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Abstract. In this paper we investigate univariate algebraic attacks on
filter generators over extension fields Fq = F2n with focus on the Welch-
Gong (WG) family of stream ciphers. Our main contribution is to reduce
the general algebraic attack complexity on such cipher by proving new
and lower bounds for the spectral immunity of such ciphers. The spectral
immunity is the univariate analog of algebraic immunity and instead of
measuring degree of multiples of a multivariate polynomial, it measures
the minimum number of nonzero coefficients of a multiple of a univari-
ate polynomial. In particular, there is an algebraic degeneracy in these
constructions, which, when combined with attacks based on low-weight
multiples over Fq, provides much more efficient attacks than over F2.
With negligible computational complexity, our best attack breaks the
primitive WG-5 if given access to 4 kilobytes of keystream, break WG-7
if given access to 16 kilobytes of keystream and break WG-8 if given ac-
cess to half a megabyte of keystream. Our best attack on WG-16 targeted
at 4G-LTE is less practical, and requires 2103 computational complexity
and 261 bits of keystream. In all instances, we significantly lower both
keystream and computational complexity in comparison to previous es-
timates. On a side note, we resolve an open problem regarding the rank
of a type equation systems used in algebraic attacks.
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1 Introduction

There exist at least five published variants of the WG construction; WG-5 [15],
WG-7 [16], WG-8 [17], WG-16 [18] and WG-29 [19]. All of the constructions are
based on generating a keystream sequence based on filtering a single word from
a shift register over a finite field of size 2k, where k is indicated in the name of
the cipher (e.g. WG-k means the shift-register is over F2k). We show that the
general complexity for an attack over the extension field (depending only on the
size n of the LFSR and the size k of the field) is typically less or much less than
multivariate attacks over F2. These designs are rich in algebraic structure when
viewed over the extension field in terms of univariate polynomials, which has al-
ready been utilized in previous papers in [20] and [21]. Moreover, by combining a
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theorem by Brynielsson [23] together with a the spectral immunity as described
in Helleseth et al in [14], we are able to significantly reduce the spectral immu-
nity and complexity of algebraic attacks on WG-type constructions.

Cipher Bit security Computational Data Ref

WG-5 (7/15) 80 251 219.3 [15]
WG-5 (7/15) 80 243 215 New (bound SI)
WG-5 (7/15) 80 233 218 New (bound SI)

WG-5 (7) 80 231 215 New (found)
WG-5 (15) 80 233 215 New (found)

WG-7 80 266.1 224.7 [16]
WG-7 80 230 219.3 [22]
WG-7 80 254.6 219.5 New (bound SI)
WG-7 80 243 223.3 New (bound)
WG-7 80 228 217.3 New (found)

WG-8 80 269 226 [17]
WG-8 80 263.4 222.6 New (bound SI)
WG-8 80 254 223.5 New (bound)
WG-8 80 248 222 New (found)

WG-16 128 2159 258 [18]
WG-16 128 2148 252.7 New (bound SI)
WG-16 128 2106.5 263 New (bound)
WG-16 128 2102 261 New (found)

Table 1. Summary of bounds versus found algebraic attack complexity on the WG-
ciphers. SI=Spectral Immunity

Table 1 above summarizes our algebraic attacks on the WG-ciphers. For WG-
5, WG-7 and WG-8, the computational complexity of an attack is negligible.
Thus, on these ciphers the focus is on reducing data-complexity, which is the
dominant factor when considering real world applications.

We are not aware of previously published attacks against the 80-bit key
stream cipher WG-5. The designers provide two versions and estimate that the
best algebraic attacks on these two requires a data complexity of 219.35 bits and
251 computational complexity. Thus, this design is already moving along the
edge of security. Our contribution is to show that both versions can be attacked
using 215 keystream bits and with negligible computational complexity.

The 80-bit cipher WG-7 has already been broken with an algebraic attack
over F2 in [22], using 219.38 keystream bits and negligible time complexity. Their
attack use the fact that the Boolean function only has algebraic immunity 3.
In addition to reducing the keystream complexity to 217, we show that even if
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the Boolean function had optimal algebraic immunity 4, a univariate algebraic
attack would still use roughly 219 bits of keystream.

The best attack on the 80-bit cipher WG-8 is a related IV attack using
252 chosen IVs and computational complexity 253.32([24]). The best algebraic
attack on this cipher is estimated to be 266 computational complexity using
224.65 keystream bits. In this paper, we provide a key-recovery attack on WG-8
using 222 keystream bits and with computational complexity of 248.

