not expect steps

3 and 4 to dominate the time or memory complexities of the attack (especially
for large domains where we select a small r implying that Mn

r � 2n and thus
(Mn

r)2 · 2−n �Mn
r).

In order to detect an entry DDT [∆,L(∆)] with ham(∆) = d whose proba-
bility is p, the most efficient method (assuming that we have sufficient memory)
is to select a r such that Br(c) contains about p−1 pairs of points with input
different ∆, or Pnr,d ≥ p−1.

The efficiency of our algorithm for low Hamming weights is derived from
the fact that Hamming balls are relatively closed under XOR’s - pairs of points
which are close to the origin are also close to each other. Similar efficiencies
can be obtained for other sets with similar closure properties, such as arbitrary
linear subspaces and sets of points which have short Hamming distance to linear
subspaces.

5.1 Analyzing Keyed Functions

The algorithms described so far analyze a keyless function F . In order to obtain
meaningful results for a keyed function FK , we assume the existence of high
probability entries DDT [∆I , ∆O], which are common to a large fraction of the
keys. Such common high probability entries are typically the result of a high
probability differential characteristics (with the corresponding input-output dif-
ferences) in iterated block ciphers where the round keys are XORed into the
state.3

2 The computation of Pn
r,d is discussed in Appendix 10.

3 In such cases, the probability of the characteristic can be estimated independently
of the round keys, assuming the input values are selected at random.

8

Based on this assumption, we can select a few keys Ki at random, and in-
dependently run our algorithms on FKi

for each Ki. Then, we look for high
probability entries DDT [∆I , ∆O] which are common to several keys. An addi-
tional possibility is to first run our algorithms on FK1 , and then to test the
obtained high probability entries DDT [∆I , ∆O] on FKi

for i > 1, by encrypting
sufficiently many pairs with input difference ∆I for each key.

6 Improved Approximation of a Single Large DDT Entry

We now turn our attention to a related problem. Assume that we found a pair
of input/output differences (∆I , ∆O) which are somehow related. For example,
this can occur when an iterative characteristic is repeated several times. Given
(∆I , ∆O), we wish to estimate the probability of the transition ∆I

r−→ ∆O (where
r is the number of rounds in the differential). The standard method to estimate
this probability is to take many pairs with input difference ∆I and check how
many of them have output difference ∆O (again, trying multiple keys). If the
probability of the differential is p, a good estimation requires O(p−1) queries to
the encryption algorithm.

Now, assume that the cipher (or the rounds) for which we analyze this tran-
sition, can be divided into two (roughly equal) parts. In such a case, we can
discuss the transition from ∆I to some ∆M after about r/2 rounds, and from
∆M to ∆O in the the remaining rounds. In other words, we look at ∆M after r′

rounds, and use the fact that:

Pr[∆I
r−→ ∆O] =

∑

∆M

Pr[∆I
r′−→ ∆M

r−r′−−−→ ∆O] (1)

which by the stochastic equivalence assumption (see [19]) we can re-write as

Pr[∆I
r−→ ∆O] =

∑

∆M

Pr[∆I
r′−→ ∆M] · Pr[∆M

r−r′−−−→ ∆O] (2)

To correctly evaluate the probability suggested by Equation (2), one needs to go
over all possible ∆M values (which is usually infeasible for common block sizes),
and for each one of them evaluate the probability of two shorter differentials,

∆I
r′−→ ∆M and ∆M

r−r′−−−→ ∆O (which in itself may be a hard task).
Luckily, it was already observed in [6] that (in most cases) a high probability

differential characteristic has several “close” high probability neighbors. This
is explained by taking slightly different transitions through the active S-boxes
with probability which is only slightly lower than the highest possible probability
(used in the high probability characteristic). Similar behavior sometimes happen
for differentials (especially for differentials which are based on a few “strong”
characteristics, each having a few high probability “neighbors”).

Hence, to give a lower bound on the value suggested by Equation (2), we can
use the following computation:

Pr[∆I
r−→ ∆O] ≥

∑

∆M∈S
Pr[∆I

r′−→ ∆M] · Pr[∆M
r−r′−−−→ ∆O] (3)

9

where the set S contains all the ∆M values for which the differentials ∆I
r′−→ ∆M

and ∆M
r−r′−−−→ ∆O have a sufficiently high probability.4

Obviously, this approximation relies on the fact that the two parts of the
cipher are independent of each other. When taking into consideration a Markov-
cipher assumption or the Stochastic Equivalence assumption (see [19] for more
details), then the independence assumption immediately holds. However, in real
life, one needs to verify it.

