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Abstract

We present the cryptographic implementation of “DEMOS”, a new e-voting system that is end-
to-end verifiable in the standard model, i.e., without any additional “setup” assumption or access
to a random oracle (RO). Previously known end-to-end verifiable e-voting systems required such
additional assumptions (specifically, either the existence of a “randomness beacon” or were only
shown secure in the RO model). In order to analyze our scheme, we also provide a modeling of end-
to-end verifiability as well as privacy and receipt-freeness that encompasses previous definitions in
the form of two concise attack games.

Our scheme satisfies end-to-end verifiability information theoretically in the standard model and
privacy/receipt-freeness under a computational assumption (subexponential Decisional Diffie Hel-
man). In our construction, we utilize a number of techniques used for the first time in the context of
e-voting schemes that include utilizing randomness from bit-fixing sources, zero-knowledge proofs
with imperfect verifier randomness and complexity leveraging.

1 Introduction

In an end-to-end (E2E) verifiable election system, voters have the ability to verify that their vote was
properly cast, recorded and tallied into the election result. Intuitively, the security property that an E2E
verifiable election intends to capture is the ability of the voters to detect a malicious election authority
that tries to misrepresent the election outcome. E2E verifiability is a strong level of security for election
systems that has been widely accepted as a fundamental requirement for their adoption, see e.g., [43].

In more details, E2E verifiability mandates that the voter can obtain a receipt at the end of the ballot
casting procedure that can allow her to verify that her vote was (i) cast as intended, (ii) recorded as
cast, and (iii) tallied as recorded. Furthermore, any external third party should be able to verify that
the election procedure is executed properly. In fact, it is imperative that the receipts in an E2E system
are delegatable i.e., the voter may delegate the task of verifiability to any interested third party, for
instance an international organization of the voters’ choosing that aggregates the task of verification.
This requirement, as well as the fact that it should be infeasible for the voter to use her receipt as a proof
of the way she voted (this is necessary to deter vote-selling/buying), make the design of end-to-end
verifiable systems a challenging problem.

All known e-voting systems that offer E2E verifiability provide it under some setup assumption or in
the random oracle (RO) model. Notably, E2E verifiability can be argued (note that it is never formally
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proven before) for Helios [1] in the RO model while for Remotegrity1 [49] in the model where a trusted
party (a “randomness beacon”) provides a stream of unbiased and unpredictable random coins. More
general approaches for defining auditable multiparty computation (MPC) have recently been proposed
[3] and also rely on a setup assumption such as a CRS.

A critical shortcoming of using setup assumptions for establishing E2E verifiability in e-voting is
the fact that the voters will be required to make a “leap of faith” and accept the setup assumption in order
to accept the election result. This can be an unfortunate state of affairs: since the election authority (EA)
cannot unequivocally convince the voters that the election is correct, then the election outcome can be
always subject to dispute.
Our Results. Motivated by the above, we design a new e-voting system that we can prove E2E ver-
ifiable information theoretically in the standard model, i.e., without any setup assumption except the
existence of a bulletin board (BB) which provides a consistent view of the election transcript. Our result
is further strengthened by the fact that we make the absolute minimal assumptions on the computation
capabilities of the voters: voters are merely modeled as finite state transducers and thus are incapable of
performing any cryptographic operation during ballot-casting (note the auditing stage after the election
would require the capability of cryptographic operations but they can be performed at any time, in the
post-election stage).

To accomodate the analysis of our system we provide a model for E2E verifiability and voter
privacy/receipt-freeness. Our model for E2E verifiability is inspired from input-indistinguishable com-
putation of Micali, Pass and Rosen [39] since in their setting they are also faced with proving security
for multiparty computation in the standard model (note however they do not deal with E2E verifiabil-
ity/auditability in their setting). In our modeling, the election system involves three types of entities, the
voters V1, . . . , Vn, the election authority (EA), and the bulletin board (BB) whose only role is to provide
storage for the election transcript for the purpose of verification. Voters submit their votes by engaging
in the ballot casting protocol to the EA and they are not allowed to interact with each other. Our defini-
tion of end-to-end verifiability considers a very powerful adversary that is computationally unbounded
and completely controls the EA. On the other hand, BB is completely passive and is only writeable by
the EA and readable by anyone. The definition is satisfied, if and only if the adversary is incapable of
evading being detected when it manipulates the election result as long as a number of voters perform
the verifiability procedure honestly. Voter privacy on the other hand, considers an adversary that has full
access to all the the voters’ receipts, views of the ballot casting protocol as well as it may control of a
number of malicious voters. For any election tally, the adversary should be incapable of distinguishing
the way honest voters vote.

Our construction cherry picks ideas put forth in previous works, specifically, code-voting and double
ballots from [13, 14], but also introduces a number of novel elements that enable us to prove E2E
verifiability in the standard model. In order to achieve verifiability, our system utilizes a novel ZK proof
for candidate encoding correctness and collects coins from the voters to form the challenge (specifically,
a single random coin per voter). Given that the majority of voters cannot be assumed to be properly
following the protocol, the sequence of voter contributed randomness is a particularly “weak source”
that cannot be used for arguing the integrity of the election in a direct way — as we argue it is a very
weak source akin to adaptive bit-fixing sources [38]. We then show (i) how it is possible to perform
our ZK proof with a verifier that has imperfect randomness (just a min-entropy source), (ii) how to
produce a (sufficiently long) sequence of min-entropy challenge from the random bits contributed by the
voters. The tools that are important in our construction include a generalization of the Schwartz-Zippel
lemma [46, 50] for imperfect randomness and a suitable strategy for dividing the coins of the voters
so that the entropy is not lost due to the adversarial strategy of the EA (who also controls a number of
voters). Using these techniques we design a novel ZK protocol and we prove unconditionally end-to-end
verifiability for our scheme. For voter privacy, we utilize complexity leveraging to construct a simulator
that is capable of reducing a voter privacy attack to a subexponential DDH distinguisher and hence our

1Note that Remotegrity itself is only a “front-end” type of system. It will be E2E verifiable if combined with Scantegrity-II
[15] as suggested by the authors of the paper.
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system offers privacy and receipt-freeness under a computational assumption.
In summary, our e-voting system is the first construction achieving the properties E2E verifiabil-

ity and voter privacy/receipt-freeness in the standard model. Furthermore, we prove E2E verifiability
information theoretically assuming the voters are computationally restricted transducers that hence are
incapable of performing any cryptographic operation during ballot casting. The only assumptions we
make are subexponential Decisional Diffie Hellman assumption (for voter privacy/receipt-freeness) and
a consistent bulletin board board. We remark that a consistent bulletin board can be easily seen to be
a tight condition since without it, it is easy to verify that E2E verifiability of the election cannot be
achieved: by controlling the BB, an adversarial EA can distribute voters to their own separate “islands”
where within each one the voters will have their own verifiable view of an election result that can be -
in reality - completely skewed. Implementing a consistent bulletin board is beyond our scope, however
we note that it can be achieved in the standard model using Byzantine agrement (BA) (for BA, see e.g.,
[26]) by assuming secure channels between any pair of parties. In fact, recently, it is shown that one
can achieve BA efficiently even without secure channels in a completely anonymous setting [27] hence
removing the requirement for pairwise secure channels (but note that this latter work relies on proofs of
work modeled in the RO model).
Why previously known techniques do not work. To motivate further our approach it is worth-while
to emphasize in which way previous works fail to attain end-to-end verifiability in the standard model.
Helios, culminates a long line of previous schemes that employ homomorphic type of voting, cf. [18, 23,
33] and utilizes the Benaloh challenge [5] as the fundamental mechanism to attain verifiability. Helios
by design requires the voter to utilize a voter supporting device to prepare a ciphertext and after an
indeterminate number of trials, the voter will cast the produced ciphertext. Such ciphertexts are to be
homomorphically tallied and thus they should be accompanied by a proof of proper computation. While
such proofs are easy to construct based on e.g., [21], they can only be argued interactively (which is
insufficient in our setting since a corrupt EA together with a corrupt voter may cook up a malformed
proof that is indistinguishable from a proper one) or using a NIZK [10]. This latter approach is taken in
Helios where a RO-based NIZK is utilized. In case the RO is dropped in favor of a standard model NIZK,
security would be impossible in our model as NIZK’s require a common reference string (CRS) and this
is unavailable in the standard model; if the CRS is setup by the EA then in case it is malicious it will
know and exploit the trapdoor; on the other hand, the voters are not interacting with each other and hence
cannot setup the CRS by employing an MPC protocol. It follows that obtaining E2E verifiability in the
standard model is impossible to overcome for Helios or any other similar existing scheme. On the other
hand, in the case of Remotegrity/Scantegrity n coins need to be obtained from the randomness beacon
in order to prove the result correct. It is easy to verify that the system is insecure in terms of end-to-end
verifiability in case the randomness beacon is biased. As before, the only parties active are the EA and
the voters who cannot implement a randomness beacon that is required in the construction. In light of the
above, our construction offers a new paradigm in e-voting design: the randomness for the verification of
the election can be collected distributively from the voters. Given that such randomness is by nature very
weak (humans are very bad “randomness generators” and even worse malicious voters may collaborate
with the election authority to cancel the honest voters’ random bits) we show how suitable cryptographic
techniques that deal with imperfect randomness can be employed to prove security.
Distributing the Election Authority. In our security model, we consider the EA as a single entity
that is malicious in the verifiability game and honest in the privacy game. In practice one may want to
distribute the EA to a number of “trustees” that collectively implement the EA functionality to improve
the resiliency of the privacy property. While this is not a prime focus of our work (which centers on
verifiability), it is feasible to design an efficient threshold protocol for implementing the EA. Note that
our notion of voter privacy and receipt freeness can be easily extended to allow corrupted sub-authorities.
Other required properties of election systems. Our work by no means solves the complete set of
desired requirements that are needed in an election system. Our voter-privacy definition implies receipt-
freeness, i.e., provided that the voter receives the voter secret-key over an untappable channel2, the voter

2An untappable channel enables the voter to deny the information that was transmitted in it. Physically distributing voter’s
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cannot convince any third party about the way she voted. Nevertheless, this does not imply coercion
resistance as the voter may still be forced to divulge the voter secret prior to her ballot-casting (this
does not violate voter privacy - it just prevents the voter from actually using the system and enables
the adversary to vote on the voter’s behalf). There are techniques that can be used to increase coercion
resistance for internet-voting (e.g., those of [31, 17] and others) and they are compatible with our con-
struction. We leave the integration of these techniques with information theoretic E2E verifiability for
future work. Similarly, usability aspects are not within our current scope; nevertheless, we stress that we
have implemented our system for 1-out-of-m elections and we have used it in real-world experiments3.
Related work. In [12], Chaum suggested for the first time that anonymous communication can lead
to voting systems with individual verifiability, i.e., the voters can verify that their votes were counted
correctly. In [45], Sako and Killian introduce explicitly the notion of universal verifiability, that is, the
ability for anyone to verify that the election result derives from the cast votes. Universal verifiability is
also defined by Juels, Catalano and Jakobsson in [31] in the computational model assuming a trusted
setup. Kremer, Ryan and Smyth [34] introduced symbolic definitions for individual and universal verifi-
ability in the context of applied pi calculus. A formal definition of universal verifiability is also provided
by Chevallier-Mames et al. in [16].