The best attack on the 128-bit cipher WG-16 is estimated to be 2156 com-
putational complexity using 257 keystream bits. We have found relations that
reduce this to 2102 computational complexity using 261 keystream bits.

Previous papers on algebraic cryptanalysis of stream ciphers based on linear
shift-registers have mainly focused on solving equations over F2. However, it has
recently been shown (see for instance [21]) that univariate algebraic attacks over
extension fields can be more efficient, as the rich structures of the underlying
finite fields become more visible. Thus, representation can make a big difference
in the case of stream ciphers based on linear feedback shift registers.

Our main contribution is to show that the minimal keystream requirement in
an algebraic attack on certain filter generators based on LFSRs over extension
fields are generally much less than previously known or estimated. This com-
plements and improves a result in [20]. We show this by applying a theorem of
Brynielsson to reduce the bounds on the spectral immunity in our cryptanalysis
that significantly reduces the complexity in algebraic attacks on such. A direct
application of our results yields new and lower bounds on the keystream com-
plexity in such attacks. For WG-5, WG-7, WG-8 and WG-16 we have confirmed
that the complexity is actually less than our new bound.

On a side-note, we solve a long-standing open problem in literature regarding
the rank of the equation systems derived from using so-called annihilator equa-
tions (see [25]). We identify that the coefficients in these equation systems span
generalized Vandermonde matrices, for which it has been shown by Spharlinski
has almost always full rank. Though this has long been believed to be true, it
has not before been confirmed.

In this section we present basic results that make up the machinery of these
constructions, needed for our cryptanalysis of WG-ciphers in Section 3.

1.1 M-sequences, Unitary Sequences and Linear Complexity

For a much better introduction to the relationship between finite fields and
sequences, the reader is referred to [1] and [2]. Let Fqn denote a n-th order
extension of the binary field Fq of q = 2k elements, defined by a polynomial
m(x) over Fq. In order to simplify the presentation we assume that m(x) is
a primitive polynomial. The polynomial m(x) defines a linear feedback shift
register (LFSR) over Fq of length n that generates a maximal sequence (or m-
sequence) of period qn − 1; if initialized in a non-zero state the LFSR spans
the coefficient vectors of exactly the elements of the multiplicative group F∗qn .
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Moreover, if the LFSR is initialized in a state S0 = (s0, s1, . . . , sn−1) ∈ Fn
q , the

LFSR generates a sequence obeying the recurrence relation

st+n =stc0 + st+1c1 + . . .+ st+n−1cn−1. (1)

defined by the coefficients of m(x). The minimal polynomial of a periodic se-
quence s over Fqn is the polynomial of least degree generating that sequence.
The degree of this polynomial is what is called the linear complexity of the se-
quence. Let α ∈ Fqn be, for sake of simplicity, a primitive element. For β ∈ F∗qn
and d ∈ {0, 1, . . . , qn − 1} we call the sequence

bd,t = β(αt)d, t = 0, 1, 2, . . .

over Fqn a unitary sequence. Unitary sequences bd,t are the simplest forms of
nonzero sequences in the sense that their linear complexity is 1, since their
minimal polynomials are the linear polynomials x + αd. It is well-known that
the minimal polynomial of the sum of two sequences at and bt is equal to the
least common multiple of their individual minimal polynomials. Thus the sum
of two unitary sequences at = β1(xαt)d1 and bt = β2(xαt)d2 has simply minimal
polynomial m(x) = (x + αd1)(x + αd2). In general, if I is a random distinct
subset of {0, 1, 2, . . . , qn − 1} and ci are random nonzero constants of Fqn , the
polynomial

P (x) =
∑
i∈I

cix
i

defines a sum of unitary sequences zt =
∑

i∈I ci(xα
t)i with minimal polynomial

m(x) =
∏

i∈I(x+ αi) and linear complexity |I|.

2 Filter Generators and Algebraic Attacks over F2n

Filter generators have been well-studied in literature and consist usually of a
binary m-sequence generating LFSR of length n, a Boolean function f in k
variables and a subset of tapping positions I ⊂ {i1, i2, . . . , ik} ⊂ {0, 1, 2, . . . , n}.
In this section we quickly recapture the current state of algebraic attacks on
such constructions, but in terms of univariate polynomial equations. In the rest
of the paper, all operations on polynomials over Fqn are modulo xq

n

+ x. Let

L(x) =
∑n−1

i=0 x
2i denote the trace from Fq = F2n to F2 and α ∈ F2n a root of

the LFSR feedback polynomial. Since the shift-register obeys a linear recursion,
each bit st+i of the state St at time t can be described linearly by Lt+i(x) =
L(xαt+i) where x is the initial state. If the state of the LFSR at time t is
St = (st, st+1, . . . , st+n−1), a binary keystream sequence can be generated by

zt =f(st+i1 , st+i2 , . . . , st+ik)