One advantage of the Bins-in-the-Middle algorithm which is presented next
over the standard analytical approach is the fact that we “reduce” the indepen-
dence assumption only to the transition between the two parts of the cipher.
This is to be compared with an analytical approach that computes the proba-
bility of each round independently, and then simply multiplies the probabilities
of each round (i.e., approaches that assume that each round is independent of
others). In the Bins-in-the-Middle algorithm, the probabilities which are multi-
plied are the sampled probabilities of differentials, i.e., probabilities that were
experimentally verified.5

6.1 The Bins-in-the-Middle (BITM) Algorithm

We now present an algorithm that finds all the “good”∆M values in the set S and

experimentally estimates the probability of the two differentials ∆I
r′−→ ∆M and

∆M
r−r′−−−→ ∆O. The algorithm requires that the last r − r′ rounds are invertible

(and thus, can be used only on permutations).
The algorithm’s basic idea is to actually produce a list of plausible ∆M by

sampling random pairs with input difference ∆I (for the first r′ rounds) and
a corresponding list by sampling random pairs with output difference ∆O (for
the last r − r′) rounds. We shall denote the two lists, L1 and L2, respectively.
The first list, L1, contains pairs of the form (∆Mi

, pi) (i.e., the difference ∆Mi

appears with probability pi given an input difference ∆I). Similarly, the second
list, L2, contains pairs of the form (∆Mj

, qj).
Given these two lists, we can define the set S as all the differences which

appear both in L1 and L2 with sufficiently high probability (which we denote
by pb). Then, by using Equation (3), and the estimations for the pi’s and qj ’s,

we can compute an estimation for the probability of the differential ∆I
r−→ ∆O:

1. Pick N plaintext pairs6 of the form (x, x ⊕ ∆I), and obtain their partial
encryption after r′ rounds, (z, z′).

2. Collect the differences z ⊕ z′, and produce L1.
3. Pick N ciphertext pairs of the form (y, y ⊕ ∆O), and obtain their partial

decryption after r − r′ rounds, (w,w′).

4 When using BITM to calculate the probability of a differential, one can choose
the meeting round in a variety of ways. Usually setting r′ ≈ r/2 gives the optimal
results.

5 Of course, we still need to assume independence between the two parts of the cipher.
6 The value of N is discussed later.

10

4. Collect the differences w ⊕ w′, and produce L2.

5. For all the differences that appear with probability above some bound pb in
both L1 and L2, compute the sum of all products (pi · qj).

First, it is easy to see that both L1 and L2 contain two types of differences:
High-probability differences (e.g., differences that appear with probability higher
than pb) as well as low-probability differences that got sampled by chance. For an
n-bit block cipher, after sampling N pairs, we expect low probability differences
∆M to be encountered only once (both in L1 and in L2) as long as N < 2n/2.7

Moreover, as we later discuss, estimating the probabilities pi’s and qj ’s can be
done over many keys, offering a better estimation.

Now, given pb, we wish to assure that we sample the high probability dif-
ferences. This can be done, by looking for differences that appear at least twice
during Steps 1–2 (for L1) or Steps 3–4 (for L2). Given that the number of “ap-
pearances” of an output difference follows the Poisson distribution, we need
to take N = α/pb pairs, where α determines the quality of our sampling. For
example, if we pick α = 4, i.e., we expect 4 pairs that follow the differential

∆I
r′−→ ∆M , then with probability of 90%, ∆M would appear at least twice in

Steps 1–2. Increasing the value of α (and/or sampling using more keys) improves
the quality of the values in L1 and L2. For example, for α = 10, the probability
that a good ∆M will not appear at least twice is less than 0.5%.

It is important to note that differences of low probability do not affect the
overall estimation. This follows from the fact that we count only differences that
appear in both lists L1 and L2. Hence, even though there are some low probability
differences in each list, it is extremely unlikely that the same low probability
difference will appear in both lists simultaneously. Even in the extreme case
that there are N low probability ∆M values in each list, expected number of low
probability ∆M appearing in both lists is N2/2n, which is less than 1.

We recall that similarly to all approaches that estimate the probability of dif-
ferentials, we need to rely on some randomness assumptions. A round-by-round
approach relies on the cipher being Markovian, whereas an experimental verifi-
cation of the full differential does not require any assumption. The independence
assumption needed by the BITM algorithm lies between these two extremes. We
need to assume that the transition between the two parts of the cipher does not
affect the probability estimations. In other words, even though the actual pairs
in L1 and L2 are different, we can use a (reduced) Markov-cipher assumption to

obtain an estimate for the total probability of the differential ∆I
r−→ ∆O.

