
An extended abstract of this paper appears in the Proceedings of the 35th Annual Cryptology Conference
(CRYPTO 2015), Part I, Rosario Gennaro and Matthew Robshaw (Eds.), volume 9215 of Lecture Notes
in Computer Science, pages 388–409, Springer, August 2015. This is the full version.

An Algebraic Framework for Pseudorandom
Functions and Applications to Related-Key Security

Michel Abdalla Fabrice Benhamouda Alain Passelègue

ENS, CNRS, INRIA, and PSL
45 Rue d’Ulm, 75230 Paris Cedex 05, France

{michel.abdalla,fabrice.ben.hamouda,alain.passelegue}@ens.fr
http://www.di.ens.fr/∼{mabdalla,fbenhamo,passeleg}

Abstract

In this work, we provide a new algebraic framework for pseudorandom functions which encompasses
many of the existing algebraic constructions, including the ones by Naor and Reingold (FOCS’97),
by Lewko and Waters (CCS’09), and by Boneh, Montgomery, and Raghunathan (CCS’10), as
well as the related-key-secure pseudorandom functions by Bellare and Cash (Crypto’10) and by
Abdalla et al. (Crypto’14). To achieve this goal, we introduce two versions of our framework. The
first, termed linearly independent polynomial security, states that the values (gP1(~a), . . . , gPq(~a)) are
indistinguishable from a random tuple of the same size, when P1, . . . , Pq are linearly independent
multivariate polynomials of the secret key vector ~a. The second, which is a natural generalization of
the first framework, additionally deals with constructions based on the decision linear and matrix
Diffie-Hellman assumptions. In addition to unifying and simplifying proofs for existing schemes, our
framework also yields new results, such as related-key security with respect to arbitrary permutations
of polynomials. Our constructions are in the standard model and do not require the existence of
multilinear maps.

Keywords. Related-Key Security, Pseudorandom Functions.

1

Contents
1 Introduction 3

2 Definitions 5

3 Linearly Independent Polynomial Security 6
3.1 Warm-up: Expanded Multilinear Polynomials . 7
3.2 Main Theorem: LIP Security . 8

4 Recovering and Extending Existing Number-Theoretic PRFs 8

5 Application to Related-Key Security 9
5.1 Direct Constructions of RKA-Secure PRFs . 10
5.2 Constructions via Unique-Input RKA-Secure PRFs . 10

6 Extension to PRFs in Symmetric Bilinear Groups 13
6.1 High-Level Overview of Existing Constructions and Challenges 13
6.2 Generalized Polynomial Framework . 13
6.3 Applications . 14

Acknowledgments 15

A Usual Definitions and Assumptions 17
A.1 Standard Definitions . 17
A.2 Random Self-Reducibility of Ek,d-MDDH and (Ek,d, N)-MDDH 18
A.3 From E1,d-MDDH to DDHI . 18

B Multivariate Polynomial Representation 20
B.1 Multivariate Polynomial Representation for the LIP Theorem (Theorem 3.1) 20
B.2 Extension to the GP Security Notion . 20

C Proof of the LIP Theorem (Theorem 3.1) 21

D Proofs for Section 4 24
D.1 Weighted NR . 24
D.2 Weighted BMR . 24

E Proof of Theorems in Section 5 25
E.1 Proof of Theorem 5.1 . 25
E.2 Proof of Theorem 5.2 . 27
E.3 Proof of Linearly Independence Property for Section 5.2 31

F Other Applications to Related-Key Security 31
F.1 RKA-PRFs for Univariate Polynomial Functions . 31
F.2 RKA-PRF for Affine Multivariate Functions . 32
F.3 Proof of Linearly Independence Properties for Section F.1 and Section F.2 33

G A Further Generalization of the Framework 34
G.1 Previous Frameworks for Building RKA-Secure PRFs . 34
G.2 Our New Framework . 34
G.3 Proof of Theorem G.2 . 36

H Definitions and Proofs for Section 6 39
H.1 Definitions: Monomial Order and Leading Commutative Monomials 39
H.2 Main Lemma . 40
H.3 Proof of Security of E2,d-MDDH in Generic Bilinear Groups 41
H.4 Proof of Theorem 6.1 . 42
H.5 Proof of Theorem 6.2 . 43

2

1 Introduction
Pseudorandom functions (PRFs), originally defined by Goldreich, Goldwasser, and Micali [GGM86], are
one of the most fundamental primitives in cryptography. Informally speaking, a function is said to be
pseudorandom if its outputs are indistinguishable from that of a random function with respect to a
computationally bounded adversary which only has black-box access to it. Hence, even if the adversary
can control the inputs on which the function is computed and see the corresponding outputs, he or she
should still not be able to distinguish this function from a perfectly random one.

Due to their simplicity and security properties, pseudorandom functions have been used in numerous
applications, including symmetric encryption, authentication, and key exchange. In particular, since
pseudorandom functions can be used to model real-world block-ciphers, such as AES [AES01], they are
also extremely useful for the security analysis of protocols that rely on these primitives.
Number-Theoretic Constructions. Despite its elegance, the original construction of pseudorandom
functions by Goldreich, Goldwasser, and Micali based on pseudorandom generators was not very efficient.
In order to improve its efficiency while still being able to prove its security under reasonable complexity
assumptions, Naor and Reingold [NR97] proposed a new construction based on the Decisional Diffie-
Hellman assumption (DDH) [NR97]. Let ~a = (a0, . . . , an) ∈ Zn+1

p be the key and x = x1 ‖ . . . ‖xn ∈
{0, 1}n be the input of the PRF. Let g be a fixed public generator of a group G of prime order p. The
Naor-Reingold PRF is then defined as

NR(~a, x) =
[
a0

n∏
i=1

axii

]

where for any a ∈ Zp, [a] stands for ga, as defined in [EHK+13].
As mentioned in [BMR10], the algebraic nature of the Naor-Reingold PRF has led to many applications,

such as verifiable random functions [ACF09, HW10], distributed PRFs [NR97], and related-key-secure
PRFs [BC10], which are hard to obtain from generic PRFs. Hence, due to its importance, several other
extensions of the Naor-Reingold PRF have been proposed [LW09, BMR10] based on different assumptions,
such as the Decision Linear assumption (DLin) [BBS04] and the d-DDHI assumption [BMR10, GOR11].

In this work, our main contribution is to further extend the above line of work by providing a generic
algebraic framework for building pseudorandom functions. In particular, all of the algebraic constructions
mentioned above can be seen as a particular instantiations of our framework. In addition, our framework
is general enough that it captures and extends other constructions such as the related-key-secure PRF
constructions by Bellare and Cash [BC10] (BC) and by Abdalla et al. [ABPP14] (ABPP).
Linearly Independent Polynomial Security. To obtain our results, our first contribution is to
introduce a new notion of linearly independent polynomial (LIP) security. Informally, it states that the
values ([P1(~a)] , . . . , [Pq(~a)]) are indistinguishable from a random tuple of the same size, when P1, . . . , Pq
are linearly independent multivariate polynomials of degree at most d in any indeterminate and ~a is
the PRF secret key vector. The new notion is based on a new MDDH assumption [EHK+13] over
the underlying group G, denoted E1,d-MDDH, which can be (tightly) reduced to either DDH or DDHI
depending on value of d.

In order to illustrate the usefulness of the new notion, we show in Section 4 how to use it to provide
alternative security proofs for the Naor-Reingold PRF [NR97] and the PRF by Boneh, Montgomery, and
Raghunathan (BMR) in [BMR10] as well as generalizations of both these PRFs, that we call weighted NR
and weighted BMR. Intuitively, all these PRFs are defined over a prime order group G = 〈g〉 as a function
F that takes a key ~a and an input x and outputs an element in G of the shape F (~a, x) = [Px(~a)] where
the polynomial Px depends on x. Hence, to prove the security of such constructions, we just need to
prove that all polynomials Px, for any entries x, are linearly independent.

We would like to remark that the actual formulation of the LIP security in Section 3 includes a
value a′ ∈ Zp multiplying each Pi(~a) term, which allows for the use of different generators in the PRF
constructions. While we could dispense with a′ in the case where a′ and the ai values in ~a are scalars, we
opted to use it to be consistent with the case in which these values are matrices, as in Section 6.
Applications to Related-Key Security. Related-key attacks (RKAs) were first introduced by Biham
and Knudsen [Bih94, Knu93] and consider the setting in which an adversary could force a given cryp-
tographic primitive to execute under a different but related key. Over the years, such attacks became
more predominant and several related-key attacks have been proposed against existing block-ciphers
(e.g., [BDK05, BKN09, KHP07]). Since these attacks are quite powerful and hard to defend against,

3

Bellare and Kohno [BK03] introduced a formal treatment of these attacks in the context of PRFs and
pseudorandom permutations (PRPs) to better understand if and how one could achieve security in the
presence of related-key attacks. One of their main observations is that certain classes of related-key
attacks are impossible to protect against and, hence, their goal was to identify the set of classes Φ for
which one could design secure RKA-PRFs and RKA-PRPs.

Let F : K × D → R be a family of functions for a security parameter κ, and let Φ = {φ: K → K}
be a set of related-key deriving (RKD) functions on the key space K. Let G: K ×D → R be a random
function and let K ∈ K be a random target key. Informally, in the RKA security model of [BK03], F is
said to be a Φ-RKA-PRF if no polynomial-time adversary can distinguish the output of F (φ(K), x) from
the output of G(φ(K), x), for pairs (φ, x) of its choice, with non-negligible probability.

Our second contribution is to show that the new LIP security notion can be used to prove directly the
related-key security of certain constructions. In particular, we show that a particular case of our weighted
BMR PRF construction is secure against permutations of the secret key. In these attacks, the attacker
can obtain the output of the PRF with respect to any key that is a permutation of the original one.

To understand why RKA security can follow from the LIP security notion, let F be a PRF defined
over a prime-order group G = 〈g〉 that takes a key ~a and an input x and outputs F (~a, x) = [Px(~a)]. Let
Φ be a class of RKD functions, where functions ~φ = (φ1, . . . , φn) ∈ Φ are such that φi are multivariate
polynomials in Zp[T1, . . . , Tn]. Then, for a RKD function ~φ and an input x, the PRF outputs F (~φ(~a), x) =[
P~φ,x(~a)

]
, where the polynomial P~φ,x(~T) = Px(~φ(~T)) = Px(φ1(~T), . . . , φn(~T)) depends on ~φ and x, with

~T = (T1, . . . , Tn). Hence, when all polynomials P~φ,x are linearly independent, the LIP security notion
directly shows that F is Φ-RKA-secure.
Related-Key Security With Respect to Unique-Input Adversaries. Unfortunately, the case in
which the polynomials P~φ,x are all linearly independent is not so easy to instantiate as we would like, and
we have only been able to directly obtain RKA security for very restricted classes. Hence, to overcome
these restrictions, our third contribution is to further extend our results in Section 5.2 to deal with the
case where polynomials are only linearly independent when all the inputs x are distinct. This scenario is
similar to the one considered in [ABPP14]. In particular, our new algebraic framework extends the one
from [ABPP14] and provides constructions for new and larger classes of RKD functions. More precisely,
we build in Section 5.2 RKA-PRFs against classes of permutations of univariate polynomials. Furthermore,
in Appendix F, we also consider classes of univariate polynomials and multivariate affine RKD functions.

For simplicity, the results in Section 5.2 only hold with respect to PRFs of the form [Px(~a)] where
Px is a polynomial that depends on x. However, a more general framework which does not make this
assumption is described in Appendix G.
An Algebraic Framework For Non-Commutative Structures. Finally, our last contribution is
to extend the LIP security notion to work under weaker assumptions than DDH, such as DLin. As
we point out in Section 6, the main difficulty in this case is that the key values ai’s may be matrices,
which do not necessarily commute. To address this issue, we introduce natural conditions on the order of
indeterminates which makes non-commutative and commutative polynomials behave in a similar manner.
Through the new generalization, we not only deal with cases already covered by the LIP security notion,
but we also capture PRFs based on the DLin and MDDH assumptions [EHK+13].
Further discussions. In addition to the seminal work of Goldreich, Goldwasser, and Micali [GGM86],
several other frameworks for constructing PRFs have appeared in the literature, including [BCK96, NR99,
BMR10] to name a few.

In [NR99], Naor and Reingold proposed the notion of pseudorandom synthesizers and provided several
instantiations for it based on different complexity assumptions. Informally speaking, a pseudorandom
synthesizer is a two-variable function, S(·, ·), so that, for polynomially many random and indepen-
dent input assignments (x1, . . . , xm) and (y1, . . . , ym), the set of values {S(xi, yj)} are computationally
indistinguishable from uniform for i and j in {1, . . . ,m}.

In [BCK96], Bellare, Canetti, and Krawczyk provide a framework for building variable-length input
PRFs from fixed-length input ones, known as the cascade construction. In their framework, one obtains
a larger-domain PRF F ′ simply by partitioning the input x into a number n of small blocks x1, . . . , xn
matching the domain of the underlying PRF F and using the output of F on key ki and input xi as the
secret key ki+1 for the next stage. Since their framework requires the output of the underlying PRF to
be at least as long as the secret key, it cannot be applied to PRFs with very small domains.

To circumvent the restrictions of the cascade construction, Boneh, Montgomery, and Raghunathan
proposed an extension in [BMR10], known as the augmented cascade construction, in which supplemental

4

secret information is provided in every iteration. Unlike the cascade construction, its security does not
follow from the standard security of the underlying PRF, requiring it to meet a new notion called parallel
security.

While these frameworks are more general than ours and capable of handling different complexity
assumptions (e.g., [BPR12]), they are more combinatorial in nature and do not fully exploit the algebraic
nature of the underlying PRFs. In particular, it is not clear how to extend them to the RKA setting,
which is one of the main applications of our new algebraic framework. Moreover, even in the standard
PRF setting, our framework seems to possess complementary features compared to the existing ones.
Notably, it only requires the verification of an algebraic condition (such as testing the linear independence
of the polynomials) for each instantiation, which is generally easier to prove.
Other Related Work. It is worth mentioning that in the context of related-key security, Lewi, Mont-
gomery and Raghunathan [LMR14] designed RKA-PRFs for similar classes of polynomial RKD functions.
However, unlike their constructions, ours do not require multilinear maps. Also, our constructions are
proven fully RKA-secure while theirs are only proven unique-input RKA-secure.

2 Definitions

Notations and Conventions. We denote by κ the security parameter. Let F : K × D → R be a
function that takes a key K ∈ K and an input x ∈ D and returns an output F (K,x) ∈ R. The set of all
functions F : K × D → R is then denoted by Fun(K,D,R). Likewise, Fun(D,R) denotes the set of all
functions mapping D to R. If S is a set, then |S| denotes its size. We denote by s $← S the operation
of picking at random s in S. If ~x is a vector then we denote by |~x| its length, so ~x = (x1, . . . , x|~x|). For
a binary string x, we denote its length by |x| so x ∈ {0, 1}|x|, xi its i-th bit, so x = x1 ‖ . . . ‖xn. We
extend these notations to any d-ary string x, for d ≥ 2. For a matrix A of size k ×m, we denote by ai,j
the coefficient of A in the i-th row and the j-th column. For a vector ~φ = (φ1, . . . , φn) of n functions
from S1 to S2 with |~φ| = n and ~a ∈ S1, we denote by ~φ(~a) the vector (φ1(~a), . . . , φn(~a)) ∈ Sn2 . We denote
by Zp[T1, . . . , Tn] the ring of multivariate polynomials in indeterminates T1, . . . , Tn. For a polynomial
P ∈ Zp[T1, . . . , Tn], we denote P (T1, . . . , Tn) by P (~T) and by P (~a) the evaluation of P by setting ~T to ~a,
meaning that we set T1 = a1, . . . , Tn = an. For F : K ×D → R and for a vector ~x over D, we denote by
F (K,~x) the vector (F (K,x1), . . . , F (K,x|~x|)). We denote by Sn the set of all permutations of {1, . . . , n}.

