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Abstract. In this paper, we present a single round two-party attribute-
based authenticated key exchange (ABAKE) protocol in the framework of
ciphertext-policy attribute-based systems. Since pairing is a costly op-
eration and the composite order groups must be very large to ensure
security, we focus on pairing free protocols in prime order groups. The
proposed protocol is pairing free, working in prime order group and hav-
ing tight reduction to Strong Diffie Hellman (SDH) problem under the
attribute-based Canetti Krawzyck (CK) model which is a natural ex-
tension of the CK model (which is for the PKI-based authenticated key
exchange) for the attribute-based setting. The security proof is given in
the random oracle model. Our ABAKE protocol does not depend on
any underlying attribute-based encryption or signature schemes unlike
the previous solutions for ABAKE. Ours is the first scheme that re-
moves this restriction. Thus, the first major advantage is that smaller
key sizes are sufficient to achieve comparable security. Another notable
feature of our construction is that it involves only constant number of
exponentiations per party unlike the state-of-the-art ABAKE protocols
where the number of exponentiations performed by each party depends
on the size of the linear secret sharing matrix. We achieve this by doing
appropriate precomputation of the secret share generation. Ours is the
first construction that achieves this property. Our scheme has several
other advantages. The major one being the capability to handle active
adversaries. Most of the previous ABAKE protocols can offer security
only under passive adversaries. Our protocol recognizes the corruption
by an active adversary and aborts the process. In addition to this prop-
erty, our scheme satisfies other security properties that are not covered
by CK model such as forward secrecy, key compromise impersonation
attacks and ephemeral key compromise impersonation attacks.

Keywords: Authenticated Key Exchange, Attribute-based Authenticated Key
Exchange (ABAKE), CK model, ABCK model, Forward secrecy, Key Compro-
mise Impersonation (KCI) attacks.



1 Introduction

The goal of an Authenticated Key Exchange (AKE) protocol is for two parties
to establish a common shared session key which they can later use to securely
communicate with each other. The minimum requirement from a key exchange
protocol is that it should maintain secrecy of the established session keys from
an adversary who can passively eavesdrop on the protocol messages and who
may also send messages of its choice to various parties. Besides the minimum
requirement of session key secrecy, we require other crucial properties from an
AKE protocol such as key independence, Key Compromise Impersonation (KCI)
resilience, forward secrecy to mention a few. Key independence means that the
session keys are computationally independent of each other. This is an essential
security requirement of AKE protocols as it helps to prevent against “Denning-
Sacco” type of attacks [9]. KCI means that the adversary should not be able to
impersonate other honest parties to a party by revealing the long term secret
key of this party. Forward secrecy requires the secrecy of the session keys to hold
even if the adversary gets the long term secret key or static key of parties who
have previously established a common session key later at some point of time.

The necessity of providing fine grained access control over encrypted data
is getting important today since these days people exchange more and more
sensitive information over the Internet. Public key encryption guarantees an
“an-or-nothing” access to information– a person with legitimate credential (se-
cret key) can access the whole data; whereas other entities are not entitled to
learn the data in its entirely. Naturally this does not provide much flexibility
where more granular level of access control mechanism is required. Attribute-
based encryption (ABE) solves this issue. Attribute-based Encryption (ABE),
introduced by Sahai and Waters [23], allows for fine-grained access control on
encrypted data and reduces bulk encryptions to a number of people who have
several common characteristics. After that a lot of other ABE schemes were
proposed [5, 12, 13, 16, 20]. In attribute-based encryption, a message can be en-
crypted so that it can only be decrypted by keys whose attributes satisfy a
certain policy. Attributes are boolean variables and policies are represented as
boolean functions over the attributes. Each user is associated with one or more
attributes. Attribute-based systems broadly fall under two categories: (i) key-
policy attribute-based systems, e.g. [13] in which users’ secret keys are associated
with access policies over a universe of attributes and the ciphertexts are associ-
ated with sets of attributes and (ii) ciphertext-policy attribute-based systems,
e.g. [5] in which users’ private keys are associated with the attributes and the
ciphertexts are associated with access policies. Each user gets its private key
from the Key Generation centre (KGC) corresponding to its attributes (in case
of CP-ABE) or access policy defined on attributes (in case of KP-ABE). In a
KP-ABE scheme a party can decrypt a ciphertext corresponding to a set of at-
tributes that satisfies the access policy of the party. In contrast in a CP-ABE
system, decryption works if the attributes of a party satisfies the access policy
underlying the ciphertext. In this work, we consider ciphertext-policy attribute-
based systems. In reality, a user’s access privileges are often granted based on



the functional role he/she assumes in an organization, where a role reduces to no
more than a set of attributes. In this regard, Ciphertext-Policy ABE (CP-ABE)
enables cryptographic access control with respect to functional roles.

Naturally it is worth studying the AKE protocols in attribute based settings
since this would allow users to establish a secure channel and at the same time al-
lowing for fine grained access control over data. Attribute-Based AKE (ABAKE)
is a new variant of the Authenticated key Exchange (AKE) that serves that pur-
pose and allows users to authenticate each other using their attributes unlike
in the PKI settings where the users authenticate each other using their public
keys. ABAKE can hide the identity information of an individual, which allows
users to achieve mutual authentication and establish a secret session key by
their attributes and some fine grained access control policy. Attribute-based key
exchange finds its application in distributed collaborative systems where it is
more convenient for users to communicate with other users using their roles or
responsibilities which can be described by attributes, interactive chat rooms,
online forums where a user can have read/write access to threads only if they
have desired attributes etc. Another interesting application is sharing of med-
ical history of patients with doctors who are appropriately qualified but both
doctors and patients would like to remain anonymous without revealing their
specific identities. This may be of particular use for health chat rooms or online
medical consultancy services where the patients would like to keep their iden-
tity hidden and also the doctors who are providing consultancy services to the
patients would like to keep their identity anonymous to avoid legal hassles later
on. Hence an authenticated key exchange protocol that critically uses attributes
can be employed in these settings.

All the previously proposed ABAKE schemes build upon some well-known
ABE schemes and the security guarantees of the underlying ABE scheme di-
rectly translated to the security of the ABAKE scheme. While a naive approach
for designing a key exchange protocol may use encryption and signature algo-
rithms as building blocks, in general such a solution may be computationally
very expensive. Specifically for attribute-based systems the encryption and sign-
ing algorithms are very complex involving a number of variables corresponding to
attributes and access structures, exponentiations and pairing operations. How-
ever the design and construction of an authenticated key exchange can be much
simpler than a direct application of encryption and signatures schemes. We no-
tice that all the ABAKE schemes proposed so far (as discussed in the related
works section) suffer from the drawback that they are computationally very
expensive since the design of those ABAKE incorporates a direct application
of ABE and/or signature scheme which may not be the most efficient way to
design an ABAKE protocol. Hence the inefficiencies or complicacies of the un-
derlying ABE scheme directly affected the design of ABAKE protocols. Hence
it is quite natural to ask for the possibility of designing an ABAKE protocol
from scratch that is fundamentally simpler than the state of the art ABAKE
protocols. Specifically we draw motivation from the fact that a number of AKE
protocols in public key settings and also in identity based settings need not rely



on any underlying public key encryption or identity based encryption scheme
for their construction. Hence we raise this fundamental question in the design of
ABAKE protocol :

“Is it possible to design a protocol for AKE in attribute-based settings, hand-
crafted using only basic group operations rather than using attribute encryption
or signature schemes as building blocks?”

Our paper answers affirmatively to this question. However we note that in gen-
eral using an underlying encryption and/or signature scheme in designing an
AKE protocol makes the design more modular. However it may not be efficient
especially when we consider ABE schemes as discussed above. So this is a trade-
off between modularity and efficiency. We choose efficiency over modularity and
we show that indeed it is possible to design much simpler and efficient ABAKE
protocol without using any ABE schemes as building block which, at the same
time, achieves comparable level of security desired from an ABAKE protocol.

1.1 Related Works

In the recent literature some ABAKE are proposed. Ateniese et al. [2] proposed a
fuzzy handshake technique that is closely related to the ABAKE model. However
there are some differences between the two as their scheme can only handle simple
authentication conditions by allowing only a single threshold gate as opposed
to several threshold gates that may be present in a general ABAKE settings.
Besides their scheme can only deal with the simple authentication condition
of whether the attributes are matching more than a threshold. Wang, Xu and
Ban [28], and Wang, Xu and Fu [29,30] proposed simple variants of the ABAKE
scheme. In their schemes the users are associated with identification strings like
in an ID based setting and there is no mechanism to evaluate policies defined
over identities. So their scheme falls into the category of ID based AKE rather
than ABAKE. Gorantla et al. [11] proposed the first ABAKE scheme based
on the CP-ABE scheme of Bethencourt et al. [5] which provides parties with
the fine-grained access control based on the attributes of parties. However it
does not provide the flexibility of each user to specify access structures which
they want their peers to satisfy. So this is an attribute-based group key exchange
scheme where the access policy is defined globally and only those members whose
attributes satisfy the access structure will be able to establish a common secret
session key among themselves. Besides, the security of their scheme is analyzed
based on the primitive Bellare-Rogaway(BR) model [4] in the generic group
model. In an independent work Steinwandt and Corona [26] proposed a two-
round ABAKE using an attribute based signcryption based on the group key
exchange scheme of Bohli et al. [7]. Like the construction of Gorantla et. al. [11],
this is also attribute-based group key exchange scheme where the access policy
is common for all the parties in the system and it does not allow each party to
specify the access policies themselves. This scheme also satisfies forward secure.
The security of the scheme is proved in the RO model, however it only achieves
selective security which is a weaker notion of security where the adversary has
to specify the access policy before seeing the public parameters of the system.