7 We note that one can take more pairs, but as we later show,N = O(1/pb), i.e., as long

as pb is above 2−n/2 the algorithm is expected to work. Moreover, if both ∆I
r′−→ ∆M

and ∆M
r−r′−−−→ ∆O have probability lower than pb, the overall contribution of the

characteristic ∆I
r′−→ ∆M

r−r′−−−→ ∆O to the probability we estimate is at most p2b .
Picking pb < 2−n/2 suggests that the contribution is less than 2−n. Such a low
probability is usually of little interest in cryptanalysis, and requires a very careful
analysis.

11

As mentioned earlier, as α increases (or if the probability of the difference
we check is higher than pb) the quality of the estimation of the probabilities
in L1 and L2 improves. This is explained by the fact that we estimate the
probability of an event which follows a Poisson distribution. If X ∼ Poi(λ),
then E[X] = V ar[X] = λ, so the larger λ is, the closer X is to its mean.

Moreover, we note that the use of multiple keys can significantly improve
the quality of the estimation. If we repeat the experiment with t different keys,
the expected number of times ∆M appeared in all t experiments is increased by
a factor t. As the sum of Poisson random variables is itself a Poisson random
variable, we obtain a significantly better estimate for the actual probability of
the difference.8

Hence, after sampling sufficiently many keys, one can obtain a better esti-
mation of the actual probabilities of the various differences in L1 and L2, and
discard the low probability differences. These probabilities can then be combined
to offer a higher quality estimate of the probability of the differential ∆I

r−→ ∆O.

A few improvements We first note that there is no need to actually store L2.
One can generate L1, and for each w ⊕ w′ value of Steps 3–4, to increment the
counter if w ⊕ w′ happens to be in L1.

We now turn our attention to the generation of L1. It is easy to see that L1

can take at most O(N) memory cells. As N increases this may be a practical
bottleneck. Hence, once the used memory reaches the machine’s limit (or the
process’ limit), we suggest to “extract” all the high probability differences en-
countered so far into a shorter list L′1. Then, we sample more random pairs, but
this time, we only deal with those pairs whose “output” difference is in the short
list L′1. The main advantage is now that we use almost no memory (as L′1 tends
to be small), we can actually increase the number of queries, thus obtaining a
more accurate estimate.

The final improvement in this front is to perform the previous idea in steps.
We first sample many pairs, and store the differences z⊕z′ in a hash table (with
less than N bins). After finding the bins which were suggested more than others,
we can dive into them by re-sampling more pairs.

Comparison with Meet in the Middle Attacks We note that while the
BITM algorithm is is superficially similar to the meet in the middle (MITM)
algorithm, it is quite different. In the MITM algorithm, we typically try to find
some common value between the two parts of a cipher, and use this value to
find the key (depending on the cryptanalytic task at hand, we may search for

8 For α = 4 and t = 32 (expecting four pairs in 32 experiments), the total number
of times ∆M appears in all experiments follows a Poisson distribution with a mean
of 128. Hence, with probability 95%, counting over all experiments will suggest ∆M

somewhere between 105 and 151 times (in all 32 experiments). In other words, taking
the number of times ∆M appears (divided by 32N) as an estimate for the actual
probability will be accurate within 18% of the correct probability with probability
95%.

12

all the common values). In the BITM algorithm our goal is not to find these
values, but to estimate the probability that they exist, in order to choose the
best differential attack on the scheme.

6.2 The Advantages of the BITM Algorithm

The main advantage of the BITM algorithm over a pure top-down algorithm
which evaluates the full mapping is its greatly improved efficiency. Indeed, in
order to estimate the differential ∆I

r−→ ∆O requires O(p−1) pairs. However,
if we pick r′ ≈ r/2, and under the assumption that both parts are roughly of
the same strength, we obtain pb = O(

√
p). This is extremely important for the

cases where a time complexity of p−1b is still feasible but p−2b is not (e.g., when
pb ≈ 2−40).

Another advantage of the BITM algorithm over bottom-up algorithms is
that we take into account all the high probability differential characteristics
simultaneously. Hence, the estimation for the differential probability is closer to
the actual probability than an estimation which is based on the multiplication
of many probabilities along a single differential characteristic.

Finally, this method offers some experimental verification of the stochastic
equivalence assumption. Indeed, for most ciphers (and most of the keys), the
stochastic equivalence assumption tends to hold (or seem to “work” most of the
time). However, when we discuss a single long characteristic, we may encounter
some inconsistencies between different parts of the characteristic. In these situ-
ations, the real probability and computed probability will differ. Once we take
into consideration multiple differential characteristics, the estimation becomes
more resilient (though not 100% full-proof), as a “failure” of one of the longer
characteristics does not invalidate the full differential. In addition, by running
the algorithm with several different r′ can also help in validating the probability
of the transition between the top half and the bottom half.