Finally, we often implicitly consider a multiplicative group G = 〈g〉 with public generator g of order p
and we denote by [a]g, or simply [a] if there is no ambiguity about the generator, the element ga, for
any a ∈ Zp. Similarly, if A is a matrix in Zk×mp , [A] is a matrix U ∈ Gk×m, such that ui,j = [ai,j] for
i = 1, . . . , k and j = 1, . . . ,m.
Games [BR06]. Most of our definitions and proofs use the code-based game-playing framework, in
which a game has an Initialize procedure, procedures to respond to adversary oracle queries, and a
Finalize procedure. To execute a game G with an adversary A , we proceed as follows. First, Initialize
is executed and its outputs become the input of A . When A executes, its oracle queries are answered
by the corresponding procedures of G. When A terminates, its outputs become the input of Finalize.
The output of the latter, denoted GA is called the output of the game, and we let “GA ⇒ 1” denote the
event that this game output takes the value 1. The running time of an adversary by convention is the
worst case time for the execution of the adversary with any of the games defining its security, so that the
time of the called game procedures is included.
PRFs [GGM86, BC10]. The advantage of an adversary A in attacking the standard PRF security of
a function F : K ×D → R is defined via

Advprf
F (A) = Pr

[
PRFRealAF ⇒ 1

]
− Pr

[
PRFRandA

F ⇒ 1
]
.

Game PRFRealF first picks K $← K and responds to oracle query Fn(x) via F (K,x). Game PRFRandF
first picks f $← Fun(D,R) and responds to oracle query Fn(x) via f(x).
RKA-PRFs [BK03, BC10]. Let F : K ×D → R be a function and Φ ⊆ Fun(K,K). The members of
Φ are called RKD (Related-Key Deriving) functions. An adversary is said to be Φ-restricted if its oracle
queries (φ, x) satisfy φ ∈ Φ. The advantage of a Φ-restricted adversary A in attacking the RKA-PRF

5

Table 1: Security of Ek,d-MDDH
k = 1 k = 2 k ≥ 3

d = 1 = Advddh
G . 2 ·AdvU2-mddh

G . k ·AdvUk-mddh
G

d ≥ 2 . d ·Advd-ddhi
G generic bilinear group† ?‡

Advddh
G , Advd-ddhi

G and AdvUk -mddh
G are advantages for DDH, DDHI, and Uk-MDDH. This latter

assumption is weaker than k-Lin;
† proven in the generic (symmetric) bilinear group model [BB04] in Appendix H.3;
‡ (trivially) secure in the generic cyclic group model [Sho97], but nothing known about security in
generic (symmetric) k-linear group model [Sha07, HK07].

security of F is defined via

Advprf-rka
Φ,F (A) = Pr

[
RKPRFRealAF ⇒ 1

]
− Pr

[
RKPRFRandA

F ⇒ 1
]
.

Game RKPRFRealF first picks K $← K and responds to oracle query RKFn(φ, x) via F (φ(K), x). Game
RKPRFRandF first picks K $← K and G $← Fun(K,D,R) and responds to oracle query RKFn(φ, x) via
G(φ(K), x). We say that F is a Φ-RKA-secure PRF if for any Φ-restricted adversary, its advantage in
attacking the RKA-PRF security is negligible.
Group Generators. All our PRFs and RKA-PRFs use a cyclic group of prime order p. The generator(s)
used in their construction is supposed to be public. In particular, RKD functions cannot modify the
generator(s). Our security proofs will then start by giving the generators to the adversary.
Hardness Assumptions. To get a simpler and unified framework, we introduce a particular MDDH
assumption [EHK+13]: the Ek,d-MDDH assumption, defined by the matrix distribution Ek,d which samples
matrices Γ as follows

Γ =


A0

1 ·A0
A1

1 ·A0
...

Ad
1 ·A0

 ∈ Zk(d+1)×k
p with A0,A1

$← Zk×kp . (1)

The advantage of an adversary D against the Ek,d-MDDH assumption is

AdvEk,d-mddh
G (D) = Pr [D(g, [Γ] , [Γ ·W])]− Pr [D(g, [Γ] , [U])],

where Γ $← Ek,d, W
$← Zk×1

p , U
$← Zk(d+1)×1

p . As any MDDH assumption and as recalled in Appendix A.2,
this assumption is random self-reducible, which enables us to make relatively tight proofs.

In Table 1, we summarize security results for Ek,d-MDDH. For k = 1 or d = 1, the Ek,d-MDDH
assumption is implied by standard assumptions (DDH, DDHI, or k-Lin, recalled in Appendix A).
E1,1-MDDH is actually exactly DDH.

For our RKA framework, we also make use of the d-Strong Discrete Logarithm (SDL) problem given
in [GOR11] and recalled in Appendix A.

3 Linearly Independent Polynomial Security
In this section, we define a new security notion, termed linearly independent polynomial (LIP) security,
which captures that, given a cyclic group G = 〈g〉 of prime order p, the hardness of distinguishing a
tuple (y1, . . . , yq) = ([P1(~a) · a′] , . . . , [Pq(~a) · a′]) ∈ Gq from a random tuple in (y1, . . . , yq)

$← Gq, where
~a is a secret random vector in Znp , a′ is a secret random scalar in Zp, and Pj are linearly independent
multivariate polynomials. Our LIP theorem (Theorem 3.1) shows that distinguishing these two tuples
is harder than the E1,d-MDDH problem in G, where d is the maximum degree in one indeterminate in
polynomials P1, . . . , Pq. We point out that, on the one hand, if there were a linear relation between the
polynomials, i.e., if there exists (λ1, . . . , λq) ∈ Zqp\{(0, . . . , 0)}, such that

∑q
j=1 λjPj = 0, then it would be

straightforward to break the LIP security by checking whether
∏q
j=1 yj

λj = 1 (real case) or not (random
case). So the linear independence of the Pj ’s is required.

On the other hand, if the polynomials Pj are linearly independent, then distinguishing the two tuples is
hard in the generic group model, since in this model, the adversary can only compute linear combinations

6

of the group elements it is given (and check for equality). The LIP security is therefore not surprising.
What is surprising, is that it is possible to prove it under classical assumptions such as E1,d-MDDH,
without an exponential blow-up.

In the following, we first consider a particular case of the LIP theorem in which the polynomials are
given in their expanded form. This section not only serves as a warm-up for the sequel, but it also helps
better grasp the challenges of the proof of the full theorem and gives a nice overview. Next, we formally
state the LIP theorem.

3.1 Warm-up: Expanded Multilinear Polynomials
As a warm-up, let us first suppose the polynomials Pj are multilinear and given in their expanded form:
Pj ∈ Zp[T1, . . . , Tn] and

Pj(~T) =
∑

i∈{0,1}n
αj,iT

i1
1 · · ·T inn .

There are 2n monomials T i11 · · ·T inn , even in that restricted case. So we need to suppose that either n is
logarithmic in the security parameter, or, more generally, only a polynomial (in the security parameter)
number of αj,i are non-zero.

Let us now prove the LIP security of these polynomials. In the real case, we have:

yj = [Pj(~a)a′] =

 ∑
i∈{0,1}n

αj,ia
i1
1 · · · ainn a′

 =
∏

i∈{0,1}n
NR((a′,~a), i)αj,i , (2)

where NR((a′,~a), i) =
[
a′
∏n
k=1 a

ik
k

]
(for i ∈ {0, 1}n). NR is a secure PRF under the DDH assumption,

meaning that all the values NR((a′,~a), i) for all i ∈ {0, 1}n look independent and uniformly random. Let
us write ~U the column vector, with rows indexed by i ∈ {0, 1}n, containing all the discrete logarithm
of these values, i.e., ui = a′

∏n
k=1 a

ik
k . Let us also write M the q × 2n matrix, with columns indexed by

i ∈ {0, 1}n, defined by mj,i = αj,i. Then we can rewrite Equation (2) as:(
y1 . . . yq

)ᵀ =
[
M · ~U

]
.

Since the polynomials Pj are linearly independent, the rows of M are linearly independent. Therefore, as[
~U
]
looks uniformly random in G2n , (y1, . . . , yq) looks like a uniformly random tuple in Gq. This proves

the result of the LIP theorem in this multilinear case with expanded polynomial. Extending this result to
non multilinear polynomial would just require slightly changing the assumption, as long as polynomials
are given in their expanded form.

This result is already very useful. We will see in Section 4 that it enables to prove the security of the
Naor-Reingold PRF and variants thereof.
Challenges for its Extension. Unfortunately, for certain settings such as those considered in the
context of related-key security, or even for the Boneh-Montgomery-Raghunathan PRF [BMR10], we
cannot have polynomials in an expanded form, but only as a polynomial-size (in the number n of
indeterminates and the maximum degree d in each indeterminate) formula (given by an abstract tree).1
The problem is that the expanded version of these polynomials may be exponentially large. For example,
(T1 + 1) · · · (Tn + 1) has 2n monomials.

Therefore, the main challenge is to prove the theorem without expanding the polynomials. This
requires a much more subtle proof that we sketch here. This first idea is the following: instead of replacing
all monomials by independent random values at once, we first fix all values T2, . . . , Tn to randomly chosen
a2, . . . , an, and get polynomials in T1 only. These polynomials can be expanded without an exponential
blow-up, and each monomial T1, T

2
1 , . . . can be replaced by an independent random value (instead of

a1, a
2
1, . . . for some value a1). Then, we can fix only T3, . . . , Tn to randomly chosen a3, . . . , an, get a

polynomial in T1 and T2, and replace all distinct monomial (T1, T
2
1 , T1T2, T

2
2 , . . .) by independent random

values. And we can continue like that until all monomials are replaced.
Obviously, if we do that so naively, we get back to the original problem: we have an exponential

number of monomials. The second idea is to remark that we actually do not need to expand polynomials
to replace all distinct monomials by random values and get the result, at each step of the previous

1Details on the representation of polynomials are given in Appendix B.1.

7

proc Initialize
~a

$← Znp ; a′ $← Zp
b

$← {0, 1}

proc Pl(P)
If b = 0 then y ← [P (~a) · a′]
Else y $← G
Return y

proc Finalize(b′)
Return b′ = b

Figure 1: Game defining the (n, d)-LIP security for a group G

idea. We could just assign random values to all polynomials (after fixing Ti+1, . . . , Tn to ai+1, . . . , an),
if they are all linearly independent: this is exactly what we showed in the previous proof for expanded
polynomials. And if they are not all linearly independent, we just need to take care of linear combinations,
and compute the resulting value accordingly.

More precisely, for any polynomial P , let us write QP ∈ Zp[T1, . . . , Ti] the polynomial obtained
after fixing Ti+1, . . . , Tn to ai+1, . . . , an. To answer the j-th query Pj , we check whether QPj is linearly
independent from (QPl)l=1,...,j−1. If that is the case, we answer with an independent random value
yj . Otherwise, we find some linear combination between QPj and (QPl)l=1,...,j−1, and we write QPj =∑j−1
l=1 λlQPl and outputs

∏j−1
l=1 y

λl
l , with yl the output given for Pl.

The last difficulty is that this proof requires a test of linear dependence of multivariate polynomials.
One way to do that would be to expand them, which is exactly what we are trying to avoid. So, instead,
we use a statistical test based on the Schwartz-Zippel lemma, which basically consists in evaluating the
polynomials in enough random points and looking for linear combination among the vectors of these
evaluations.

3.2 Main Theorem: LIP Security

LIP Security. Let G = 〈g〉 be a group of prime order p. We define the advantage of an adversary A

against the (n, d)-LIP security of G, denoted Adv(n,d)-lip
G (A) as the probability of success in the game

defined in Figure 1, with A being restricted to make queries P ∈ Zp[T1, . . . , Tn] such that for any query
P , the maximum degree in one indeterminate in P is at most d, and for any sequence (P1, . . . , Pq) of
queries, the polynomials (P1, . . . , Pq) are always linearly independent over Zp. Another way to look at
the security definition is to consider that when b = 0, Pl(P) outputs [P (~a)]h = [P (~a) · a′]g, where the
generator is h = [a′]g, which is not public (but can be obtained by querying the polynomial 1), and g is a
public generator.

Theorem 3.1 (LIP). Let G = 〈g〉 be a group of prime order p. Let A be an adversary against the
(n, d)-LIP security of G that makes q oracle queries P1, . . . , Pq. Then we can design an adversary B

against the E1,d-MDDH problem in G, such that Adv(n,d)-lip
G (A) ≤ n · d ·AdvE1,d-mddh

G (B) + O(ndq/p).
The running time of B is that of A plus the time to perform a polynomial number (in q, n, and d) of
operations in Zp and G.

The proof is detailed in Appendix C.

4 Recovering and Extending Existing Number-Theoretic PRFs
In Table 2, we recall known number-theoretic PRFs, namely the Naor-Reingold (NR) PRF [NR97], its
variant NR∗ defined in [BC10], and the algebraic PRF by Boneh, Montgomery, and Raghunathan (BMR)
in [BMR10]. We also introduce weighted (extended) versions of these PRFs, namely weighted NR (WNR)
and weighted BMR (WBMR), in order to construct RKA-secure PRFs for new classes of RKD functions
(Section 5). These weighted PRFs are obtained by applying particular permutations to the key space.
Then, as PRFs, it is straightforward that the security of NR and BMR implies the security of their
weighted versions. However, as detailed in Section 5, in the RKA setting, we can prove that some of these
weighted PRFs are secure against certain classes of RKD functions while both NR and BMR are not, even
if we apply the BC/ABPP frameworks.

Using the LIP theorem and changing the generators used (to get PRFs of the form F (~a, x) =
[Px(~a) · a′]), the security proof of WNR and WBMR is straightforward, and so is the security proof of NR,
NR∗, and BMR, as particular cases of WNR and WBMR. Concretely, for WBMR~w, we start by revealing

8

Table 2: Existing Number-Theoretic PRFs and their Weighted Extensions

PRF F
Key ~a

Key domain K Domain D Output Advprf
F .

NR (a0, . . . , an)
K = Zn+1

p
{0, 1}n

[
a0

n∏
i=1

axi
i

]
n ·Advddh

G

NR∗ (a1, . . . , an)
K = Zn

p
{0, 1}n \ {0n}

[
n∏

i=1

axi
i

]
n ·Advddh

G

BMR (a1, . . . , an)
K = Zn

p
{0, . . . , d}n

[
n∏

i=1

1
ai + xi

]
nd ·Advd-ddhi

G

WNR~w

(~w ∈ Zn+1
p)∗

(a0, . . . , an)
K = Zn+1

p

if w0 6= 0: {0, 1}n,
else: {0, 1}n \ {0n}

[
aw0

0

n∏
i=1

awixi
i

]
n ·Advddh

G
†

WBMR~w

(~w ∈ Znp)
‡

(a1, . . . , an)
K = Zn

p
{0, . . . , d}n

[
n∏

i=1

1
ai + wi + xi

]
nd ·Advd-ddhi

G

G = 〈g〉 is a prime order group, and g is the generator used for the PRF construction;
The last column show approximate simplified bounds on the advantage Advprf

F
of a polynomial-

time adversary against the security of the PRF F ; exact bounds can be found in Appendix D;
Remarks: NR = WNR(1,...,1), NR∗ = WNR(0,1,...,1), and BMR = WBMR(0,...,0);
∗ for WNR, weights are ~w = (w0, . . . , wn) ∈ Zn+1

p ;
† when w1, . . . , wn are coprime to p− 1, and w0 is 0 or coprime to p− 1;
‡ for WBMR, weights are ~w = (w1, . . . , wn) ∈ Znp .

the generator h to the adversary where

h =

 n∏
i=1

∏
k∈{0,...,d}

(ai + wi + k)

 · a′

g

= [P (~a) · a′]g

which is a generator with overwhelming probability. Then, when the adversary makes a query x, it is
clear that [

n∏
i=1

1
ai + wi + xi

]
h

=

 n∏
i=1

∏
k∈{0,...,d}\{xi}

(ai + wi + k)

 · a′

g

= [Px(~a) · a′]g

As each polynomial Px is null on every input −x′ for x′ ∈ {0, . . . , d}n, seen as a vector of Znp , except
when x′ = x, and as P is null on all −x′, P and (Px)x are linearly independent. Then, we conclude the
security proof of WBMR~w by applying the LIP theorem. Formal proofs are provided in Appendix D
(Lemmas D.1 and D.2).