End-to-end verifiability in the sense of cast-as-intended, recorded-as-cast, tallied-as-recorded was
an outcome of the works of Chaum [14] and Neff [42]. The novelty was the generation of receipts that
could be used for simple voter verification while achieving privacy. The term of E2E verifiability (more
precisely, E2E integrity) also appeared in [20]. Marneffe, Pereira and Quisquater presented an ideal-
world definition for election systems in [24] without explicitly considering verifiability as a property
of the ideal world. In [43], Popoveniuc et al. proposed a definition of E2E verifiability via a list of
properties.

Küsters, Truderung and Vogt [35] introduced symbolic and computational definitions of verifiability
parameterized by a goal and an adversarial environment. In [37], the same authors showed that individual
verifiability and universal verifiability are not sufficient to guarantee the “global” verifiability of an e-
voting system. A number of other e-voting systems in the cryptographic setting that do not explicitly
deal with E2E verifiability include [19, 7, 22, 23].

Benaloh and Fischer [19] provided a computational definition of privacy as the property that any
coalition of malicious voters cannot distinguish between any two vote assignments coming from a subset
of honest voters that have the same partial tally. Receipt-freeness has been first studied by Benaloh and
Tuinstra [6] and described as the property of an e-voting system to generate fake voter transcripts that
are indistinguishable from genuine transcripts. Following this logic, in our voter privacy/receipt-freenes
definition, we require simulation-based indistiguishability of the views of the voters when they engage
in the ballot-casting stage. Chevallier-Mames et al. [16] introduced definitions for unconditional of
privacy and receipt-freeness and showed incompatibility results of universal verifiability with each of
these two properties.

Formal definitions for privacy and receipt-freeness have been proposed in the context of applied pi
calculus [25] and the universal composability model [29, 41]. In [37], the level of privacy of an e-voting
system is measured w.r.t. to the observation power the adversary has in a protocol run, via a definition
which is close to the Dolev-Yao model.

In [8], Bernhard et al. proposed a game-based notion of ballot privacy and study the privacy of
Helios. In their model, an adversary that chooses a fixed vote E, cannot distinguish a bulletin board
that contains ballots for real votes from a bulletin board that contains ballots for E. Their definition
was extended by Bernhard, Pereira and Warinschi [9] by allowing the adversary to statically corrupt
election authorities. Both these definitions, although they imply a strong inditinguishability property, do
not consider receipt-freeness. We note that our game-based definition captures both privacy and receipt-
freeness while restricted to a single EA (and it can easily be extended by including a set of trustees that
the adversary may corrupt).

secrets or using non-committing encryption [4] achieves untappability.
3For more information check our web-site http://www.demos-voting.org
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As we have mentioned previously, modelling coercion resistance is out of the scope of this work.
We refer the reader to [31, 25, 48, 36] for formal definitions of coercion resistance in the cryptographic,
symbolic and universal composability model.
Organization. In Section 2, we introduce the syntax and define the correctness, E2E verifibiality and
voter privacy/receipt freeness of an e-voting system. In Section 3, we present at length the construction
of our e-voting system, including a detailed description of all tools that are applied. In Section 4, we
prove the E2E verifibiality and voter privacy/receipt freeness of our e-voting system in the security
framework of Section 2. In Section 5, we provide an overview of the implementation of our system for
1-out-of-m elections along with election preparation time benchmarks.

2 E-voting Systems

2.1 Preliminaries

We use λ as the security parameter. Associated with an e-voting system, we also consider two other
parameters, the number of voters n and number of candidates m which are both thought as polynomial
functions of λ. Let Π be an e-voting system, where P = {P1, ..., Pm} is the set of candidates and
V = {V1, ..., Vn} is the set of voters. We denote by U ⊆ 2P the collection of subsets of candidates that
the voters are allowed to choose to vote for (which may include a “blank” option too). The candidate
selection U` of voter V` is an element in U .

Let P∗ be the set of vectors of candidate selections of arbitrary length. Let f be the election evalu-
ation function from P∗ to the set Zm+ so that f(U1, . . . ,Un) is equal to an m-vector whose i-th location
is equal to the number of times Pi was chosen in the candidate selections U1, . . . ,Un.

The entities involved in an e-voting system Π, are the voters V1, . . . , V`, the election authority (EA)
and the Bulletin Board (BB).

2.2 Syntax and Correctness

An e-voting system Π is a quintuple of algorithms and protocols 〈Setup,Cast,Tally,Result,Verify〉
specified as follows:

• The algorithm Setup(1λ,P,V,U) is executed by the EA and generates a master secret key msk,
Π’s public parameters Pub (which include P,V,U) and the voters’ secrets s1, . . . , sn. EA has a
state, st which is initialized as msk. In addition, it posts an initial public transcript τ = Pub on
the BB.

• The interactive protocol Cast is between three parties, the voter V`, the BB and the EA. V` has
input (Pub, s`,U`), EA has inputmsk and BB has input τ . EA updates its state st and BB updates
the public transcript τ . Upon successful termination, the voter V` receives a receipt α`. We denote
by view` the view of the voter V` in the protocol Cast.

• The interactive protocol Tally with common input Pub is executed by the EA and the BB on
inputs msk, τ respectively. Upon successful termination, the BB updates the public transcript τ .

• The algorithm Result(τ) outputs the result Rτ for the election or returns ⊥ in case such result is
undefined.

• The algorithm Verify(τ, α) outputs a value in {0, 1}, where α is a voter receipt (that corresponds
to the voter’s output from the Cast protocol).

Remark. In many election systems, the EA is implemented by more than a single authority. This
means that Setup might be a protocol executed by those parties (as opposed to a standalone algorithm).
However, from the point of view of E2E verifiability (where the system is considered malicious as a
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whole) this is completely immaterial. Hence, for simplicity in the syntax above we consider EA a single
entity. In our construction the EA may also be distributed. We defer the details for how this may be done
to the full version of the paper.

Definition 1 (Correctness) The e-voting system Π has (perfect) correctness, if for any honest execution
of Π that results in a public transcript τ where the voters V1, . . . , Vn cast votes for options U1, . . . ,Un
and received receipts α1, . . . , αn, it holds that

Result(τ) = f(U1, . . . ,Un) and ∧n`=1 (Verify(τ, α`) = 1).

2.3 E2E Verifiability

In order to define E2E verifiability formally, we introduce a suitable notation; given that candidate
selections are elements of a set of m choices, we may encode them as m-bit strings, where the bit in the
i-th position is 1 if and only if candidate Pi is selected. Further, we may aggregate the election results as
the list with the number of votes each candidate has received, thus the output of the Result algorithm
is a vector in Zm+ . In this case, a result is feasible if and only if the sum of all its coordinates is no greater
than the number of voters.

In our formalization of the E2E verifiability, we postulate the existence of a vote extractor algorithm
E (not necessarily running in polynomial-time) that explains the election transcript: namely, it receives
input of the form (τ,A) where τ is an election transcript and A = {α`}`∈Ṽ is a set of Cast protocol
receipts. By Ṽ , we denote the set of honest voters that voted successfully. Given such input, E will
compute n − |Ṽ| vectors 〈U`〉V`∈V\Ṽ in {0, 1}m (which correspond to the choices of all the voters

outside of Ṽ) that can be either a candidate selection if the voter has voted adversarially or a zero vector
if the voter has not voted successfully; E returns the symbol ⊥ in case such values cannot be defined. In
the special case where all voters are honest and have voted successfully (i.e., Ṽ = V), E returns no value
(outputs the empty set). The purpose of the E algorithm will be to capture the setting when the election
transcript τ contains (in potentially encoded form) a set of well-formed actual votes.

Using the above notion, we will be capable to express the actual result encoded in an election tran-
script. Next, we want to formally express a measure of deviation from the actual election result (as such
deviation is the objective of the adversary in an E2E verifiability attack). Some preliminary notions
will be needed. In order to express formally the deviation the adversary aims at, it is natural to equip
the space of results with a metric. We use the metric derived by the 1-norm, ‖ · ‖1 scaled to half, i.e.,
d1 : Zm+ × Zm+ −→ R with d1(w,w′) = 1

2 · ‖w − w
′‖1 = 1

2 ·
∑n

i=1 |wi − w′i| where wi, w′i is the i-th
coordinate of w,w′ respectively.

Consider R ∈ Zm+ be the election results that correspond to the true voter intent of n voters, and
R′ ∈ Zm+ be the published election results. Denote by max(U), the maximum cardinality of an element
in U . Two encodings of candidate selections are within max(U) distance, so intuitively, if the adversary
wants to present R′ as the result of the election, it may do that by manipulating the votes of at least
d1(R,R′)/max(U) voters.

We define next the E2E Verifiability game, GA,E,d,θE2E−Int, between the adversary A and a challenger C
using a voter extractor E , that takes as input the security parameter, λ, the number of candidates, m and
the number of voters, n.
Overview of the game GA,E,d,θE2E−Ver(1

λ,m, n). The attack game is parameterized by d, which is the devi-
ation amount (according to the metric d1(·, ·)) that the adversary wants to achieve and θ, the minimum
number of voters that A must allow to vote honestly and terminate successfully. The adversary starts
by selecting the voter and candidate identities for given parameters n,m. It also determines the allowed
ways to vote as described by the set U . The adversary fully controls the EA. The adversary manages the
Cast protocol executions where it assumes the role of the EA. For each voter, the adversary may choose
to corrupt it or to allow the challenger to play on its behalf. In the second case, the adversary provides
the candidate selection that the honest voter will use in the Cast protocol. The adversary completes the
execution of EA which results to the complete election transcript published in the BB. The adversary
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will win the game provided that all θ honest voters that completed the Cast protocol successfully will
also audit the result successfully but the deviation of the tally is at least d; the adversary will also win
in case the extractor fails to produce the candidate selection of the dishonest voters (but θ honest voters
still verify correctly). The attack game is specified in detail in Figure 1.

E2E Verifiability Game GA,E,d,θE2E−Ver(1
λ,m, n)

1. A chooses a list of candidates P = {P1, ..., Pm}, a set of voters V = {V1, ..., Vn} and the set of
allowed candidate selections U . It provides C with the sets P,V,U along with information Pub and
voter credentials {s`}`∈[n]. Throughout the game, C plays the role of the BB.

2. The adversaryA and the challenger C engages in an interaction whereA schedules the Cast protocols
of all voters. For each voter V`,A can either completely control the voter or allow C to operate on their
behalf, in which case A provides a candidate selection U` to C. Then, C engages with the adversary
A in the Cast protocol so thatA plays the role of EA. Provided the protocol terminates successfully,
C obtains the receipt α` on behalf of V`.
Let Ṽ be the set of honest voters (i.e., those controlled by C) that terminated successfully.

3. Finally, A posts the election transcript τ to the BB.

The game returns a bit which is 1 if and only if the following conditions hold true:

(i). |Ṽ| ≥ θ, (i.e., at least θ honest voters terminated).

(ii). ∀` ∈ [n] : if V` ∈ Ṽ , then Verify(τ, α`) = 1 (i.e., the voters in Ṽ verify their ballot successfully).

and either one of the following two conditions:

(iii-a). If ⊥ 6= 〈U`〉V`∈V\Ṽ ← E(τ, {α`}V`∈Ṽ ),
then

d1(Result(τ), f(〈U1, . . . ,Un〉)) ≥ d.

(iii-b). ⊥ ← E(τ, {α`}V`∈Ṽ ).

Figure 1: The E2E Verifiability Game between the challenger C and the adversary A using the vote
extractor E .