7 Applying Our New Algorithms to the SIMON Family of
Block Ciphers

The SIMON family of lightweight block ciphers, presented in [4], is implemented
using a balanced Feistel structure. The SIMON round function is very simple and
consists of only three operations: AND, XOR and constant rotations. All the
ciphers in the SIMON family use the same round function and differ only by the
key size, the block size (which ranges from 32 to 128 bits) and the number of
Feistel rounds which is dependant on the former two. As in any Feistel structure,
the plaintext is divided into two blocks of size n: P = (L0, R0) and then every
round 1 ≤ i ≤ r:

Li = Ri−1 ⊕ F (Li−1)⊕Ki−1; Ri = Li−1

where the ciphertext is C = (Lr, Rr) and F is the SIMON round function:

F (x) = ((x≪ 1) ∧ (x≪ 8))⊕ (x≪ 2)

13

An illustration of the round function is depicted in Figure 1.

Fig. 1. The SIMON round function

In this section we present the best differentials for SIMON64 SIMON96 and
SIMON128 we found using our various diagonal estimation algorithms. We also
describe more accurate BITM -based estimates for the differential probabilities
of previously presented SIMON characteristics, which are substantially different
from the original estimates.

7.1 Applying BITM to previously known SIMON differentials

We applied the BITM algorithm to some of the previously known differentials
for SIMON which were published in [1, 9, 27]. Since testing probabilities < 2−80

is too expensive (it requires throwing > 240 balls into bins from each side),
the longer differentials were evaluated by breaking the characteristic into the
smallest possible number of parts, evaluating each part separately, and taking
the product of the probabilities as the result. This is not a pure BITM approach,
but it is much closer to a top-down computation compared to the bottom-up
approach used by other researchers.

For example, the 41-round SIMON128 characteristic from [1] was divided into

a 9-round differential (e12, e6,10,14)
9R−−→ (e6,10,14, e12) and a 7-round differential

(e6,10,14, e12)
7R−−→ (e12, e6,10,14). The probabilities for the differentials were tested

many times: 235 balls were thrown from each side for 30 different keys, and 230−
232 balls were thrown from each side for > 100 different keys. The results for the
9-round differential were in the range [2−18.61, 2−18.59] with an average of 2−18.6.
The results for the 7-round differential were in the range [2−32.92, 2−32.25] with an
average of 2−32.77. When testing the entire 16-round characteristic (first the 9-
round differential, then the 7-round one) with the same number of experiments,
the probability range was [2−51.2, 2−48.4] with an average 2−49.9. This means
that the entire 41-round characteristic has probability in the approximate range
of [2−121, 2−115.6] with an average of ≈ 2−118.6.

14

The advantage of using the BITM algorithm to evaluate the probabilities
is the fact we do not consider what happens in the intermediate rounds, but
only take interest in the probabilities between the first, last and middle round.
Additionally, we do not make any independence assumptions about the round
keys since the BITM experiments use the actual SIMON key-schedule.

Table 1 compares all the previously published bottom-up estimates of the
probabilities of various differential transitions with our experimentally obtained
top-down results (where the numbers are the log to the base 2 of the proba-
bilities). All the results (including those presented in the next subsection) were
obtained by the same method as described for the SIMON128 differential (Many
experiments with as many as 235 balls thrown from each side with a narrow
result range, and the average value is taken as the final probability).

Table 1. The original and our improved estimates of the probabilities of the best
previously published differentials

Cipher Rounds Presented prob. BITM prob. Source

SIMON64 21 -60.53 -56.05 [9]

SIMON64 21 -61.01 -56.05 [1]

SIMON64 21 -60.21 -59 [27]

SIMON96 30 -92.20 -88.5 [1]

SIMON128 41 -124.6 -118.6 [1]

This table shows that the previous estimates were too pessimistic (sometimes
by a significant factor of 26 = 64) since they considered only a limited number of
differential characteristics. Since some of the differential probabilities that appear
in the mentioned papers are significantly lower than the probabilities estimated
by our BITM algorithm, we can extend the differentials to a larger number of
rounds, while maintaining the probability above 2−n.9 However, even without
extending the characteristics, the results of Table 1 automatically translate into
better key recovery attacks on the SIMON members, as the previous attacks only
depended on differentials for SIMON (and not on the internal characteristics).

7.2 Improved SIMON differentials found using GDIAGL

We applied the GDIAGL algorithm to SIMON, followed by estimating the prob-
abilities using BITM . The result is an improvement by two rounds of the best
previously known differential from [1] by 2 rounds while maintaining roughly the
same probability.

9 All these differential characteristics could be theoretically extended to cover more
rounds, but in order to break an n-bit block cipher, the probabilities generally need to
be higher than 2−n (otherwise we do not expect to find more than a single accidental
pair, even when we try the full code book).