=f(Lt+i1(x), Lt+i2(x), . . . , Lt+ik(x))

The bits of the sequence zt are successively exored with the plaintext bits to
form a ciphertext sequence. The choice of LFSR, tapping positions and Boolean
function all have various effects on the cryptographic quality of the resulting
keystream zt.
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2.1 Algebraic Attacks

In algebraic cryptanalysis (see for instance [6] and [5]) of a filter generator the
adversary tries to solve an associated equation system relating unknown state-
variables with keystream values. Then if the adversary has observed a sequence of
keystream bits beginning at time t, (zt, zt+1, . . . , zt+m), she can set up a system
of equations of the form

zt =f(Lt+i1(x), Lt+i2(x), . . . , Lt+ik(x))

=Ft(x), t = 0, 1, 2, . . . .

The Boolean function f contains monomials in n variables of degree up to d =
deg(f), thus the univariate polynomial Ft(x) can have at most D =

∑d
i=0

(
n
i

)
nonzero coefficients (exactly those xi where wt(i) ≤ d). This means that if
the adversary observes D keystream bits, she can set up a system of at most D
equations in D unknowns over F2n and solve using linear algebra. In multivariate
cryptanalysis the complexity is given by O(Dlog2(7)). Notice that Ft+i(x) =
Ft(xα

i) and that the coefficients of Ft(x) =
∑

wt(i)≤d cix
iαti span cyclic vectors

of the form

vt = (αti1 , αti2 , . . . , αtiD ).

If we let D such vectors for t = 0, 1, 2, . . . , D − 1 span a D × D matrix M ,
the resulting matrix is a Vandermonde matrix and can be manipulated more
efficiently than generic matrices (the inverse can be computed in O(Dlog(D)2)).
Moreover, if X = (ci1x

i1 , ci2x
i2 , . . . , ciDx

iD ) then M ·X = (z0, z1, . . . , zD−1) and

M−1(z0, z1, . . . , zD−1) = (xi0 , xi1 , . . . , xiD )

If we compute X from z, we can easily recover the initial state x from one of
the equations cijx

ij = xij . In practice one can pre-compute one of the columns
of the inverse to recover x from a pre-chosen value xij . This is essentially the
improved algebraic attack presented in [14].

2.2 Algebraic Attacks and Low-Degree Polynomials

An often more keystream efficient method is to make use of low-degree multi-
variate multiples of f and f +1. Moreover, if there exists a multivariate Boolean
polynomial g in the ideal spanned by f over F2 of lower degree e, the adversary
can use the relation

g(St)(zt + f(St)) =0

which yields a new valid equation each time zt = 0 since the zeros of f is a
subset of any multiple g. If we let Gt(x) = g(Lt+i1(x), Lt+i2(x), . . . , Lt+ik(x)),
we can construct a system of equations

Gti(x) = 0
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for all ti when zti = 0. Let T = {t1, t2, . . . , tE} where E =
∑e

i=0

(
n
i

)
. The

equations involve at most E nonzero coefficients so we can set up a E × E
matrix M spanned by coefficient vectors vtj = (αtji1 , αtji2 , . . . , αtjiE ) for tj ∈ T
and an unknown initial state related vector X = (ci1x

i1 , ci2x
i2 , . . . , ciEx

iE ) such
that vti · X = Gt(x) = 0 for all ti ∈ T . The rank of the equation system in
an ”annihilator”-attack has been assumed to have almost full rank E, but it
has remained an open question in literature ([25]). We can now resolve this
question by noting that the matrix M is a generalized Vandermonde matrix and
it was shown by Shparlinski[8] that almost all such matrices have full rank. The
algebraic immunity of a Boolean function was introduced in [12] and measures
the resistance of a function against algebraic attacks. Moreover, the algebraic
immunity, abbreviated AI(f), is defined as the minimal degree of a multiple of
either f or f +1. It has been shown that AI(f) for a k-variable function satisfies
the bound 0 ≤ AI(f) ≤ dk/2e. The adversary can therefore always reduce data-

complexity from
∑d

i=0

(
n
i

)
to roughly 2

∑d k2 e
i=0

(
n
i

)
if the degree of the function

f is larger than AI(f). But all hope is not lost even if the design employs a
Boolean function with optimal algebraic immunity. It was shown in [?], that if
there exist polynomials g and h with deg(g) < deg(h) < deg(f) where h = g · f ,
the adversary can instead set up an equation system of the form

ht(S0) + gt(S0) · zt = 0

for t = 0, 1, 2, . . .. Let e = deg(g), d = deg(h), E =
∑e

i=0

(
n
i

)
and D =∑d

i=0

(
n
i

)
. Further, let Ht(x) = ht(Lt+i1(x), Lt+i2(x), . . . , Lt+ik(x)) and Gt(x) =

gt(Lt+i1(x), Lt+i2(x), . . . , Lt+ik(x)) such that

Ht(x) +Gt(x) · zt = 0.