Birkett and Stebila [6] introduced the concept of predicate-based key ex-
change with fine-grained access control. They proposed a generic construction
using a predicate-based signature as building block and following the signed
Diffie Hellman paradigm for their construction. Here the parties can specify the
condition the peer is expected to satisfy. It also achieves security against active
adversaries. An active adversary is one who can extract the messages that are
exchanged during key agreement and modify them arbitrarily during transit.
Since the construction uses predicate-based signatures as underlying building
block, it achieves security against active attacks. Also, an additional property
that is called credential privacy (CP) is guaranteed as well as the standard secu-
rity of the session key. CP states that an adversary cannot distinguish between
two individuals whose credentials satisfy the same access policy. The scheme is
proven secure without random oracles in the predicate-based key exchange secu-
rity model based on the BR model. However their scheme has several drawbacks.
Firstly, the concrete instantiations of their protocol has some problem. The pred-
icate based signature scheme can be instantiated using some predicate based
(attribute based) signature schemes [17,18,21,24]. Instantiations using [24], [17]
cannot achieve expressive ABAKE (i.e., these signatures only allow threshold
access policies). In [18], three signature schemes are proposed. One instantiation
in [18] is expressive, but the security proof is given in Generic Group Model
(GGM). Other instantiations in [18] need large communication complexity. The
instantiation in [21] provides fully secure and expressive access policies in StdM.
However, communication complexity of it is larger than that of the efficient in-
stantiation in [18], depending on the size to represent access policies. Secondly,
the protocol execution is inherently sequential in nature, i.e., a party needs to
wait for the message from its peer before sending its message to the peer. So
this is not a two flow (or one round) protocol since it requires three flows where
a flow is a single message exchange from one party to another. This is mainly
due to the adoption of signed Diffie Hellman paradigm. Thirdly, the protocol
can only be proven in the much weaker BR model. The major security models
like the CK [8] and the eCK model [15] for key exchange allows the adversary
to reveal the session state (which includes all the session specific randomness
excluding the session key) and ephemeral secrets used during a run in a session.
This requires a signature scheme to satisfy the property that it should be un-
forgeable against revealing the randomness of the underlying signature scheme.
Unfortunately as observed in [6], there is no such predicate signature scheme
satisfying this property.

Yoneyama [32] proposed a two-party, one round ABAKE secure in the RO
model under the Gap Bilinear Diffie Hellman assumption in the attribute-based
eCK [15] model. This is a stronger model than the previous models in that it
allows the adversary to access the ephemeral secrets of involved parties. However
in the design of the ABAKE protocol they make use of Waters CP-ABE scheme
[31]. Since Waters ABE does not achieve full security (i.e. adaptive security) the
ABAKE scheme also achieves only selective security. So the security guarantees
of the ABE scheme also directly translated to the security of the ABAKE scheme



which it uses. Also this scheme is vulnerable to an active attack. In the scheme
presented in [32], the adversary can extract the ephemeral component (X, {U})
and change it to (X ′, {U ′}) and chooses an access structure by itself that is
trivially satisfied by the attributes of user B and sends it to B. Similarly, he
can extract the ephemeral component (Y, {V }) and change it to (Y ′, {V ′}) and
chooses an access structure by itself that is trivially satisfied by the attributes
of user A and sends it to A. Thus the final shared secret key of A and B will
not be in agreement. So although the adversary may not know the actual session
key between the two parties he can launch this type of denial-of-service (DOS)
attack. Our protocol avoids this kind of an attack by incorporating appropriate
verification mechanisms that would abort the process in case of any change in
values to be agreed upon. Later Yoneyama [33] proposed another round optimal
(one round) ABAKE in the CP-ABE settings which is shown to be more efficient
compared to the scheme presented in [6]. It also achieves security against active
adversaries by incorporating a one time signature in their construction. However
the construction of this ABAKE protocol is also based on Waters CP-ABE
protocol [31]. The main idea of their construction is that both the parties will
exchange a ciphertext of the Waters CP-ABE along with their respective access
policies. Since Waters CP-ABE is only CPA secure, [33] used a one time signature
which is used as a standard conversion tool from CPA to CCA security. However
since the Waters CP-ABE achieves selective security, the ABAKE scheme also
achieves the same level of security. The security of their scheme is proved in the
ABCK model which is a natural extension of the CK model and the security
of the scheme is reduced to the non standard Decisional Parallel Bilinear Diffie-
Hellman Exponent Assumption (DPBDHE) as in the Waters CP-ABE.

1.2 Our Contribution

– In this paper, we present an attribute-based key agreement protocol which
can be proved secure under the Strong Diffie-Hellman (SDH) assumption [1]
in the RO model. We extend the techniques used in [27] to the attribute-
based framework. Doing this is not trivial since in an attribute-based system
the keys and the ciphertexts have richer structure than identity-based en-
cryption schemes. Besides, an ABAKE protocol hides the attributes of both
the parties involved in the key exchange which is not a requirement of an ID
based AKE protocol. We are able to achieve a tight reduction to the SDH
problem based on the RO model.

– All the previous known attribute-based key agreement protocols use well
known existing ABE schemes to get a key agreement among the users. Hence
the security of the key agreement were implicitly relying on the security
guarantees provided by the underlying encryption schemes. Ours is the first
scheme that removes this restriction and we get a key agreement protocol
that does not rely on any underlying ABE scheme. Moreover, our construc-
tion is also much more efficient compared to the state-of-the-art ABAKE
protocols as it does not involve any pairing computations. Another signif-
icant aspect of the complexity of our scheme is that it involves only O(1)



exponentiations (to be specific only 8) and this is independent of the number
of attributes or number of parties in the system. The output of the setup
algorithm of our protocol does not depend on the number of attribute can-
didates, i.e., the setup algorithm outputs constant size parameters, so the
size of the master public key of our system is also constant. A comparison
of our protocol with the existing state-of-the-art attribute-based two-party
and group key exchange are shown in Table 1.

– Our scheme is also resistant to an active adversary which is allowed to modify
the components exchanged during the key agreement. The scheme performs
a check which will detect any tampering done on the components. In this
way, a fully authenticated key agreement protocol (both the parties are mu-
tually authenticated to each other) is achieved. The protocol also satisfies
additional security properties such as forward secrecy, key compromise im-
personation attacks.

– Finally, we prove the security of our ABAKE system in the Attribute-Based
CK (ABCK) model [33] which is a natural extension of the CK model [8]
for attribute-based settings. In the ABCK model, the adversary is allowed
to pose queries that allows him to reveal the static secret key, master secret
key and the ephemeral secret key. Also the freshness conditions are a little
different than the CK model and the parties are identified by a set of at-
tribute SP . We prove the security of our ABAKE in this model under the
SDH assumption. From the relation between hard problem and the instance
of the protocol, it is clear that the key size be just same as the problem size
that makes the SDH problem hard. Such tight reductions imply stronger
security even with smaller keys. Thus, in practice, we may obtain a decent
degree of security with reasonable sized keys.

In Table 1, Type of ABAKE refers to the settings in which the protocols
are applicable, e.g. ABGKE means it is an attribute-based group key exchange
protocol as [11] and [26]. Also Exp refers to the number of exponentiations each
party needs to compute in the considered protocols. Gorantla et al.’s ABGKE
was based on the ABE scheme of Bethencourt et al. [5]. From the design principle
of [5], they constructed an IND-CCA2-secure Key Encapsulation Mechanism
(KEM) for attribute-based settings, which they called, Encapsulation Policy
attribute-based KEM (EP-AB-KEM). The number of exponentiations each party
needs to compute during encryption is two for each leaf node in the ciphertext’s
access structure and |L| denotes the number of leaf nodes in the access structure.

The number of leaves in the access structure corresponds to the number of
rows in the share generating matrix M , i.e., size of M denoted as size(M). In
the decryption algorithm, each user needs to perform two pairing operations for
each leaf in the access structure that is matched by a private key attribute, i.e.,
the size of the submatrix MI of M as shown in Definition 2 in Section 2.2 and
at most one exponentiation for each node along a path from each such node
to the root. We denote by |P | the maximum length of this path from the node
to the root. The scheme [32] is a two-party ABAKE like ours and it uses the
Waters ABE [31] as its underlying building block. However Waters ABE had a
flaw, they rectified the flaw and used it for their ABAKE scheme. Here nmax



denotes the maximum number of columns in the share generating matrix and n
denotes the number of the columns of the share generating matrix correspond-
ing to the encryptor which in most cases will be less than nmax, i.e., n ≤ nmax.
Here size(M) denotes the number of rows of the share generating matrix and
I ⊂ {1, 2, · · · , l} corresponds to those rows of the decryptor whose attributes sat-
isfy the access structure of the encryptor (after applying the injective function
selected by the encryptor), i.e. size(MI). The protocol in [26] is also a ABGKE
which uses attribute-based signcryption as its main workhorse. So the number of
pairing and exponentiation operations also depends on the underlying attribute-
based signcryption schemes which is generally very large and computationally
intensive considering the state-of-the-art attribute-based signcryption schemes
like [22], [10] etc. Our protocol has considerable advantages over the above men-
tioned protocols. Our protocol involves no pairing operations and a constant
number of exponentiations by appropriately doing the computations related to
share generation in a preprocessing stage as will be discussed in Section 3.1. So
the computation cost at each party for our protocol is independent of the size
or depth of the access structure.

Scheme
Type of
ABAKE

No of
Rounds

Exp (each
party)

No of
Pairings

(each party)

Basic
Building
Blocks

Security
Model &
Assump-

tions

Gorantla
et al. [11]

ABGKE 1
size(MI) · |P |+
2(size(M)) + 1

2size(MI) + 3

IND-CCA
secure EP-
AB-KEM

(from
Bethencourt

et al.’s
ABE),

Pseudo-
random
function

BR
,GGM,

RO

Yonehama
[32]

2-party
ABAKE

1
2(size(M)× n) +

(size(M)×
(nmax − n))

(size(MI))
2×

nmax
Waters ABE

eCK,
DBDH,

RO

Steinwandt
et al. [26]

ABGKE 2

Depends on the
underlying

Signcryption
Scheme

Depends on
the

underlying
Signcryption

Scheme

Attribute-
based

Signcryption
Scheme

CK, CDH,
RO

P roposed
Protocol

2-party
ABAKE

1 8∗ —
Basic Group
Operations

CK, SDH,
RO

Table 1 :Comparison with the existing schemes

∗ see Section 4.1 for details.