15

The application of GDIAGL was done with the function

L(x) = (x≪ n)

(which is a half block rotation that swaps its two halves). The result of this
function is some differential families of the type AB→ BA for various numbers
of rounds. After applying a search for complementing differentials pairs AB →
BA → AB, the most probable ones we found were:

Pr
[
(ei,i+4, ei+6)

7R−−→ (ei+6, ei,i+4)
]
≈ 2−14.6 (4)

Pr
[
(ei+6, ei,i+4)

9R−−→ (ei,i+4, ei+6)
]
≈ 2−35.6 (5)

Pr
[
(ei+2, ei,i+4)

5R−−→ (ei,i+4, ei+2)
]

= 2−8 (6)

Pr
[
(ei,i+4, ei+2)

11R−−→ (ei+2, ei,i+4)
]
≈ 2−41.5 (7)

Both pairs result in a 16-round iterated differential.

SIMON64 In order to construct the full characteristic we additionally use the
following differential:

Pr
[
(ei,i+4, ei+6)

6R−−→ (ei,i+4, ei+2)
]
≈ 2−11.3 (8)

Concatenating differentials (4) and (5) results in a 16-round characteristic with
probability of ≈ 2−48.6, thus the full characteristic

(ei,i+4, ei+6)
16R−−−−→

2−48.6
(ei,i+4, ei+6)

6R−−−−→
2−11.3

(ei,i+4, ei+2)

has 22 rounds and probability of ≈ 2−59.9.
A different 22-round characteristic can be obtained by using (6), (7), (6) and

an additional round. Combining (6) with (7) results in a 16-round differential

with probability ≈ 2−48, and adding (ei,i+4, ei+2)
1R−−→ (ei+6, ei,i+4) after (6)

results in a 6-round differential with probability ≈ 2−11.3. The entire 22-round
characteristic

(ei+2, ei,i+4)
16R−−−→
2−48

(ei+2, ei,i+4)
6R−−−−→

2−11.3
(ei+6, ei,i+4)

has probability ≈ 2−59.3.

Note that both characteristics can be extended one round further ((ei+6, ei,i+4,i+8)
1R−−→
2−2

(ei,i+4, ei+6) and (ei+6, ei,i+4)
1R−−→
2−2

(ei,i+4,i+8, ei+6), respectively) while main-

taining a probability which is above 2−64. The resultant 23-round differential is
longer than all the previously found differentials for SIMON64.

16

SIMON128 The longest previously found differential for SIMON128 had 41 rounds.
We can find a longer 43-round differential which is based on differentials (4), (5)
and another short differential:

Pr
[
(ei+6, ei,i+4)

3R−−→ (ei,i+8,i+12, ei+2,i+10)
]

= 2−12 (9)

Combining (4) with (9) results in a 9-round characteristic of probability≈ 2−22.4.
The full 43-round characteristic

(ei+6, ei,i+4,i+8)
1R−−→
2−2

(ei,i+4, ei+6)
32R−−−−→

2−97.2
(ei,i+4, ei+6)

10R−−−−→
2−26.4

(ei,i+8,i+12, ei+2,i+10)

has probability of ≈ 2−125.6.
A different 43-round characteristic will require the same differentials that

were used for SIMON64, combined with a 4-round differential as follows:

Pr
[
(ei+2,i+10, ei,i+8,i+12)

4R−−→ (ei+2, ei,i+4)
]

= 2−15.1 (10)

and finishing with a single round (ei+6, ei,i+4)
1R−−→
2−2

(ei,i+4,i+8, ei+6). The full

characteristic is:

(ei+2,i+10, ei,i+8,i+12)
4R−−−−→

2−15.1
(ei+2, ei,i+4)

32R−−−→
2−96

(ei+2, ei,i+4)
7R−−−−→

2−13.3
(ei,i+4,i+8, ei+6)

and it has probability of ≈ 2−124.4.

Table 2. Summary of the GDIAGL results for SIMON

Cipher Differential family Rounds Prob. (log2)

SIMON64 (ei,i+4, ei+6)→ (ei,i+4, ei+2) 22 −59.9

SIMON64 (ei+2, ei,i+4)→ (ei+6, ei,i+4) 22 −59.3

SIMON64 (ei+6, ei,i+4,i+8)→ (ei,i+4, ei+2) 23 −61.9

SIMON64 (ei+2, ei,i+4)→ (ei,i+4,i+8, ei+6) 23 −61.3

SIMON128 (ei+6, ei,i+4,i+8)→ (ei,i+8,i+12, ei+2,i+10) 43 −125.6

SIMON128 (ei+2,i+10, ei,i+8,i+12)→ (ei,i+4,i+8, ei+6) 43 −124.4

8 Application to Iterated Even-Mansour

The Even-Mansour (EM) block cipher was proposed at Asiacrypt 1991 [16]. It
uses a single publicly known random permutation P on n-bit values and two
secret n-bit keys K1 and K2, and defines the encryption of the n-bit plaintext
m as E(m) = P (m ⊕ K1) ⊕ K2. The decryption of the n-bit ciphertext c is