Definition 2 (E2E-Verifiability) Let 0 < ε < 1 and n,m, d, θ ∈ N with d > 0 and 0 < θ ≤ n. The
election protocol Π w.r.t. the election function f achieves E2E verifiability with error ε, for a number of
at least θ honest successful voters and tally deviation d if there exists a (not necessarily polynomial-time)
vote-extractor E such that for any adversary A:

Pr[GA,E,d,θE2E−Ver(1
λ,m, n) = 1] ≤ ε.

In plain words, Definition 2 suggests that an E2E verifiable e-voting system, provides an “official
explanation” of adversarial votes via the vote extractor E , such that if at least θ voters verify the result,
then any adversary that attempts to manipulate the election tally (that includes the honest votes and the
official explanation of the adversarial votes) by a shift of d votes will get caught except from some (sup-
posedly small) probability ε.

Remark. In the only previous works [37, 35] where end-to-end verifiability was considered at a “global
level” as we do here, it was expressed with respect to a set of “good” runs γ of the e-voting protocol in
the sense that a judge could test whether the protocol operated within the set γ. Even though sufficiently
expressive, this formulation has the disadvantage that the set γ remains undetermined and thus the level
of verifiability that is offered by the definition hinges on the proper definition of γ which may not be
simple. Using our language the notion of a good run becomes explicit: a run of the e-voting protocol is
good provided that the extractor E produces votes for the malicious voters which if they are added to the
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votes of the honest voters they produce a result that does not deviate from the published result according
to the d1(·, ·) metric. Note that our vote extractor may require super-polynomial time (in the same way
that the set of good runs γ may have a membership test of super-polynomial complexity). We remark
that the use of a super-polynomial extractor to define properly the inputs of the malicious participants
and hence the soundness of a multiparty protocol is not novel to our work. For example see, Micali,
Pass and Rosen [39] where they used a similar construct to prove security of their general multiparty
computation protocol.

2.4 Voter Privacy (including Receipt-Freeness)

The definition of voter privacy concerns the actions that may be taken by the adversary to break the
privacy and learn some information about the candidate selections of the honest voters. We specify the
goal of the adversary in a very general way. In particular, for an attack against voter privacy to succeed,
we ask that there is an election result, for which the adversary is capable of distinguishing how the honest
voters voted while it has access to (i) the actual receipts that the voters obtained after ballot-casting as
well as (ii) a set of protocol views that are consistent with all the honest voters’ views in the Cast
protocol instances they participated (and the adversary has observed).

Observe that any system that is secure against such an attack scenario would possess also “receipt-
freeness”, i.e., voters cannot prove how they voted by showing the receipt they obtain from the Cast
protocol or even presenting their view in the Cast protocol. Given that in the privacy definition we
allow the adversary to observe the view of the voter in the Cast protocol, we need to allow the voter
to be able to “lie” about her view in this protocol (otherwise an attack could be trivially mounted).
Note that this would require the voter input to the Cast protocol to be delivered via an untappable
channel; in particular, the adversary should not have any side-channel information about the voter’s
secrets s1, . . . , sn.

We formally define the voter privacy of an election via a Voter Privacy/Receipt-freeness game, de-
noted by GA,St-priv, that is played between an adversary A and a challenger C, that takes as input the
security parameter, λ, the number of voters, n, and the number of candidates, m, as described in Fig-
ure 2 and returns 1 or 0 depending on whether the adversary wins. An important feature of the game is
the existence of an efficient “voter simulator” S that provides a simulated view of the voter in the Cast
protocol. Intuitively, this simulator captures the way the voter can lie about her candidate selection
in the Cast protocol in case she is coerced to present her view after she completes the ballot-casting
procedure.
Overview of the game GA,St-priv(1λ, n,m). The adversary starts by selecting the voters and candidates
for given parameters n,m. It also determines the allowed ways to vote. The challenger flips a coin
b (that will change its behavior during the course of the game) and will perform the Setup protocol.
Subsequently, the adversary will schedule all Cast protocols selecting which voters it prefers to corrupt
and which ones it prefers to allow to vote honestly. The adversary is allowed to corrupt at most t voters.
The voters that remain uncorrupted are operated by the challenger and they are given two candidate
selections to choose. The challenger will select which of the two candidate selections the voter will use
in the Cast protocol according to the bit b. The adversary will also receive the receipt that is obtained
by each voter as well as either the actual view of each voter during the Cast protocol, if b = 0, or a
simulated view, if b = 1 (this addresses the receipt-freeness aspect). Upon completion of ballot-casting,
the challenger executes the Tally protocol and posts the election result. Subsequently the adversary
will attempt to guess b. The attack is successful provided that the adversary has corrupted up to t voters,
the election tally is the same with respect to the two alternatives provided for each honest voter by the
adversary and the adversary manages to guess the challenger’s bit b. The game is presented in more
detail in figure 2.

Definition 3 (Voter Privacy/Receipt-Freeness) Let n,m ∈ N. The e-voting system Π w.r.t. the elec-
tion function f achieves voter privacy/receipt-freeness for at most t corrupted voters, if there is a PPT
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Voter Privacy/Receipt-freeness Game GA,St-priv(1λ, n,m)

1. A on input 1λ, n,m, chooses a list of candidates P = {P1, ..., Pm}, a set of voters V = {V1, ..., Vn},
and the set of allowed candidate selections U . It provides C the sets P , V , and U .

2. C flips a coin b ∈ {0, 1} and performs the Setup protocol on input (1λ,P,V,U) to obtain
msk, s1, . . . , sn,Pub; it provides A with Pub.

3. The adversaryA and the challenger C engage in an interaction whereA schedules the Cast protocols
of all voters which may run concurrently. For each voter V` ∈ V , the adversary chooses whether V`
is corrupted:

• If V` is corrupted, then C provides s` to A, and then they engage in a Cast protocol where A
plays the role of V` and C plays the role of EA and BB.

• If V` is not corrupted, A provides two candidate selections 〈U0
` ,U1

` 〉 to the challenger C. C
operates on V`’s behalf, using Ub` as the V`’s input. The adversary A is allowed to observe the
network trace of the Cast protocol where C plays the roles of V`, EA, and BB. When the Cast
protocol terminates, the challenger C provides to A: (i) the receipt α` that V` obtains from the
protocol, and (ii) if b = 0, the current view of the internal state of the voter V`, view`, that the
challenger obtains from the Cast execution, or if b = 1, a simulated view of the internal state
of V` produced by S(view`).

4. C performs the Tally protocol playing the role of EA and BB. A is allowed to observe the network
trace of that protocol.

5. Finally, A using all information collected above (including the contents of the BB) outputs a bit b∗.

Denote the set of corrupted voters as Vcorr and the set of honest voters as Ṽ = V \ Vcorr. The game returns a
bit which is 1 if and only if the following hold true:

(i). b = b∗ (i.e., the adversary guesses b correctly).

(ii). |Vcorr| ≤ t (i.e., the number of corrupted voters is bounded by t).

(iii). f(〈U0
` 〉V`∈Ṽ) = f(〈U1

` 〉V`∈Ṽ) (i.e., the election result w.r.t. the set of voters Ṽ does not leak b).

Figure 2: The Voter-privacy/Receipt-freeness game

voter simulator S such that for any PPT adversary A:∣∣∣Pr[GA,St-priv(1λ, n,m) = 1]− 1/2
∣∣∣ = negl(λ).

Remark. Our game-based voter privacy/receipt-freeness definition is close in spirit to witness indistin-
guishability of interactive proof systems. Namely, the adversary’s challenge is to distinguish between
two possible lists of candidate selections (the witnesses) that produce the same tally when restricted to
just the honest voters. A potentially stronger privacy requirement would be a simulation-based formula-
tion (akin to zero-knowledge in interactive proof systems) e.g., as the one suggested for ballot privacy in
[9]. The definition of [9] is incomparable to ours because even though it is simulation-based and it cap-
tures malicious behavior of a subset of multiple trustees, it does not consider receipt-freeness. Note that
our definition can be easily extended to the setting of multiple trustees (that the adversary may corrupt
up to a threshold).

3 Presentation of Our e-Voting System

Our system has three stages, setup, ballot-casting and tallying, that parallel the operation of a Σ protocol.
During setup stage, the EA produces a series of commitments and pre-audit data that correspond to a
first move of a Σ protocol that will establish the validity of the commitments. During ballot-casting,
voters engage with the EA in a protocol that will result in the recording of their votes, as well as in the
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submission of a random coin flip that will be used to produce the challenge for the Σ protocol. Voters
will receive a receipt as their local output from the ballot-casting protocol that can be used for auditing
the election result. In the third and final stage, the EA produces the tally of the election and completes
the Σ protocol by publishing openings to commitments as well as other necessary information needed
for verification. The verification step can take place at any time after the completion of the process using
a collection of at least one receipt from the ballot-casting stage.

In our system, the voter implementation during the ballot-casting stage is expressed as a probabilistic
transducer (see e.g., [30]) with a communication tape that has a number of states polynomial in the
number of candidates m (and independent to other parameters such as n, λ). Given that such a machine
is severely limited in the computational sense, in order to achieve ballot casting we utilize a code-voting
approach (cf. [13]): the EA corresponds vote-codes to commitments posted in the BB, and voters cast
their vote by simply sending to the EA the vote-code that they prefer. The commitments have an additive
homomorphic property, hence it is possible to tally the result by homomorphically processing them and
opening the resulting “tally commitment”. The proof that we use in order to ensure verifiability is a
conjunction of a cut-and-choose proof with a Σ proof that a committed value belongs to a set. The
challenge needed for the Σ proof will be extracted by applying a suitable extraction mechanism to the
coin flips of the voter transducers that are collected by the EA.

In Sections 3.1, 3.2, 3.3 and 3.4, we provide a detailed description of the tools that we apply for the
construction of our system, i.e., (i) the homomorphic commitment scheme, (ii) a generalization of the
Schwartz-Zippel lemma for imperfect randomness, (iii) the Σ protocol and (iv) the challenge extraction
mechanism, respectively. We describe our e-voting system in Section 3.5 and prove its correctness in
Section 3.6. For the better understanding of our system, we provide a toy example in Section 3.7.

3.1 Perfectly Binding Commitment

To achieve integrity against computationally unbounded adversaries, we have to use a perfectly binding
commitment scheme. Moreover, our system requires such a commitment scheme to be additively homo-
morphic to facilitate the tally and audit process. In this work, we instantiate the commitment scheme with
lifted ElGamal over elliptic curves. We use elliptic curve domain parameters Param := (p, a, b, g, q)
generated by the curve generator G(1λ), consisting of a prime p that specify the finite field Fp, two
elements a, b ∈ Fp that specify an elliptic curve E(Fp) defined by the equation: E : y2 = x3 + ax+ b
(mod p) , a base point g = (xg, yg) on E(Fp), and a prime q which is the order of g. We denote the
cyclic group generated by g as G, and it is assumed that the DDH assumption holds over G. More
specifically, our commitment scheme consists of the following algorithms:

• Gen(Param, 1λ): picks x← Zq, sets h := gx, and outputs ck := (Param, h).

• Comck(m; r): outputs c := (gr, gmhr).

• Verck(c;m; r): outputs accept if c = (gr, gmhr); otherwise, outputs reject.