2 Preliminaries

Notation. Throughout this work, we denote the security parameter by κ. We
denote by x ∈R X the fact that the value x is chosen uniformly at random from
the set of values X. The notation G∗ denotes all the invertible elements of the
group G. We denote by a a vector, which is the tuple of values (a1, . . . , an), where
n is the length of the vector a. For a vector V chosen by a party Pi we use the

notation V (i). The kth component of this vector is denoted by V
(i)
k . If the length

of V (i) is m say, then the entire vector V (i) is given by (V
(i)
1 , V

(i)
2 , · · · , V (i)

m ).

When we write {V (i)
k }bk=a, we mean the tuple of values (V

(i)
a , · · · , V (i)

b ). If not
mentioned otherwise, we will always assume the counting of the components of
a vector starts from the index 1. When we write Af() we mean that A is given
oracle access to the functionality f .

2.1 Access Structure

Definition 1. [3] Let P = {P1, · · ·Pn} be a set of parties. A collection A ⊆ 2P

is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈ A. An access structure
(respectively, monotone access structure) is a collection (respectively, monotone
collection) A of non-empty subsets of P, that is, A ⊆ 2P \ {∅}. The sets in A
are called authorized sets, and the sets not in A are called unauthorized sets.

In our setting, attributes will play the role of parties and we will only deal
with monotone access structures. So, from now on, unless stated otherwise, by
an access structure we mean a monotone access structure. We note that it is
possible to (inefficiently) realize general access structures by having the negation
of an attribute be a separate attribute (so the total number of attributes will be
doubled).

2.2 Linear Secret-Sharing Scheme

Our construction will employ Linear Secret-Sharing Schemes (LSSSs) [3].

Definition 2. A secret-sharing scheme Π over a set of parties P is called linear
(over Zp) if:

• The shares for each party form a vector over Zp.
• There exists a matrix A called the share-generating matrix for Π. The matrix
A has l rows and n columns. For all i = 1, . . . , l, the ith row of A is labeled
by a party ρ(i) (ρ is a function from {1, . . . , l} to P). When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared and
r2, . . . , rn ∈ Zp are randomly chosen, then Av is the vector of l shares of the
secret s according to Π. The share (Av)i belongs to party ρ(i).

It is shown in [3] that every LSSS according to the above definition also enjoys
the linear reconstruction property: suppose Π is an LSSS for access structure A,



let S denote an authorized set, and define I ⊆ {1, · · · , l, } as I = {i : ρ(i) ∈ S}.
Then there exist constants {ωi ∈ Zp}i∈I such that for any valid shares {λi} of
a secret s according to Π,

∑
i∈I ωiλi = s. These constants {ωi} can be found in

time polynomial in the size of the share-generating matrix A [3]. We note that
for the security property of LSSS, no such constants {ωi} exist for unauthorized
sets.
Boolean Formulas. Access policies might also be described in terms of mono-
tonic boolean formulas. LSSS access structures are more general and can be
derived from such representations. More precisely, one can use standard tech-
niques to convert any monotonic boolean formula into a corresponding LSSS
matrix. We can represent the boolean formula as an access tree, where the inte-
rior nodes are AND and OR gates, and the leaf nodes correspond to attributes.
The number of rows in the corresponding LSSS matrix will be same as the num-
ber of leaf nodes in the access tree. So, naturally boolean formulas are used to
describe the access policy, and equivalent LSSS are used to encrypt the message
and decrypt the ciphertext in a CP-ABE system.

2.3 Monotone Span Program

The labelled matrix (A, ρ) in Definition 2 is also called a Monotone Span Program
(MSP) [14]. Karchmer and Widgerson [14] introduced the model of MSP, and
proved that if there is a MSP for some boolean function then there exists a
LSSS for the corresponding access structure. We give the formal definitions and
conclusions as in [14], [19].

Definition 3. A MSP M is a quadruple (F,M, ε, ρ) where F is a field, M
is a matrix (with m rows and d ≤ m columns) over F, ρ : {1, 2, . . . ,m} →
{1, 2, . . . , n} is a surjective function and the row vector ε = (1, 0, 0 · · · 0) ∈ Fd is
called the target vector. The size of M is the number m of rows is denoted by
size(M).

As the function ρ labels each row i of the matrix M to a party Pρ(i), each party
can be regraded as the owner of one or more rows. For any set of parties G ⊆ P,
let us denote the sub-matrix consisting of rows owned by the parties in G by MG.
The span of the matrix M , denoted by span(M), is the subspace generated by the
rows of M . A MSP M is said to compute an access structure A if G ∈ A⇔ ε ∈
span(MG).

LSSS induced from MSP [14, 19]. Assume that there is a MSP M =
(F,M, ε, ρ), of size m, computing the access structure A. Then there is a LSSS
Π over F realizing the access structure in which the total size of the shares is
the number of rows in the span program, i.e., the size of the span program (i.e.,
m) [14].

We mention the linear reconstruction property of the LSSS here. For any
secret s ∈ Z∗p, let v = (s, r2, . . . , rn) ∈ (Z∗p)d denote a random vector. For any
authorized set S ∈ A, let I = {i : Pρ(i) ∈ S} and let M i denote the ith row
of M and the shares {λi = (Mv)i = M i · v : i ∈ I} are held by S. Since S



is an authorized set, it holds that
∑
i∈I ωiM i = ε, where the {ωi}i∈I are the

reconstruction constants. Then S can compute:∑
i∈I

ωiλi =
∑
i∈I

ωi (M i · v) =
(∑
i∈I

ωiM i

)
· v = ε · v = s. (1)

2.4 Complexity Assumptions

The complexity assumptions required for our construction are Computational
Diffie-Hellman Problem (CDH), Decisional Diffie-Hellman Problem (DDH) and
Strong Diffie-Hellman Problem (SDH) assumptions which are well known and
well studied assumptions.

Definition 4 (Computation Diffie-Hellman (CDH) Problem). Given (g, ga, gb) ∈
G3 for unknown a, b ∈ Z∗p, where G is a cyclic prime order multiplicative group
with g as a generator and p is the order of the group, the CDH problem in G is
to compute gab.
The advantage of any probabilistic polynomial time algorithm A in solving the
CDH problem in G is defined as

AdvCDHA = Pr
[
A(g, ga, gb)→ gab | a, b ∈ Z∗p

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDHA is negligibly small.

Definition 5 (Decisional Diffie-Hellman (DDH) Problem). Given (g, ga,
gb, h) ∈ G4 for unknown a, b ∈ Z∗q , where G is a cyclic prime order multiplicative
group with g as a generator and p as the order of the group, the DDH problem

in G is to check whether h
?
= gab.

The advantage of any probabilistic polynomial time algorithm A in solving the
DDH problem in G is defined as

AdvDDHA =
∣∣Pr [A(g, ga, gb, gab)→ 1

]
− Pr

[
A(g, ga, gb, h)→ 1

]∣∣ : a, b ∈ Z∗p
The DDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvDDHA is negligibly small.

Definition 6 (Strong Diffie Hellman (SDH) Problem [1]). Let κ be the se-
curity parameter and G be a multiplicative group of order p. Given (g, ga, gb) ∈R
G3 and access to a Decision Diffie Hellman (DDH) oracle DDHg,a(., .) which on
input gb and gc outputs True if and only if gab = gc, the strong Diffie Hellman
problem is to compute gab ∈ G (i.e., the problem of solving CDH problem using
a DDH oracle)

The advantage of an adversary A in solving the SDH problem is defined as the
probability with which A solves the above SDH problem.

AdvSDHADDHg,a(.,.) = Pr[A(g, ga, gb) = gab]

The SDH assumption holds in G if for all polynomial time adversaries A, the
advantage AdvSDHA is negligible.



2.5 ABCK Security Model

In this section we describe the ABCK model which is a natural extension of
the CK model for attribute-based settings. All the definitions given here are for
single-round two-party ABAKE scheme. For multiple rounds, we need to extend
these definitions appropriately. An ABAKE consists of three polynomial time
algorithms: Setup, KeyGen and KeyExchange. These algorithms are discussed
below.

ISetup: The setup algorithm takes as input the implicit security parameter κ
and the attribute universe U and outputs the master public key MPK and
master secret key MSK.
IKeyGen: The key generation algorithm takes in the master secret key MSK,
the master public key MPK, and a set of attributes SP given by a party P , and
outputs a static secret key SKSP corresponding to SP .
IKeyExchange: This algorithm is run between two or more users or parties in
the system (in our case the number of users is two as it is two-party setting).
Each party in an ABAKE protocol executes the KeyExchange algorithm which
initially takes as input the master public key MPK, an access structure A and a
private key for a set of attributes S. The party A (resp., B) starts the protocol
by taking as input the master public key MPK, the set of attributes SA (resp.,
SB), the access policy or access structure AA (resp., AB), and outputs a message
say out (resp., out′). The out sent by A is considered to as in′ for B and out′

sent by B is considered to as in for A. After the exchange is over, the party A
attempts to construct the session key ZA using the key construction function
that takes MPK, the set of attributes SA, the static secret key SKSA , the access
policy or access structure AB , out and in as parameters. The party B attempts
to construct the session key ZB , using the key construction function that takes
MPK, the set of attributes SB , the static secret key SKSB , the access policy
or access structure AA, out′ and in′ as parameters. The session key ZA will be
equal to ZB if and only if SA ∈ AB and SB ∈ AA (i.e., the attributes of one
party satisfies the access structure of its peer and vice versa). The session key
Z = ZA = ZB is defined as the session key established between party A and B.
Session. An instance of the protocol as described above when run at a party
is called a session. The user/entity that initiates a session is called the owner
and the other user is called the peer. A session is activated with an incoming
message of the form (I,AA) or (R,AA,AB , out), where I and R denote role
identifiers, and A and B are user identifiers. If A was activated with (I,AA),
then A is called the session initiator. If B was activated with (R,AA,AB , out),
then B is called the session responder. After getting activated with an incoming
message of the form (I,AB , out′) from the responder B, the initiator A computes
the session key. Similarly after getting activated with an incoming message of
the form (R,AA, out) from the initiator A, the responder B computes the ses-
sion key. The shared secret key obtained after exchange of components among
both the parties is called the session key. On successful completion of a session,
each entity outputs the session key and deletes the session state. Otherwise,
the session is said to be in abort state and no session key is generated in this
case. Each entity participating in a session assigns a unique identifier to that



session. If A is the initiator of the session, it sets the session identifier sid as
(I,AA,AB , out, in) where out and in are respectively the components sent to B
and received from B. If B is the responder of a session initiated by A, it sets the
sid as (R,AA,AB , out′, in′) where out′ and in′ are respectively the components
sent to A and received by B. We note that the sid of the responder is defined im-
mediately when it receives a message from the initiator of the form (I,AA, out),
whereas sid of the initiator is defined only when it receives the response from
its peer.
Adversary. The adversary A is also modeled as a probabilistic polynomial time
Turing machine which has full control on the communication network over which
protocol messages can be altered, injected or eavesdropped at any time. Apart
from this the adversary can also get secret keys corresponding to a polynomial
number of users of its choice adaptively. The adversary can also register at-
tributes of its choice on behalf of any party. The adversary can also access the
session states of a polynomial number of sessions of parties which allows him to
obtain all the ephemeral secrets or session states corresponding to those sessions.