17

similarly defined as D(c) = P−1(c ⊕K2) ⊕K1. It can be naturally generalized
into an r-round iterated EM encryption function (a.k.a. a key-alternating scheme
in [11]), which is defined using r permutations P1, P2, . . . , Pr and r + 1 keys
K1,K2, . . .Kr+1 as E(m) = Pr(. . . P2(P1(m⊕K1)⊕K2)⊕K3 . . .⊕Kr)⊕Kr+1,
where decryption is defined in an analogous way.

At Asiacrypt 2013, Dinur et al. [15] analyzed several instances of iterated EM
schemes, and in particular showed that the scheme in which all round keys are
equal to K (shown in Figure 2) must have at least 4 rounds in order to provide
perfect n-bit security in the single-key model. In this section, we extend this
result to the related-key model, and show that the scheme must have at least 5
rounds in order to provide perfect (n−1)-bit security against related-key attacks
that use 2 related keys.10 This is done by presenting a related-key differential
attack, which is applicable to (almost) any 4-round EM scheme.

m
⊕

P1

⊕
P2

⊕
Pi

⊕
Pr

⊕
c

K K K K K

Fig. 2. An iterated EM with one key

Our starting point is the attack of Mendel et al. [23] on the block cipher LED-
64, which is a specific instance of the iterated EM scheme shown in Figure 2.
This attack assumes that we have an iterative differential characteristic for P2

with probability p, where the input and output difference is ∆, and extends it to
a 3-round related-key characteristic with that same probability p. This is done
by choosing both the key difference and the plaintext difference as ∆, which
implies that the input difference to P4 is ∆ with probability p. The 3-round
characteristic can be used to attack 4 rounds of the scheme with time, data and
memory complexities of about 2n/2 · p−1/2 using an extension of the attack of
Daemen on the original EM scheme [12]. The full details of the attack are given
in [23] and are not required in order to understand this section.

The most relevant component of the attack of [23] to our analysis is the
iterative differential characteristic for P2. In [23], such a characteristic was effi-
ciently found using the internal properties of LED, but here we notice that we
can apply a similar attack to essentially any 4-round EM scheme with one key.
Our general framework is similar to the one of [15], which analyzed the public
permutations of an EM scheme in order to detect some property which is useful
for attacking the full cipher. More specifically, we can use our new diagonal algo-
rithm of Section 4.1 in order to analyze the specific choice of P2 in a particular

10 Exhaustive search given data encrypted with two related keys can be performed with
time complexity of 2n−1.

18

incarnation of the Even-Mansour scheme, and find in it the highest probability
iterative characteristic. However, applying the full diagonal algorithm results in
an attack with complexity of at least 2n, which is not faster than exhaustive
search. Therefore, we apply the algorithm by evaluating only a fraction of the
input space of P2. More specifically, we evaluate an arbitrary linear subspace of
inputs X, such that |X| = S (for a parameter S), and look for the entry ∆ of the
(partial) DIAG with a maximal value, denoted by t. The value of S is carefully
chosen in order to optimize the total time complexity of the attack, which is
about S + 2n/2 · p−1/2, where p = t/2n.

In order to calculate t as a function of S, we first compute the expected
value of an arbitrary cell of the (partial) DIAG. Assuming that P2 is a random
permutation, then the function x ⊕ P2(x) is (very close to) a random function,
and therefore we expect about S2 · 2−n collision in the hash table H in Step 1 of
the diagonal algorithm. Each such collision will contribute once to a DIAG entry,
but since we selected X as a linear subspace, we know in advance that there are
only S relevant DIAG entries (those which belong to the closed subspace X).
Therefore, the average value of a relevant entry is S2 · 2−n/S = S · 2−n (whereas
the other 2n − S entries have zero values).