It is obvious that the above commitment scheme is perfectly binding and computationally hiding
under the DDH assumption, i.e. for any PPT adversary A, we have that the advantage

Advhide(A) :=

∣∣∣∣∣∣Pr

 Param← G(1λ); ck← Gen(Param, 1λ);
(m0,m1)← A(Param, ck); b← {0, 1} ;
r ← Zq : A(Comck(mb; r)) = b

− 1/2

∣∣∣∣∣∣
is negligible in λ. The commitment scheme is additively homomorphic. Namely,

Comck(m1; r1) · Comck(m2; r2) = Comck(m1 +m2; r1 + r2).
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3.2 Schwartz-Zippel (min-entropy variant)

We need a min-entropy variant of the Schwartz-Zippel lemma, to check the equality of two univariate
polynomials f1, f2, i.e. test f1(x)− f2(x) = 0 for random x

D← Zq. The probability that the test passes
is at most max(d1,d2)

2κ if f1 6= f2, where di is the degree of fi for i ∈ {1, 2}. We state the following
lemma without proof (a proof will be provided in the full version).

Lemma 1 (min-entropy Schwartz-Zippel) Let f(x) be a non-zero univariate polynomial of degree d
over Zq. Let D be a probability distribution on Zq such that H∞(D) ≥ κ. The probability of f(x) = 0

for a randomly chosen x D← Zq is at most d
2κ .

3.3 A Σ Protocol for Candidate Encoding Correctness

In order to present the Σ protocol with clarity, we outline some necessary excerpts of the description of
our system that will be explained in detail in Section 3.5.

Let N = n + 1, where n is the number of voters. Each voter is given a ballot that consists of two
equivalent parts that contain a list of m vote-codes corresponding to the list candidates {P1, . . . , Pm}.
The voter will flip a coin to choose the part she is going to use for voting. At the Setup phase, each
ballot is posted to the BB in committed form. Namely, it consists of two sets of commitments E(a)

`,j

for a ∈ {0, 1} , ` = 1, . . . , n, j = 1, . . . ,m, and each set commits to a permutation of the encoded
candidates, where candidate Pj is encoded as N j−1.

We emphasize that it is not necessary to prove that each set of the commitments commits to a
permutation of the encoded candidates

{
N0, . . . , Nm−1

}
in an 1-out-of-m election. This is due to two

facts: (i) EA will open one of the two sets of commitments according to the corresponding voter’s coin
a` (the set that corresponds to the unused ballot part); therefore, a malicious EA will be caught with
probability 1/2 by each honest voter if any of the committed sets is not a permutation of the encoded
candidates or is an inconsistent permutation of the encoded candidates w.r.t. the one on the voter’s
ballot. (ii) Even if we ensure that the set of the commitments commits to a permutation of the encoded
candidates, it does not imply that the permutation is consistent to the one on the voter’s ballot. In an
1-out-of-m election, only one of the commitments will be used for tally, and thus proving that the set
of the commitments commits to an unknown permutation of the encoded candidates can only provide
the guarantee that the tallied commitment commits to an encoded candidate. Note that this guarantee is
important; otherwise, given that we perform homomorphic tallying, it may be feasible for a cheating EA
to introduce a large deviation to the actual tally result via a single inconsistent ballot; for instance, EA
may commit to 10000 ·N j−1 for some j ∈ [m]. Hence, we want the EA to show that each commitment
commits to one of N j−1 for j ∈ [m]. 4 We can formalize the correctness of a single commitment
problem as follows. Given commitments E, the prover wants to convince the verifier that he knows
r ∈ Zq such that E = Comck(N

i; r) and i ∈ [0,m − 1]. Let i, r be the prover’s private input, and
w.l.o.g. we assume m is a perfect power of 2. For general cases, say 2e−1 ≤ m ≤ 2e, we can show the
conjunction i ∈ [0, 2e] ∧ (i+ 2e −m) ∈ [0, 2e]. Our Σ Protocol is described in Fig. 3.

Theorem 1 Let N > 0 be a public integer. Given common input E ∈ G×G, the protocol described in
Fig. 3 is a Σ protocol for knowledge of i ∈ N, r ∈ Zq such thatE = Comck(N

i; r), i ∈ [0,m−1] that is
perfectly complete, statistically sound with soundness error 2−κ+1+log logm when the verifier’s challenge
has min-entropy κ and computationally zero-knowledge with distinguishing advantage Advzk(A) ≤
logm · Advhide(A) for any PPT adversary A.

4For efficiency, EA is only required to show the commitments that are used for tally commit to valid encoded candidates.
On the other hand, since EA cannot predicate which commitments are going to be used for tally before the election, she has to
prepare all the Σ protocols in the Setup phase; whereas she is only required to complete those Σ protocols for the commitment
that will be tallied in the Tally phase.
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P (i, r):
Define bj such that i =

∑logm−1
j=0 bj2

j . Pick

• tj , zj , yj , rj , wj , fj ← Zq for j ∈ [0, logm− 1].

Compute the following commitments:

• For j ∈ [0, logm− 1],

– Bj = Comck(bj ; rj); Tj = Comck(tj ; zj);
– Yj = Comck((1− bj)tj ; yj);
– Wj = Comck(wj ; fj).

Define Aj , aj , r′j such that Aj = BN
2j−1

j · Comck(1; 0) = Comck(aj ; r
′
j), for j ∈ [0, logm − 1].

Define {βj , γj}logmj=0 such that
∏logm−1
j=0 (ajX + wj) =

∑logm
j=0 βjX

j and
∏logm−1
j=0 (r′jX + fj) =∑logm

j=0 γjX
j . (Note that for efficiency reasons, the prover needs to choose the {rj}logm−1j=0 such that

γlogm = r in previous step.)

• For j ∈ [0, logm− 1], Dj = Comck(βj ; γj).

Return φ1 = {Bj , Tj , Yj ,Wj , Dj}logm−1j=0 and

stateφ = {tj , zj , yj , rj , bj , wj , fj}logm−1j=0 .

P → V : Send φ1.

V → P : Send ρ← Zq.

P (stateφ): Compute the following answers:

• For j ∈ [0, logm− 1],

– t′j = bjρ+ tj , z
′
j = rjρ+ zj , y

′
j = −yj − rjt′j ;

– w′j = ajρ+ wj , f
′
j = r′jρ+ fj ;

Set φ2 =
{
t′j , z

′
j , y
′
j , w

′
j , f
′
j

}logm−1
j=0

.

P → V : send φ2

V (E, φ1, ρ, φ2): Accept the proof (i.e. output accept) if and only if

• For j ∈ [0, logm− 1],

– Bρj · Tj = Comck(t
′
j , z
′
j),

– (Comck(1; 0)/Bj)
t′j/Yj = Comck(0; y′j);

– Aρj ·Wj = Comck(w
′
j , f
′
j);

• Eρ
log m ∏logm−1

j=0 Dρj

j = Comck(
∏logm−1
j=0 w′j ;

∏logm−1
j=0 f ′j);

Figure 3: The Σ Protocol for Ballot Correctness

Proof: It is straightforward to check that protocol in Fig. 3 achieves perfect completeness.
In terms of statistical soundness, the protocol verifies two facts. Namely, (i) {Bj}j∈[0,logm−1] com-

mits to either 0 or 1, and (ii) E commits to N
∑logm−1
j=0 bj2

j

= N i, where bj is the opening of Bj . To
check the first fact, for each committed bj the protocol builds the degree 1 polynomial

g1(X) = (1− bj)(bjX + t) + c0 = (1− bj)bjX + c′0

for some c0 and c′0. By min-entropy Schwartz-Zippel Lemma 1, if H∞(ρ) ≥ κ and g1(ρ) = 0, the
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probability Pr[(1− bj)bj 6= 0] ≤ 2−κ. Hence, with at least 1− 2−κ probability (1− bj)bj = 0, which

implies bj ∈ {0, 1}. To check the second fact, the protocol first computes Aj = BN2j−1
j · Comck(1; 0)

homomorphically. Let aj be the opening of Aj . It is easy to see that aj = N2j if bj = 1, aj = 1 if
bj = 0, thus it holds that aj = bjN

2j + 1− bj = N bj2
j
. So that the protocol just needs to verify that E

commits to the product of aj’s. The verifier checks equality between two degree logm polynomials

g2(X) =

logm−1∏
j=0

(ajX + wj) =

logm∑
j=0

βjX
j and g′2(X) = uX logm +

logm−1∑
j=0

β∗jX
j

where u is the opening of E and β∗j which is the opening of Dj and are provided by the (potentially
malicious) prover. By min-entropy Schwartz-Zippel lemma, if H∞(ρ) ≥ κ and g2(ρ) = g′2(ρ), the

probability Pr[u = βlogm] ≥ 1 − logm
2κ . Hence, we have u = N

∑logm−1
j=0 bj2

j

with at least 1 − logm
2κ

probability conditioned on the fact (i). Given that all b0, . . . , blogm−1 need to be shown in {0, 1} the
entire proof is statistically sound with probability (1− 2−κ)logm(1− logm

2κ ) ≥ 1− logm · 2−κ+1.
Our protocol satisfies special soundness, i.e. there exists an extractor that can extract i ∈ N, r ∈ Zq

if the prover is able to complete the protocol twice with the same φ1 but two distinct challenges (we omit
the construction of the extractor).

To show special honest verifier zero-knowledge property, we now construct a simulator that on input
ρ̂ ∈ Zq can output a transcript that is indistinguishable from the real one. The simulator randomly picks

b0, . . . , blogm−1 ← {0, 1} and generates
{
tj , zj , yj , rj , Bj , Tj , Yj , t

′
j , z
′
j , y
′
j , wj , fj ,Wj , w

′
j , f
′
j

}logm−1

j=0

according to the protocol description. It then generates {Dj}logm−1
j=1 according to the protocol and set

D0 = Comck(

logm−1∏
j=0

w′j ;

logm−1∏
j=0

f ′j)/(E
ρ̂logm

logm−1∏
j=1

Dρ̂j

j ) .

Subsequentely, the simulator sets φ̂1 = {Bj , Tj , Yj ,Wj , Dj}logm−1
j=0 and φ̂2 =

{
t′j , z

′
j , y
′
j , w

′
j , f
′
j

}logm−1

j=0
,

and it outputs (φ̂1, ρ̂, φ̂2). First of all, it is obvious that all the verification equations hold. Secondly, the
distribution of all the variables in φ̂2 are uniformly random, which is identical to that of a real transcript.
Moreover, if the adversary can distinguish the simulated φ̂1 from that of a real transcript, she must be
able to distinguish at least one of the fake {Bj}logm−1

j=0 . By hybrid argument, we have for any PPT
adversary A, the advantage to distinguish the simulated proof is Advzk(A) ≤ logm · Advhide(A). 2

3.4 Producing the Verifier’s Challenges

The main difficulty in our setting is that we would like to extract the challenge of the Σ protocol from the
voters’ coins a = 〈a1, . . . , an〉 ∈ {0, 1}n using a deterministic algorithm. Recall that some of the voters
might be malicious and colluding with the EA, so the entropy of the voters’ coins is only contributed by
the honest voters while the malicious voters’ coins can depend on the honest ones. Note that the voters’
coins should be ordered by their serial numbers, rather than their submission order. This is because in
the latter case, the adversary can schedule the Cast protocols of all voters at will and as a result reduce
the min-entropy of a to be at most log θ where θ is the number of honest voters. Such level of entropy
is insufficient to provide a sufficiently small verifiability error (that ideally drops exponentially with θ).
For all the uncast ballots, we set their corresponding coins to 0 by default; therefore, a is always an
n-bit source, regardless of the number of voters that complete the Cast protocol. We observe that the
voters’ coins a is a weaker source compared to a non-oblivious bit-fixing source [32], as the adversary
is able to choose which bit(s) to fix during the coin flipping (source generation) process. On the other
hand, if we restrict the adversary A in our verifiability game from being capable of scheduling Cast
protocols freely and all voters have to submit their votes sequentially according to a pre-determined
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order in the ballot casting stage, the source a can be viewed as an adaptive bit-fixing source [38]; in
such case, we can employ the deterministic extractor construction framework from [32] which applies
a deterministic low influence function on segments of the source. The majority function is proven to
be an optimal low influence function thus in this way we obtain a deterministic extractor that generates
the challenge. However, this adversarial setting is not realistic in practice as ballot casting might be
scheduled adversarially. Nevertheless, we emphasise that even using a non-oblivious bit-fixing source,
Kamp and Zuckerman showed that at most n/` bits can be extracted when ` out of n bits are fixed [32].
This result implies that if a deterministic extractor is used to generate Θ(λ) random bits, then this will
restrict the percentage of corrupted voters to be below Θ( 1