5 Application to Related-Key Security
In this section, we show how our theorem can be used to build RKA-secure PRFs from a PRF F defined
over a prime order group G = 〈g〉 that takes a key ~a and an input x and outputs a group element
F (~a, x) = [Px(~a)]. Let Φ be a class of RKD functions, where functions ~φ = (φ1, . . . , φn) ∈ Φ are such
that φi are multivariate polynomials in Zp[T1, . . . , Tn]. Then, for an RKD function ~φ and an input x, the
PRF outputs F (~φ(~a), x) =

[
P~φ,x(~a)

]
, where the polynomial P~φ,x(~T) = Px(~φ(~T)) = Px(φ1(~T), . . . , φn(~T))

depends on ~φ and x. In particular, Pid,x = Px for all x, where id is the identity function.
When all polynomials P~φ,x and the constant polynomial 1 are linearly independent, the LIP theorem

directly shows that F is Φ-RKA-secure. To illustrate this, we construct in Section 5.1 a PRF that is
secure against permutations of the secret key using this method.

However, to assume that all polynomials P~φ,x are linearly independent is a very strong property and,
in general, this is not the case for all x and ~φ. Hence, in Section 5.2, we consider the less restrictive case
where the polynomials P~φ1,x1

, . . . , P~φq,xq are linearly independent as long as the inputs x1, . . . , xq are
distinct (in which case the adversary is said to be unique-input). More precisely, we first design a new

9

algebraic framework that extends the one from [ABPP14], when the PRF F is of the form [Px(~a)] and
the RKD functions are multivariate polynomials, and then use it to construct RKA-secure PRFs from F
for new and larger classes of RKD functions.

5.1 Direct Constructions of RKA-Secure PRFs
In this section, we show how the LIP theorem can be used to prove the Φ-RKA-PRF security in the
particular case where all polynomials P~φ,x are linearly independent, for any ~φ ∈ Φ and any input x.

Specifically, we consider the class ΦSn of functions defined as {σ | σ ∈ Sn} such that, applying a
function σ ∈ ΦSn to a key ~a = (a1, . . . , an) ∈ Znp leads to the key σ(~a) = (aσ−1(1), . . . , aσ−1(n)), so the
i-th component of ~a becomes the σ(i)-th component of the key σ(~a).

It is clear that BMR is not ΦSn -RKA-secure, since we can distinguish BMR from a random function
with only 2 queries. Indeed, let id be the identity function and (12) be the permutation which switches
the first two components of the key. Then, one can just first query (id, 100 . . . 0) and ((12), 010 . . . 0) and
check whether the output of these queries are the same, which is the case in the real case while they are
independent in the random case. However, we show in what follows that a particular case of WBMR,
defined below, is a ΦSn -RKA-secure PRF.
Linear WBMR PRF. We define WBMRlin as the particular case of WBMR, where wi = (i− 1)(d+ 1),
for i = 1, . . . , n. Please refer to Table 2 for details.

Theorem 5.1. Let G = 〈g〉 be a group of prime order p and let WBMRlin be the function defined above.
Then we can reduce the ΦSn-RKA-PRF security of WBMRlin to the hardness of the (n(d+ 1)− 1)-DDHI
problem in G, with a loss of a factor n(n(d+ 1)− 1). Moreover, the time overhead of this reduction is
polynomial in n, d and in the number of queries made by the adversary.

The proof is given in Appendix E.1 and is very similar to the proof of security of WBMR sketched in
Section 4. The construction can actually be extended to also tolerates small additive factors in addition
to permutations (see Remark E.3 on page 27).

5.2 Constructions via Unique-Input RKA-Secure PRFs
In this section, we address the less restrictive case where the polynomials P~φ1,x1

, . . . , P~φq,xq are linearly
independent for any ~φ1, . . . , ~φq only when the inputs x1, . . . , xq are all distinct. Please notice that this
is the case for all the classes considered in [BC10] and [ABPP14]. We now denote by M the “original”
PRF: M(~a, x) = [Px(~a)].

In order to build RKA-secure PRFs from such PRFs, we would like to apply the ABPP generic
framework [ABPP14] that allows to transform a PRFM which is RKA-secure with respect to unique-input
adversaries (UI-RKA-secure) into an RKA-secure PRF F , when M is key-collision and statistical-key-
collision secure. The latter means that it is hard to find two functions φ1, φ2 ∈ Φ such that φ1(K) = φ2(K),
even with access to an oracle (φ, x) 7→ f(φ(K), x), when f = M (key-collision security), and when f
is a random function (statistical key-collision security). The framework consists in transforming this
UI-RKA-secure PRF M into an RKA-secure PRF F , as follows:

F (K,x) = M(K,H(x,M(K, ~ω))),

where H is a compatible collision-resistant hash function, and the vector ~ω is a strong key fingerprint,
meaning that it is a vector of inputs such that the vector of outputs M(K, ~ω) completely defines K
(recall that M(K, ~ω) = (M(K,ω1), . . . ,M(K,ω|~ω|)). As defined in [BC10], a hash function is said to be
compatible if it guarantees that the inner calls to M in the construction above will never collide with the
outer calls to M even under related keys.

Unfortunately, if we consider the PRF WNR~w with some wi > 1, then it is not clear how to find
a strong key fingerprint, which can be used to apply the ABPP framework. Furthermore, this ABPP
framework requires to prove several non-algebraic properties (statistical or computational), namely
key-collision, statistical-key-collision, and UI-RKA securities.

For this reason, we design a new algebraic framework, that generalizes the ABPP framework in the
particular case of PRFs of the shape M(~a, x) = [Px(~a)] and of RKD functions which are multivariate
polynomials. For completeness, a more general framework, which does not make any assumptions about
the shape of a PRF, is also given in Appendix G. Afterwards, we use our algebraic framework to design

10

new RKA-secure PRFs based on WNR for larger classes for which previous constructions from [BC10]
and [ABPP14] are not secure.
An Algebraic Framework for Related-Key Security. Here, we describe a new framework that
transforms any PRF that satisfies that P~φ1,x1

, . . . , P~φq,xq are linearly independent, for any ~φ1, . . . , ~φq as
long as x1, . . . , xq are all distinct inputs, into a RKA-secure PRF. To do so, we first introduce three new
notions, termed algebraic fingerprint, helper information, and expansion function, and defined as follows.

Group Generator. In this framework and its applications, we assume for simplicity that the
generator used in the PRF construction, that is revealed to the adversary, is [a′].

Algebraic Fingerprint. In order to overcome the eventual lack of a strong key fingerprint, we
introduce algebraic fingerprint, which will be used to replace M(K, ~ω) in the construction in [ABPP14],
where ~ω is a strong fingerprint. An algebraic fingerprint is simply an injective function ~Ω: Znp → Gm

such that the image ~Ω(~a) is a vector of group elements ([Ω1(~a)a′] , . . . , [Ωm(~a)a′]) with Ω1, . . . ,Ωm
being polynomials in Zp[T1, . . . , Tn] and a′ ∈ Zp. In our applications, we will simply have ~Ω(~a) =
([a1a

′] , . . . , [ana′]), so m = n and Ωi(~T) = Ti for i = 1, . . . , n.
Helper Information. In order to prove the security of our framework, we need to be able to

compute the image of the algebraic fingerprint, ~Ω(~φ(~a)) = ((Ω1 ◦ ~φ)(~a), . . . , (Ωm ◦ ~φ)(~a)), for any related
key ~φ(~a) ∈ Znp , with ~φ ∈ Φ, from some information which can somehow be made public without
hurting security. We call this information a helper information, write it HelpΦ(~a), and call HelpΦ the
helper function. We suppose that HelpΦ(~a) = ([help1(~a)a′] , . . . , [helpl(~a)a′]), with help1, . . . , helpl linearly
independent polynomials which generate a vector subspace of Zp[T1, . . . , Tn] containing the polynomials
Ωi ◦ ~φ for i = 1, . . . ,m, and ~φ ∈ Φ.

Hash Function and Expansion Function. Let D = D ×Gm where D is the domain of the PRF
M , and let h be a collision-resistant hash function h: D → hSp (definition recalled in Appendix A.1),
where hSp is a large enough space. The last thing we need to define is an expansion function, which
is simply an injective function E: hSp→ S ⊆ D such that for any sequence (~φ1, x1), . . . , (~φq, xq) where
x1, . . . , xq are distinct inputs in S and ~φ1, . . . , ~φq are RKD functions, polynomials help1, . . . , helpl and
polynomials P~φ1,x1

, . . . , P~φq,xq and 1 (which needs to be queried to define the generator [a′]) are linearly
independent over Zp (in particular, E has to be injective).

Using these new tools, we obtain the following framework.

Theorem 5.2. Let G be a group of prime order p. We use the above definitions, with M : Znp ×D → G
defined by M(~a, x) = [Px(~a)]. Let d be a upper bound for the maximum degree in any indeterminate of
polynomials in {help1, . . . , helpl} ∪ {Px,~φ | x ∈ S, ~φ ∈ Φ}. Define F : Znp ×D → G by

F (~a, x) = M(~a,E(h(x, ~Ω(~a))))

for all ~a ∈ Znp and x ∈ D. Then, we can reduce the Φ-RKA-PRF security of F to the (n, d)-LIP security,
the collision-resistance security of h without any loss, and to the d-SDL assumption with a loss of a factor
2n. The running time overhead of this reduction is polynomial in n, d and q.

Proof Overview. The proof of the above theorem is detailed in Appendix E.2 and relies on the
sequence of 10 games (games G0 − G9) described in Figure 7 and on Lemma E.4. We first prove an
intermediate statement whose proof is very similar to the proof of Theorem 3.1 from [ABPP14], under a
notion termed extended key-collision security (that states the hardness of finding key collisions given
access to PRF values and helper information) which is defined in the appendix. Afterwards, we reduce this
notion to the hardness of the SDL in G. Here we provide a brief overview of the proof of the intermediate
statement.

We start by giving the generator used for the PRF by querying polynomial 1. Hence, the generator is
simply [a′]. Since we may have key collisions (i.e., two RKD functions φ1 6= φ2, such that φ1(~a) = φ2(~a)),
we start by dealing with possible collisions on the related keys in the RKAPRFReal case, using the
extended key-collision notion (games G0 −G2). These claws can be detected by looking for collisions on
images of ~Ω for different RKD functions.

Then, in games G3 −G4, we deal with possible collisions on hash values in order to ensure that the
inputs t = E(h(x, ~Ω(~a))) used to compute the output y are distinct (recall that E is injective).

Then, we use the (n, d)-LIP security notion to show that it is hard to distinguish the output of F and
the helper information from uniformly random values (games G5 −G6).

11

Finally, we use once again the extended-key-collision security notion to deal with possible key collisions
in the RKAPRFRand case (games G7 −G9) so that G9 matches the description of the RKAPRFRand
game. These key collisions can still be detected in these games by making crucial use of the helper
information.
RKA-PRFs for Permutations of Univariate Polynomial Functions. We now apply our framework
to a particular case of WNR and build the first RKA-secure PRF secure against permutations of univariate
polynomials. We chose to set w0 to 0 in our construction in order to ease the readability so that the
key space of the PRF stays Znp , but similar results can be proven with w0 = 1 or set to a prime number
p0 > d (and distinct to p1, . . . , pn defined below).

For d ≥ 1, let Φd be the class of degree at most d non-constant univariate polynomials defined as
Φd = {~φ: Znp → Znp | φi : ~T 7→

∑d
j=0 αi,jT

j
i , (αi,1, . . . , αi,d) 6= 0d,∀i = 1, . . . , n}. Then we consider the

class ΦSn,d of permutations of degree at most d non-constant univariate polynomials, defined as follows:

ΦSn,d = {σ ◦ ~φ | (σ, ~φ) ∈ Sn × Φd} .

For a key ~a = (a1, . . . , an) ∈ Znp , applying an RKD function σ ◦ ~φ ∈ ΦSn,d, where ~φ = (φ1, . . . , φn) leads
to the key (φσ−1(1)(~a), . . . , φσ−1(n)(~a)) ∈ Znp , so the i-th component ai of the key is changed into φi(~a)
and becomes the σ(i)-th component of the related key.

Before explaining our construction, we would like to point out that, even if we just consider the simple
class of permutations ΦSn ⊂ ΦSn,1 introduced in Section 5.1, we can already show that NR and NR∗ are
not ΦSn -RKA secure, even with respect to unique-input adversaries.

Indeed, let us consider NR∗: let id be the identity function and (12) be the permutation which switches
the first two components of the key. Then, the output of the queries (id, 100 . . . 0) and ((12), 010 . . . 0)
will be the same in the real case and independent in the random case.

In fact, we can generalize the attack above to show that there even exists a compatible collision-
resistant hash function h such that the PRF that one obtains when applying the Bellare-Cash (or ABPP)
transform to NR∗ would not be RKA-secure with respect to the class of permutations. Indeed, let h′ be a
collision-resistant hash function. The counter-example for h could be as follows (where x1 and x2 are two
arbitrary distinct inputs):

h(x, [a1] , . . . , [an]) =

 1110 ‖h′(x1, [a1] , . . . , [an]) if x = x1
1101 ‖h′(x1, [a2] , [a1] , [a3] , . . . , [an]) if x = x2
1111 ‖h′(x, [a1] , . . . , [an]) otherwise.

Note that h is a compatible collision-resistant hash function. It is easy to see that the output of the
queries (id, x1) and ((12), x2) will be the same in the real case and independent in the random case. The
same kind of attack can be mounted against NR.

However, while NR and NR∗ are not RKA-secure against permutations attacks, we show in what
follows that a particular case of WNR, defined below, yields a ΦSn,d-RKA-secure PRF.
d-Linear Weighted NR PRF. Let d ≥ 1. Let p1 < p2 < · · · < pn be distinct prime numbers such that
p1 > d. We define WNRd-lin as the particular case of WNR, where w0 = 0 and wi = pi. Please refer to
Table 2 for details. Using standard inequalities over prime numbers, it is easy to see that we can find
p1, . . . , pn such that pn = Õ(d+ n).

In order to apply the framework from Theorem 5.2 to WNRd-lin and ΦSn,d, we define:

• [a′] ∈ G is the generator used for the PRF construction

• ~Ω: ~a ∈ Znp 7→ ([a1a
′] , . . . , [ana′]) ∈ Gn

• HelpΦSn,d
: ~a ∈ Znp 7→ ([a′] , [a1a

′] , . . . ,
[
ad1a
′] , . . . , [ana′] , . . . , [adna′]) ∈ Gnd+1

• h can be any collision-resistant hash function h: {0, 1}n ×Gn → {0, 1}n−2

• E: z ∈ {0, 1}n−2 7→ 11 ‖ z ∈ {0, 1}n

We just need to prove that E satisfies the linear independence property required to apply the framework,
which is done in Appendix E.3, and sketched here. We order monomials of multivariate polynomials, with
any order respecting the total degree of polynomials (e.g., the graded lexicographic order). The leading
monomial (i.e., the first monomial for that order) of the polynomial P~φ,x is T xσ(1)pσ(1)d1

1 · · ·T xσ(n)pσ(n)dn
n ,

with di > 0 the degree of φi. The polynomials for the helper information (helpk) are T
j
i . Therefore, the

12

leading monomials of help1, . . . , helpl, P ~φ1,x1
, . . . , P ~φq,xq , 1 are all distinct, when x1, . . . , xq are distinct

inputs. This means that the matrix whose columns correspond to monomials (ordered as specified above)
and whose rows correspond to the polynomials help1, . . . , helpl, P ~φ1,x1

, . . . , P ~φq,xq , 1 (ordered according
to their leading monomial) is in echelon form. Hence, the latter polynomials are linearly independent.
Finally, by combining Theorem 5.2 and the LIP theorem, we obtain the following theorem.

Theorem 5.3. Let ~Ω, h and E be defined as above. Define F : Znp × {0, 1}n → G by F (~a, x) =
WNRd-lin(~a,E(h(x, ~Ω(~a)))), for all a ∈ Znp and x ∈ {0, 1}n. Then we can reduce the ΦSn,d-RKA-PRF
security of F to the hardness of the pnd-DDHI problem in G and the pnd-SDL problem in G, respectively
with a loss of a factor npnd and of a factor n, and to the CR security of h. Moreover, the time overhead
of this reduction is polynomial in n, d, pn and in the number of queries made by the adversary attacking
the ΦSn,d-RKA-PRF security of F .

6 Extension to PRFs in Symmetric Bilinear Groups
6.1 High-Level Overview of Existing Constructions and Challenges
All the previous constructions (of classical PRF and RKA-secure PRF) require at least DDH to hold.
In particular, they are insecure if there exists a symmetric pairing e : G × G → GT . In this section,
we investigate how to adapt our linearly independent polynomials framework and the corresponding
LIP theorem to handle constructions of PRFs under weaker assumptions, which may hold in symmetric
bilinear groups.