To model these, the adversary is given access to the following oracle queries:

1. Send(message): The ability of the adversary to control the communication
network is modeled by Send query. Here the adversary can send a message
of the form (I,SA,SB ,m). It sends a message m to the party A on behalf of
party B and return A’s response to this message to the adversary. If m = 0,
this query makes party A to start an AKE session with B and to provide
communication from B to A. Else it will send the message m from party A
to party B and makes B respond to the supposed session (I,SA,SB ,m, ?)

2. SessionStateReveal(sid): The adversary A obtains the ephemeral secret keys
and the session state associated with the session sid, if the session is not yet
completed (the session key is not established yet). Session state includes all
chosen randomness and intermediate computation results, but not the static
secret key.
We assume that once a session gets successfully completed, the session key
is output and all the associated session states are erased. So we allow the
adversary to make SessionStateReveal queries on an incomplete session. The
former case where the adversary makes SessionStateReveal query on a com-
pleted session is captured by the SessionKeyReveal(sid) oracle query.

3. SessionKeyReveal(sid): A is given the session key of a completed session sid,
provided that the session holds a session key.

4. PartyCorruption(SP ): The adversary learns the static secret key correspond-
ing to the set of attributes SP .

5. Establish(P,SP ): This query allows the adversary to register a set of at-
tributes SP on behalf of the party P ; the adversary totally controls that
party. If a party is established by Establish(P,SP ) query issued by the ad-
versary, then we call the party P dishonest.
If a party is not corrupt or dishonest, we call the party honest.

We now give the definition for a matching session and what it means for a session
to be fresh.



Definition 7 (Matching Sessions). Let Π be a protocol and sid = (ζ,AA,AB , out, in)
and sid′ = (ζ ′,AB ,AA, in′, out′) be the identifier of two sessions. Then sid and
sid′ are called matching (or partnered) sessions if:

• The attributes of user B satisfy the access structure of user A, i.e., SB sat-
isfies AA

• The attributes of user A satisfy the access structure of user B, i.e., SA sat-
isfies AB

• out = in′ and in = out′

• ζ 6= ζ ′

Definition 8 (Freshness). A session with identifier sid is called fresh if none
of the following queries by an adversary A are allowed on that session sid or it’s
matching session sid′ (if it exists)

• A issues a SessionKeyReveal query on sid or sid′

• A issues a SessionStateReveal query on sid or sid′

• A issues a Party Corruption(SP ) query on the party P owning the session sid
or a Party Corruption(SP ′) query on P ′ which is the peer of the party P in
the Test session (defined below).

• A issues an Establish(P,SP ) query on party P or an Establish(P ′,SP ′) query
on party P ′.

The adversary begins the second phase of the game by choosing a fresh session
sid* and issuing a Test(sid* ) query, where the Test query are defined as follows:
Test(sid* ): Here the session sid* must be a fresh session. On the Test query, a
bit b ∈ {0, 1} is randomly chosen. The session key is given to the adversary A,
if b = 0, otherwise a uniformly chosen random value from the distribution of
valid session keys is returned to A. Only one query of this form is allowed for
the adversary. Of course, after the Test query has been issued, the adversary can
continue querying the oracles provided that the test session is fresh. A outputs
his guess b′ in the test session. The adversary wins the game if the selected test
session is fresh and if he guesses the challenge correctly, i.e., b′ = b. The advan-
tage of A in the ABAKE scheme Π is defined as

AdvABCK
Π (A) = Pr[A wins]− 1

2

We now define the ABCK security definition as follows:

Definition 9 (ABCK security). We say that an ABAKE scheme Π is secure
in the ABCK model, if the following conditions hold:

• If two honest parties complete matching sessions, SA satisfies AB and SB
satisfies AA, then except with negligible probability, they both compute the
same session key.

• For any probabilistic polynomial-time adversary A, AdvABCK
Π (A) is negligi-

ble.



The following notions of security may also be considered depending upon the
types of oracle queries the adversary is allowed to ask:

1. Key Independence: An adversary A can ask Send(message), SessionKeyRe-
veal(sid), Establish(P,SP ), but not PartyCorruption query.

2. Forward Secrecy: An adversary A can ask all the queries as before for key
independence, and in addition PartyCorruption query. Note that forward se-
crecy implies key independence.

3. Key Compromise Impersonation (KCI): Here the adversary A can ask all the
queries for both key independence and forward secrecy as before. In partic-
ular we allow the adversary to corrupt the owner of the test session which
captures KCI attacks.

Our model also captures these security properties by giving the adversary access
to the appropriate oracle access.

3 Our Construction

Design Rationale: Suppose two users Pi and Pj wish to establish a common
session key among each other. Each user obtains his private key from Private
Key Generator (PKG) after proving he is a legitimate user. In order to validate
these private key components, the user performs the key sanity check mechanism.
If it passes, then as a pre-processing phase, each user formulates several access
structures he wants to be satisfied by the other user’s attribute vector. Now,
the two users participate in key agreement session. User Pi checks whether the
session state information obtained by Pj is valid. If yes, Pi can compute the
common shared secret key if and only if his attribute vector satisfies the access
structure used to calculate the session state information sent by Pj , and vice
versa. In this construction, access structures are boolean formulas which are
represented by LSSS. The main idea of our construction is that the secret of
our LSSS is chosen as one of the ephemeral keys tk (k ∈ {i, j}) and as part
of session state we are using the share values as Diffie-Hellman exponents. If
the other party has legitimate attributes, he can exponentiate the constants
generated in the secret reconstruction phase corresponding to the rows of the
secret reconstruction submatrix of LSSS and get back the Diffie-Hellman value
of the secret, i.e., gtk . Note that this value gtk is bound to the values c̃k, b̃k and
ẽk and also used in the construction of the shared secret key. So if the other
party does not possess the appropriate attributes he cannot construct the gtk

value and hence the session keys will not be in agreement.
We now give the detailed description of our one-round attribute-based key

agreement protocol.

ISetup: The Key Generation Centre (KGC) or Private Key Generator (PKG)
chooses a group G of prime order p. Let g be the generator of group G. The
PKG picks s1, s2 ∈R Z∗p, and sets y1 = gs1 and y2 = gs2 . The master secret key
is 〈s1, s2〉 and the master public key is 〈y1, y2〉. It also defines the following hash



functions: H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → Z∗p. It then makes params public
and keeps msk to itself, where params and msk are defined as follows:

params = 〈G, g, q, p, y1, y2, H1, H2〉 and msk = 〈s1, s2〉.
IKeyGen: On input an attribute vector S(i) = (S(i)1 ,S(i)2 , · · · ,S(i)mi) corresponding
to a party Pi, the PKG does the following to generate its private key :

– Choose xi ∈R Z∗p.
– Compute u1,i = gxi and set hi = H1

(
S(i)
)
.

– Compute v1,i = hi
xi .

– Pick ri ∈R Z∗p, compute u2,i = gri and v2,i = hi
ri .

– Set ci = H2 (u1,i), bi = H2(u1,i, v1,i, u2,i, v2,i, 0) and ei = H2(u1,i, v1,i, u2,i, v2,i, 1).
– Compute d1,i = xi + s1 · ci where s1 is the master secret key.

– Compute d2,i = xi + ri · bi + s2 · ei and ĥi = hi
s2

Finally, PKG sends 〈u1,i, v1,i, u2,i, v2,i, d1,i, d2,i, ĥi〉 to the party Pi.

Similarly party Pj with attribute vector S(j) = (S(j)1 ,S(j)2 , · · · ,S(j)mj ) gets it’s

private key 〈u1,j , v1,j , u2,j , v2,j , d1,j , d2,j , ĥj〉 from the PKG corresponding to his
attributes where the respective components of the private key of Pj are computed
in a similar fashion as of Pi.

The users after receiving the private key components from the PKG performs
Key Sanity Check as shown in Appendix A to ensure the correctness of the
received components.

IKeyAgreement: The two parties Pi and Pj with attribute vectors S(i) and S(j)
respectively get their respective private keys from the PKG. They now proceed
with the key agreement phase as follows:

– First, Pi decides an access structure A(i) and he hopes that the set of at-
tributes S(j) of party Pj satisfies A(i). Note that the access structure A(i)

will be represented by (M (i), ρ(i)) where M (i) is the li× ni share generating
matrix and ρ(i) is the injective labeling function corresponding to this matrix
M (i) that maps the rows of M (i) to attributes in our case. Similarly, party Pj
also decides an access structure A(j) and he hopes that the set of attributes
S(i) of party Pi satisfies A(j). This access structure A(j) will also be specified
by a lj×nj share generating matrix M (j) and the injective labeling function
ρ(j) that maps the rows of M (j) to attributes.