The authors of [7] showed that if the adversary pre-computes the minimal
polynomial mh(x) of the sequence bt = h(St) she can simply apply the recursion

defined by mh(x) =
∑D

i=0 cix
i to the equation system

D∑
i=0

ci(Ht+i(x) +Gt+i(x)zt+i) = 0

for t = 0, 1, 2, . . . , E−1. The polynomial mh(x) is simply
∏

ci 6=0(x+αi) where ci
are the coefficients of H0(x) where we assume that all the coefficients for terms
xi of weight less or equal to d are nonzero. Since the sequence h(St) = Ht(x)
obeys the recursion defined by mh(x), the new equations become

D∑
i=0

ci(Gt+i(S0)zt+i) = 0

for t = 0, 1, 2, . . . which is now a system of equations involving the E coefficients
of Gt(x). The best total complexity for solving such equation systems has been
shown to be O(EDlog2(D) + Elog2(7)). It is assumed that one needs D + E
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keystream bits to solve this system, since the relation D is used to determine E
equations. However, in practice one can compute a polynomial of degree D−E
and zeros αi with e < wt(i) ≤ d that will cancel only the terms of xi where
i has weight larger than e, so only D keystream bits are needed in practice.
However, O(D + E) = O(D) for typical applications, so it usually makes little
or no difference.

3 Filter Generators in the Spirit of Welch-Gong

The Welch-Gong type filter generator consists of a primitive LFSR over an ex-
tension field Fq = F2k of length n and a Boolean function f(x) over Fq. Let
α ∈ Fqn denote a root of the LFSR generator polynomial. The LFSR defines a
q-ary sequence

st = L(xαt)

where L(x) = Trqn/q(x) =
∑n−1

i=0 x
qi denotes the trace from Fqn to Fq and

x ∈ Fqn is a random nonzero initial state. The WG-design applies a Boolean
function f(x) to exactly one q-ary element L(xαt) of the LFSR register, in
effect generating a binary keystream

zt = f(L(xαt))

for t = 0, 1, 2 . . .. In the following section our focus will be on minimizing the
complexity of univariate algebraic attacks on this particular construction.

3.1 The spectral immunity of WG-type stream ciphers

When solving univariate equations we do not care so much about degree as we
care about the number of nonzero coefficients in the polynomials. The equations
we are interested in are of the form

zt =f(L(xαt))

=

q−1∑
i=0

ciL(xαt)i

=F (xαt)

where f is over Fq and F (x) is over Fqn . In the rest of the paper we will write
capital letters F,G,H to represent functions f, g, h over Fq composed with L(x),
where L(x) will be fixed in the context. Notice that we need not take the compo-
sition f(L(x)) modulo xq

n

+x since the highest degree term possible in L(x)q−1

is q(n−1)(q − 1) = qn − qn−1. To any polynomial f(x) over Fq, define a weight
enumerator polynomial

Tf (x) =

k∑
i=0

wix
i (2)
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where wi counts the number of nonzero terms xd in f with exponent d of ham-
ming weight i. We have that Tf (1) is the usual hamming weight if the coefficients
of f are binary. If f(x), L(x) are as above, the number of nonzero coefficients in
their composition follows directly from a theorem by Brynielsson.

Theorem 1 ([23]). The number of nonzero coefficients of F (x) = f(L(x)) is
given by Tf (n).

Due to this special structure of F (x) we can now improve the bounds on
the spectral immunity of univariate polynomials. Spectral immunity of a gen-
eral Boolean polynomial F (x) over Fqn was essentially defined in [11] in terms
of sequences, but here it is more convenient to use the definition provided by
Helleseth et. al. [21] in terms of polynomials and cyclic codes.

Theorem 2 ([21]). The spectral immunity of a Boolean function F (x) over
Fqn , denoted SI(F ), is equal to the minimum weight of a q-ary cyclic code gen-
erated by

GF (x) = gcd(F (x) + 1, xq
n

+ x)

or
GF+1(x) = gcd(F (x), xq

n

+ x).