Similarly to the analysis of [15], based on some randomness assumptions on
P2, the value of an entry in the (partial) DIAG is distributed according to the
Poisson distribution with an expectation λ, which is equal to the average value
λ = S · 2−n. Given a parameter t, the probability that an arbitrary entry of
the partial DIAG will have a value of t is estimated as (λte−λ)/t!. We have S
elements in the range, implying that we expect that about (S · λte−λ)/t! entries
will have a value of t. If we equate this number to 1, consider large values of
S ≈ 2n/n, and ignore low order terms, we can deduce that the largest expected
entry value t satisfies t·log(t) = n, and thus t is approximately equal to n/ log(n).
When plugging S ≈ 2n/n and p = t · 2−n ≈ n/(2n · log(n)) into the complexity
of the attack, we obtain S + 2n/2 · p−1/2 ≈ 2n/n + 2n/

√
n ≈ 2n/

√
n. In other

words, we obtain a related key attack on any particular incarnation of a 4-round
EM which is about

√
n times faster than exhaustive search, even if we have to

include the complexity of analyzing the particular choice of P2 in the total time
complexity.

We note that the analysis provided in this section can be used to improve the
complexity of the original 4-round related-key attack on LED-64 [23]. However,
the improvement factor is rather small and the main significance of our analysis
is theoretical, namely, describing the first generic attack on the 4-round 1-key
EM scheme which is (slightly) better than exhaustive search.

9 Conclusions

In this paper we described and motivated the top-down approach to differen-
tial cryptanalysis, which tries to compute or approximate certain DDT values
without looking at the internal structure of the given mapping. We introduced
three novel techniques which can compute three types of interesting entries (on

19

the diagonal, in low Hamming weight entries on the diagonal, and arbitrarily
located entries with large values) with improved efficiency. We then applied the
new BITM technique to SIMON in order to obtain more accurate estimates of the
probabilities of all the previously published differentials and combined it with the
generalized diagonal algorithm to find better differentials for a larger number of
rounds. This improves the best known cryptanalytic results for this scheme and
demonstrates the power and versatility of our new top-down techniques. Finally,
in Section 8 we described how to use our new algorithms to efficiently locate
the highest diagonal entry in any given incarnation of the four round version of
Even-Mansour scheme, in order to break the scheme with a related key attack
which is faster than exhaustive search.

References

1. F. Abed, E. List, J. Wenzel, and S. Lucks. Differential Cryptanalysis of round-
reduced Simon and Speck, 2014. Presented at FSE 2014. To Appear in Lecture
Notes in Computer Science.

2. H. A. Alkhzaimi and M. M. Lauridsen. Cryptanalysis of the SIMON Family of
Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013.

3. K. Aoki, K. Kobayashi, and S. Moriai. Best Differential Characteristic Search of
FEAL. In Fast Software Encryption, FSE ’97, volume 1267 of Lecture Notes in
Computer Science, pages 41–53. Springer, 1997.

4. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404, 2013.

5. E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In Advances in Cryptology - EUROCRYPT
’99, volume 1592 of Lecture Notes in Computer Science, pages 12–23. Springer,
1999.

6. E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of CRYPTOLOGY, 4(1):3–72, 1991.

7. A. Biryukov and I. Nikolic. Automatic Search for Related-Key Differential Char-
acteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad
and Others. In Advances in Cryptology - EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 322–344. Springer, 2010.

8. A. Biryukov and I. Nikolic. Search for Related-Key Differential Characteristics in
DES-Like Ciphers. In Fast Software Encryption, FSE 2011, volume 6733 of Lecture
Notes in Computer Science, pages 18–34. Springer, 2011.

9. A. Biryukov, A. Roy, and V. Velichkov. Differential Analysis of Block Ciphers
SIMON and SPECK, 2014. Presented at FSE 2014. To Appear in Lecture Notes
in Computer Science.

10. A. Biryukov and V. Velichkov. Automatic Search for Differential Trails in ARX
Ciphers. In Topics in Cryptology - CT-RSA 2014, volume 8366 of Lecture Notes
in Computer Science, pages 227–250. Springer, 2014.

11. A. Bogdanov, L. R. Knudsen, G. Leander, F. Standaert, J. P. Steinberger, and
E. Tischhauser. Key-Alternating Ciphers in a Provable Setting: Encryption Us-
ing a Small Number of Public Permutations - (Extended Abstract). In Advances
in Cryptology - EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 45–62. Springer, 2012.

20

12. J. Daemen. Limitations of the Even-Mansour Construction. In Advances in Cryp-
tology - ASIACRYPT ’91, volume 739 of Lecture Notes in Computer Science, pages
495–498. Springer, 1993.

13. J. Daemen, R. Govaerts, and J. Vandewalle. A New Approach to Block Cipher
Design. In R. J. Anderson, editor, Fast Software Encryption, Cambridge Secu-
rity Workshop, Cambridge, UK, December 9-11, 1993, Proceedings, volume 809 of
Lecture Notes in Computer Science, pages 18–32. Springer, 1993.