– Party Pi then chooses an ephemeral secret component wi ∈R Z∗p and com-
putes Wi = gwi . Similarly party Pj chooses an ephemeral secret component
wj ∈R Z∗p and computes Wj = gwj .

– Party Pi (resp., Pj) also chooses a random vector σ(i) ∈R (Z∗p)ni where σ(i)

is of the form σ(i) = (ti, σ2
(i), · · ·σ(i)

ni ). Similarly party Pj chooses σ(j) ∈R
(Z∗p)nj where σ(j) is of the form σ(j) = (tj , σ2

(j), · · ·σ(j)
nj ). Here ti in the

place of σ1
(i) (resp., tj in the place of σ1

(j)) represents the secret value
corresponding to the underlying LSSS scheme.

– Party Pi now computes the following values:
1. Compute Xi = gti .



2. Compute c̃i = H2(Xi, u1,i), b̃i = H2(Xi, u1,i, v1,i, u2,i, v2,i, 0)
and ẽi = H2(Xi, u1,i, v1,i, u2,i, v2,i, 1).

3. For each row τ ∈ {1, 2, . . . , li}, compute T
(i)
τ = gM

(i)
τ ·σ

(i)

, where M
(i)
τ is

τth row of the matrix M (i).
4. Compute ηi = wi + d1,i ·H2({T (i)

τ }liτ=1,Wi,M
(i), ρ(i)).

Party Pi then sends the values
[
F (i) = (u1,i, v1,i, d2,i, bi, ei, c̃i, b̃i, ẽi, ĥi,M

(i), ρ(i)),

V (i) = (ηi, {T (i)
τ }liτ=1,Wi)

]
to party Pj as shown in Table 2.

– Similarly party Pj also computes the values:
1. Compute Xj = gtj .

2. Compute c̃j = H2(Xj , u
(1)
j ), b̃j = H2(Xj , u1,j , v1,j , u2,j , v2,j , 0)

and ẽj = H2(Xj , u1,j , v1,j , u2,j , v2,j , 1).

3. For each row τ ∈ {1, 2, . . . , lj}, compute T
(j)
τ = gM

(j)
τ ·σ

(j)

, where M
(j)
τ

is τth row of the matrix M (j).
4. Compute ηj = wj + d1,j ·H2({T jτ }

lj
τ=1,Wj ,M

(j), ρ(j)).

Party Pj then sends the values
[
F (j) = (u1,j , v1,j , d2,j , bj , ej , c̃j , b̃j , ẽj , ĥj ,M

(j), ρ(j)),

V (j) = (ηj , {T (j)
τ }ljτ=1,Wj)

]
to party Pi.

– Party Pj on receiving the tuple [F (i),V (i)] from party Pi checks the consis-
tency of the individual components as shown in Table 2. We note that to
check the consistency of the hash values c̃j , b̃j , ẽj , the party Pj needs to get
back the secret component Xi which is only possible if the party Pj possesses
an authorized set, i.e., the party Pj has the required attributes to compute
ti. In other words as shown in subsection 2.2 and 2.3, if the party Pj has
permissible attributes that comprises an authorized set, he can compute the
required constants corresponding to the submatrix that will be generated
and the secret value can be reconstructed back from these constants and the
corresponding shares of the party.

Remark 1. We now show the correctness of the steps 2 (b) of our key agreement
protocol.(

gd2,i

u1,i.y2ei

)bi−1

=

(
gxi+ri·bi+s2·ei

gxi · gs2·ei

)bi−1

=
(
gri·bi

)bi−1

= gri = u2,i.(
hi
d2,i

v1,i · (his2)
ei

)bi−1

=

(
hi
xi+ri·bi+s2·ei

hi
xi · (his2)

ei

)bi−1

=
(
hi
ri·bi

)bi−1

= hi
ri = v2,i.

If the attribute vector Sj satisfies the access structure A(i) of user Pi, then∑
τ∈I ωτM

(i)
τ ·σ(i) = (

∑
τ∈I ωτM

(i)
τ ) ·σ(i) = (1, 0, . . . , 0) ·(ti, σ2(i), · · ·σ(i)

ni ) = ti.

Hence, X ′i =
∏
τ∈I(T

(i)
τ )ωτ =

∏
τ∈I(g

M(i)
τ ·σ

(i)

)ωτ = g
∑
τ∈I ωτM

(i)
τ ·σ

(i)

= gti .

Therefore, the components that are recomputed are valid and if the attributes
of party Pj satisfy the access structure of party Pi, the computation of

b̃i = H2(σ1
(i), u1,i, v1,i, u2,i, v2,i, 0) and ẽi = H2(σ1

(i), u1,i, v1,i, u2,i, v2,i, 1) will
match with the one obtained from Pi. So, any tampering done with these values
during transit will always be caught.



Party Pi Party Pj
1. Local Computation:

(a) Choose wi ∈R Z∗p,

(b) Compute Wi = gwi

(c) Choose σ(i) = (ti, σ2
(i), . . . , σ

(i)
ni ) ∈R (Z∗p)ni ,

where ti is a secret value.

(d) Xi = gti

(e) Compute: (i) c̃i = H2(Xi, u1,i)

(ii) b̃i = H2 (Xi, u1,i, v1,i, u2,i, v2,i, 0)

(iii) ẽi = H2 (Xi, u1,i, v1,i, u2,i, v2,i, 1)

(f)For each row τ ∈ {1, 2, . . . , li}, compute

T
(i)
τ = gM

(i)
τ ·σ(i)

, where M
(i)
τ is τth row of the matrix

M (i).
(g) ηi = wi + d1,i ·H2

(
{T (i)

τ }liτ=1,Wi,M
(i), ρ(i)

)
F (i)= (u1,i,v1,i,d2,i,bi,ei,c̃i,b̃i,ẽi,ĥi,M

(i),ρ(i)), V (i)= (ηi,{T
(i)
τ }

li
τ=1,Wi)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

F (j)= (u1,j ,v1,j ,d2,j ,bj ,ej ,c̃j ,b̃j ,ẽj ,ĥj ,M
(j),ρ(j)), V (j)= (ηj ,{T

(j)
τ }

lj
τ=1,Wj)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2. Verification:

(a) Check 1: (Membership Testing)

Check if (i) F1
(j), F2

(j), F9
(j) ∈ G∗;

(ii) {Fk(j)}8k=3 ⊂ Z∗p

If ¬(a) or ¬(b) or both, Abort

(b) Check for correctness of F (j):

Compute (i) u′2,j =

(
gd2,j

u1,j · y2ej

)bj−1

(ii) v′2,j =

(
hj
d2,j

v1,j · (ĥj)
ej

)bj−1

(iii) If S(i) satisfies A(j), then compute

X ′j =
∏
τ∈I(T

(j)
τ )ωτ

where I = {τ : ρ(τ) ∈ S(i)} and {ωτ}τ∈I ⊂ Z∗p

(iv) Check 2 : Check if

c̃j
?
= H2(X ′j , u1,j)

b̃j
?
= H2(X ′j , u1,j , v1,j , u

′
2,j , v

′
2,j , 0)

ẽj
?
= H2(X ′j , u1,j , v1,j , u

′
2,j , v

′
2,j , 1)

If any of them not equal, Abort, else proceed.

1. Local Computation:

(a) Choose wj ∈R Z∗p,

(b) Compute Wj = gwj

(c) Chooses σ(j) = (tj , σ2
(j), . . . , σ

(j)
nj ) ∈R (Z∗p)nj ,

where tj is a secret value.

(d) Xj = gtj

(e) Compute: (i) c̃j = H2(Xj , u1,j)

(ii) b̃j = H2 (Xj , u1,j , v1,j , u2,j , v2,j , 0)

(iii) ẽj = H2 (Xj , u1,j , v1,j , u2,j , v2,j , 1)

(f)For each row τ ∈ {1, 2, . . . , lj}, compute

T
(j)
τ = gM

(j)
τ ·σ(j)

, where M
(j)
τ is τth row of the

matrix M (j).
(g) ηj = wj + d1,j ·H2

(
{T (j)

τ }
lj
τ=1,Wj ,M

(j), ρ(j)
)

2. Verification:

(a) Check 1: (Membership Testing)

Check if (i) F1
(i), F2

(i), F9
(i) ∈ G∗;

(ii) {Fk(i)}8k=3 ⊂ Z∗p

If ¬(a) or ¬(b) or both, Abort

(b) Check for correctness of F (i):

Compute (i) u′2,i =

(
gd2,i

u1,i · y2ei

)bi−1

(ii) v′2,i =

(
hi
d2,i

v1,i · (ĥi)
ei

)bi−1

(iii) If S(j) satisfies A(i), then compute

X ′i =
∏
τ∈I(T

(i)
τ )ωτ

where I = {τ : ρ(τ) ∈ S(j)} and {ωτ}τ∈I ⊂ Z∗p

(iv) Check 2 : Check if

c̃i
?
= H2(X ′i, u1,i)

b̃i
?
= H2(X ′i, u1,i, v1,i, u

′
2,i, v

′
2,i, 0)

ẽi
?
= H2(X ′i, u1,i, v1,i, u

′
2,i, v

′
2,i, 1)

If any of them not equal, Abort, else proceed.



Party Pi Party Pj
(c) Check for correctness of V (j):

Check 3 : Check if[
gηj

(gxj )ξj · (y1)cj ·ξj

]
?
= gwj

here cj = H2(u1,j), ξj = H2({T (j)
τ },Wj ,M

(j), ρ(j)).

If not equal Abort, else proceed to step 3.

3. Shared secret key generation:

Compute Z1 =
(
u1,j · y1cj ·X ′j

)d1,i+ti
Z2 = v1,i · v1,j

Z3 =
(
X ′j
)ti .

Z = H2 (Z1, Z2, Z3).

Return Z.

(c) Check for correctness of V (i):

Check 3 : Check if[
gηi

(gxi)ξi · (y1)ci·ξi

]
?
= gwi

where ci = H2(u1,i), ξi = H2({T (i)
τ },Wi,M

(i), ρ(i)).