The spectral immunity is the univariate analog of algebraic immunity as it
measures the least number of unknowns one needs to solve for in an algebraic
attack, thus minimizing the data complexity. In a general algebraic attack over
F2n (when the LFSR is defined over F2), we have polynomials of the form

P (x) = f(Lt+i1(x), Lt+i2(x), . . . , Lt+ik(x))

Since the algebraic immunity of f(x) as a multivariate polynomial in k variables
is at most dk/2e, it follows that the spectral immunity of P (x) is upper-bounded

by
∑dk/2e

i=0

(
n
i

)
. Although univariate and multivariate attacks have similar com-

plexity in general, as we have seen, the WG-type construction produces polyno-
mials of a very special type that allows us to improve this bound significantly.

Theorem 3. Let F (x) = f ◦L(x) where f(x) is defined over F2k and L(x) is a
trace from F2nk to F2k . The minimum distance of the cyclic codes generated by
GF and GF+1 over F2nk is upper-bounded by

SI(F ) ≤
dk/2e∑
i=0

(
k

i

)
ni − (

(
2 · dk/2e − 1

dk/2e

)
− 1)ndk/2e.

Proof. The proof is straight-forward. Assume the worst case, which is when

f(x) is balanced. The matrix Mi containing the
∑dk/2e

r=0

(
k
r

)
coefficient vectors

of xd (mod gi(x)) where gi(x) = gcd(f(x) + i, xq + x), i ∈ F2 and with d of
hamming weight less or equal to dk/2e, has rank at most 2k−1. Consequently,

the kernel Ki of Mi has dimension at least
∑dk/2e

r=0

(
k
r

)
−2k−1 =

(
2·dk/2e−1
dk/2e

)
. Since(

2·dk/2e−1
dk/2e

)
=
(

k
dk/2e

)
if k is odd and equal to

(
k
dk/2e

)
/2 if k is even, it follows that
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there exist for each of f and f + 1 a multiple g with coefficient vector in Ki

with at most
(

k
dk/2e

)
−
(
2·dk/2e−1
dk/2e

)
+ 1 terms xd where d has hamming weight

dk/2e. If s(x) is the polynomial with these coefficients, Ts(n) yields the desired
upper-bound. ut

Notice that SI(F ) ≤
∑dk/2e−1

i=0

(
k
i

)
ni + ndk/2e when k is odd and SI(F ) ≤∑dk/2e−1

i=0

(
k
i

)
ni +

(
k−1
dk/2e

)
ndk/2e when k is even. As a consequence, the spectral

immunity of WG-ciphers is much worse in comparison to equivalently sized bi-
nary filter generators consisting of a LFSR of size n · k and a Boolean function
in k variables that tap bits from k arbitrary positions of the LFSR. In partic-
ular, both the keystream complexity and the computational complexity of an
algebraic attack is in general lower than previously thought.

Note that it is not clear whether the upper-bound for Tg(n) for a multiple g
of f or f + 1 (the least number of coefficients of a multiple G of F or F + 1) is
tight or not, and leave this as an interesting open problem.

3.2 Minimizing Complexity In Attacks on WG Ciphers

In the following we shed some light on the consequences of Theorem 3. The
proof of Theorem 3 instructs us how to find other types of relations that do not
minimize the keystream complexity. By adjusting Theorem 3 on the minimal
Tgi(n) (spectral immunity) when using multiples

(f(x) + i)gi(x) = gi(x),

we can derive bounds for Tg(n) and Tgi(n) when using relations of the form

(f(x) + i)g(x) = gi(x)

where we allow gi(x) to have terms with exponents up to and including weight
d ≥ dk/2e. The following theorem gives an especially simple relationship between
the values of Tgi(n) and Tg(n) relative to d.

Theorem 4. Let F (x) = f ◦L(x) where f(x) is defined over F2k and L(x) is a
trace from F2nk to F2k . For dk/2e ≤ d ≤ k, there exist g(x) and gi(x) such that