The first algebraic PRF based on DLin is the Lewko-Waters PRF [LW09], which is defined as follows:

LW(~A, x) =
[
n∏
i=1

Axi
i ·A

′

]
,

with ~A = (A1, . . . ,An) being a vector of n uniformly random matrices in Z2×2
p and A′ a uniformly

random matrix in Z2×m
p , for some m ≥ 1. A′ was actually in Z2×1

p (i.e., m = 1) in [LW09] (with only the
first group element being returned). This PRF is secure under DLin, and even under a weaker assumption,
namely the U2-MDDH-assumption of Escala et al. [EHK+13]. In the latter paper, this PRF is extended
to any MDDH-assumption, which particularly encompasses DDH and DLin. These instantiations differ
by the size of the matrices and their distribution. Except for constructions using multilinear maps and
lattices [BLMR13, BP14] or trivial variants, we are not aware of any other construction.
Commutation Challenge From a high level point of view, these PRFs are very similar to the one
considered in our algebraic framework in Section 3, except elements of keys are now matrices. Unfortunately,
matrices do not commute in general, and this lack of commutativity makes everything more complex.

One naive solution would be to extend the LIP theorem by considering non-commutative polynomials,
or in other words elements of the free algebra Zp〈T1, . . . , Tn〉. In this algebra, for example, T1T2 and
T2T1 are distinct and linearly independent elements. The problem is that, as proven by Amitsur and
Levitzki [AL50], for any matrices A1, . . . ,A4 ∈ Z2×2

p ,
∑
σ∈S4

sgn(σ) ·Aσ(1) ·Aσ(2) ·Aσ(3) ·Aσ(4) = 0, with
sgn(σ) being the parity of the permutation σ. Thus, while the family of non-commutative polynomials
(Pσ = Tσ(1)Tσ(2)Tσ(3)Tσ(4))σ∈S4 is linearly independent in the free algebra, the PRF of domain D = S4,
the PRF defined by F (~A, σ) =

[
Aσ(1)Aσ(2)Aσ(3)Aσ(4)A

′] would clearly be insecure.
Assumption Challenge and Generic Symmetric Bilinear Group The second challenge is to prove
the hardness of the E2,d-MDDH assumption in the generic bilinear group, which is done in Appendix H.3,
using a non-trivial technical lemma: Lemma H.3. Notably, contrary to the cyclic group case, it is not
straightforward to check whether a PRF defined by F (~A, x) =

[
Px(~A) ·A′

]
is secure in the generic

bilinear group model, where (Px)x∈D is a family of non-commutative polynomials, ~A is a vector of
matrices from Z2×2

p , and A′ is a matrix from Z2×m
p , for some m ≥ 1.

6.2 Generalized Polynomial Framework
Let us show how we address these challenges.
Generalized Polynomial (GP) Security. Let us introduce the (k, n, d)-GP security of a cyclic group
G = 〈g〉 as a generalization of the (n, d)-LIP security in Section 3.2, where the secret scalar a′ $← Zp

13

and the secret vector of scalars ~a $← Znp are replaced by a secret matrix A′
$← Zk×mp (for some m ≥ 1;

for the sake of simplicity, in the sequel, we choose k = m) and a secret vector of matrices ~A $← (Zk×kp)n,
respectively.
Result under E2,d-MDDH. To extend Theorem 3.1 to symmetric bilinear groups and avoid the
commutativity problem, we suppose that all indeterminates appear “in the same order when multiplied
together” in each subexpression of the representation of the non-commutative polynomials Pj (e.g.,
P1 = T1T3 + T3T2 and P2 = T3 + T1T2, where T1 appears before T3 which appears before T2). The
condition is quite natural and is formally defined in Appendix B.2. That makes these non-commutative
polynomials behave very similarly to commutative polynomial, and we get the following theorem.

Theorem 6.1. Let G = 〈g〉 be a group of prime order p. Let A be an adversary against the (2, n, d)-GP
security of G that makes q oracle queries P1, . . . , Pq. We suppose that all indeterminates appear in the
same order in each monomial of each non-commutative polynomials Pj. Then we can build an adversary
B against the E2,d-MDDH problem in G, such that Adv(2,n,d)-gp

G (A) ≤ n ·d ·AdvE2,d-mddh
G (B)+O(ndq/p).

The running time of B is that of A plus the time to perform a polynomial number (in q, n, and d) of
operations in Zp and G.

The proof is similar to the proof of the LIP theorem (with some additional care when partially evaluating
polynomials to avoid having polynomials with matrix coefficients) and is given in Appendix H.4. Actually,
this theorem can trivially be extended to the (k, n, d)-GP security and the Ek,d-MDDH assumption. But
for k ≥ 3 and n ≥ 2, it is not known if the latter assumption is secure in the generic k-linear group model.
Results in the Generic Bilinear Group Model. We may wonder whether the (2, k, d)-GP security
still holds in the generic bilinear group model, when indeterminates do not necessarily appear in the same
order in each polynomial Pj . As seen before, it is not sufficient to suppose that (Pj)j=1,...,q is a linearly
independent family. But we show here that under a relatively natural condition, the DLM (distinct
leading monomial) condition, the (2, k, d)-GP security still holds.

To formally state our result, we need to introduce some notions, which are formally defined in
Appendix H and which are informally described here. We consider a monomial order for Zp[T1, . . . , Tn],
which is a total order on monomials T i11 · · ·T inn compatible with multiplications and where 1 is the
smallest monomial. We then define the commutative leading monomials of a non-commutative polynomial
as the monomials which are the highest for our monomial order, when considered as commutative
monomials. There may be many commutative leading monomials for a given polynomial (for example
T1T

2
2 + 5T2T1T2 has two commutative leading monomials: T1T

2
2 and T2T1T2). We say a polynomial has

a unique commutative leading monomial if there is only one such monomial.
Finally, we say that a family of polynomials (Pj)j satisfies the DLM condition, if there exists a

monomial order and an invertible matrix M ∈ Zq×qp such that M · (Pj)j is a vector of non-commutative
polynomials with unique and distinct commutative leading monomials, where (Pj)j is the column vector
of polynomials Pj .

Theorem 6.2. Let G = 〈g〉 be a group of prime order p. Let A be an adversary against the (2, n, d)-GP
security of G that makes q oracle queries P1, . . . , Pq. We suppose that (Pj)j satisfies the DLM condition.
Then, the advantage Adv(2,n,d)-gp

G (A) is negligible in the generic bilinear group model.

The proof of Theorem 6.2 is given in Appendix H.5 and follows from Lemma H.3 in Appendix H.2.
We remark that, in the case of commutative polynomials (i.e., LIP theorem), the DLM condition is
exactly the same as saying that the polynomials Pj are linearly independent (using the Gauss reduction).
However, this is not the case with non-commutative polynomials (e.g., consider P1 = T1T2 and P2 = T2T1
which are linearly independent but which have the same leading monomial).
Summary. Table 3 provides a summary of all our results about GP security.

6.3 Applications

RKA-PRFs in Generic Bilinear Groups. The RKA-PRF for permutation of univariate polynomial
functions based on WNR (Section 5.2) can easily be transformed into an RKA-secure PRF for symmetric
bilinear groups for the same set of RKD functions. It is sufficient to change keys from ~a

$← Znp to
~A

$← (Z2×2
p)n. Indeed, the RKA framework extends to this case easily, and the polynomials family we

considered verifies the DLM condition as non-commutative polynomials. Actually, our proof of their

14

Table 3: Summary of our Results Related to Generalized Polynomial Security
Cyclic Group G Symmetric Bilinear Group

(pairing e : G×G→ GT)
Pj ∈ Zp[T1, . . . , Tn]

commutative polynomial
Pj ∈ Zp〈T1, . . . , Tn〉

non-commutative polynomial
(a′, a1, . . . , an) $← K = Zn+1

p (a′, a1, . . . , an) $← K = (Z2×2
p)n+1

In generic cyclic group:
(1, n, d)-GP security
⇔ (Pj)j satisfies the DLM condition
⇔ (Pj)j is linearly independent

In generic bilinear group:
(2, n, d)-GP security
⇐ (Pj)j satisfies the DLM condition

(easy) (Theorem 6.2)

Under E1,d-MDDH:
(1, n, d)-GP security
⇔ same condition as above

Under E2,d-MDDH:
(2, n, d)-GP security
⇐ same condition as above

+ same order for indeterminates
or equivalently,

(Pj)j is linearly independent
+ same order for indeterminates

(Theorem 3.1, the LIP theorem) (Theorem 6.1)

linear independence can be seen as exhibiting a monomial order (namely the graded lexicographic order)
for which these polynomials have distinct leading monomials. In addition, their leading monomials are
always unique even as non-commutative polynomials.
RKA-PRFs under E2,d-MDDH. Unfortunately, Theorem 6.1 does not apply to RKA-PRF for permuta-
tion, as permutation change the order of the indeterminates. However, it still easily enables to construct
the first RKA-PRF for univariate polynomial functions, secure in symmetric bilinear groups, using the
construction of Section 5.2 (or a slightly more efficient variant thereof in Appendix F.1). Again, the
construction is straightforward and so is the proof.

Acknowledgements
This work was supported by the French ANR-10-SEGI-015 PRINCE Project, the Direction Générale
de l’Armement (DGA), the CFM Foundation, and the European Research Council under the European
Union’s Seventh Framework Program (FP7/2007-2013 Grant Agreement 339563 – CryptoCloud).

References
[ABPP14] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson. Related-

key security for pseudorandom functions beyond the linear barrier. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 77–94. Springer,
Heidelberg, August 2014. (Cited on pages 3, 4, 10, 11, 21, 27, 31, 34, 35, and 36.)

[ACF09] Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions from identity-
based key encapsulation. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 554–571. Springer, Heidelberg, April 2009. (Cited on page 3.)

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and Technology
(NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001. (Cited on page 3.)

[AL50] Avraham Shimshon Amitsur and Jacob Levitzki. Minimal identities for algebras. Proceedings
of the American Mathematical Society, 1(4):449–463, 1950. (Cited on page 13.)

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer,
Heidelberg, May 2004. (Cited on page 6.)

15

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 440–456. Springer, Heidelberg, May 2005. (Cited on pages 41 and 43.)

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, August
2004. (Cited on page 3.)

[BC10] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
666–684. Springer, Heidelberg, August 2010. (Cited on pages 3, 5, 8, 10, 11, 17, and 34.)

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The
cascade construction and its concrete security. In 37th FOCS, pages 514–523. IEEE Computer
Society Press, October 1996. (Cited on page 4.)

[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rectangle attacks.
In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 507–525. Springer,
Heidelberg, May 2005. (Cited on page 3.)

[Bih94] Eli Biham. New types of cryptoanalytic attacks using related keys (extended abstract). In Tor
Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 398–409. Springer, Heidelberg,
May 1994. (Cited on page 3.)

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 491–506. Springer, Heidelberg, May 2003. (Cited on pages 4 and 5.)

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and related-key attack
on the full AES-256. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages
231–249. Springer, Heidelberg, August 2009. (Cited on page 3.)

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomor-
phic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, August 2013. (Cited on
page 13.)

[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseudorandom
functions with improved efficiency from the augmented cascade. In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10, pages 131–140. ACM Press, October
2010. (Cited on pages 3, 4, 7, and 8.)

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and
Kenneth G. Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer,
Heidelberg, September 2008. (Cited on pages 41 and 43.)

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudorandom
functions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 353–370. Springer, Heidelberg, August 2014. (Cited on page 13.)

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 719–737. Springer, Heidelberg, April 2012. (Cited on page 5.)

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004
of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006. (Cited on page 5.)

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August
2013. (Cited on pages 3, 4, 6, 13, 18, 41, and 43.)

16

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, October 1986. (Cited on pages 3, 4, and 5.)

[GOR11] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions. In
Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 182–200. Springer, Heidelberg,
March 2011. (Cited on pages 3, 6, and 18.)

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 553–571. Springer,
Heidelberg, August 2007. (Cited on page 6.)

[HW10] Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large
input spaces. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
656–672. Springer, Heidelberg, May 2010. (Cited on page 3.)

[KHP07] Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-key rectangle attacks on reduced
AES-192 and AES-256. In Alex Biryukov, editor, FSE 2007, volume 4593 of LNCS, pages
225–241. Springer, Heidelberg, March 2007. (Cited on page 3.)

[Knu93] Lars R. Knudsen. Cryptanalysis of LOKI91. In Jennifer Seberry and Yuliang Zheng, editors,
AUSCRYPT’92, volume 718 of LNCS, pages 196–208. Springer, Heidelberg, December 1993.
(Cited on page 3.)

[LMR14] Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Improved constructions of
PRFs secure against related-key attacks. In Ioana Boureanu, Philippe Owesarski, and Serge
Vaudenay, editors, ACNS 14, volume 8479 of LNCS, pages 44–61. Springer, Heidelberg, June
2014. (Cited on page 5.)

[LW09] Allison B. Lewko and Brent Waters. Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In Ehab Al-Shaer, Somesh Jha, and Angelos D.
Keromytis, editors, ACM CCS 09, pages 112–120. ACM Press, November 2009. (Cited on
pages 3 and 13.)

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press, October 1997. (Cited
on pages 3 and 8.)

[NR99] Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction
of pseudo-random functions. Journal of Computer and System Sciences, 58(2):336–375, 1999.
(Cited on page 4.)

[Sha07] Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption and from
progressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074, 2007.
http://eprint.iacr.org/2007/074. (Cited on page 6.)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997. (Cited on page 6.)

A Usual Definitions and Assumptions
A.1 Standard Definitions

Collision-Resistant (CR) Hash Function. As in [BC10], we view hash functions as unkeyed for
simplicity. More precisely, the advantage of C in attacking the collision-resistance security of hash function
h: D → hSp is

Advcr
H(C) = Pr [x 6= x′ and h(x) = h(x′)]

where the probability is over (x, x′) $← C . Please note that we assume the probability to be only over the
randomness of the adversary in order to ease notation, but the traditional definition could be used as well.

17

http://eprint.iacr.org/2007/074

SDL d-DDHI-Real d-DDHI-Rand
proc Initialize
g

$← G ; a $← Z∗p
Return ([1] , [a] , . . . ,

[
ad
]
)

proc Finalize(a′)
Return ([a] = [a′])

proc Initialize
g

$← G
a

$← Z∗p
Return ([1] , [a] , . . . ,

[
ad
]
, [1/a])

proc Finalize(b)
Return b

proc Initialize
g

$← G
a

$← Z∗p ; z $← Z∗p
Return ([1] , [a] , . . . ,

[
ad
]
, [z])

proc Finalize(b)
Return b

Figure 2: Games defining the advantage of an adversary D against the SDL and DDHI problems in G.

Hardness Assumptions. Our proofs make use of the d-Strong Discrete Logarithm (SDL) and Decisional
d-Diffie-Hellman Inversion (DDHI) problems given in [GOR11] and described in Figure 2. For the SDL
problem, we define the advantage of an adversary D against the SDL problem in G as

AdvG-sdl
D (=)Pr [G-SDL⇒D true]

where the probability is over the choices of a ∈ Zp, g ∈ G, and the random coins used by the adversary.
For the DDHI problem, the advantage of an adversary D against the DDHI problem in G is

AdvG-ddhi
D (=)Pr

[
d-DDHI-RealDG ⇒ 1

]
− Pr

[
d-DDHI-RandD

G ⇒ 1
]

where the probabilities are over the choices of a, c ∈ Zp, g ∈ G, and the random coins used by the
adversary.

We also recall the definition of the k-Lin problem in G, which states the hardness of distinguish-
ing whether z = [w1 + · · ·+ wk] or a random group element, when given a tuple ([1] , [a1] , . . . , [ak] ,
[a1w1] , . . . , [akwk] , z), where ai, wi

$← Zp for i = 1, . . . , k.
We have three assumptions corresponding to the hardness of these problems, the d-SDL assumption,

the d-DDHI assumption, and the k-Lin assumption.
Setting d = 1 in the d-SDL problem, we recover the usual definition of the DL problem in G. Setting

k = 1 in the k-Lin problem, we recover the usual definition of the DDH problem in G.

A.2 Random Self-Reducibility of Ek,d-MDDH and (Ek,d, N)-MDDH
Ek,d-MDDH assumption is random self-reducible. Namely, let (Ek,d, N)-MDDH denote the N -fold
Ek,d-MDDH assumption, which is similar to the Ek,d-MDDH assumption, except that W

$← Zk×Np ,
U

$← Zk(d+1)×N
p . Then, we have the following lemma.