If not equal Abort, else proceed to step 3.

3. Shared secret key generation:

Compute Z1 = (u1,i · y1ci ·X ′i)
d1,j+tj

Z2 = v1,j · v1,i

Z3 = (X ′i)
tj .

Z = H2 (Z1, Z2, Z3);

Return Z.

Table 2. Description of the Key Agreement protocol.

Remark 2. Check 3 is done to verify the value of ηi = wi+di1·H2({T (i)
τ }liτ=1,Wi,M

(i), ρ(i))
which ensures that an active adversary cannot tamper with the components ex-
changed and affect the shared secret key generation.

g

(
wi+d1,i·H2({T (i)

τ }
li
τ=1,Wi,M

(i),ρ(i))
)

(gxi)
H2({T (i)

τ }
li
τ=1,Wi,M(i),ρ(i))

.(y1)
ci·H2({T (i)

τ }
li
τ=1,Wi,M(i),ρ(i))

=
g

(
wi+(xi+s1·ci)·H2({T (i)

τ }
li
τ=1,Wi,M

(i),ρ(i))
)

gxi·H2({T (i)
τ }

li
τ=1,Wi,M(i),ρ(i)) · gs1·ci·H2({T (i)

τ }
li
τ=1,Wi,M(i),ρ(i))

= gwi .

We now show the correctness of our protocol, i.e., the keys computed by both
the parties are the same.

Lemma 1. The shared secret key computed by both the parties are identical.

Proof. Party Pi computes: since u1,j = gxj and xj + s1 · cj = d1,j , we have

Z1 =
(
u1,jy1

cjX ′j
)d1,i+ti

= (u1,jy1
cjgtj )

d1,i+ti =
(
g(xj+s1·cj+tj)

)d1,i+ti
= g(d1,j+tj)(d1,i+ti).

Party Pj computes: since u1,i = gxi and xi + s1 · ci = d1,i, we have

Z1 = (u1,iy1
ciX ′i)

d1,j+tj = (u1,iy1
cigti)

d1,j+tj =
(
g(xi+s1ci+ti)

)d1,j+tj
= g(d1,i+ti)(d1,j+tj).

Thus, Z1 computed by both the parties are identical. Z2 and Z3 are also
consistent. Hence, the final shared secret key Z computed by both the parties is
consistent. ut



3.1 Complexity Analysis of Our Protocol

In this section we give the complexity analysis of our protocol. Firstly, we note
the computational cost of each party is dominated by the number of exponen-
tiations it needs to do in the actual execution of the protocol. In the naive im-
plementation of our protocol, the number of exponentiations performed by each
party will depend on the size of the share generating matrix for share generation
and secret reconstruction phase. However, here we show by doing appropriate
preprocessing, the number of exponentiations at each party can be made O(1)
(precisely 8). The detailed analysis is shown as follows:

1. In the Local Computation phase of our protocol, each party needs to perform
2 exponentiations corresponding to steps 1 (b), 1 (d) respectively.

2. In the naive implementation of our protocol, in the share generation phase
(step 1 (f)), each party needs to perform size(M) many exponentiations
where size(M) denotes the number of rows in the share generating matrix

M . However, it is to be noted that the computation of T
(i)
τ = gM

(i)
τ ·σ

(i)

values can be precomputed in the preprocessing steps as the share generation
phase does not depend on the other party’s access structure. So each party
can locally choose random access structure that it needs the other party

to satisfy and it precomputes the T
(i)
τ values and stores it in a table T

say. So the actual computational cost for each party in the actual protocol
execution is independent of the cost of share generation. For each execution
of the protocol a party can simply pick up an unused tuple of values from
the table T and use it for the current session.

3. In step 2 (b) (i) and (ii) of the verification phase, each party can get away
with performing no exponentiation in the actual protocol execution. This is
beacuse the checks does not require the knowledge of ephemeral secret keys
wi or wj or the value ηi or ηj . The components 〈u1,i, v1,i, d2,i, bi, ei, ĥi〉, are
sent only once by each party because they are part of static private key of
that party and are invariant across all sessions in which this party is involved.
So a party can perform these checks in the preprocessing step for the first
time itself; next time onwards it need not do these checks.

4. In step 2 (b) (iii), each party needs to reconstruct back the secret value if
he/she is a legitimate party, i.e., its attributes satisfy the access structure of
the other party. The secret reconstruction cost of each party comes for free
since we are working with access structures specified as boolean formula.
This is due to the fact that the secret can be constructed by using Gaussian
Elimination method in O(n3) time for access policies expressed as boolean
formulas (for more details, see [25]).

5. For performing the checks 3 and 4 in step 2 (c), each party needs to do 4
exponentiations in all. Finally in step 3 in the Shared secret key generation
phase, each party neds to perform 2 exponentiations (the value (y1)

cj can
again be precomputed).

So in total each party needs to perform 8 exponentiations in the actual execution
of our protocol by performing these preprocessing steps as mentioned.



4 Security Proof

In this section we present the formal security proof for the proposed protocol
(described in the previous section). The detailed probability calculation is shown
in section 4.1. The proof is based on the ABCK security model described in
section 2.5. The scheme is proved secure under the Strong Diffie-Hellman (SDH)
assumption in the random oracle model. The security proof is modeled as a game
between the challenger and the adversary.

Theorem 1. Under the SDH assumption in G and the random oracle model,
our protocol is secure in the ABCK model. If ε is the probability of the adversary
in distinguishing between a random shared secret key and a valid shared secret
key in the test session, the probability of solving the underlying SDH problem, ε′

is given by:

ε′ = ε · 1

h5

(
1− 1

qE + 2

)qE+1

.
( 1

qE + 2

)
where qE = Number of key extract or Party Corruption queries and h5 is the
number of queries on the hash oracle H2 of the form 〈Z1, Z2, Z3〉.

Proof. We now give the formal security proof for our protocol from section 3.

Setup: The challenger is given the SDH problem instance 〈G, g, q, p, C = ga, D =
gb〉 and access to the Diffie Hellman Oracle DH (y1, ., .). The challenger sets the
master public key y1 = C and hence the master secret key s1 is implicitly set
as a. The challenger chooses s2 ∈R Z∗p and sets y2 = gs2 . The challenger gives
the tuple 〈G, g, q, p, y1, y2〉 to the adversary. The challenger simulates the hash
oracles in the following way:

H1 Oracle: The adversary queries the challenger for the hash value of the at-
tribute vector Si corresponding to party Pi. If the H1 Oracle was already queried
with Si as input, the challenger returns the value computed before which is stored
in the hash list LH1

described below. Otherwise the challenger tosses a coin τi
where the Pr (τi = 0) = α. The output of this oracle is defined as:

hi =

{
gki , if τi = 0(
gb
)ki
, if τi = 1

where ki ∈R Z∗p. The challenger makes an entry in the hash list LH1
= 〈hi,Si, τi, ki〉

for future use and returns hi.

H2 Oracle : When the adversary queries the hash function H2 on any input
say x, if the H2 oracle was already queried before with this input, the challenger
simply extracts the value from the hash list LH2

described below and returns the
value. Otherwise, the challenger chooses a random element say y ∈R Z∗p, makes
an entry of the form 〈x, y〉 and returns y. For example, the adversary may query
the challenger with inputs (u1,i) or (u1,i, v1,i, u2,i, v2,i, 0) or (u1,i, v1,i, u2,i, v2,i, 1)

or
(
{T (i)

τ }liτ=1,Wi,M
(i), ρ(i)

)
or (Z1, Z2, Z3).



Let h1, h2, h3, h4 and h5 are the number of queries corresponding to each
type of queries in the order mentioned above.

If the H2 Oracle was already queried with u1,i as input, the challenger
extracts the value ci from the hash list LH2 described below and returns the
value. Otherwise, the challenger chooses a random value ci ∈R Z∗p respectively.
It makes an entry in the hash list LH2

= 〈ci, u1,i〉 and returns ci. Similarly
when the adversary queries the challenger with inputs (u1,i, v1,i, u2,i, v2,i, 0) or
(u1,i, v1,i, u2,i, v2,i, 1), if theH2 Oracle was already queried with (u1,i, v1,i, u2,i, v2,i, 0)
or (u1,i, v1,i, u2,i, v2,i, 1) as input, the challenger extracts the value bi or ei from
the hash list LH2

described below and returns the value. Otherwise, the chal-
lenger chooses a random value bi ∈R Z∗p or ei ∈R Z∗p. It makes an entry in the
hash list LH2

= 〈bi, (u1,i, v1,i, u2,i, v2,i, 0)〉 or LH2
= 〈ei, (u1,i, v1,i, u2,i, v2,i, 1)〉

and returns bi or ei respectively. Similarly the rest of the queries will also be
answered in a similar fashion.

Party corruption: The adversary presents the challenger with an attribute
vector Si and the challenger should return the private key of that party Pi. The
challenger proceeds in the following way:

The challenger checks if the H1 Oracle was already queried for Si. If yes and
τi = 1, it aborts. Otherwise it extracts ki, hi from the list LH1

and proceeds to
the next step. If Si was not queried before, the challenger runs the H1 Oracle
with Si as input. If τi = 1, it aborts. Else the challenger chooses ki ∈R Z∗p,
computes hi = gki , adds the tuple 〈hi,Si, τi, ki〉 to the LH1 list.

The challenger does not know the master secret key s1 as the master public
key is set as y1 = ga (implicitly setting s1 = a). Therefore, in order to generate
the private key of users, the challenger makes use of the random oracles and
generates the private key as described below:

– The challenger chooses ci, bi, ei, xi
′, ri
′ ∈R Z∗p.

– It sets u1,i = gx
′
i · y1−ci .

– It sets H2 (u1,i) = ci and stores the tuple 〈ci, u1,i〉 in the LH2 list.

– It sets d1,i = x′i, d2,i = x′i + r′i · bi + s2 · ei and u2,i = gr
′
i · y1ci·bi

−1

.