(f(x) + i)g(x) = gi(x)

where

Tgi(n) ≤
d∑

i=0

(
k

i

)
ni

and

Tg(n) ≤
k−d−1∑
i=0

(
k

i

)
ni + nk−d.
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Proof. In this case, we compute matrices Mi formed by the coefficients vectors

of xt mod gcd(f(x)+i, x2
k

+x) where the exponent can have weight d > dk/2e.
Assuming that the function f(x) is optimal, the kernel Ki of Mi has dimension

dim(Ki) =
∑d

r=0

(
k
r

)
− 2k−1. Let d = dk/2e + t. If k is odd, we have that∑dk/2e

r=0

(
k
r

)
− 2k−1 =

(
k
dk/2e

)
, while if k is even,

∑dk/2e
r=0

(
k
r

)
− 2k−1 =

(
k
dk/2e

)
/2

Thus in the case of k odd, dim(K0⊕K1) = 2(
(

k
dk/2e

)
+
∑d

r=dk/2e+1

(
k
r

)
) is equal

to
∑d

r=dk/2e−t−1
(
k
r

)
. Since this is exactly the number of terms xe with weight

between dk/2e − t− 1 and d, it follows that there must exist at least one vector
in K that is the coefficient vector of a polynomial g(x) with only one term with

exponent weight dk/2e−t−1. In this case we have that Tg(n) ≤
∑dk/2e−t−2

r=0

(
k
r

)
+

ndk/2e−t−1 which is equal to
∑k−d−1

r=0

(
k
r

)
nr + nk−d, since 2dk/2e − t− 1 = k− d

when k is odd.

In the case of k even, dim(K0 +K1) = 2(
(

k
dk/2e

)
/2 +

∑d
i=dk/2e+1

(
k
i

)
) which

again is equal to
∑dk/2e+t

r=dk/2e−t
(
k
r

)
. This is exactly the number of terms of weight

between dk/2e−t and d. Moreover, there must exist at least one vector in K that
is the coefficient vector of a polynomial g(x) with only one term with exponent

weight dk/2e− t. In this case we have that Tg(n) ≤
∑dk/2e−t−1

r=0

(
k
r

)
+ndk/2e−t =∑k−d−1

r=0

(
k
r

)
nr + nk−d, since 2dk/2e − t = n − d when k is even. In both cases,

Tgi(n) ≤
∑d

r=0

(
k
r

)
nr, since the coefficient vector for g(x) is a sum of arbitrary

vectors from K0 and K1. ut

The attacker can thus, if allowed, lower the total computational complexity
by increasing the keystream complexity. The above bounds can then be used to
measure the resistance against algebraic attacks when increasing the keystream
complexity.

4 Cryptanalysis of the WG Family

The class of WG-ciphers are pure filter generator constructions consisting of an
LFSR of length n over Fq = F2k and a k-variable Boolean function f(x) over Fq.
In this section we analyze WG-5, WG-7, WG-8 and WG-16. In the following let
Tr(x) denote the trace polynomial from Fq to F2 where q = 2k is clear from the
context.

For each of the WG-ciphers we have provided a table with bounds on the
complexities of doing an algebraic attack by using

1) Theorem 3 to show the minimal keystream complexity of an attack, and,

2) Theorem 4 to show the minimal computational complexity of an attack.

We have then compared this to the relations found by computer search.
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4.1 On computing relations that minimizes target complexity

We compute matrices M0 and M1 whose kernels K0 and K1 span the coefficient

vectors of xt mod gcd(f(x) + i, x2
k

+ x) with terms with exponents t of weight
less or equal to dk2 e ≤ d < k. Thus, for equations of the form

gi(x)f(x) = gi(x)

we look for candidates in the kernel Ki with d = dk2 e. To determine equations
of the form

g(x)(f(x) + i) = gi(x)

we look for candidates among the sum K = K0 ⊕ K1. Since K has greater
dimension (typically twice) than each of the kernels Ki, we can find g(x) =
g0(x) + g1(x) with fewer coefficients, but at the possible expense of increasing
the number of coefficients in each gi(x). In some cases, it might even be better
to look for g(x) with exponents of higher weight than dk/2e to minimize the
total complexity. This way, we get larger kernels Ki that can be used to further
reduce the complexity Tg(n) at the expense of increasing Tgi(n). There is some
freedom in choosing which way to optimize, and should be considered case by
case.

In the following we describe our results for each of the WG-ciphers. We have
implemented the computations for each of the WG-ciphers in C++ using NTL.
The source code is made available at request. For each cipher, we provide a table
with the best bounds for the complexity of algebraic attacks. In the tables we
let D = Tgi(n) and E = Tg(n). The first row describes the minimal complexity
of using single multiples of f(x) + i, derived from Theorem 3 on the spectral
immunity, while the rest of the rows are derived using the bound in Theorem 4
where d is the maximal weight of the exponents of terms allowed to appear in
gi(x).

4.2 Cryptanalysis of WG-5

d log2(D) log2(E) log2(Elog2(7) + ED log2(D))

3 0 15.4 43.2
3 18.4 10.2 32.9
4 22.4 5.0 31.9
5 25.2 0.0 29.9

Table 2. Summary of bounds for algebraic attacks on WG-5.