Lemma A.1 (Lemma 1 from [EHK+13]). Let A be an adversary against the (Ek,d, N)-MDDH assumption
in G. Then we can construct an adversary against the Ek,d-MDDH such that:

Adv(Ek,d,N)-mddh
G (A) ≤

{
N ·AdvEk,d-mddh

G (B) if 1 ≤ N ≤ kd
kd ·AdvEk,d-mddh

G (B) + 1
p−1 if N > kd

A.3 From E1,d-MDDH to DDHI
In this section, we simply show that the E1,d-MDDH assumption in G is implied by the hardness of the
DDHI assumption in G. In order to do that, we introduce new intermediate assumptions.
E1,(d,l)-MDDH Assumption Let G be a group of prime order p. Let 1 ≤ l ≤ d. The E1,(d,l)-MDDH
simply states that, given

g , [Γ] =


[a′]

[a1 · a′]
...[

ad1 · a′
]
 ∈ G(d+1)×1 and [Z] =


[a′ · w]

[a1 · a′ · w]
...[

al−1
1 · a′ · w

]
z

 ∈ G(l+1)×1

18

with g a generator of G and a′, a1, w
$← Zp, then it is hard to distinguish whether z =

[
al1 · a′ · w

]
or

whether z is a random group element. Hence, it simply describes, given [Γ] and the l first rows of [Γ ·W],
where W = (w) ∈ Z1×1

p , the hardness of distinguishing the (l+ 1)-th row of [Γ ·W] from a random value.
We immediately have the following lemma.

Lemma A.2. Let G be a group of prime order p and d ≥ 1. Let A be an adversary against the
E1,d-MDDH problem in G. Then we can construct adversaries Bl against the E1,(d,l)-MDDH problem in
G, for l = 1, . . . , d such that

AdvE1,d-mddh
G (A) ≤

d∑
l=1

p

p− 1 ·AdvE1,(d,l)-mddh
G (Bl)

≤ p

p− 1 · d ·AdvE1,(d,d)-mddh
G (Bd) .

The running time of Bj is that of A plus the time required to compute at most d exponentiations in G.

Lemma A.2. The proof follows a standard hybrid argument. We define games Hl for l = 0, . . . , d as in
Figure 3. Clearly, we have H0 ≡ E1,d-MDDH-Rand and Hd ≡ E1,d-MDDH-Real. Moreover, it is straight-
forward to construct an adversary Bl such that Pr [Hl ⇒ 1]− Pr [Hl−1 ⇒ 1] ≤ AdvE1,(d,l)-mddh

G (Bl), for
l = 1, . . . , d. Adversary Bl simply samples d− l random group elements to complete its matrix and the
simulation is perfect.

Finally, it is clear that AdvE1,(d,l)-mddh
G (Bl) ≤ AdvE1,(d,d)-mddh

G (Bd) for l = 1, . . . , d, since one can
obtain the E1,(d,l)-MDDH matrices from a E1,(d,d)-MDDH by simply taking the last l + 1 rows of the
second matrix (which is a perfect tuple fixing w = ad−l1 w).

Lemma A.2 easily follows.

proc Initialize // Hl, l = 0, . . . , d
a′, a1, w

$← Zp, uk
$← Zp, for k = l + 1, . . . , d

Γk ←
[
ak1 · a′

]
, for k = 0, . . . , d

Zk ←
[
ak1 · a′ · w

]
, for k = 0, . . . , l

Zk ← [uk], for k = l + 1, . . . , d
Return (Γ, ~Z)

proc Finalize(b)
Return b

Figure 3: Game for the proof of Lemma A.2.

Lemma A.3. Let G be a group of prime order p. Let A be an adversary against the E1,(d,d)-MDDH
problem in G. Then, we can construct an adversary B against the DDHI problem in G such that

AdvE1,(d,d)-mddh
G (A) ≤ p

p− 1 ·Advd-ddhi
G (B)

Moreover, the running time of B is that of A plus the time required to compute 2d operations in Zp and
G.

Lemma A.3. Let G be a group of prime order p and d ≥ 1. Let us assume adversary B has a tuple
(~Γ, γ) = (([a′] , [aa′] , . . . ,

[
ada′

]
), γ) where γ =

[
ad+1a′

]
or γ is a random group element [c]. Then it

chooses α, β $← Zp at random and computes the tuple ~Z by letting Zl = Γαl+1 · Γ
β
l for l = 0, . . . , d − 1

and Zd = γα · Γβd . Hence, for l = 0, . . . , d − 1, it is clear that Zl =
[
(αa+ β)ala′

]
. If γ =

[
ad+1], we

have Zd =
[
(αa+ β)ada′

]
. If γ = [c] with c $← Zp, then Zd =

[
(αc+ βad)a′

]
. Let us fix a, c ∈ Zp and let

b′ = αa + β and c′ = αc + βad. Then, the matrices [Γ] and [Z] of dimension (d + 1) × 1 obtained by
writing vectors (~Γ, ~Z) as column vectors forms exactly a E1,(d,d)-MDDH tuple if and only if for any fixed
b′, c′ ∈ Zp, there is a unique (α, β) ∈ Zp such that b′ = αa+ β and c′ = αc+ βad. Hence, we need the

determinant of the matrix
(
a 1
c ad

)
to be non-zero. This determinant is D = ad+1 − c so it is non-zero if

and only if c 6= ad+1. Since c is by definition uniformly random in Zp, we have D 6= 0 with probability
p−1
p .
To finish the proof, we simply need to explain how adversary B can get such a tuple (~Γ, γ) from its DDHI

tuple. Let ([1] , [a] , . . . ,
[
ad
]
, x) ∈ Gd+2 be a DDHI tuple. Then the tuple ((

[
ad
]
,
[
ad−1] , . . . , [a] , [1]), x)

19

is such a tuple since h =
[
ad
]
is a random generator of G (since [1] was a random generator) and 1

a is
random in Z∗p, so we have

[
ad−j

]
= h(1

a)j , for j = 0, . . . , d and either x is random, either x =
[1
a

]
and

then x = h(1
a)d+1 . Hence, this is exactly a tuple of the wanted form (~Γ, γ).

The claim now easily follows.

B Multivariate Polynomial Representation
B.1 Multivariate Polynomial Representation for the LIP Theorem (Theo-

rem 3.1)
As explained in Section 3.1, the theorem would be quite straightforward assuming the polynomials are
given in expanded form. However, it would not encompass a lot of interesting cases. Then, there are
some subtle points to consider in order to avoid to make such an assumption.

Indeed, while we do want to be as general as possible, it is pretty clear that one needs to make some
restrictions. For example, the minimal requirement seems at least to be able to evaluate the polynomial
in arbitrary points, so it would be unconceivable to define a polynomial P by an RSA modulus N , as the
polynomial P = (X − p1)(X − p2), with p1 and p2 the two prime factors of N .

From now on, we will denote by P̃ the representation of the polynomial, while P is the mathematical
polynomial object. We assume in the body of the paper that there is at least one representation P̃ of P
which has polynomial size in n and d. This assumption simplifies the bounds and seems reasonable, but
we could avoid it. However, bounds in the theorems would need to be changed.

We also assume that one can, in polynomial time, evaluate P on any points of Znp as well as evaluate
it partially on any points of Zkp with k < n, obtaining a polynomial Q with n− k indeterminates, and
such that Q has the same properties. These two properties are summarized in Condition 1 below.

In fact, in the whole paper, P̃ is just an expression or an abstract syntax tree (AST) where internal
nodes are either + or ·, while leaves are either an indeterminate Ti or a scalar in Zp. A partial evaluation
can be performed by replacing Ti by ai (when i > j) in the (AST), while a full evaluation can be performed
by evaluating the AST (after the previous replacement, with j = 0). Both operations are polynomial-time
in the size of the AST.

Condition 1. It is possible to get from P̃ (in polynomial time):

full evaluation the value P (a1, . . . , an) ∈ Zp, given a1, . . . , an ∈ Zp;

partial evaluation for any j = 0, . . . , n, a representation Q̃ of Q = P (T1, . . . , Tj , aj+1, . . . , an), given
aj+1, . . . , an ∈ Zp. This representation Q̃ has again to verify (recursively) Condition 1.

B.2 Extension to the GP Security Notion
The lack of commutativity in the GP case (6) makes everything more complex. Hence, we have to make
additional assumptions. Intuitively, we want that all the indeterminates always appear in the same order.
That is, without loss of generality, Tn appears before Tn−1, Tn−1 before Tn−2, and so on. Moreover, the
latter has to be true for both the mathematical object P as well as for any of its representation P̃ in
order to be able to run the proof.

Specifically, we want to ensure that when evaluating the polynomial, we never have to compute
AjAj′ with j′ > j, even if this expression does not appear in the resulting polynomial. For instance,
T2T3 − T2(T3 + T1) is not an acceptable representation of the polynomial T2T1, while the representation
T2T1 is acceptable.

Precisely, we assume that the representation of the polynomials satisfies the following condition.

Condition 2. The representation of a polynomial is an expression or AST (where internal nodes are
either + or ·, while leaves are either an indeterminate Ti or a scalar in Zp) with the following additional
(natural) property (to deal with non-commutativity): if P̃1 · P̃2 is a sub-expression of P̃ , and if Tj is a leaf
of P̃1 for some j, then for any j′ > j, Tj′ is not a leaf of P̃2.

We remark that, since we always perform multiplications of the indeterminates in the same order
because of this condition, polynomials can actually be viewed as commutative polynomials, even if the
polynomials we consider would normally be non-commutative

Please also note that, when k = 1, Condition 2 is stronger than Condition 1.

20

C Proof of the LIP Theorem (Theorem 3.1)
Let A be an adversary against the (n, d)-LIP security of G that makes q oracle queries. Let us construct
an adversary B against the (Ek,d, N)-MDDH assumption, defined in Appendix A.2, such that:

Adv(n,d)-lip
G (A) ≤ n ·Adv(E1,d,d·q)-mddh

G (B) + 2n(d+ 1)q
p

+ n

p
. (3)

the LIP theorem follows from the above equation and Lemma A.1.
The proof of the above equation is based on the sequence of games in Figure 4. The games are used

in the following order: G0,1,G1,1,G0,2, . . . ,G1,n. We denote by Succi the event that game Gi output
takes the value 1.
Preliminaries. Let ~a ∈ Znp . For any polynomial P ∈ Zp[T1, . . . , Tn] with degree in one indeterminate
bounded by d and for j = 1, . . . , n, we define the polynomial QP,~a,j ∈ Zp[T1, . . . , Tj] as the evaluation of
P with Ti = ai, for i = j + 1, . . . , n, so:

QP,~a,j(T1, . . . , Tj) = P (T1, . . . , Tj , aj+1, . . . , an) .

Since the degree of P in any indeterminate is at most d, QP,~a,j may have up to (d + 1)j (distinct)
monomials and so cannot be expanded efficiently. But we can formally consider it as a row vector
(Q(z)

P,~a,j)z∈{0,...,d}j in Z(d+1)j
p , where Q(z)

P,~a,j is the coefficient of the monomial T z1
1 · · ·T

zj
j . As vectors, they

can be multiplied to other vectors or matrices (with indices from the set {0, . . . , d}j) over Zp. We denote
by QP,~a,j � ~U the multiplication of such a vector with a column vector ~U = (Uz)z with entries from G,
defined as:

QP,~a,j � ~U =
∏

z∈{0,...,d}j
U
Q

(z)
P,~a,j

z .

In addition, since QP,~a,j is a polynomial in Zp[T1, . . . , Tj], with degree in any indeterminate bounded
by d, there exist unique polynomials QP,~a,j,0, . . . , QP,~a,j,d in Zp[T1, . . . , Tj−1], such that

QP,~a,j = QP,~a,j,0 +QP,~a,j,1 · Tj + . . .+QP,~a,j,d · T dj .

In particular, we have QP,~a,j−1 = QP,~a,j,0 +QP,~a,j,1 · aj + . . .+QP,~a,j,d · adj . It is important to notice that
while the polynomials QP,~a,j,i may not be expanded efficiently (because they may have up to (d+ 1)j−1

monomials), it is easy (i.e., possible in polynomial time in n and d) to compute them formally (i.e.,
without actually doing and expanding multiplications and additions). This “formal” form is sufficient for
our purpose.

Finally, we denote by TestLin the statistical polynomial-time procedure, described in [ABPP14],
which takes as a list L of polynomials (R1, . . . , RL) (such that R1, . . . , RL are linearly independent as
polynomials) and a polynomial R and which outputs:{

⊥ if R is linearly independent of the set {R1, . . . , RL}
~λ = (λ1, . . . , λL) otherwise, so that R = λ1R1 + . . .+ λLRL

There is at most one such ~λ, since polynomials in inputs are assumed to be linearly independent. For
polynomials in inputs with n indeterminates and degree at most d in any indeterminate, assuming
n(d+ 1) ≤ √p, there is a statistical procedure which is incorrect with probability at most 1

p and which
runs in O(L2dn+L3). Please refer to [ABPP14] for the details of this procedure. TestLin only needs to
be able to evaluate the polynomials R1, . . . , RL and R and do not need an expanded form of them.

While TestLin is a statistical procedure since no polynomial time deterministic procedure is known,
we will first suppose that TestLin is perfect and will deal with statistical errors at the end of the proof.

Let us start with the proof. We first show that game G0,1 instantiates exactly the game defining
the (n, d)-LIP security of G when b = 0. For any query P , we have QP,~a,1 ∈ Zp[T1] and QP,~a,1 =∑d
i=0QP,~a,1,i · T i1, with QP,~a,1,i ∈ Zp. The first time we see a non-zero coefficient α = QP,~a,1,i: L[1]← α,

T[1, 0] $← G (and let us write this element [a′]), and T[1, k] ← akj a
′ for k = 1, . . . , d. Afterwards,

21

proc Initialize // G0,j ; j = 1, . . . , n
~a

$← Znp
L ← empty list
T← empty 2-dimensional table
L← 0 (length of L)
proc RKFn(P) // G0,j ; j = 1, . . . , n
y ← 1
For i = 0, . . . , d

~λ(i) ← TestLin(L, QP,~a,j,i)
If ~λ(i) =⊥ then

L← L+ 1
L[L]← QP,~a,j,i
T[L, 0] $← G
For k = 1, . . . , d

T[L, k] $← T[L, 0]a
k
j

~λ(i) ← (0, . . . , 0, 1) ∈ ZL+1
p

y ← y ·
L∏
l=0

T[l, i]λ
(i)
l

Return y

proc Initialize // G1,j ; j = 1, . . . , n
~a

$← Znp
L ← empty list
T← 2-dimensional table
L← 0 (length of L)
proc RKFn(P) // G1,j ; j = 1, . . . , n
y ← 1
For i = 0, . . . , d

~λ(i) ← TestLin(L, QP,~a,j,i)
If ~λ(i) =⊥ then

L← L+ 1
L[L]← QP,~a,j,i
T[L, 0] $← G
For k = 1, . . . , d

T[L, k] $← G
~λ(i) ← (0, . . . , 0, 1) ∈ ZL+1

p

y ← y ·
L∏
l=0

T[l, i]λ
(i)
l

Return y

Figure 4: Games G0,j and G1,j for the proof of the LIP theorem. Differences between the two games are
in blue.

TestLin(L, QP,~a,1,i) always outputs ~λ(i) = QP,~a,1,i/α, for i = 0, . . . , d. Then, the output y is computed
as

y =
d∏
i=0

T [0, i]~λ
(i)

=
d∏
i=0

[
ai1 · a′

]QP,~a,1,i =
[

d∑
i=0

QP,~a,1,i · ai1 · a′
]

= [QP,~a,1(a1) · a′] = [P (~a) · a′] .

Hence, this is exactly the game defining the (n, d)-LIP security of G when b = 0.
Now, let us show Game G0,j and Game G1,j are indistinguishable under the (E1,d, d · q)-MDDH

assumption. Afterwards, we will show that Game G1,j and Game G0,j+1 are perfectly indistinguishable.
Indistinguishability of Game G0,j and Game G1,j under the (E1,d, d · q)-MDDH assumption.
We design adversaries Bj attacking the (E1,d, d · q)-MDDH problem in G such that

Pr [Succ0,j]− Pr [Succ1,j] ≤ Adv(E1,d,d·q)-mddh
G (Bj) ; ∀j = 1, . . . , n.