14. C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Re-
sults and Applications. In Advances in Cryptology - ASIACRYPT 2006, volume
4284 of Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

15. I. Dinur, O. Dunkelman, N. Keller, and A. Shamir. Key Recovery Attacks on 3-
round Even-Mansour, 8-step LED-128, and Full AES2. In Advances in Cryptology
- ASIACRYPT 2013, volume 8269 of Lecture Notes in Computer Science, pages
337–356. Springer, 2013.

16. S. Even and Y. Mansour. A Construction of a Cipher from a Single Pseudorandom
Permutation. J. Cryptology, 10(3):151–162, 1997.

17. P. Fouque, J. Jean, and T. Peyrin. Structural Evaluation of AES and Chosen-Key
Distinguisher of 9-Round AES-128. In Advances in Cryptology - CRYPTO 2013,
volume 8042 of Lecture Notes in Computer Science, pages 183–203. Springer, 2013.

18. L. Knudsen. DEAL - A 128-bit Block Cipher, 1998. NIST AES Proposal.
19. X. Lai and J. L. Massey. Markov Ciphers and Differentail Cryptanalysis. In

Advances in Cryptology - EUROCRYPT ’91, volume 547 of Lecture Notes in Com-
puter Science, pages 17–38. Springer, 1991.

20. G. Leurent. Analysis of Differential Attacks in ARX Constructions. In Advances
in Cryptology - ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer
Science, pages 226–243. Springer, 2012.

21. M. Matsui. On Correlation Between the Order of S-boxes and the Strength of
DES. In Advances in Cryptology - EUROCRYPT ’94, volume 950 of Lecture Notes
in Computer Science, pages 366–375. Springer, 1995.

22. F. Mendel, T. Nad, and M. Schläffer. Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In Advances in Cryptology - ASIACRYPT
2011, volume 7073 of Lecture Notes in Computer Science, pages 288–307. Springer,
2011.

23. F. Mendel, V. Rijmen, D. Toz, and K. Varici. Differential Analysis of the LED
Block Cipher. In Advances in Cryptology - ASIACRYPT 2012, volume 7658 of
Lecture Notes in Computer Science, pages 190–207. Springer, 2012.

24. N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and Linear Cryptanalysis
Using Mixed-Integer Linear Programming. In Information Security and Cryptology
- Inscrypt 2011, volume 7537 of Lecture Notes in Computer Science, pages 57–76.
Springer, 2012.

25. I. Nikolic. Tweaking AES. In Selected Areas in Cryptography - SAC 2010, volume
6544 of Lecture Notes in Computer Science, pages 198–210. Springer, 2011.

26. K. Nyberg and L. R. Knudsen. Provable Security Against Differential Cryptanal-
ysis. In Advances in Cryptology - CRYPTO ’92, volume 740 of Lecture Notes in
Computer Science, pages 566–574. Springer, 1993.

27. S. Sun, L. Hu, M. Wang, P. Wang, K. Qiao, X. Ma, D. Shi, and L. Song. Auto-
matic Enumeration of (Related-key) Differential and Linear Characteristics with
Predefined Properties and Its Applications. 2014.

28. S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Automatic Security Evalua-
tion and (Related-key) Differential Characteristic Search: Application to SIMON,

21

PRESENT, LBlock, DES(L) and Other Bit-oriented Block Ciphers. Cryptology
ePrint Archive, Report 2013/676, 2013. Accepted to ASIACRYPT 2014.

10 Calculating P n
r,d

The Hamming ball algorithm of Section 5 relies on the value of Pnr,d. We compute
this value by distinguishing between two cases: when d > 2r, then Pnr,d = 0, as
the largest Hamming distance between points in Br(c) is 2r. Otherwise, d ≤
2r, and we consider the conditions on a point x such that both x ∈ Br(c)
and x ⊕ ∆ ∈ Br(c). We partition the coordinates of x ⊕ c which are set to 1
into two groups: the d1 ≤ min(r, d) coordinates which are common to x ⊕ c
and ∆ ⊕ c, and the remaining d2 ≤ min(r, n − d) coordinates. Thus, we have
dist(x, c) = d1+d2 and dist(x⊕∆, c) = d+d2−d1, implying that d1+d2 ≤ r and
d+d2−d1 ≤ r. In particular, the last equality implies that d1 ≥ max(d−r, 0), and
so max(d− r, 0) ≤ d1 ≤ min(r, d), while 0 ≤ d2 ≤ min(r− d1, r+ d1− d, n− d).
Therefore, we obtain

Pnr,d =

m2∑

d1=m1

m3∑

d2=0

(
d

d1

)(
n− d
d2

)

where m1 = max(d−r, 0), m2 = min(r, d) and m3 = min(r−d1, r+d1−d, n−d).

22