WG-5 [15] is a stream cipher with a target security of 80-bits. The design
specification states that the best algebraic attack has complexity 251.13 and using
219.3 data complexity and no other attacks have previously been published in
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literature. For WG-5 we have parameters n = 32 and Fq = F25 . The Boolean
function is given by f(x) = Tr(xd) over Fq where the specification leaves a choice
of either using d = 7 or d = 15. The two filter functions are

f7(x) = x28 + x25 + x19 + x14 + x7

and

f15(x) = x30 + x29 + x27 + x23 + x15.

Table 2 shows that the spectral immunity is at most 215.4 and is also the
upper-bound on the minimal keystream complexity of an algebraic attack. Thus,
there exists an algebraic attack using at most 215.4 (roughly 0.005 megabytes)
keystream bits and computational complexity roughly 243 for this parameter
setting, regardless of which filter function is used. This already violates the de-
signers security estimates.

For f7(x) we found polynomials g0(x) and g1(x) that can be used to mount
attacks requiring less keystream than the general bound. For instance, it can
easily be verified that

g0(x) = x+ x2 + x6 + x16 + x10 + x18 + x20 + x24 + x26

is a multiple of f7(x) with Tg0(n) = 215.21, while

g1(x) = 1 + x+ x2 + x4 + x16 + x3 + x6 + x12 + x18 + x20 + x24 + x28

is a multiple of f7(x) + 1 modulo x32 + x with Tg1(n) = 215.25.The function f15
behaves worse than f7(x). For instance, one can verify that

g0(x) = x24 + x8 + x7 + x5 + x

and

g1(x) = x24 + x9 + x8 + x7 + x5 + x

is such that Tg0(32) = Tg1(32) = 215.1 and g0(f15(x) + 1) = g1(x)f15(x) = 0.
Thus, the minimal keystream requirement for attacking WG-5 is roughly 215.
It is of interest to see if we are able to reduce the total complexity without
increasing the keystream requirement too much. In Table 2 we see that there
exist an attack in 233 using 218.4 keystream bits. Thus, we search for multiples
g0(x) and g1(x) such that g(x) = g0(x) + g1(x) results in Tg(n) < 215, while at
the same time requiring that Tgi(n) is not much more than 215. For f7(x) one
can verify that

g(x) = 1 + x4 + x5 + x6 + x10 + x16 + x17

and

g1(x) = x28 + x24 + x20 + x18 + x16 + x12 + x6 + x4 + x3 + x2 + x+ 1
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satisfy
(f7(x) + 1)g(x) = g1(x)

with corresponding complexities Tg1(32) = 215.2 and Th(32) = 212, which is
worse than our bound. In the case of f15, we get even better results. One can
for instance verify that

g(x) = x5

and
g0(x) = x28 + x20 + x4 + x3 + x

satisfy f15(x)g(x) = g0(x) where Tg(n) = 210 and Tg0(n) = 215. Moreover, from
f(x) · g(x) = g0(x), we get equations of the form

zt · L(xαt)9 = g0(L(xαt))

for t = 0, 1, 2, . . . where the left-hand side involves n2 = 210 unknowns and
the right-hand side roughly n3 = 215 unknowns. Thus the complexity of a fast
algebraic attack is roughly 230 using 215 keystream bits.

4.3 Cryptanalysis of WG-7

d log2(D) log2(E) log2(Elog2(7) + ED log2(D))

4 0 19.5 54.6
4 23.3 14.5 42.8
5 27.1 9.4 41.3
6 30.1 4.6 39.6
7 32.1 0.0 37.1

Table 3. Summary of bounds for algebraic attacks on WG-7.

WG-7 [16] is a stream cipher with 80-bits security target. This cipher has
already been attacked in [22] where the low algebraic immunity was used to
mount an attack in 228 using 219.38 keystream bits. The cipher consists of an
LFSR of length 23 over a field F27 and a Boolean function

f(x) = Tr(x3 + x9 + x21 + x57 + x87)

corresponding to a multivariate Boolean function in seven variables. While the
cryptanalysis in [22] used the fact that the Boolean function has algebraic im-
munity 3 instead of 4. Thus, this cipher has already been broken. In Table 3, we
see that the minimal keystream complexity (spectral immunity) is already 219,
regardless of the algebraic immunity of the function f(x), and a direct algebraic
attack is possible with negligible computational complexity if this amount of
keystream is available.
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However since f(x) has algebraic immunity 3, it is natural to restrict to
multiples with exponents of weight less and equal to 3. In fact, if we let g(x) =
Tr(x) + 1 over Fq it follows that

f(x)g(x) = g0(x)

is such that Tg0(23) = 217.4 while Tg(23) = 161. The keystream complexity is a
little less (1/4th) than the attack in [22], while the computational complexity is
negligible.