The adversary Bj takes as input a tuple ([Γ] , [Z]) ∈ G(d+1)×1×G(d+1)×(d·q), where either Z = Γ ·W ,
and W

$← Z1×(d·q)
p , or Z = U

$← Z(d+1)×(d·q)
p , with Γ defined as in Equation (1) in Section 2, and has to

distinguish these two cases. For that purpose, the adversary Bj simulates everything as in Game G0,j
or G1,j for A , except it sets T[l, k] = zk,l. Assuming the matrix A0 ∈ Z1×1

p (in the definition of Γ in
Equation (1)) is invertible (which happens with probability 1 − 1/p), in the first case, everything is
simulated as in Game G0,j , while in the second case, everything is simulated as in Game G1,j .
Perfect Indistinguishability of Game G1,j and Game G0,j+1. We introduce an intermediate
Game G2,j , described in Figure 5. We will use it to prove that Game G1,j is perfectly indistinguishable
from Game G0,j+1 by showing that both these games are perfectly indistinguishable from game G2,j .
This intermediate game is not polynomial-time, since ~U contains (d+ 1)j entries, but this does not affect
our proof since we show that it is perfectly indistinguishable from Game G1,j and Game G0,j+1 which
are both polynomial-time.

First, we prove that game G1,j is perfectly indistinguishable from Game G2,j . Indeed, we can compute
T in G1,j as T[l, k] =

(
Ql · T kj

)
� ~U , for k = 0, . . . , d, with ~U computed as in the Initialize procedure in G2,j

and L[l] = Ql ∈ Zp[T1, . . . , Tj−1]. Considering (T[l, k])l,k as a vector over ZL(d+1)
p and M = (Ql · T kj)l,k

as a matrix of L(d + 1) rows and (d + 1)j columns (such that each row corresponds to a polynomial

22

proc Initialize // G2,j ; j = 1, . . . , n
a $← Znp
Ux

$← G ; ∀x ∈ {0, . . . , d}j

proc RKFn(P) // G2,j ; j = 1 . . . , n
y ← QP,~a,j � ~U
Return y

Figure 5: Games G2,j for the proof of the LIP theorem.

Ql ·T kj), then we have T = M � ~U . Hence, since the polynomials Ql are linearly independent (and do not
contain the indeterminate Tj), the rows of M are also linearly independent, and M is full rank. Hence,
if ~U is random, so is T, exactly as in Game G1,j . Now, if T is computed as T = M � ~U as above. Since
~λ(i) is a vector in ZL+1

p and since L may grow during the execution, we let λ(i)
l = 0 if l > |~λ(i)|. Then for

a query P , the output y in Game G1,j is computed as:

y =
d∏
i=0

L∏
l=0

T[l, i]λ
(i)
l =

d∏
i=0

L∏
l=0

((
λ

(i)
l ·Ql · T

i
j

)
� ~U

)
=
(

d∑
i=0

L∑
l=0

λ
(i)
l ·Ql · T

i
j

)
� ~U =

(
d∑
i=0

QP,~a,j,i · T ij

)
� ~U = QP,~a,j � ~U.

Then, it is exactly computed as in Game G2,j . Therefore, games G1,j and G2,j are perfectly indistin-
guishable, for j = 1, . . . , n.

Second, we prove that game G2,j is perfectly indistinguishable from Game G0,j+1. The proof is similar
to the previous one. Indeed, we can compute T in G0,j+1 as T[l, 0] = Ql � ~U with ~U computed as in G2,j

and L[l] = Ql ∈ Zp[T1, . . . , Tj], and letting T[l, k] = T[l, 0]a
k
j+1 , for k = 1, . . . , d. Considering (T[l, 0])l as

a vector over ZLp and M = (Ql)l as a matrix of L rows and (d+ 1)j columns (each row corresponding to
a polynomial Ql for l = 1, . . . , L), then we have (T[l, 0])l = M � ~U . Hence, since the polynomials Ql are
linearly independent, the rows of M are also linearly independent, and M is full rank. Thus, if ~U is
random, then so is (T[l, 0])l, exactly as in Game G0,j+1. Now, if T is computed as above, then, for a
query P , the output y in Game G0,j+1 is computed as:

y =
d∏
i=0

L∏
l=0

T[l, i]λ
(i)
l =

d∏
i=0

L∏
l=0

T[l, 0]λ
(i)
l
·aij+1 =

d∏
i=0

L∏
l=0

((
λ

(i)
l ·Ql · a

i
j+1

)
� ~U

)
=
(

d∑
i=0

L∑
l=0

λ
(i)
l ·Ql · a

i
j+1

)
� ~U =

(
d∑
i=0

QP,~a,j+1,i · aij+1

)
� ~U = QP,~a,j � ~U.

Then, it is exactly computed as in Game G2,j . Therefore, games G2,j and G0,j+1 are perfectly indistin-
guishable, for j = 1, . . . , n− 1.

We finally prove that game G1,n is perfectly indistinguishable from the game defining the (n, d)-LIP
security of G when b = 1. Indeed, since QP,~a,n = P for any polynomial P ∈ Zp[T1, . . . , Tn], we just need to
prove that for any sequence (P1, . . . , Pq) of linearly independent polynomials, the values P1� ~U, . . . , Pq� ~U ,
where ~U is computed as in game G2,n, are uniformly random and independent, which is straightforward
since (P1, . . . , Pq) are linearly independent. But since games G1,n and G2,n are equivalent, G1,n is already
perfectly indistinguishable from the game defining the (n, d)-LIP security of G when b = 1.
Dealing with an Imperfect TestLin. To deal with an imperfect TestLin, we just remark that the only
part where we supposed TestLin to be perfect in the proof was to prove the perfect indistinguishability
of Game G1,j and Game G0,j+1, and the perfect indistinguishability between Game G0,1 (respectively
Game G1,n) with the game defining the (n, d)-LIP security of G when b = 0 (respectively b = 1). All this
properties are statistical, so that it is possible to replace the real TestLin (with error 1/p) by a perfect
(with error 0, as used in the proof). This just loses an additive factor at most (d+ 1)QA/p each time,
and so at most 2n(d+ 1)q/p in total.

Equation (3) easily follows from the bounds arising in the different game hops.

23

D Proofs for Section 4
D.1 Weighted NR
Lemma D.1. Let G = 〈g〉 be a group of prime order p and ~w = (w0, . . . , wn) ∈ Zp × (Z∗p)n, such that
wi and p − 1 are coprime for i = 1, . . . , n and w0 and p − 1 are coprime if w0 6= 0. Let WNR~w be the
function defined via Table 2. Let A be an adversary against the PRF security of WNR~w that makes q
oracle queries. Then we can construct an adversary B against the DDH problem in G such that

Advprf
WNR~w(A) ≤ n ·Advddh

G (B) +O
(nq
p

)
.

Moreover, B’s running time is that of A plus the time to compute a polynomial number (in q and n) of
operations in G and Zp.
Proof. Since we just apply a permutation to the key space, it is straightforward that the PRF security of
NR implies the security of WNR. However, we just want to emphasize here that we can easily prove the
security of all these PRFs (including NR) by simply applying the LIP theorem.

The proof is based on the LIP theorem. Let us assume that w0 6= 0. Since the application a ∈ Zp 7→
aw ∈ Zp is a bijection as long as w and p− 1 are coprime, it is clear that if NR is a secure PRF, then so
is WNR~w, as long as wi and p− 1 are coprime, for i = 0, . . . , n, since we just apply a permutation to the
key space.

Let A be an adversary against the PRF security of NR that makes q oracle queries. We can assume
without loss of generality that A never repeats a query. Then we can construct an adversary B against
the (n, 1)-LIP security of G that makes q queries P0, P1, . . . , Pq, defined as follows.

First, B sends the public generator g to A as the generator used in the PRF construction. By doing
so, it implicitly sets a0 = a′.

Next, B runs adversary A . When the latter makes a query x ∈ {0, 1}n, adversary B makes the
query Px(T1, . . . , Tn) =

∏n
i=1 T

xi
i to its oracle and returns the value it gets to A . When A halts, B

halts with the same output. If B’s oracle responds to a query P by the value [P (~a) · a′], then B sends
[Px(~a) · a′] = [a′ ·

∏n
i=1 a

xi
i a
′] = NR((a′,~a), x) to A when the latter makes a query x, while if B’s oracle

responds to a query P by a uniformly random value, then B sends uniformly random values to A . Hence,
B simulates exactly the game defining the prf security of NR for the key ~a which is taken at random over
Zn+1
p .
The only thing we need to prove is that all these queries are allowed to B, meaning that for any

distinct queries x1, . . . , xq of A , polynomials Px1 , . . . , Pxq are linearly independent over Zp, which is
straightforward. Hence, we have

Advprf
NR(A) ≤ Adv(n,1)-lip

G (B) .

Applying the LIP theorem, we then obtain

Advprf
NR(A) ≤ n ·Advddh

G (C) +O
(nq
p

)
.

The running time of C is that of A plus the time to compute a polynomial number (in q and n) operations
in Zp and G. The statistical loss could be removed since the polynomials queried are either equal or
linearly independent, and we can therefore use a simpler perfect TestLin procedure which just checks
equality in the proof of the LIP theorem is perfect.

This also proves the security of WNR~w for any ~w such that wi and p− 1 are coprime, for i = 0, . . . , n.
Please also note that if w0 = 0 (for instance for NR∗), we can do a similar proof using the (n, 1)-LIP
security of G, by querying 1 at first and revealing [a′] as the generator instead of g.

D.2 Weighted BMR
Lemma D.2. Let G = 〈g〉 be a group of prime order p and ~w = (w1, . . . , wn) ∈ Znp . Let WBMR~w be the
function defined via Table 2. Let A be an adversary against the PRF security of WBMR~w that makes q
oracle queries. Then we can construct an adversary B against the d-DDHI problem in G such that

Advprf
WBMR~w(A) ≤

(
p

p− d− 1

)n
· n ·

((
p

p− 1

)2
· d2 · Advd-ddhi

G (C) + O
(ndq
p

))
.

Moreover, B’s running time is that of A plus a time polynomial in n, d, q.

24

Proof. Once again, since we simply apply a permutation to the key space, the PRF security of WBMR is
clearly implied by the PRF security of BMR. We just want to emphasize here that we can easily prove
the security of all these PRFs (including BMR) by simply applying the LIP theorem.

Let A be an adversary against the PRF security of WBMR~w that makes q oracle queries. We can
assume without loss of generality that A never repeats a query. Then we can construct an adversary B
against the (n, d)-LIP security of G that makes q + 1 queries P0, P1, . . . , Pq, defined as follows.

First, B queries polynomial P0(~T) =
∏n
i=1
∏
k∈{0,...,d}(Ti + wi + k) and gets

h =

a′ n∏
i=1

∏
k∈{0,...,d}

(ai + wi + k)


g

,

that it sends to A as the generator used in the PRF construction (this is a generator with probability
(p−d−1

p)n).
Next, B runs adversary A . When the latter makes a query x ∈ {0, . . . , d}n, adversary B makes the

query Px(T1, . . . , Tn) =
∏n
i=1
∏
k∈{0,...,d}\{x}(Ti + wi + k) to its oracle and returns the value he gets to

A . When A halts, B halts with the same output. If B’s oracle responds to a query P by the value
[P (~a)a′]g, then B sends

[Px(~a)a′]g =

 n∏
i=1

∏
k∈{0,...,d}\{x}

(ai + wi + k)a′

g

=
[

P0(~a)∏n
i=1(ai + wi + xi)

]
g

=
[
n∏
i=1

1
ai + wi + xi

]
h

,

to A when the latter makes a query x, while if B’s oracle responds to a query P by a uniformly random
value, then B sends uniformly random values to A . Hence, B simulates exactly the game defining the
PRF security of WNR~w for the key ~a which is taken at random over Znp and the generator h.

Then, since Px(T1, . . . , Tn) =
∏n
i=1
∏
k∈{0,...,d}\{x}(Ti + wi + k) is a degree at most d polynomial in

each indeterminate, the only thing that remains to prove is that all these queries are allowed to B,
meaning that for any distinct queries x(1), . . . , x(q) of A , polynomials P0, Px(1) , . . . , Px(q) are linearly
independent over Zp. By contradiction, let us assume there is a sequence of distinct queries x(1), . . . , x(q)

such that there is a linear combination:

λ0P0 +
q∑

m=1
λkPx(k)

with λk 6= 0 for all k = 1, . . . , q.
By evaluating this sum in −x(k) − ~w = (−x(k)

1 −w1, . . . ,−x(k)
n −wn) ∈ Znp , we get P0(−x(k) − ~w) = 0

for all k and Px(i)(−x(k) − ~w) = 0 for all i 6= k and then λkPx(k)(−x(k) − ~w) = 0, which directly implies
λk = 0, since Px(k)(−x(k) − ~w) 6= 0 for all k = 1, . . . , q. Then, we have proven that λk = 0, for all
k = 1, . . . , q. Finally, since P0 is not the zero polynomial and λ0P0 = 0, we have also λ0 = 0.

Then, for any distinct queries x(1), . . . , x(q) of A , polynomials P0, Px(1) , . . . , Px(q) are linearly inde-
pendent over Zp. Hence, we have

Advprf
WBMR~w(A) ≤

(
p

p− d− 1

)n
·Adv(n,d)-lip

G (B) .

So applying the LIP theorem and Lemmas A.1 and A.3, we finally obtain

Advprf
WBMR~w(A) ≤

(
p

p− d− 1

)n
· n ·

((
p

p− 1

)2
· d2 · Advd-ddhi

G (C) + O
(ndq
p

))
.

The running time of C is that of A plus the time to compute a polynomial number (in q, d and n) of
operations in Zp and G.

Hence, in particular, setting the weights wi to 0, we obtain a security proof for BMR under the
d-DDHI assumption.

E Proof of Theorems in Section 5
E.1 Proof of Theorem 5.1
In order to prove Theorem 5.1, we will prove the following lemma which states the exact security bound
of the ΦSn -prk-rka security of WBMRlin.

25

Lemma E.1. Let G = 〈g〉 be a group of prime order p. Let A be a ΦSn-restricted adversary against
the PRF-RKA security of WBMRlin that makes q oracle queries. Then we can construct an adversary B
against the (n(d+ 1)− 1)-DDHI problem in G such that

Advprf-rka
ΦSn ,WBMRlin(A) ≤

(
p

p− n(d+ 1)

)n
· n·((

p

p− 1

)2
· (n(d+ 1)− 1) ·Adv(n(d+1)−1)-ddhi

G (B) +O
(ndq
p

))
.

The running time of B is that of A , plus the time to compute a polynomial number (in q, n and d) of
operations in Zp and G.

To prove the above lemma, we prove a first statement using the (n, n(d+ 1)− 1)-LIP assumption and
then we apply the LIP theorem.

Lemma E.2. Let G = 〈g〉 be a group of prime order p. Let A be a ΦSn-restricted adversary against the
PRF-RKA security of WBMRlin that makes q oracle queries. Then we can design an adversary B against
the (n, n(d+ 1)− 1)-LIP security problem in G that makes q oracle queries such that

Advprf-rka
ΦSn ,WBMRlin(A) ≤

(
p

p− n(d+ 1)

)n
·Adv(n,n(d+1)−1)-lip

G (B) .

Moreover, the running time of B is the time to compute a polynomial number (in q, n and d) of operations
in Zp and G.

Lemma E.2. Let A be a ΦSn -restricted adversary against the PRF-RKA security of WBMRlin that makes
q queries. We design an adversary B against the (n, n(d+ 1)− 1)-LIP security of G that makes q + 1
queries as follows.

First, B queries polynomial P0(~T) =
∏n
i=1
∏
k∈{0,...,n(d+1)−1}(Ti + k) and gets

h =

a′ n∏
i=1

∏
k∈{0,...,n(d+1)−1}

(ai + k)


g

,

that it sends to A as the generator used in the PRF construction (this is a generator with probability
(p−n(d+1)−1

p)n).
Next, B runs adversary A . When the latter makes a query (σ, x), B computes the polynomial

Pσ,x(~T) =
∏n
i=1
∏n(d+1)−1
k=0 (Ti + k)∏n

i=1(Tσ−1(i) + wi + xi)
= P0(~T)∏n

i=1(Ti + wσ(i) + xσ(i))

and queries Pσ,x. This is possible since
∏n
i=1(Ti + wσ(i) + xσ(i)) divides P0 and since Pσ,x is a degree

n(d+ 1)− 1 polynomial in each indeterminate. It then returns the value it gets to A .
It is clear that if B’s oracle returns uniformly random values, B simulates exactly the game

RKPRFRandWBMRlin , whereas if it returns [P (~a)a′] for a query P , then B simulates exactly game
RKPRFRealWBMRlin with the generator defined above. Indeed, in that case, let h = [P0(~a)a′]g be the gen-
erator given to A . Then for a query (σ, x), [Pσ,x(~a)a′]g =

[∏n
i=1

1
~a[σ−1(i)]+wi+xi

]
h

= WBMRlin(σ(~a), x),

where WBMRlin is defined using the generator h. Then, the only thing that remains to prove is that all
the polynomials queried by B to its oracle are linearly independent over Zp.