– It computes v1,i = gki·x
′
i · y1−ki·ci and v2,i = gki·r

′
i · y1ki·ci·bi

−1

.
– It also sets the hash function values H2 (u1,i, v1,i, u2,i, v2,i, 0) = bi,
H2 (u1,i, v1,i, u2,i, v2,i, 1) = ei and adds the tuples 〈bi, u1,i, v1,i, u2,i, v2,i, 0〉,
〈ei, u1,i, v1,i, u2,i, v2,i, 1〉 to the list LH2 .

– It computes hi
s2 .

– It returns the tuple 〈u1,i, v1,i, u2,i, v2,i, d1,i, d2,i, his2〉 as the private key of
the user with attribute vector Si and makes an entry in the list LE =
〈u1,i, v1,i, u2,i, v2,i, d1,i,
d2,i, hi

s2 ,Si〉.

Lemma 2. The private key returned by the challenger during the PartyCorruption
query are consistent with the system.

Proof: We now prove that the components returned by the challenger are consis-
tent with that of the system. The components returned by the challenger should
satisfy the three checks given in Secret Key Sanity Check.



– Test 1 : Check if
gd1,i

y
H2(u1,i)
1

?
= u1,i.

This can be verified as
gx
′
i

ga·H2(u1,i)
where ci = H2 (u1,i).

This is equal to gx
′
i−a·ci = gx

′
i · y1−ci = u1,i.

– Test 2 : Check if
gd2,i

u2,iH2(u1,i,v1,i,u2,i,v2,i,0) · y2H2(u1,i,v1,i,u2,i,v2,i,1)

?
= u1,i.

This follows as
gx
′
i+r
′
i·bi+s2·ei(

gr
′
i · y1ci·bi−1

)bi · gs2·ei = gx
′
i−a·ci = gx

′
i · y1−ci = u1,i,

as bi = H2 (u1,i, v1,i, u2,i, v2,i, 0) and ei = H2 (u1,i, v1,i, u2,i, v2,i, 1).

– Test 3 : Check if
h
d2,i
i

v2,iH2(u1,i,vi,1,ui,2,vi,2,0) · (his2)
H2(u1,i,v1,i,u2,i,v2,i,1)

?
= v1,i.

This follows as
h
x′i+r

′
i·bi+s2·ei

i(
gki·r

′
i · y1ki·ci·bi−1

)bi · (his2)
ei

= hi
x′i · y1−ki·ci = v1,i

where bi = H2 (u1,i, v1,i, u2,i, v2,i, 0) and ei = H2 (u1,i, v1,i, u2,i, v2,i, 1).

Thus the components generated by the challenger are consistent with the system
as the tests 1, 2 and 3 are satisfied. �

Session Simulation: The adversary requires the challenger to simulate shared
secret keys. The challenger simulates sessions other than the test session. Here
we mention the party which initiates the session as the owner of the session and
the other party who responds to the request of the owner as the peer. We have
to consider the following cases during the session simulation phase.

Case 1: In this case, the adversary has executed the PartyCorruption query
with respect to Pi. Hence the adversary knows the static secret key of Pi.
The adversary treats Pi as owner and generates the tuple of values given by

〈u1,i, v1,i, d2,i, bi, ei, his2 , {T (i)
τ }liτ=1, ηi = wi+d1,i ·H2

(
{T (i)

τ }liτ=1,Wi,M
(i), ρ(i)

)
,

Wi, Xi,M
(i), ρ(i)〉 and passes it to the challenger and asks the challenger to

complete the session with Pj as the peer.

Case 1a: If τj = 0, the challenger knows the secret key and hence executes the
actual protocol and delivers the session key to the adversary.

Case 1b: If τj = 1, the challenger does not know the secret key and hence
simulates the session key as follows:

1. The challenger first performs the checks presented in the Step 2 of the Key

Agreement protocol, on 〈u1,i, v1,i, d2,i, bi, ei, his2 , {T (i)
τ }liτ=1, ηi,Wi,M

(i), ρ(i)〉.
2. The challenger generates the parameters for the party Pj in the form of a

similar tuple of values given by 〈u1,j = gxj , v1,j = hj
xj , d2,j = xj + rj · bj +



s2 · ej , bj , ej , c̃j , b̃j , ẽj , hjs2 , {T (j)
τ }ljτ=1, wj′ +xj · fj , gwj′ · y1−cj ·fj ,M (j), ρ(j)〉,

where rj , xj , w
′
j , fj ∈R Z∗p, σ(j) = (tj , σ2

(j), . . . , σ
(j)
nj ) ∈R

(
Z∗p
)ni

. It computes

hj = H1(Sj), bj = H2

(
u1,j , v1,j , g

rj , h
rj
j , 0

)
, ej = H2 (u1,j , v1,j , g

rj , hj
rj , 1),

b̃j = H2

(
gtj , u1,j , v1,j , g

rj , h
rj
j , 0

)
, ẽj = H2 (gtj , u1,j , v1,j , g

rj , hj
rj , 1) and

{T (i)
τ }liτ=1 is computed as per the protocol specification.

3. If H2 was already queried with inputs
(
{T (j)

τ }ljτ=1, g
w′j · y1−cj ·fj ,M (j), ρ(j)

)
,

generate a fresh w′j and recompute the last but two components. With very

high probability, the new
(
{T (j)

τ }ljτ=1, g
w′j ·y1−cj ·fj ,M (j), ρ(j)

)
will not result

in a previously queried input set toH2. SetH2

(
{T (j)

τ }ljτ=1, g
w′j ·y1−cj ·fj ,M (j), ρ(j)

)
as fj .

4. The parameters generated by the challenger will satisfy Check 2 in Step 2 of
Key Agreement. This is because the parameters 〈u1,j , v1,j , d2,j , bj , ej , hjs2〉
are generated in the same way as the original scheme.

5. The parameters generated by the challenger will satisfy Check 3 in the Step
2 of Key Agreement of Section 3. In fact the expression

gw
′
j+xj ·fj

(gxj )
H2({T (j)

τ }
lj
τ=1,g

w′
j ·y1−cj ·fj ,M(j),ρ(j))

.(y1)
cj ·H2({T (j)

τ }
lj
τ=1,g

w′
j ·y1−cj ·fj ,M(j),ρ(j))

is indeed equal to gw
′
j · y1−cj ·fj = gwj

6. Thus the parameters generated by the challenger are consistent with that of
the system.

7. The challenger sends the parameters to the adversary.

8. The challenger computes Z1 = (gxi · y1ci · gti)
xj+tj where ci = H2 (u1,i). It

also computes P1 = (u1,i · y1ci · gti)
cj and P2 = y1 where cj = H2 (u1,j).

Note that the challenger can compute the value gti only if it’s attributes
satisfy the access structure of party Pj .

9. The challenger computes Z2 = v1,i · v1,j and Z3 = (gti)
tj .

10. The challenger is given access to the DH (y1, ·, ·) oracle, since we assume the
hardness of Strong-Diffie Hellman problem. The challenger makes use of the
DH (y1, ·, ·) Oracle to answer the query as follows:

– The challenger finds a Z such that DH
(
P2, P1, Z1/Z1

)
(valid since P2 =

y1) and H2 (Z1, Z2, Z3) = Z, where Z2 = v1,i · v1,j and Z3 = (gti)
tj .

– If a Z exists, the challenger returns Z as the shared secret key.
– Otherwise the challenger chooses Z ∈R Z∗p and for any further query

of the form (Z1, Z2, Z3) to the H2 Oracle, if DH
(
P2, P1, Z1/Z1

)
, Z2 =

v1,i · v1,j and Z3 = (gti)
tj , the challenger returns Z as the result to the

query.

Finally the challenger returns Z as the shared secret key.



Case 2: The adversary does not know the secret key of Pi, the owner of the
session. Here the adversary simply asks the challenger to generate a session with
Pi as owner and Pj as peer.

Case 2a: The case where τi = 0 and τj = 0. In this case, the challenger can
simulate the computations of both the parties since the challenger knows the
private key of the owner Pi and the peer Pj .

Case 2b: The case where either τi = 0 or τj = 0. Without loss of generality
let us consider that τi = 0 and τj = 1. Here the challenger knows the secret
key of i but does not know the secret key of Pj . Hence for Pi the challenger
will generate the session secret key as per the algorithm. For Pj the challenger
simulates similar to Case 1b

Case 2c: The case where τi = 1 and τj = 1. In this case the challenger does
not know the secret key of both Pi and Pj . Hence the challenger has to simulate
the session values for both Pi and Pj , which is done identically to Case 1b.

Test Session: The adversary impersonates as user Pi and sends the parameters

as the following tuple of values 〈u1,i, v1,i, d2,i, bi, ei, c̃i, b̃i, ẽi, his2 , {T (i)
τ }liτ=1,

ηi = wi + d1,i ·H2({T (i)
τ }liτ=1,Wi,M

(i), ρ(i)),Wi,M
(i), ρ(i)〉 to the challenger for

session simulation. The challenger runs the H1 Oracle with input Si. The test
session is assumed to run between two users Pi and Pj , where adversary imper-
sonates as Pi and challenger has to generate parameters for user Pj . If τi = 0, it
aborts. Else it does the following:

– The challenger now passes on to the adversary the parameters as being the
following tuple of values:

〈u1,j = gxj , v1,j = hj
xj , d2,j = xj +rj ·bj +s2 ·ej , bj , ej , hjs2 , {T (j)

τ }ljτ=1, wj +

d1,j ·H2({T (j)
τ }ljτ=1, g

wj ,M (j), ρ(j)),M (j), ρ(j)〉,
where T

(j)
τ = (D·g−d1,j )M

(j)
τ1 ·
∏nj
ς=2 g

σ(j)
ς M(j)

τς , hereM
(j)
τ = (M

(j)
τ1 ,M

(j)
τ2 , . . . ,M

(j)
τnj )

is τth row of the matrix M (j). Note that tj = b−d1,j is implicitly defined, and
d1,j is the private key component associated with user Pj which is known

to the challenger, and {T (i)
τ }liτ=2 ∈R G, rj , xj ∈R Z∗p, wj ,σ(j) ∈R (Z∗p)nj ,

hj = H1(Sj), bj = H2(u1,j , v1,j , g
rj , hj

rj , 0), ej = H2(u1,j , v1,j , g
rj , hj

rj , 1).
The parameters passed satisfy the checks as they are generated in the way
similar to the scheme and gtj = gb−d1,j = D · g−d1,j .