λ) which might also be not a realistic expecta-
tion in practice. An alternative approach may use a condenser as opposed to an extractor. Randomized
condensers with a small/constant seed space have been put forth see e.g. [2, 44]; using such a tool one
may iterate over all possible seeds and thus be assured that one of the seeds will allow the condenser
to produce a sufficiently random challenge. For instance, Barak et al. [2] proposed a basic 2-bit seed
condenser con : {0, 1}n → ({0, 1}n/3)4 such that for every δ-source X with 0 < δ < 0.9, at least one
of the 4 output blocks of con(X) is a (δ + Ω(δ2))-source. Based on the composing lemma (Lemma
5.5 [2]), we can iteratively apply the condenser to achieve any desired constant rate. Given a c-coin
condenser Con : {0, 1}n 7→ ({0, 1}`)c, in order to produce a good challenge, by definition, it should
hold that c · ` > n, which means that the condenser will produce c blocks, one of which is guaranteed
to be sufficiently random. However as we observe below, we can utilize ZK amplification to obtain
essentially the same result as with a c-coin condenser while sacrificing very little entropy from the weak
source. We explain our technique next.

Let {0, 1}`Σ be the challenge space, where `Σ = blog qc and q is the order of the underlying group
used in the Σ protocol. Assume n/k ≤ `Σ for some k ∈ Z+. We evenly partition the voters’ coins
a into k blocks, denoted by a1, . . . ,ak. For each block ai, the EA should prove the correctness of the
ballots using a separate Σ protocol with ai as its challenge. The verifier only accepts the EA’s proof if
all the Σ protocols are valid. The theorem below shows that the soundness error of this k-times repeated
Σ protocol drops exponentially with θ − k(log logm+ 1).

Theorem 2 Denote a = (a1, . . . ,ak), and suppose H∞(a) = θ. For all adversarial proverA, we have
that

ε(m,n, k, θ) = Pr

 ck← Gen(Param, 1λ); (E, x, r, {φ1,i}ki=1)← A(Param, ck);

{φ2,i}ki=1 ← A(a1, . . . ,ak) : Verck(E;x; r) = accept ∧
x 6∈

{
N0, . . . , Nm−1

}
∧ ∀i ∈ [k], V (E, φ1,i,ai, φ2,i) = accept


≤ 2k log logm−θ+k.

Proof: According to Theorem 1, for each challenge ai, the Σ protocol described in Fig. 3 is statistically
sound with soundness error logm · 2−H∞(ai)+1. Hence, for each challenge ai, i ∈ [k], the probabil-
ity Verck(E;x; r) = accept ∧ x 6∈

{
n0, . . . , nm−1

}
∧ V (E, φ1,i,ai, φ2,i) = accept is at most

2log logm−H∞(ai)+1. Therefore, we have the overall soundness error

ε(m,n, k, θ) = Pr

 ck← Gen(Param, 1λ); (E, x, r, {φ1,i}ki=1)← A(Param, ck);

{φ2,i}ki=1 ← A(a1, . . . ,ak) : Verck(E;x; r) = accept ∧
x 6∈

{
n0, . . . , nm−1

}
∧ ∀i ∈ [k], V (E, φ1,i,ai, φ2,i) = accept


≤

k∏
i=1

2log logm−H∞(ai)+1 = 2k log logm−
∑k
i=1 H∞(ai)+k = 2k log logm−H∞(a)+k.

2

3.5 Description of our e-voting system

The description of our e-voting system follows the syntax in Section 2.2. For simplicity, we present
our system for 1-out-of-m elections, i.e. U = {{P1}, . . . , {Pm}}. The commitment scheme and the
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Σ-protocol that are applied in our system, are the ones presented at length in sections 3.1 and 3.3 respec-
tively.

Setup(1λ,P = {P1, . . . , Pm} ,V = {V1, . . . , Vn} ,U = {{P1}, . . . , {Pm}}). Let (Gen,Com,Ver)
be the PPT algorithms that constitute the perfectly binding, computationally hiding and additively ho-
momorphic commitment scheme presented in Section 3.1. The EA runs Gen(Param, 1λ) to generate the
commitment key ck. Then, for ` ∈ [n], EA executes the following steps:

(i). It selects a unique label for the `-th double ballot denoted by tag`.

(ii). It selects random permutations π(0)
` , π

(1)
` over [m]. The use of π(0)

` (reps. π(1)
` ) is to shuffle the

order that the (vote-code, candidate) pairs in the part s(0)
` (resp. s(1)

` ) of the double ballot s` will
be posted on the BB (in committed form), in order to support privacy.

(iii). For j ∈ [m], it selects unique vote-codes C(0)
`,j , C

(1)
`,j ← Zq, where q is the size of the group of

the commitment scheme5. The vote-code C(0)
`,j (resp. C(1)

`,j ) is the one that will be associated with

candidate Pj in part s(0)
` (resp. s(1)

` ) of s`.

(iv). For a ∈ {0, 1}, it prepares the ballot part s(a)
` =

{(
Pj , C

(a)
`,j

)}
j∈[m]

and generates the ballot

s` =
(

tag`, s
(0)
` , s

(1)
`

)
.

(v). For j ∈ [m], it computes j′ = π
(a)
` (j) and

• For a ∈ {0, 1} (where a indicates the part s(a)
` of s`), it chooses randomness t(a)

`,j′ ← Zq and

computes the vote-code commitment for C(a)
`,j′ :

U
(a)
`,j′ = Comck

(
C

(a)
`,j′ ; t

(a)
`,j′
)
.

• For a ∈ {0, 1}, it chooses randomness r(a)
`,j′ ← Zq and computes the encoded candidate

commitment for Pj′ :

E
(a)
`,j′ = Comck

(
(n+ 1)j

′−1; r
(a)
`,j′
)
,

where (n + 1)j
′−1 is the encoding of candidate Pj′ . This encoding is selected to ensure the

correctness of our system, as we show in Theorem 3.

• For a ∈ {0, 1}, EA prepares pre-audit data φ(a)
1,`,j′ to be used for verifying that E(a)

`,j′ is a
commitment to a valid encoding from the set

{
(n+ 1)0, . . . , (n+ 1)m−1

}
at the verifica-

tion phase. In addition, it maintains prover state state
(a)
φ,`,j′ . Both φ(a)

1,`,j′ and state
(a)
φ,`,j′ are

described in the Σ-protocol shown in Figure 3 (first move) of Section 3.3.

(vi). Pub` =

(
tag`,

{
(U

(a)
`,j′ , E

(a)
`,j′ , φ

(a)
1,`,j′)

}a∈{0,1}
j∈[m]

)
is the public information w.r.t. s`. It is indexed

by tag` and contains the ballot information for both parts in committed form, as well as the
respective pre-audit data. The information that refers to the (vote-code, candidate) pair (C

(a)
`,j′ , Pj′)

is tabulated in the j-th location of the part that is associated with s(a)
` .

5For simplicity in presentation, we commit to the vote-codes using the homomorphic commitment scheme of Section
3.1. We stress that since no arithmetic operations are executed in the vote-code commitments, we could use more efficient
commitment schemes and in this case vote-codes may be drawn from a domain that is smaller than Zq resulting in a more
“user-friendly” interface.
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The public information that EA generates is

Pub = (ck,P,U , {Pub`}`∈[n]) .

The secret key of EA is
msk = {Pub`, s`,msk`, stateφ,`}`∈[n] ,

where we denote msk` =
{

(C
(a)
`,j , t

(a)
`,j , π

(a)
` (j) = j′, r

(a)
`,j )
}a∈{0,1}
j∈[m]

and stateφ,` =
{

state
(a)
φ,`,j′

}a∈{0,1}
j∈[m]

.

The Cast protocol. On input (Pub, s`,U`), voter V` flips a coin a` ← {0, 1} and picks part s(a`)
` to

vote and part s(a`)
` for audit. Let Pj` be the candidate that V` is going to vote for, i.e., U` = {Pj`}. Then,

V` selects to submit C(a`)
`,j`

, which is the vote-code that corresponds to Pj` in part s(a`)
` . Next, V` casts

the vote ψ` =
(

tag`, a`, C
(a`)
`,j`

)
. The EA receives the vote and updates its state st by appending ψ`. The

receipt α` of V` is the vote ψ` and the part s(1−a`)
` used for audit.

The Tally(Pub) protocol. Let Ṽ be the set of the voters that have voted successfully.

• For each V` ∈ Ṽ , the EA uses (tag`, a`) from ψ` to recover the respective audit information
s

(1−a`)
` from s`. Then, it sends to BB the list

{
(ψ`, s

(1−a`)
` )

}
V`∈Ṽ

. It also opens all the vote-code

commitments,
{
U

(a)
`,j

}a∈{0,1}
`∈[n],j∈[m]

, by sending the list of pairs
{

(C
(a)
`,j , t

(a)
`,j )
}a∈{0,1}
`∈[n],j∈[m]

to the BB.

• The EA, for every ψ` corresponding to a V` ∈ Ṽ:

(i). locates the decommitted vote-code C` that matches the cast vote-code C(a`)
`,j`

. Then, it marks

the vote-codeC` as ‘voted’ and adds the corresponding commitmentE(a`)
`,j′`

into the set Etally

(initially empty). Recall that j′` = π
(a`)
` (j`).

(ii). adds all the commitments {E(1−a`)
`,j }j∈[m] that correspond to the vote-codes in s(1−a`)

` into
the set Eopen (initially empty).

When finalised, Etally includes the collection of votes that will be counted (homomorphically)
and Eopen includes the information that will be used for verifying ballot correctness. After this
happens, EA posts to the BB the list of marked vote-codes along with Etally and Eopen.

• The EA produces and posts to the BB all the verifier’s challenges {ρE}E∈Etally
of the Σ-protocols

for the validity of the commitments in Etally, as determined in Figure 3 (second move). The
extraction of the challenges is done via the randomness contributed by the voters’ coin-flips. The
extraction method that is used is described in Section 3.4.

• The EA prepares and posts to the BB all the post-audit data {φ2,E}E∈Etally
of the Σ-protocols for

verifying the validity of the commitments in Etally, as determined in Figure 3 (third move). Thus,
for each commitment in Etally there is a triple of pre-audit data, challenge and post-audit data that
form a complete Σ proof of a valid commitment to some encoded candidate.