4.4 Cryptanalysis of WG-8

d log2(D) log2(E) log2(Elog2(7) + ED log2(D))

4 0 22.6 63.4
4 23.5 19.2 54.0
5 27.5 14.2 46.5
6 30.9 9.1 45.0
7 33.5 4.4 43.0

Table 4. Summary of bounds for algebraic attacks on WG-8.

WG-8 [17] is a stream cipher targeting 80-bit security. The best algebraic
attack on this construction is estimated at 269 computational complexity using
226 bits of keystream. The cipher consists of an LFSR of length 20 over Fq = F28

and applies the Boolean function

f(x) = Tr(x9 + x37 + x53 + x63 + x127)

over Fq. In Table 4, we see that the spectral immunity is less or equal to 223. How-
ever, we find a multiple g1(x) = Tr(x15)+Tr(x45)+1 of f(x)+1, thus the minimal
keystream requirement to attack this cipher is actually Tg0 = 16(n4) = 221.3 us-
ing little less than 260 computational complexity.

Moreover, we find a relation f(x)g(x) = g0(x) with Tg0(20) = 222.3 and
Tg(20) = 217. The coefficients of g(x) are Cg = {1, 2, 3, 6, 8, 12, 16, 18, 19, 20, 21,
22, 26, 32, 33, 34, 35, 36, 40, 48, 49, 50, 52, 56, 65, 66, 67, 81, 96, 97, 128, 130, 131, 136,
138, 161, 168, 192}. Thus, with a data complexity of 222.3, an algebraic attack has
complexity roughly (217)log2(7) + 222.3 · (22.3) ≈ 248.

4.5 Cryptanalysis of WG-16

WG-16[18] is a 128-bit WG-cipher that consists of a primitive LFSR of length
32 over Fq = F216 and is meant for use in 4G. The function f(x) has multivari-
ate degree 8 and optimal algebraic immunity. The authors claim that the best
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d log2(D) log2(E) log2(Elog2(7) + ED log2(D))

8 0 52.7 148.0
8 53.7 48.5 136.2
9 58.5 43.0 120.7
10 63.0 37.1 106.5
11 67.2 30.9 104.1
12 70.9 24.2 101.3
13 74.3 17.3 97.7
14 77.1 10.6 94.0
15 79.3 5.0 90.7

Table 5. Summary of bounds algebraic attack complexity on WG-16

algebraic attack on this construction is in 2159 using 258 keystream bits. Since
the function is in an even number of variables, the theoretical optimal minimal
value for Tgi(32) for a multiple gi(x) of f or f + 1 satisfies Tgi(32) ≈ 253. Thus a
algebraic attack has then complexity Tg(n)log(7,2) = 2148 using minimal amount
of 253 keystream bits. If the function is optimal, there should be no attacks using
fewer keystream bits. However, we have by computer search found multiples for
both f(x) and f(x) + 1 with Tgi(32) ≈ 251. Moreover, in Table 5 we see that
there is an attack in 2106 that uses 263 bits of keystream. For instance, using
d = 10, there must exist an attack in at most 2106 that uses at most 263 bits
of keystream. We have confirmed this has found g and g0 with f · g = g0 where
Tg0(32) = 261 while Tg(32) = 236, thus improving the attack in comparison to
the general bound to roughly 2102 computational complexity using 261 keystream
bits.

5 Conclusion

In this paper we have derived new bounds for the complexity of algebraic attacks
on word-based filter generators. In particular, we show that the complexity of
an algebraic attack on filter generators formed by filtering a single word from
an LFSR over an extension field is typically much less than previously thought.
The main reason for this is that the spectral immunity of these filter genera-
tor polynomials is much lower than for equivalently sized classical binary filter
generator polynomials. In particular, we give new and improved upper-bounds
for the spectral immunity for this class of stream ciphers. The main new result
is derived from a theorem by Bryniellson and a theorem by Helleseth et al. on
the spectral immunity. As an application, we improve both computational com-
plexity and keystream complexity in algebraic attacks on all the WG-ciphers. A
consequence is that designers of stream ciphers similar to these, must carefully
evaluate security using Theorem 3 and Theorem 4.

It should also be noted that our analysis may have applications to similar
word-based constructions, most notably SNOW-3G [13].
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