Hence, let us now prove that all polynomials Pσ,x(~T) corresponding to queries (σ, x) are lin-
early independent. By contradiction, let us assume that there exists a sequence of distinct queries
(σ(1), x(1)), . . . , (σ(q), x(q)) such that there exists a linear combination:

λ0P0 +
q∑

k=1
λk · Pσ(k),x(k) = 0

with λk 6= 0 for all k = 1, . . . , q.

26

Then, by evaluating the above sum of polynomials on points

(−wσ(k)(1) − x
(k)
σ(k)(1), . . . ,−wσ(k)(n) − x

(k)
σ(k)(n)),

since all the above polynomials except Pσ(k),x(k) take the value 0 on these points, we obtain, for k = 1, . . . , q,
λk = 0. Then, we have λ0P0 = 0 and since P0 6= 0, we have λ0 = 0. Hence, all these polynomials are
linearly independent. Lemma E.2 follows.

Finally, Lemma E.1 easily follows by combining Lemma E.2, the LIP theorem and Lemmas A.1
and A.3.

Remark E.3. It is interesting to notice that, by slightly changing the construction, we can also achieve
ΦSn,+k -RKA-security, where ΦSn,+k is the class of functions σ~b that, when applied to a key ~a ∈ Znp ,
leads to the key (aσ−1(1) + b1, . . . , aσ−1(n) + bn), for any σ ∈ Sn and any ~b ∈ {0, . . . , k}n. In other words,
ΦSn,+k also tolerates small additive factors in addition to permutations. Indeed, considering the function
WBMRlin

k as the particular case of WBMR where wi = (i− 1)(d+ 1)(k + 1) for i = 1, . . . , n one can prove
that this construction is ΦSn,+k -RKA-secure under the (d(k + 1) + k + (n− 1)(d+ 1)(k + 1))-DDHI
assumption in G and the proof follows closely the proof of Theorem 5.1. In particular, with k = 0, this is
exactly the result from Theorem 5.1.

E.2 Proof of Theorem 5.2
We first prove a similar statement under a security notion termed extended key-collision security, whose
security game is depicted in Figure 6, which extends the key-collision security notion defined in [ABPP14]
but where Initialize also leaks HelpΦ to the adversary. Afterwards, we will generically reduce this notion
to the SDL problem in G.

proc Initialize
~a

$← Znp
Return HelpΦ(~a)

proc RKFn(~φ, x)
y ←M(~φ(~a), x)
Return y

proc Finalize(~φ1, ~φ2)
Return (~φ1 6= ~φ2 and ~φ1(~a) = ~φ2(~a))

Figure 6: Game defining the extended Φ-key-collision security of a PRF M for a class Φ.

Specifically, we will show at first that:

Advprf-rka
Φ,F (A) ≤ Adv(n,d)-lip

G (B) + Advcr
H(C) + 2 ·Advext-kc

Φ,M (D) . (4)

Proof of this Intermediate Statement.
The proof is based on the sequence of games in Figure 7. We denote by Succi the event that game

Gi output takes the value 1. Boolean flags are assumed initialized to false. Games Gi, Gj are said to
be identical until flag if their code differs only in statements that follow the setting of flag to true. We
assume that adversary A never repeats an oracle query.

Game G1 introduces storage of used RKD functions and values of images ~C of ~Ω in sets D and E
respectively and sets flag1 to true if the same value of ~C arises for two different RKD functions. Since
this storage does not affect the values returned by RKFn

Pr [Succ0] = Pr [Succ1] .

Game G2 adds the boxed code which changes how the repetition of a value ~C is handled, by picking
instead a random value from Gm\E that will not repeat any previous one. Games G1 and G2 are identical
until flag1 is set to true, hence we have

Pr [Succ1] ≤ Pr [Succ2] + Pr [E1]

where E1 denotes the event that the execution of A with game G1 sets flag1 to true. We design an
adversary D attacking the extended Φ-key-collision security of M such that

Pr [E1] ≤ Advext-kc
Φ,M (D) .

Adversary D gets helper information helpΦ = HelpΦ(~a), then runs A . When the latter makes a RKFn-
query (~φ, x), adversary D computes ~C = ~Ω(~φ(~a)) using its helper information, z = h(x, ~C) and t = E(z)

27

proc Initialize // G0

~a
$← Zn

p

proc RKFn(~φ, x) // G0

~C ← ~Ω(~φ(~a))
z ← h(x, ~C)
t← E(z)
y ←M(~φ(~a), t)
Return y
proc Finalize(b’) // All Games
Return b′

proc Initialize // G1,G2

~a
$← Zn

p ; D ← ∅ ; E ← ∅

proc RKFn(~φ, x) // G1, G2

~C ← ~Ω(~φ(~a))
If ~C ∈ E and ~φ /∈ D then

flag1 ← true ; ~C
$← Gm\E

D ← D ∪ {~φ} ; E ← E ∪ { ~C}
z ← h(x, ~C)
t← E(z)
y ←M(~φ(~a), t)
Return y

proc Initialize // G3,G4

~a
$← Zn

p ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(~φ, x) // G3, G4

~C ← ~Ω(~φ(~a))
If ~C ∈ E and ~φ /∈ D then ~C

$← Gm\E
D ← D ∪ {~φ} ; E ← E ∪ { ~C}
z ← h(x, ~C)
If z ∈ G then flag2 ← true

z
$← hSp\G

G← G ∪ {z}
t← E(z)
y ←M(~φ(~a), t)
Return y

proc Initialize // G5

~a
$← Zn

p ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(~φ, x) // G5

~C ← ~Ω(~φ(~a))
If ~C ∈ E and ~φ /∈ D

then ~C
$← Gm\E

D ← D ∪ {~φ} ; E ← E ∪ { ~C}
z ← h(x, ~C)
If z ∈ G then z $← hSp\G
G← G ∪ {z}
t← E(z)
y

$← G
Return y

proc Initialize // G6

~a
$← Zn

p ; D ← ∅ ; E ← ∅
G

$← Fun(Zn
p ,D,G)

proc RKFn(~φ, x) // G6

y
$← G

Return y

proc Initialize // G7, G8

~a
$← Zn

p ; D ← ∅ ; E ← ∅
G

$← Fun(Zn
p ,D,G)

proc RKFn(~φ, x) // G7 , G8

If ~φ(~a) ∈ E and ~φ /∈ D then

y
$← G ; flag3 ← true

else y ← G(~φ(~a), x)
D ← D ∪ {~φ} ; E ← E ∪ {~φ(~a)}
Return y

proc Initialize // G9

~a
$← Zn

p ; G $← Fun(Zn
p ,D,G)

proc RKFn(~φ, x) // G9

y ← G(~φ(~a), x)
Return y

Figure 7: Games for the proof of Theorem 5.2.

and finally queries (~φ, t) to its oracle and sends the value it gets to A . When A halts, D searches for
two different RKD functions ~φ1, ~φ2 queried by A that lead to the same value ~C and returns these two
functions if found. Since ~Ω is a Algebraic Fingerprint, such two functions lead to the same key, so D wins
if he finds such two functions.

Game G3 introduces the storage of hash values in a set G and sets flag2 to true if the same hash
output arises twice. Since this storage does not affect the values returned by RKFn, we have

Pr [Succ2] = Pr [Succ3] .

Game G4 adds the boxed code which changes how repetition of hash values is handled, by picking
instead a random value z from hSp\G that will not repeat any previously used hash value. Games G3
and G4 are identical until flag2 is set to true, hence we have

Pr [Succ3] ≤ Pr [Succ4] + Pr [E2]

where E2 denotes the event that the execution of A with game G3 sets flag2 to true. We design an
adversary C attacking the collision-resistance security of h such that

Pr [E2] ≤ Advcr
h (C) .

28

Adversary C starts by picking ~a $← Znp and initializes j ← 0. It runs A . When the latter makes a
RKFn-query (~φ, x), adversary C responds via
~C ← ~Ω(~φ(~a))
j ← j + 1 ; ~φj ← ~φ ; xj ← x

If ~C ∈ E and ~φ /∈ D then ~C
$← Gm\E (∗)

D ← D ∪ {~φ} ; E ← E ∪ {~C}
~Cj ← ~C

z ← h(x, ~C)
zj ← z

t← E(z) y ←M(~φ(~a), t)
Return y.

When A halts, C searches for a, b satisfying 1 ≤ a < b ≤ j such that za = zb and, if it finds them, outputs
(xa, ~Ca), (xb, ~Cb) and halts. The pairs (xa, ~Ca) and (xb, ~Cb) are distinct. Indeed, consider two cases: first,
if ~φa = ~φb then since A never repeats an oracle query, xa 6= xb hence (xa, ~Ca) 6= (xb, ~Cb). Second, if
~φa 6= ~φb, then condition (∗) ensures that ~Ca 6= ~Cb. Hence once again, (xa, ~Ca) 6= (xb, ~Cb), and then

Pr [Succ3] ≤ Pr [Succ4] + Advcr
h (C) .

In game G5, instead of returning the value M(~φ(~a), t), we always return a random value. To show
that games G4 and G5 are indistinguishable, we design an adversary B against the (n, d)-LIP security of
G such that

Pr [Succ4] ≤ Pr [Succ5] + Adv(n,d)-lip
G (B) .

Adversary B starts by querying polynomial 1 to [a′] and returns it as the generator used for the PRF
to A . Next, it initializes sets D ← ∅, E ← ∅, G ← ∅. Then B queries help1, . . . , helpl such that
HelpΦ(~a) = ([a′help1(~a)] , . . . , [a′helpl(~a)]). Afterwards, it runs A . When the latter makes an RKFn-
query (~φ, x), B responds as follows. First, it computes ~C = ~Ω(~φ(~a)) using its helper information. Then,
B checks if ~C ∈ E and ~φ ∈ D. If they do, B picks ~C $← Gm\E at random. B then sets D ← D ∪ {~φ}
and E ← E ∪ {~C}. Next, B computes z ← h(x, ~C) and checks if z ∈ G. If it does, B picks z $← hSp\G
at random. Notice that this step guarantees that all values z are distinct as long as A makes at most
|hSp| queries. Finally, B sets G← G ∪ {z}, computes t = E(z) and makes the query P~φ,t to its oracle,

where P~φ,t is the polynomial such that M(~φ(~a), t) =
[
P~φ,t(~a)

]
, and returns the value it gets, which is

either
[
P~φ,t(~a)a′

]
or a uniformly random value, to A . When A halts, B halts with the same output. It

is clear that all the polynomials queried by B are linearly independent via the definition of E. Finally, it
is clear that if B’s oracle answers to a query P by the value [P (~a)a′], then it simulates exactly game G4
(where the generator used for the PRF construction is [a′], and if B’s oracle gives uniformly random
values, then the outputs are correctly simulated, since they are uniformly random. This concludes the
proof of the above statement.

In game G6, we simply set the value y to a uniformly random value. Clearly, G5 and G6 are identical
since the value returned is a uniformly random value for any query. Then, we have

Pr [Succ5] = Pr [Succ6] .

In game G7, we check if two different queries can lead to a key collision. Since the “If” test ensures that
the returned value is still uniformly random over G even when two different queries result in the same
key, games G6 and G7 are identical. Hence,

Pr [Succ6] = Pr [Succ7] .

In game G8, we compute the output of RKFn using a random function G in Fun(Znp ,D,G). Since games
G7 and G8 are identical until flag3 is set to true, we have

Pr [Succ7] ≤ Pr [Succ8] + Pr [E3]

where E3 denotes the event that the execution of A with game G8 sets flag3 to true. To bound the
probability of event E3, we design an adversary D attacking the extended Φ-key-collision security of M
such that

Pr [E3] ≤ Advext-kc
Φ,M (D) .

29

Adversary D starts by initializing a list L ← empty list and by choosing an element ~ψ in Φ and by setting
~ψ1 ← ~ψ and ~ψ2 ← ~ψ. Then, it runs A . When the latter makes an RKFn-query (~φ, x), if ~ψ1 = ~ψ2,
adversary D does the following: it first computes ~C ← ~Ω(~φ(~a)) using its helper information and searches
for all tuples (~φi, ~Ci) ∈ L such that ~Ci = ~C. If it does find such tuples, it checks for all of them if ~φ 6= ~φi.
If it does for a certain i, it sets ~ψ1 ← ~φi and ~ψ2 ← ~φ. Then, it adds (~φ, ~C) to L. Finally, D picks y $← G
at random, returns y to A . When A halts, D halts and outputs (~ψ1, ~ψ2). If the execution of A sets flag3
to true, then A has queried ~φ1 6= ~φ2 such that ~φ1(~a) = ~φ2(~a) and assuming it has first queried ~φ1, when
D computes ~Ω(~φ2(~a)) and checks if this value is already in L, it finds that this value matches ~Ω(~φ1(~a))
and since ~φ1 6= ~φ2, it sets ~ψ1 = ~φ1 and ~ψ2 = ~φ2, so D wins. Then, we have

Pr [E3] ≤ Advext-kc
Φ,M (D) .

Since A does not repeat oracle queries and since key collisions are dealt with in a similar way, it
follows that games G8 and G9 are identical. Thus,

Pr [Succ8] = Pr [Succ9] .

Equation (4) now follows by combining the bounds arising in the different game hops.
From Extended-Key-Collision Security to SDL.

In the following lemma, we reduce the extended-kc security to the hardness of the SDL problem in G.

Lemma E.4. Let G be a group of prime order p. Let M : Znp × D → G be a function and Φ be a
class of RKD functions. Let A be an adversary against the Φ-key-collision security of M that is given
HelpΦ(~a) and that makes q oracle queries in S. Let d be an integer such that, for any polynomial in
{help1, . . . , helpl} ∪ {Px,~φ | x ∈ S, ~φ ∈ Φ}, its maximum degree in any indeterminate is at most d. Then,
we can construct an adversary B against the SDL problem in G such that

Advext-kc
Φ,M (A) ≤ p

p− (n− 1)d · n ·AdvG-sdl
B (). (5)

Moreover, the running time of B is that of A plus the time to compute a polynomial number (in n, d and
q) of operations in Zp and in G.

Lemma E.4. Adversary B receives a d-SDL tuple ([1] , [a] , . . . ,
[
ad
]
) where a $← Zp and where [1].

Adversary B then picks j $← {1, . . . , n} at random.
B start by picking a′ at random in Zp and by sending [a′] to A as the generator used for the PRF

construction. Then B picks ai
$← Zp for i = 1, . . . , n, i 6= j at random. Implicitly, B sets aj = a.

Then, B computes the helper information HelpΦ(~a) = ([help1(~a) · a′] , . . . ,
[helpl(~a) · a′]) using its d-SDL tuple and the known values a′, ai for i 6= j and sends this helper in-
formation to A . When A makes a query (~φ, x), B wants to return to A the value M(~φ(~a), x) =[
Px(~φ(~a))a′

]
=
[
P~φ,x(~a)a′

]
.

To do so, B starts by computing P~φ,x(a1, . . . , aj−1, Tj , aj+1, . . . , an) using chosen values ai, i 6= j. It
then gets a degree at most d polynomial Pj in Tj . Hence, using its d-SDL tuple and the known value a′,
it can now easily compute [Pj(aj)a′] =

[
P~φ,x(~a)a′

]
and returns this value to A .