• EA performs homomorphic tally by computing Esum =
∏
E∈Etally

E and preparing (T,R) as
the opening of Esum. The additive homomorphic property implies that T is the election result
encoded in the number system with base N = n + 1 and it is committed under randomness R,
which is the sum of all the randomness used for the commitments in Etally. Next, EA opens all
the commitments in Eopen. Let Open be the set of these openings. Finally, it sends Open, Esum

and (T,R) to the BB.
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• In the end of the process, BB contains the list of the marked vote-codes, as well as

Pub,
{

(C
(a)
`,j , t

(a)
`,j )
}a∈{0,1}
`∈[n],j∈[m]

,
(
Etally, Esum, (T,R)

)
,

(Open,Eopen), {ρE}E∈Etally
, {φ2,E}E∈Etally

.

Result(τ). The election result Rτ is derived by the following decoding algorithm:

Set X ← T ;
For j = 1, . . . ,m:
• xj ← X mod (n+ 1);
• X ← (X − xj)/(n+ 1);
Return 〈x1, . . . , xm〉;

The correctness of the algorithm (and our system) is shown in Theorem 3.

Verify(τ, α). Initially, α is parsed as
(
tag, a, C, s(1−a)

)
. The algorithm returns 1 only if the following

checks are valid:

(i). All committed information in τ is associated with n ballots indexed under different tags and no
two vote-codes under the same tag are marked as ‘voted’.

(ii). Let Ĉ be a vote-code that appears in part ŝ(â) of some ballot and has been marked as ‘voted’ .
Then, only the committed information for the other part ŝ(1−â) of this ballot has been opened.

(iii). All the complete Σ proofs that are associated with commitments in Etally are valid.

(iv). Esum =
∏
E∈Etally

E.

(v). All the openings of the commitments are valid.

(vi). tag equals some tag` in τ for some ` ∈ [n] and it holds that a = a`.

(vii). The vote-code that is marked as ‘voted’ and is associated to tag` is C where ` is as in item (vi).

(viii). The correspondence of candidate encodings to vote-codes revealed in the opening of the commit-
ments {(U (1−a`)

`,j , E
(1−a`)
`,j )}j∈[m] where ` is as in item (vi), is equal to the one defined in s(1−a).

3.6 Correctness of our e-voting system

We prove the correctness of our system in the following theorem. In the remaining of the paper, we
assume that n · (n+ 1)m−1 < q.

Theorem 3 Let q be the size of the group for the commitment scheme described in Section 3.1 and as-
sume that n·(n+1)m−1 < q. Then, the e-voting system described in Section 3.5 has perfect correctness.

Proof: It is straightforward that in a honest execution where the information is consistently tabulated, all
verifications are successful, by the correctness of the commitment scheme and the completeness of the
Σ-protocol that are used. Thus, it suffices to show the correctness of the Result(·) algorithm.

We denote by Pj` the candidate that the voter V` has selected, i.e. U` = {Pj`}. The encoding of Pj`
is (n+ 1)j`−1, therefore we have that

Esum =
∏
`∈[n]

Comck

(
(n+ 1)j`−1; r

(a`)
`,j`

) = Comck(T ;R) .
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Due to the binding and homomorphic properties, the latter implies that if the candidates P1, . . . , Pm
have been voted t1, . . . , tm times respectively, then Esum is opened to T =

∑m
j=1 tj · (n+1)j−1 mod q.

We observe that T ≤ n ·(n+1)m−1 < q (all n voters vote for candidate Pm). Therefore, T mod q = T ,
i.e. Esum is opened to the actual result, 〈t1, . . . , tm〉. Moreover, since 0 ≤ t1, . . . , tm ≤ n, we have that
ti = ti mod (n + 1), for all i. By induction, we will show that the output 〈x1, . . . , xm〉 of the Result
algorithm equals to 〈t1, . . . , tm〉, which completes the proof.

• For j = 1, we have that

x1 = T mod (n+ 1) =
m∑
i=1

ti · (n+ 1)i−1 mod (n+ 1) =

= t1 mod (n+ 1) + (n+ 1) ·
m∑
i=2

ti · (n+ 1)i−2 mod (n+ 1) = t1.

• For 2 ≤ j ≤ m, if xi = ti for every i < j, then, by the description of the decoding algorithm

xj =
T −

∑
1≤i<j xi · (n+ 1)i−1

(n+ 1)j−1
mod (n+ 1) =

=

∑m
i=1 ti · (n+ 1)i−1 −

∑
1≤i<j ti · (n+ 1)i−1

(n+ 1)j−1
mod (n+ 1) =

=

∑
j≤i≤m ti · (n+ 1)i−1

(n+ 1)j−1
mod (n+ 1) =

= tj mod (n+ 1) +
∑

0<k≤m−j
tj+k · (n+ 1)k mod (n+ 1) = tj .

2

3.7 Example of our e-Voting System

For the better understanding of our e-voting system, we provide a toy example of a referendum where
P1 = YES, P2 = NO are the candidates and V consists of three voters V1, V2, V3. Our goal is to famil-
iarize the reader with the functionality of our system so, for simplicity, we deviate from the description
in Section 3.5 by not including Σ-protocol proofs.

EA generates the vote-codes for the ballots s1,s2 and s3 of V1, V2 and V3 as

(C
(0)
1,1 = 27935, C

(0)
1,2 = 75218, C

(1)
1,1 = 84439, C

(1)
1,2 = 77396),

(C
(0)
2,1 = 58729, C

(0)
2,2 = 45343, C

(1)
2,1 = 14582, C

(1)
2,2 = 93484),

(C
(0)
3,1 = 52658, C

(0)
3,2 = 65864, C

(1)
3,1 = 84373, C

(1)
3,2 = 49251)

respectively. The double ballots s1, s2, s3 are labelled by the tags 101, 102, 103 respectively and are
formed as follows:

101

27935 YES
75218 NO

84439 YES
77396 NO

102

58729 YES
45343 NO

14582 YES
93484 NO

103

52658 YES
65864 NO

84373 YES
49251 NO

EA prepares the commitments to each vote-code and the encoding of the candidate that they corre-
spond. The commitment for YES (resp. NO) is a commitment to (3 + 1)0 = 1 (resp. (3 + 1)1 = 4).
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Next, it chooses whether the commitments of the vote-code and candidate pairs are going to be ordered
in the BB as they are in the ballot part, or swapped. For example, assume that for the ballot s1, EA
chooses to leave the order in ballot part (0) intact and to swap the pairs in ballot part (1). Then, the
information posted in the BB for s1 would have the following form:

101

Comck(27935; t
(0)
1,1) Comck(1; r

(0)
1,1)

Comck(75218; t
(0)
1,2) Comck(4; r

(0)
1,2)

Comck(77396; t
(1)
1,2) Comck(4; r

(1)
1,2)

Comck(84439; t
(1)
1,1) Comck(1; r

(1)
1,1)

Suppose that V1 votes for NO using ballot part (1), V2 votes for YES using ballot part (1) and
V3 votes for YES using ballot part (0). Then, the votes cast by V1, V2 and V3 are (101, 1, 77396),
(102, 1, 14582) and (103, 0, 52568) respectively. The receipts that the voters receive are

(101,1,77396)

27935 YES
75218 NO

(102, 1, 14582)

58729 YES
45343 NO

(103, 0, 52568)

84373 YES
49251 NO

The coins that V1, V2 and V3 have flipped, are a1 = 1, a2 = 1 and a3 = 0 respectively. Hence, we get
internal randomness, (1, 1, 0), of 3 bits (which would be the “weak source” of randomness used for the
extraction of the challenge of the Σ protocols). After the voting ends, EA opens the vote-code com-
mitments, marks the cast vote-codes 77396, 14582 and 52658 and includes the corresponding encoded
candidate commitments Comck(4; r

(1)
1,2), Comck(1; r

(1)
2,1) and Comck(1; r

(0)
3,1) in the tally set. Next, EA

performs homomorphic tally, by computing the product of the above encoded candidate commitments
as

Esum = Comck(4; r
(1)
1,2) · Comck(1; r

(1)
2,1) · Comck(1; r

(0)
3,1) = Comck(6; r

(1)
1,2 + r

(1)
2,1 + r

(0)
3,1).

Then, EA publishes Esum, along with the opening of Esum at value (6; r
(1)
1,2 + r

(1)
2,1 + r

(0)
3,1). The result

is derived by computing x1 = 6 mod 4 = 2 and x2 = ((6− x1)/4) mod 4 = 1, which is interpreted as
two votes for YES and one for NO.

In the verification phase, the EA opens the commitments in the ballot parts that the voters selected
for auditing. For example, V1 would check the consistency of her receipt with audit information in the
BB, as illustrated below

101

27935 YES (1, r
(0)
1,1) Comck(1; r

(0)
1,1)

75218 NO (4, r
(0)
1,2) Comck(4; r

(0)
1,2)

77396 VOTED Comck(4; r
(1)
1,2)

84439 Comck(1; r
(1)
1,1)

Encodings

YES 1
NO 4

Observe that, as we will prove, the cut-and-choose verification that V1 performs, does not reveal
her vote even to a party that obtains her receipt. This is because the cast vote-code alone does not leak
any information about the associated candidate, while the entirely opened auditing part only serves as a
check that the correspondence of the vote-codes and candidates in this part has not been tampered with.
Therefore, V1 can delegate the task of verification to a third party, without compromising her privacy.
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4 Security of Our e-Voting System

In this section, we prove the security of our system in the definitional framework presented in Sec-
tions 2.4 and 2.3.

4.1 E2E Verifiability of Our e-Voting System

We prove that our e-voting system achieves E2E verifiability information theoretically in the standard
model. We follow the notation in Figure 1 and the description in 3.5.

Theorem 4 Let n be the number of all voters and m be the number of candidates. Let q be the size of
the group for the commitment scheme described in Section 3.1. The e-voting system described in 3.5
achieves E2E verifiability information theoretically with error (1/2)d + ε(m,n, dn/blog qce, θ − 1)),
where θ is the number of honest successful voters, d is the tally deviation that the adversary wants to
achieve and ε(m,n, dn/blog qce, θ − 1) is the soundness error of the Σ protocol performed by the EA
given in Theorem 2.

Proof: Without loss of generality (w.l.o.g.), we assume that in any adversarial execution as described in
the E2E verifiability game GA,E,d,θE2E−Ver(1

λ,m, n), exactly n ballots are tabulated on τ under n different
tags and all vote-codes are marked as ‘voted’ correspond to different tags (if such deviations happen
the transcript is immediately rejected). In the same spirit, we assume there is no double ballot that both
parts have been opened and that all double ballots for honest voters in Ṽ are well-formed, otherwise they
would not engage in the Cast protocol. Finally, we recall that the adversary cannot modify the history
of the transcript since it does not have control over the BB. As a first step, we construct a vote extractor
E for our system as follows:

Construction of the vote extractor. E has input τ and the set of receipts {α`}V`∈Ṽ , where Ṽ is the
set of the honest voters that voted successfully. Let t ≤ |Ṽ| be the number of different tags that appear
in {α`}V`∈Ṽ

6. If Result(τ) = ⊥ (i.e., the transcript is not meaningful), then E outputs ⊥. Otherwise,
E (arbitrarily) arranges the voters in V \ Ṽ and the tags not included in {α`}V`∈Ṽ as 〈V E` 〉`∈[n−|Ṽ|] and

〈tagE` 〉`∈[n−t] respectively. Next, for every ` ∈ [n− |Ṽ|]:

1. If there is no marked as ‘voted’ vote-code that is associated with tagE` , then E sets UE` = ∅
(encoded as the zero vector) which is interpreted as an abort for voter V E` .