– The challenger performs the checks specified in Step 2 of the Key Agree-

ment algorithm described in Section 3 on 〈u1,i, v1,i, d2,i, bi, ei, his2 , {T (i)
τ }liτ=1,

ηi,Wi, Xi,M
(i), ρ(i)〉. If the checks pass, the challenger proceeds to next step.

Else, it aborts.

– The challenger returns a Z ∈R Z∗p as the shared secret key. This won’t be a
valid shared secret key. But in order to find that this is invalid the adversary
should have queried the H2 Oracle with a valid tuple (Z1, Z2, Z3). Thus

the challenger computes Z2 = (Z2/v1,j)
ki
−1

and Z3 = Z3 · (gti)
d1,j . The

challenger also computes S =
(
Z1/Z2 · Z3

)ci−1

where ci = H2 (u1,i).



– Finally the challenger can return the solution for the CDH hard problem as
shown in the lemma below.

Lemma 3. The challenger returns the solution to the CDH instance of the SDH
hard problem set in the beginning.

Proof: The challenger computes S =
(
Z1/Z2 · Z3

)ci−1

where ci = H2 (u1,i).

• S =
(
g(d1,i+ti)(d1,j+b−d1,j)/Z2 · Z3

)ci−1

. Since, τi = 1,

Z2 = (Z2/v1,j)
(ki)

−1

= (v1,i · v1,j/v1,j)(ki)
−1

= (hi
xi)

(ki)
−1

=
(
gb·ki

)xi·(ki)−1

= gb·xi .

(Note: The component hi =
(
gb
)ki

as τi = 1.).

• Z3 = Z3 · (gti)
d1,j = (gti)

(b−d1,j) · (gti)d1,j = gb·ti .

• Therefore S =
(
g(xi+a·ci+ti)(d1,j+b−d1,j)/gb·xi · gb·ti

)ci−1

= gab.

Thus we have proved that the challenger returns the solution to the SDH Prob-
lem. ut

4.1 Probability Analysis

In this section we present the probability analysis of our scheme presented in
Section 3.

Proof. A solution to the hard problem can be generated only if the following
events hold good.

• S1 : The challenger is able to answer all the Party Corruption queries. In
other words, the challenger should not abort in the Party Corruption phase.

• S2 : In the test session, the private key of user that the adversary imperson-
ates should not be computable.

• S3 : In the test session, the challenger should be able to compute the private
key of the user it is simulating.

• S4 : The challenger should choose the valid tuple (Z1, Z2, Z3) from the list
Lh2 which has the hard problem injected in it.

Therefore, a solution to SDH problem can be obtained if

(Adversary succeeds in the game in Section 3)
∧

S1

∧
S2

∧
S3

∧
S4.

Pr (breaking SDH) =
Pr (Adversary′s success) .P r (S1) · Pr (S2) · Pr (S3) · Pr (S4).



Consider the H1 Oracle. Assume P (τi = 0) = α. Let qE be the total number
of key extract or Party Corruption queries. Now qE can be divided into two
mutually disjoint subsets Ā and B̄. Let Ā be a set of queries for which H1 (Si)
resulted in τi = 0 and hence the private keys can be computed as described in
Party Corruption phase and it will not abort in the Party corruption phase. Let
B be the set for which H1 (Si) resulted in τi = 1 and hence an abort in the Party
Corruption phase. Therefore private keys cannot be computed for attributes in
B. There are α.qE attributes in A and remaining (1− α) .qE attributes in B.

• Pr (S1) = Pr
(
Si ∈ A

)
for all the qE queries. This is equal to

(
α · qE
qE

)qE
=

αqE .

• Pr (S2) = Pr
(
Si ∈ B

)
, where Si is the attribute vector of the party Pi that

the adversary impersonates in the Test Session. Therefore τi = 1 in this

case and hence hi =
(
gb
)ki

. This is needed to solve the SDH problem. The

probability is equal to
(1− α) .qE

qE
= 1− α.

• Pr (S3) = Pr
(
Sj ∈ A

)
, Sj is the attribute vector of the party Pj the chal-

lenger emulates in the Test Session. This ensures that the private key of Pj
is computable by the challenger. This is equal to α.

• Pr (S4) = Pr (a valid 〈Z1, Z2, Z3〉 ∈ LH2 is chosen by the challenger) =
1

h5
, where h5 is the number of queries made of the form 〈Z1, Z2, Z3〉 to the

H2 Oracle.

Therefore the probability of solving the SDH problem, ε′ = ε.αqE . (1− α) .α.

ε′ = ε.
1

h5
.αqE+1. (1− α).

By maximizing this probability with respect to α, we get α =

(
qE + 1

qE + 2

)
.

Therefore ε′ = ε · 1
h5

(
1− 1

qE + 2

)qE+1

.

(
1

qE + 2

)
.

5 Additional Security Properties

The proposed protocol also offers additional security properties which we discuss
informally. Formal details of these properties can be found in the full version of
the paper.
Forward Secrecy: A key agreement protocol has forward secrecy, if after a
session is completed and its shared secret key is erased, the adversary cannot
learn it even if it corrupts the parties involved in that session. In other words,
learning the private keys of parties should not affect the security of the previously
established shared secret keys. Relaxing the definition of forward secrecy, we



assume that the past sessions with passive adversary are the ones whose shared
secret keys are not compromised. The freshness property of our ABCK model
allows the adversary to corrupt both the parties in the test session. In the security
proof also the challenger can perfectly simulate the PartyCorruption queries. The
proposed scheme offers forward secrecy.
Resistance to Key Compromise Impersonation Attacks: Whenever a
party Pi’s private key is learned by the adversary, it can impersonate as Pi. A key
compromise impersonation (KCI) attack can be carried out when the knowledge
of Pi’s private key allows the adversary to impersonate another party to Pi. Our
scheme is resistant to KCI attacks, because in the proof, when the adversary
tries to impersonate Pi to user Pj , the challenger is able to answer private key
queries from the adversary corresponding to user Pj . Thus the resistance to KCI
attacks is inbuilt in security proof.
Resistance to Ephemeral Key Compromise Impersonation: Generally
users pick the ephemeral keys (wi, g

wi) from a pre-computed list in order to
minimize online computation cost. But the problem with this approach is that
the ephemeral components may be subjected to leakage. This attack considers
the case when the adversary can make state-reveal queries even in the test ses-
sion. But our scheme is resistant to that type of an attack because when an
adversary tries to impersonate a party Pi without knowing the private key of
Pi, it cannot generate the components d2,i and the signature on gwi (we assume
that wi is erased immediately after the signature on gwi is computed and hence
is not available to the adversary during state-reveal queries). Thus it is secure
and resists ephemeral key compromise impersonation attack.

6 Conclusion

We propose a single-round bipartite attribute based AKE. The main advantages
of our protocol is that it is efficient, requires only one round of communication
among the users and the messages can be scheduled arbitarily. Moreover our
scheme also provides protection against active adversaries and also does not rely
on any underlying attribute-based encryption scheme as a key exchange problem
should be fundamentally more simpler than any encryption scheme. Also our
scheme enjoys the property of having constant number of exponentiations per
party and also involves no pairing operations. Moreover our proof techniques can
be easily modified to achieve security in attribute-based eCK model. We leave
open the problem of designing ABAKE scheme in standard model without using
attribute-based encryption schemes or signatures as basic building blocks, i.e,
designing an ABAKE scheme in standard model handcrafted from scratch.
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A Secret Key Sanity Check

After receiving the private key from the PKG in the key extraction phase, the
user performs the following check to ensure the correctness of the components of
the private key. The user first computes the following and then performs three
checks as follows:

a. ci = H2 (u1,i)

b. bi = H2 (u1,i, v1,i, u2,i, v2,i, 0)

c. ei = H2 (u1,i, v1,i, u2,i, v2,i, 1)

Test 1: Check if
gd1,i

y
H2(u1,i)
1

?
= u1,i.



This can be verified as
gxi+s1·ci

gs1·H2(u1,i)
, where ci = H2 (u1,i).

This is equal to gxi = u1,i. This check ensures the correctness of d1,i and u1,i.

Test 2: Check if
gd2,i

(u2,i)
H2(u1,i,v1,i,u2,i,v2,i,0) · y2H2(u1,i,v1,i,u2,i,v2,i,1)

?
= u1,i.

This can be verified as
g(xi+ri·bi+s2·ei)

gri·H2(u1,i,v1,i,u2,i,v2,i,0) · gs2·H2(u1,i,v1,i,u2,i,v2,i,1)
= gxi =

u1,i, as bi = H2 (u1,i, v1,i, u2,i, v2,i, 0) and ei = H2 (u1,i, v1,i, u2,i, v2,i, 1).

This check ensures the correctness of d2,i, u2,i, v1,i, v2,i.

Test 3 : Check if
(hi)

d2,i

v2,iH2(u1,i,v1,i,u2,i,v2,i,0) · (ĥi)
H2(u1,i,v1,i,u2,i,v2,i,1)

?
= v1,i.

This can be verified as
hi
xi+ri·bi+s2·ei

(hi
ri)

H2(u1,i,v1,i,u2,i,v2,i,0) · (ĥi)
H2(u1,i,v1,i,u2,i,v2,i,1)

= hi
xi =

v1,i where ĥi = hs2i , bi = H2 (u1,i, v1,i, u2,i, v2,i, 0) and ei = H2 (u1,i, v1,i, u2,i, v2,i, 1).

Test 3 ensures the correctness of ĥi. Test 2 and Test 3 ensures that g and hi are
raised to the same exponent xi in u1,i and v1,i respectively.

If the received private key satisfies all the tests then it is valid.