2. If there is a ‘voted’ vote-code C(a)
`,j that is associated with tagE` , then E brute-force opens the

respective encoded candidate commitment E(a)
`,j to a value Open` (recall the commitment is per-

fectly binding). If Open` is a valid encoding (i.e. Open` ∈ {(n+1)0, (n+1)1, . . . , (n+1)m−1})
of a candidate PE` , then E sets UE` = {PE` }. Otherwise, it outputs ⊥.

Finally, E outputs 〈UE` 〉V E` ∈V\Ṽ . Note that if t < |Ṽ|, then the remaining tags tagE
n−|Ṽ|+1

, . . . , tagEn−t
are ignored by E .

Based on the above vote extractor, we will prove the E2E verifiability of our scheme. Assume an
adversary A that wins the game GA,E,d,θE2E−Ver(1

λ,m, n). Namely, A breaks E2E verifiability by allowing
at least θ honest successful voters and achieving tally deviation d. Since there is at least one honest voter
that performs verification (θ > 0), w.l.o.g. we assume that A always outputs meaningful transcripts.

Let F be the event that there exists a committed value in τ which is marked to be counted and
invalid (i.e., it is in Etally but it is not a commitment to some candidate encoding). Since condition (i) of

6This implies that the ballot audit for all voters in Ṽ focuses on a list of t tabulated ballots on the BB. Thus, an adversary
may inject |Ṽ| − t ballots for candidate selections of its choice that will be counted in the final tally as if they were honest.
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GA,E,d,θE2E−Ver(1
λ,m, n) holds, we have that there are at least θ honest voters. However, the soundness error

of the Σ- protocol is going to be affected by the fact that the invalid commitment is in a specific ballot
part. The min entropy of all the coins given the fact that the adversary knows the coin of the invalid
commitment in order to win, is at least the min entropy of all the coins minus 1 bit (i.e., the entropy of
that bit). Therefore, by applying Theorem 2 for min entropy equal to θ−1, we have that each Σ protocol
has soundness error ε(m,n, dn/blog qce, θ−1). Hence, the probability that a committed value is invalid
while verification accepts is no more than ε(m,n, dn/blog qce, θ− 1). Since there is at least one honest
voter that verifies, we conclude that

Pr[GA,E,d,θE2E−Ver(1
λ,m, n) = 1 ∧ F ] ≤ ε(m,n, dn/blog qce, θ − 1). (1)

Assume that F does not occur. Thus, all marked committed values in Etally correspond to a valid
candidate encoding. This implies that (a) the maximum deviation per marked commitment that A may
achieve is 1 (the vote is counted for a candidate other than the intended one) and (b) E does not output⊥
(it returns a vector 〈UE` 〉V E` ∈V\Ṽ ), so A wins because (i),(ii) and (iii-a) hold. The auditor can verify that
Esum is equal to the homomorphic commitment

∏
E∈Etally

E. Due to the perfect binding of the commit-
ment scheme, the tally f(〈UE` 〉V E` ∈V\Ṽ) that E estimates as non-honest votes, is correctly included in the
adversarial result that derives from the opening (T,R) of Esum. Thus, the deviation from the intended
result that A achieves, derives only by miscounting the honest votes. This may be achieved by A in two
different possible ways:

1. Modification attacks: modify the committed information as compared with the one in an honest
voter’s ballot (e.g., alter the vote-code and candidate correspondence). The deviation achieved by
this type of attack is at most 1.

2. Clash attacks: instruct r honest voters whose ballots are indexed under the same tag to vote so
that the votes of any r − 1 out of these r voters are all different than some fixed r − 1 committed
votes that are ignored by E (either cast by corrupted voters or initially injected in τ by A). All r
voters verify the correct counting of their votes by auditing the same information on the BB and
hence miss the injected votes that produce the tally deviation. The deviation achieved by this type
of attack is r − 1.

In the case where all ballot information is committed consistently on the BB without being deleted
or replaced, the adversary can only perform a combination of these two attacks on the honest voters.
Indeed, if all honestly cast votes are in one-to-one correspondence with the correct encoded candidate
commitments, then the perfect binding property ensures that the opening of the homomorphic tally
matches the intended result.

Let Ṽ1, . . . , Ṽt be the partition of Ṽ s.t. each of these subsets consists of honest voters that their
receipts (hence their ballots) are indexed under the same tag. These subsets are created adaptively,
according to the strategy ofA, under the constraint that |Ṽ| ≥ θ. Note that there are |Ṽ| − t ignored tags
in vote extraction, while

∑
i∈[t](|Ṽi| − 1) = |Ṽ| − t. This implies that the adversary can perform clash

attacks in all these subsets, with maximum possible deviation. We will prove that given that F does not
occur, the success probability of A is no more than (1/2)d, whatever its strategy might be.

We observe that in order for A to win, all voters in Vi must have the same receipt, or else inconsis-
tencies will cause verification to fail. To achieve this, A must instruct the voters from the same subset
to vote so that they all cast the same vote-code (otherwise two marked vote-codes under the same tag
should appear) and create the corresponding audit ballot part identically for each auditing voter. In
detail, in order for A to win, the following must hold for each Ṽi, i ∈ [t]:

1. There is a representative vote-codeCi that appears in part (a) of all the double ballots of the voters
in Ṽi. The voters must select this part to vote by casting Ci. Therefore, the coin-flippings of the
auditing voters must be consistent, in the sense that they correspond to ballot parts that contain a
consistent vote-code. There can be at most 2 consistent coin-flips (i.e., either all coins are flipped
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to 0 or all coins are flipped to 1). Thus, the probability of consistent coin-flipping in Ṽi is at most
2/2|Ṽ|i = (1/2)|Ṽ|i−1. In addition, the ballot parts that will be used for auditing must contain the
same information, up to a permutation of the vote-code and candidate pairs.

2. IfAwants to achieve |Ṽi| deviation exploiting the voters in Vi, then it must perform a modification
attack in at least one voter V in Ṽi. This is because if all voters’ ballots are consistent to the
corresponding committed information in τ , then by performing only a clash attack in Ṽi, A can
achieve deviation by at most |Ṽi| − 1, as described above. However, the modification comes with
a loss of 1/2 success probability, since A must also guess which is the part that V is going to use
for voting. Indeed, if V chooses to audit the modified part of the ballot, then she will detect the
attack. Therefore, all voters in Vi must perform a consistent coin-flip that agrees with the coin-flip
of V . It is straightforward that in case of a single modification attack this event happens with
1/2 · (1/2)|Ṽi|−1 = (1/2)|Ṽi| probability. Moreover, in case Ṽi ≥ 2, performing two modification
attacks does not lead to any improvement in terms of probability or maximum deviation.

We note that the above arguments hold trivially, if Ṽi is a singleton. Let X be the set of subsets
from {Ṽ1, . . . , Ṽt} that A performs clash attacks and Y the collection that A performs a modification
attack on at least one voter in each of the subsets. According to the previous arguments, we have the
following cases: (i) for each Vi ∈ X \Y the maximum deviation is |Ṽi| − 1, (ii) for each Vi ∈ Y \X
the maximum deviation is 1, (iii) for each Vi ∈ X ∩Y the maximum deviation is |Ṽi| and (iv) for each
Vi ∈

{
Ṽ1, . . . , Ṽt

}
\ (X ∪ Y) the maximum deviation is 0. For brevity, let x = |X| and y = |Y|.

Therefore, we have that the tally deviation from the intended result that A achieves is at most∑
Vi∈X\Y

(|Ṽi| − 1) +
∑

Vi∈Y\X

1 +
∑

Vi∈X∩Y
|Ṽi| =

∑
Vi∈X

|Ṽi| − x+ y ≤ |Ṽ| − x+ y.

We will now upper bound the success probability of A. Since {Ṽ1, . . . , Ṽt} is a partition of Ṽ , we
have that A must not be detected by all the voters in all of these subsets. So,

Pr[GA,E,d,θE2E−Ver(1
λ,m, n) = 1|¬F ] ≤

∏
Vi∈Y

(1/2)|Ṽi| ·
∏

Vi∈{Ṽ1,...,Ṽt}\Y
(1/2)|Ṽi|−1 =

= (1/2)
∑
Vi∈Y

|Ṽi|+
∑
Vi∈{Ṽ1,...,Ṽt}\Y(|Ṽi|−1)

=

= (1/2)|Ṽ|−(t−y) ≤ (1/2)|Ṽ|−x+y,

because x ≤ t. In order forA to win, it must hold that |Ṽ|−x+y ≥ d (condition (iii-a) holds), therefore

Pr[GA,E,d,θE2E−Ver(1
λ,m, n) = 1 ∧ ¬F ] ≤ Pr[GA,E,d,θE2E−Ver(1

λ,m, n) = 1|¬F ] ≤ (1/2)d. (2)

By adding (1),(2) we conclude that

Pr[GA,E,d,θE2E−Ver(1
λ,m, n) = 1] ≤ (1/2)d + ε(m,n, dn/blog qce, θ − 1).

2

Remark. Note that if the number of honest voters satisfies the bound θ = Ω(n log logm/ log q + λ),
then the overall soundness error of the repeated Σ protocol will be sufficiently small. For instance, in an
election where there are n = 1000 voters andm = 40 candidates we can use a group with at least 500 bit
prime order q. Assuming a number of θ = 50 honest voters (5% of total) we can divide the 1000 voter’s
coins into two challenges with 500 bits each (i.e. k = 2). With these parameters the above theorem will
have a verifiability error that is at most 2−43 + (1/2)d where d is the tally deviation. We remark that
in this setting no deterministic extractor would be able to provide sufficient entropy and hence our ZK
amplification technique is crucial.
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4.2 Voter Privacy/Receipt Freeness of Our e-Voting System

In order to show our scheme satisfies privacy, we utilize complexity leveraging. Specifically, the system
security parameter is configured such that breaking the hiding property of the underlying commitment
scheme is much harder than guessing the challenge of the Σ protocol; therefore, we can simulate the pro-
tocol’s view by guessing the proof challenges without breaking the hiding property of the commitment
scheme. Due to this proof technique, the number of corrupted voters t should be polynomially related
to the security parameter λ in a certain way; while the total number of voters n can be any function that
is poly(λ) (as long as the correctness requirement is fulfilled, cf. theorem 3). We emphasize that given
a specific n, our system can support privacy for any desired number of adversarial voters t < n (as long
as a suitably large security parameter λ is used).

Theorem 5 Assume there exists a constant c, 0 < c < 1 such that for any 2λ
c
-time adversary A, the

advantage of breaking the hiding property of the commitment scheme is Advhide(A) = negl(λ). Let
t = λc

′
for any constant c′ < c. For any constant m ∈ N and n = poly(λ), The e-voting system

described in Section 3.5 is t-private with respect to the privacy game GA,St-priv(1λ, n,m).

Proof: To prove our claim, we will explicitly construct a simulator S such that we can convert any ad-
versary A who can win the privacy game GA,St-priv(1λ, n,m) a non-negligible probability to an adversary
B who can break the commitment hiding assumption within poly(λ) · 2t � 2λ

c
time.

Recall that in the privacy game GA,St-priv(1λ, n,m) the challenger C is maintaining a coin b ∈ {0, 1}
and always uses the candidate selection Ub` in the Cast protocol. Note when n− t < 2 (i.e. the number
of honest voters is strictly less than 2), the simulator S simply outputs the view of the real Cast protocol.
It is easy to see that, by definition, the adversaryA loses the voter privacy gameGA,St-priv(1λ, n,m) uncon-
ditionally. When n− t ≥ 2, consider the following simulator S . At the beginning of the experiment, S
flips a coin b′ ∈ {0, 1}. For each honest voter V`, S receives view` = (Pub, s`,Ub` , α`) and the candidate
selections 〈U0

` ,U1
` 〉. If Ub` = Ub′` , S outputs the simulated view view′` = view`. If Ub` 6= Ub

′
` , S produces

a fake s′` by switching the vote-codes for candidate selections Ub` and Ub′` , i.e. replacing
(
C

(a`)
`,j1

,Ub`
)

and
(
C

(a`)
`,j2

,Ub′`
)

with
(
C

(a`)
`,j2

,Ub`
)

and
(
C

(a`)
`,j1

,Ub′`
)

. S then outputs view′` = (Pub, s′`,Ub
′
` , α`).

Define AdvGi,Gj (A) := 1
2 |Pr[A = 1|Gi]− Pr[A = 1|Gj ]|. Consider the following sequence of

games from G0 to G5.
Game G0: The actual game GA,St-priv(1λ, n,m), where the challenger uses Ub` in the Cast protocol

and the above simulator S is invoked when b = 1.

By definition, Adv
GA,St-priv(1λ,n,m),G0

(A) = 0.

Game G1: Game G1 is the same as Game G0 except the following. At the beginning of the experi-
ment, the challenger C generates a set of coins {a`}n`=1 uniformly at random. During the experiment, for
each voter V` ∈ V , the adversary A first chooses whether V` is corrupted. If V` is not corrupted, C uses
a` in the Cast protocol to vote on behave of V` according to Ub` ; otherwise, C sends s` to the adversary
A and interacts with A in the Cast protocol, playing the role of EA and BB. Let â` be the coin used by
the corrupted voter V̂` ∈ Vcorr in the Cast protocol execution. The experiment aborts and start over if
there exists one corrupted voter’s coin â` 6= a`.

It is easy to see that, no matter how Vcorr is chosen, it requires (expected) at most 2t attempts to
guess all the â` correctly given |Vcorr| ≤ t. On the other hand, when C does not abort, the view of Game
G1 is identical to that of Game G0. Hence, AdvG0,G1(A) = 0.

Game G2: Game G2 is the same as Game G1 except the following. The challenger C computes
a set of commitments {Ej}mj=1, where Ej = Comck((n + 1)j−1; rj) with fresh randomizer rj ∈ Zq.
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For each ballot, for a` ∈ {0, 1}, C permutes and re-randomizes {Ej}mj=1 to produce the commitments{
E

(a`)
`,j

}m
j=1

instead of committing them from scratch as follows.

• Pick a random permutation π(a`)
` over [m].

• For j ∈ [1,m],

– Pick a random r
(a`)
`,j ← Zq;

– Set E(a`)
`,j = E

π
(a`)

` (j)
· Comck(0; r

(a`)
`,j );

It is straightforward that the view of Game G2 is identical to that of Game G1, as the distributions
of all the commitments are the same. Hence, AdvG1,G2(A) = 0.

Game G3: Game G3 is the same as Game G2 except the following. C randomly selects `∗ ∈ [n] and
guesses the tally vector (t1, . . . , tm). Denote T =

∑m
i=1 ti ·(n+1)i−1. C aborts if either of the following

two events occur: (i)A corrupts V`∗ and then does not let V`∗ submit a vote; (ii) the guessed T is wrong.
When C does not abort, it generates the challenge(s) ρ using the guessed voters’ coins {a`}`∈[n] in Game
G1, and then replaces all the real Σ protocols with their simulated transcripts.

The probability A corrupts V`∗ and then does not let V`∗ submit a vote is at most t
n (Namely all the

corrupted voters abort). Besides, the probability the C guesses T correctly is at least 1
n(n+1)m−1 . Hence,

it requires (expected) at most n
2(n+1)m−1

n−t attempts to get both events occur. On the other hand, when C
does not abort, according to Lemma 1, for each Σ protocol, the adversary can distinguish the simulated
transcript from a real one with advantage at most logm · Advhide(A). There are 2nm simulated Σ pro-
tocols, so by union bound we have AdvG2,G3(A) ≤ 2nm logm · Advhide(A).

Game G4: Game G4 is the same as Game G3 except the following. At the beginning of the exper-
iment, C replaces the set of commitments {Ej}m−1

j=0 in Game G3 with commitments of 0. Let T and `∗

be the ones guessed in Game G3. For all ` ∈ [n] ∧ ` 6= `∗, C produces
{
E

(a`)
`,j

}m
j=1

by re-randomizing

{Ej}mj=1 as in Game G3; C replaces all the commitments
{
E

(a`∗ )
`∗,j

}m
j=1

with fresh commitments of T ,

i.e. Comck(T ;Rj), where Rj ← Zq are chosen uniformly at random.

We now show that the view of Game G4 is indistinguishable to that of Game G3 by reduction.
Suppose the adversaryB is playing the hiding game of the underlying commitment scheme. On receiving
ck, B queries two message m0 = 0 and m1 = 1. Given E = Comck(mb; ∗), B needs to guess b. B plays
as role of the challenger in the game whereA is trying to distinguish between G3 and G4. (Assume that
A outputs 1 if she thinks she is in G3 and outputs 0 if she thinks she is in G4.) For j ∈ [m], B sets

Ej = E(n+1)j−1
. For ` ∈ [n]∧ ` 6= `∗, B produces

{
E

(a`)
`,j

}m
j=1

by re-randomizing {Ej}mj=1 as in Game

G3. For j ∈ [m], C picks Rj ← Zq at random and sets

E
(a`∗ )
`∗,j = Comck(T,Rj)/(E

tj−1
j ·

m∏
i=1,i 6=j

Etii ) .

Denote abort as either the events: (i) A corrupts V`∗ and then does not let V`∗ submit a vote; (ii) the
guessed T is wrong. Clearly, if E commits to 1, then the produced view is identical to G3; if E commits
to 0, then the produced view is identical to G4. Except in Game G4, there are commitments of T in
Pub, so the adversary A might be able to intentionally make the abort abort event occurs with a higher
probability. To address this, C maintains a counter, and C increases the counter by 1 each time abort
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occurs. Denote halt as the event where abort continuously occurs n3(n+1)m−1

n−t times, and when halt
occurs, C outputs 0 in the commitment hiding game; otherwise, B forwards the bit that A outputs.

The probability B wins the hiding game is

Pr[B = b] = Pr[B = b|halt] · Pr[halt] + Pr[B = b|¬halt] · Pr[¬halt]

= Pr[b = 0|halt] · Pr[halt] +
1

2
Pr[B = 0|b = 0 ∧ ¬halt] · Pr[¬halt]

+
1

2
Pr[B = 1|b = 1 ∧ ¬halt] · Pr[¬halt]

= (1− Pr[b = 1|halt]) · Pr[halt] +
1

2
Pr[A = 1|G3] · Pr[¬halt]

+
1

2
Pr[A = 0|G4] · Pr[¬halt]

≥ (1− n− t
n2(n+ 1)m−1

)
n3(n+1)m−1

n−t · Pr[halt]

+(
1

2
+

1

2
Pr[A = 1|G3]− 1

2
Pr[A = 1|G4]) · Pr[¬halt]

≥ (1− e−n) · Pr[halt] + (
1

2
+ AdvG3,G4(A)) · Pr[¬halt]

≥ min

(
1

2
+ AdvG3,G4(A), 1− e−n

)
.

Since we assume that no adversary poly(λ)-timeA can win the hiding game with non-negligible advan-
tage, we have 1

2 + AdvG3,G4(A) ≤ 1− e−n; hence, AdvG3,G4(A) ≤ Advhide(A).

Game G5: Game G5 is the same as Game G4 except the following. For each honest voter V` ∈ Ṽ ,
C picks Ũ` at random, and uses Ũ` in the Cast protocol, ignoring the adversary’s 〈U0

` ,U1
` 〉. Regard-

less the coin b, C always uses the simulator S to transform the view view` = (Pub, s`, Ũ`, α`) to
view′` = (Pub, s′`,Ub

′
` , α`).

It is obvious that the view of G5 is identical to the view of G4, so AdvG4,G5(A) = 0. Notice that
all the vote-codes are generated at random and all the commitments in each ballots commit to the same
value (0 or T ). Moerover, since the view of G5 does not depend on the challenger’s coin b, we have the
probability that A guess b correctly is Pr[A = 1|G5] = 1

2 .

To sum up, the total running time of our reduction is poly(λ) · 2t and we have

Pr[GA,St-priv(1λ, n,m) = 1] = Pr[A = 1|G5] +

5∑
i=1

AdvGi−1,Gi(A)

≤ 1

2
+ (2nm logm+ 1) · Advhide(A)

=
1

2
+ negl(λ).

2

5 Implementation and Performance

Similar to Helios, our system is an open source web-based public auditable e-voting system. Its web in-
terface is written in Django language and Twitter Bootstrap CSS and javascript framework [11] are used
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for better appearance. The system consists of three main components (servers): election authority (EA),
voter bulletin board (VBB), and audit bulletin board (ABB). All the transmissions between those com-
ponents utilize Google’s Protocol Buffers [28] to encode the structured data. To create an election, the
election committee needs to login to the EA site and define an election by specifying election question,
options, election period, total number of ballots, ballot distribution methods, and trustees, etc. Once an
election is created, the EA server will prepare the ballots at the backend. The elliptic curve ElGamal and
the corresponding ZK proof are implemented in C++, using Multi-precision Integer and Rational Arith-
metic C/C++ Library (MIRACL) crypto SDK [40]. Based on the number of voters n and the number of
options m, the system will dynamically select an elliptic curve domain parameter from one of the NIST
p192, p224, p256, p384, p521 curves, such that n · (n + 1)m−1 can fit in the message space. We also
use the standard point compression technique: a point on the curve is represented by its x coordinate
together with the least significant bit of its y coordinate. After that, the EA distributes the ballots to the
voters, sends tally keys to the trustees and pushes the audit data to the ABB site. One very important
feature of our e-voting system is its no voter-side-crypto design principle, so we keep the VBB site clean
and simple. Hence, the voters are able to use some commercial off-the-shelf (COT) smartphones to cast
a vote. In the tally phase, the trustees based on the bulletin board information compute their tally shares,
using their secret keys. The Stanford Javascript Crypto Library (SJCL) [47] is employed to facilitate
the necessary local cryptographic computation at the trustee side. Finally, the election result will be
displaced on both the VBB and ABB sites. In terms of performance, the cryptographic computation in
the election preparation step denominates the entire election process. The benchmark results in Table 1
are obtained on a Debian server with Intel i7-4700HQ 2.4 GHz, 16GB RAM.

n m Curve Preparation Time
1000 2 p192 21 seconds
1000 5 p192 91 seconds
1000 10 p192 220 seconds
10000 2 p192 3.5 minutes
10000 5 p192 15 minutes
10000 10 p192 36 minutes

Table 1: Election Preparation Time Benchmark
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Traoré. On some incompatible properties of voting schemes. In Towards Trustworthy Elections,
2010.

[17] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a secure voting
system. In IEEE Symposium on Security and Privacy, 2008.

[18] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically secure election
scheme (extended abstract). In FOCS, 1985.

[19] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically secure election
scheme (extended abstract). In FOCS, 1985.

[20] United States Election Assistance Commission. Voluntary voting systems guidelines, 2005.
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