At the end, A sends (~φ1, ~φ2) to B and wins if ~φ1 6= ~φ2 and ~φ1(~a) = ~φ2(~a). Hence, B computes
~ψ = ~φ1−~φ2. Since ~φ1 6= ~φ2, there is at least a component of ~ψ which is a non-zero multivariate polynomial.
Let us call this component R ∈ Zp[T1, . . . , Tn]. Since we chose j at random in {1, . . . , n}, the indeterminate
Tj appears in R with probability at least 1

n . B now evaluates R in (a1, . . . , aj−1, Tj , aj+1, . . . , an) to
obtain a univariate polynomial S ∈ Zp[Tj]. This polynomial is a non-zero polynomial with probability at
least p−(n−1)d

p , via the Schwartz-Zippel lemma.
Finally, B simply factorizes S (for instance using the Kedlaya-Umans algorithm), and outputs the

unique root r of S such that [r] = [a]. Lemma E.4 follows.

The proof of Theorem 5.2 follows by combining Equation (4) with Equation (5).

30

E.3 Proof of Linearly Independence Property for Section 5.2
Let Pσ◦~φ,x(~T) =

∏n
i=1 φi(~T)pσ(i)·xσ(i) for σ ◦ ~φ ∈ ΦSn,d and x ∈ {0, 1}n. Let S = {11 ‖ z | z ∈ {0, 1}n−2}.

The only thing we need to prove is that, for any sequence (x1, σ1◦~φ1), . . . , (xq, σq◦~φq), polynomials 1, T ji for
i = 1, . . . , n and j = 1, . . . , d (revealed in the helper information) and polynomials Pσ1◦~φ1,x1

, . . . , Pσq◦~φq,xq
are linearly independent, as long as x1, . . . , xq are all distinct in S.

By contradiction, let us assume that there exists a sequence of distinct polynomials P1, . . . , Pq, where
for k = 1, . . . , q, Pk = Pσ◦~φ,x for distinct x ∈ S or Pk = T ji for some (i, j) ∈ {1, . . . , n} × {1, . . . , d} or
Pk = 1, such that:

q∑
k=1

λk · Pk = 0

with λk 6= 0 for all k. Since polynomials T ji , for i = 1, . . . , n and j = 1, . . . , d and polynomial 1 are clearly
linearly independent over Zp, then there is at least one polynomial Pk in the above sum such that Pk
corresponds to Pσ◦~φ,x for a query (σ ◦ ~φ, x) with x ∈ S.

Let Pσ◦~φ,x(~T) denote a polynomial in the above sum such that x ∈ S has the maximum Hamming
weight amongst all the bitstrings z ∈ S such that there exists k ∈ {1, . . . , q} and (σ ◦ ~φ) ∈ ΦSn,d such
that Pk = Pσ◦~φ,z. Since x ∈ S, hw(x) ≥ 2. Since φi is a non-constant polynomial for all i = 1, . . . , n,
letting di denote the degree of φi, the monomial

∏n
i=1 T

dipσ(i)·xσ(i)
i appears in Pσ◦~φ,x(~T). Hence, since∑q

k=1 λk · Pk is the zero polynomial and λk 6= 0 for all k, there exists another query Pσ′◦~φ′,x′ such that
the monomial

∏n
i=1 T

dipσ(i)·xσ(i)
i also appears in Pσ′◦~φ′,x′ . Hence hw(x′) ≥ hw(x).

But x has maximum Hamming weight by assumption, so hw(x′) ≤ hw(x) and then hw(x′) = hw(x).
We note that the degree in Ti in this monomial is either 0, if xσ(i) = 0, or dipσ(i) otherwise, where
1 ≤ di ≤ d. But by definition of Pσ′◦~φ′,x, the possible degrees in Ti in a monomial that appears in Pσ′◦~φ′,x
is either 0 if x′σ′(i) = 0 or a non-zero multiple l · pσ′(i) of pσ′(i) with 1 ≤ l ≤ d otherwise.

However, p1, . . . , pn are clearly coprime and d < p1 < . . . < pn by assumption. Hence, for all
i = 1, . . . , n such that xσ(i) = 1, we have, by Gauss’s Lemma, pσ′(i) = pσ(i) and xσ(i) = 1 implies
x′σ′(i) = 1. Finally, since pσ′(i) = pσ(i) implies σ′(i) = σ′(i) for all i such that xσ(i) = 1, and since they
have both same Hamming weight, it implies that x = x′ and then to have such a linear combination, we
need to use twice the same entry x ∈ S, which is not possible.

The linear independence property follows.

F Other Applications to Related-Key Security
In this appendix, we describe how our new framework can be used to build RKA-secure PRFs for two
other classes.

The first class we address, in Appendix F.1, is the class Φd of degree at most d univariate polynomials.
We use our framework to show that for any choice of weights, WNR is Φd-RKA-secure. This extends the
result from [ABPP14] where NR∗ was proven Φd-RKA-secure and proves that, in particular, NR also is
Φd-RKA-secure.

The second class we address, in Appendix F.2, is the class Φn+1,multi-aff of non-constant affine
multivariate functions. However, this construction is of limited interest and should only be seen as a first
step towards building PRFs for large classes of RKD functions.

All the proofs of statements in these Appendices F.1 and F.2 are detailed in Appendix F.3.

F.1 RKA-PRFs for Univariate Polynomial Functions
Here, we apply our framework to WNR, defined via Table 2, for the class of RKD functions Φd = {~φ: K →
K | ~φi : ~T 7→

∑d
j=0 αi,j ·T

j
i , (αi,1, . . . , αi,d) 6= 0d,∀i = 0, . . . , n}, for any choice of weights. In what follows,

we assume that w0 6= 0, but similar results can easily be proven if w0 = 0.
Hence, we recover in particular all the results from [ABPP14] in this subsection, under the same

assumption, but also prove that, even if the previous framework could not deal with NR but only with
NR∗, both constructions can lead to a Φd-RKA-secure PRF.

In order to apply our framework to WNR and Φd, we need to define associated algebraic fingerprint,
helper function, collision-resistant hash function and expansion function. We define these as follows:

31

• [a′] ∈ G is the generator used for the PRF construction

• ~Ω: ~a ∈ Znp 7→ ([a1 · a′] , . . . , [an · a′]) ∈ Gn

• HelpΦd : ~a ∈ Znp 7→ ([a′] , [a1 · a′] , . . . ,
[
ad1 · a′

]
, . . . , [an · a′] , . . . ,

[
adn · a′

]
) ∈ Gnd+1

• h can be any collision-resistant hash function h: {0, 1}n ×Gn → {0, 1}n−2

• E: z ∈ {0, 1}n−2 7→ 11 ‖ z ∈ {0, 1}n

We just need to prove that E satisfies the linear independence property required to apply the framework,
which is done in Appendix F.3.

Finally, by combining the above statements, Theorem 5.2 and the LIP theorem, we obtain the following
theorem.

Theorem F.1. Let G = 〈g〉 be a group of prime order p. Using above definitions, let us define
F : Zn+1

p × {0, 1}n → G by
F (~a, x) = WNR~w(~a,E(h(x, ~Ω(~a))))

for all ~a ∈ Zn+1
p and x ∈ {0, 1}n. Let m = max(w0, . . . , wn) be the maximum component of ~w. Let A be

a Φd-restricted adversary against the PRF-RKA security of F that makes q ≤ |{0, 1}n−2| oracle queries.
Then we can construct an adversary B against the md-DDHI problem in G, an adversary C against the
collision-resistance security of h, an adversary D against the md-SDL problem in G such that

Advprf-rka
Φd,F (A) ≤ (n+ 1) ·md · p

p− 1 ·Advmd-ddhi
G (B)

+ Advcr
h (C) + (n+ 1) ·Advmd-sdl

G (D) + O(qnd)
p

.

C has the same running time as A . The running time of B and D is that of A , plus the time required
to compute a polynomial number (in n, d,m and q) of operations in Zp and in G.

F.2 RKA-PRF for Affine Multivariate Functions
In order to deal with larger classes of related-key attacks, it would be important to consider multivariate
RKD functions in which the attacker is allowed to mix different components of the secret key. In fact, the
d-Linear Weighted NR PRF construction given in the previous section seems like a plausible candidate
if we assume that the RKD functions that are being applied to each sub key are linearly independent.
However we have not been able to prove this to be the case or to disprove it. We construct an alternative
PRF that can be shown to be RKA-secure against an adversary that can modify the key by applying
functions from Φn+1,multi-aff, defined as:

{(M ,~b) | (M ,~b) ∈ Z(n+1)×(n+1)
p × Zn+1

p s.t. ~Mi 6= 0n+1,∀i = 0, . . . , n}

where ~Mi denote the i-th row of M , for i = 0, . . . , n. Hence, for a key ~a = (a0, . . . , an) ∈ Zn+1
p , applying

an RKD function (M ,~b) ∈ Φn+1,multi-aff, leads to the key M ·~a+~b = (~M0 ·~a+ b0, . . . , ~Mn ·~a+ bn) ∈ Zn+1
p .

Since the new construction is based on the Weighted NR PRF with exponential weights wi = 2i, it
is of limited interest given that its security relies on an assumption whose input is of exponential size.
Moreover, in settings in which it is acceptable to have security assumptions with exponential-size inputs,
much simpler constructions are possible. Nevertheless, we still believe that the new construction provides
a first small step towards building PRFs for large classes of RKD functions such as multivariate affine
functions or even multivariate polynomial functions.

To construct a Φn+1,multi-aff-RKA-secure PRF, we apply our framework to a particular case of the
Weighted NR PRF, defined as follows:
Exponential Weighted NR PRF. Let G = 〈g〉 be a group of prime order p. Let d ≥ 1. We define
WNRexp as the particular case of WNR, where wi = 2i, for i = 0, . . . , n. Please refer to Table 2 for details.

In order to apply our framework to WNRexp and Φn+1,multi-aff, we need to define associated algebraic
fingerprint, helper function, collision-resistant hash function and expansion function. We define these as
follows:

• ~Ω: ~a ∈ Znp 7→ ([a1 · a′] , . . . , [an · a′]) ∈ Gn

32

• HelpΦn+1,multi-aff
: ~a ∈ Znp 7→ ([a′] , [a1 · a′] , . . . , [an · a′]) ∈ Gn+1

• h can be any collision-resistant hash function h: {0, 1}n ×Gn → {0, 1}n−2

• E: z ∈ {0, 1}n−2 7→ 11 ‖ z ∈ {0, 1}n

We just need to prove that E satisfies the linear independence property required to apply the framework,
which is done in Appendix F.3.

Finally, combining the above statements, Theorem 5.2 and the LIP theorem, we obtain the following
theorem.

Theorem F.2. Let G = 〈g〉 be a group of prime order p. Using above definitions, let us define
F : Zn+1

p × {0, 1}n → G by
F (~a, x) = WNRexp(~a,E(h(x, ~Ω(~a))))

for all ~a ∈ Zn+1
p and x ∈ {0, 1}n. Let A be a Φn+1,multi-aff-restricted adversary against the PRF-RKA

security of F that makes q ≤ |{0, 1}n−2| oracle queries. Then we can construct an adversary B against
the 2n+1-DDHI problem in G, an adversary C against the collision-resistance security of h, an adversary
D against the 2n+1-SDL problem in G such that

Advprf-rka
Φn+1,multi-aff,F

(A) ≤ (n+ 1) · 2n+1 ·
(

p

p− 1

)2
·Adv2n+1-ddhi

G (B)

+ Advcr
h (C) + (n+ 1) ·Adv2n+1-sdl

G (D) + O(2nnq)
p

.

The running time of B is that of A , plus the time to compute 2O(n) operations in Zp and G. C has the
same running time as A . The running time of D is that of A plus the time to make O(q ·M(2n+1))
operations in Zp where M(d) is the complexity of the multiplication of two degree at most d polynomials.

Remark F.3. The above construction could be easily generalized to multivariate polynomial RKD
functions of degree at most d, by properly changing the exponential sequence used in the construction to
wi = (d+1)i in order to guarantee that, for any two different values of x and x′ and any di, d′i ∈ {1, . . . , d}
for i = 0, . . . , d, the sums w0d0 +

∑n
i=1 widixi and w0d

′
0 +

∑n
i=1 wid

′
ix
′
i are distinct. We can then use

exactly the same helper function than in Section 5.2.

F.3 Proof of Linearly Independence Properties for Section F.1 and Sec-
tion F.2

For Univariate Polynomials. Let P~φ,x(~T) = φ0(~T)w0 ·
∏n
i=1 φi(~T)wixi for ~φ ∈ Φd and x ∈ {0, 1}n.

Let S = {11 ‖h | z ∈ {0, 1}n−2}. The only thing we need to prove is that, for any sequence
(x1, ~φ1), . . . , (xq, ~φq), polynomials 1, T ji for i = 0, . . . , n and j = 1, . . . , d and polynomials P~φ1,x1

, . . . , P~φq,xq
are linearly independent, as long as x1, . . . , xq are distinct in S.

By contradiction, let us assume that there exists a sequence of distinct polynomials P1, . . . , Pq, where
for k = 1, . . . , q, Pk = P~φ,x for distinct x ∈ S or Pk = T ji for some (i, j) ∈ {0, . . . , n} × {1, . . . , d} or
Pk = 1, such that:

q∑
k=1

λk · Pk = 0

with λk 6= 0 for all k.
Since polynomials T ji , for i = 0, . . . , n and j = 1, . . . , d and polynomial 1 are clearly linearly independent

over Zp, there is at least one polynomial Pk in the above sum such that Pk corresponds to P~φ,x for a
query (~φ, x) with x ∈ S.

We now consider an arbitrary monomial T z0
0 · · ·T znn appearing in at least one of the polynomials in

this combination and such that z has highest Hamming weight. It is clear that hw(z1 ‖ . . . ‖ zn) ≥ 2, since
the Hamming weight of x ∈ S is at least 2. But, since the sum is the zero polynomial, there must exist at
least two distinct polynomials P~φ1,x1

and P~φ2,x2
containing this monomial T z0

0 · · ·T znn in the above sum.
Let ẑ denote the n-bit string such that ẑi = 0 if zi = 0, while ẑi = 1 otherwise, for i = 1, . . . , n. It is

clear that hw(ẑ) ≥ 2 and then ẑ ∈ S. Also, since ẑ has the highest possible Hamming weight, x1 = x2 = ẑ

(from the definitions of P~φ1,x1
and P~φ2,x2

and since the first components of ~φ1 and ~φ2, which are the

33

polynomials that apply to A0, have degree at least 1). This means ẑ ∈ S has been used twice, which is
forbidden. Hence, all the polynomials are linearly independent.

The linear independence property follows.
For Multivariate Affine Functions. Let P(M ,~b),x(~T) = (~M0 · ~T+b0)

∏n
i=1(~Mi · ~T+bi)2i·xi for (M ,~b) ∈

Φn+1,multi-aff and x ∈ {0, 1}n, where ~Mi denote the i-th row of matrix M . Let S = {11 ‖h | z ∈ {0, 1}n−2}.
The only thing we need to prove is that, for any sequence (x1, (M1,~b1)), . . . , (xq, (M q,~bq)) with, for
k = 1, . . . , q, xk all distinct in S and (Mk,~bk) ∈ Φn+1,multi-aff, polynomials 1, Ti for i = 0, . . . , n and
polynomials P(M1,~b1),x1

, . . . , P(Mq,~bq),xq are linearly independent.
Polynomial 1 is a degree 0 polynomial and polynomials Ti, for i = 0, . . . , n are degree 1 polynomials,

and they are all linearly independent. Then, we just prove that for any ((M ,~b), x) and ((M ′,~b′), x′) with
x, x′ ∈ S and x 6= x′, the degrees of polynomials P(M ,~b),x and P(M ′,~b′),x′ are always distinct and greater
than 2.

Let ((M ,~b), x) with x ∈ S, then P(M ,~b),x(~T) = (~M0 · ~T + b0)
∏n
i=1(~Mi · ~T + bi)2i·xi . Since for any

i = 0, . . . , n, ~Mi 6= 0n+1, ~Mi · ~T + bi is always a multivariate polynomial of degree 1, (~Mi · ~T + bi)2i is
always a polynomial of degree 2i. Hence, P(M ,~b),x(~T) is a multivariate polynomial of degree

∑n
i=0 2ixi,

which is clearly greater than 2 since hw(x) ≥ 2 for any x ∈ S.
Finally, since the entries x used in distinct queries has to be always distinct, and since for any

x 6= x′,
∑n
i=0 2ixi 6=

∑n
i=0 2ix′i by the uniqueness of the binary decomposition, the degrees of polynomials

P(M ,~b),x and P(M ′,~b′),x′ are always distinct and at least 2 for any queries ((M ,~b), x) and ((M ′,~b′), x′)
with x, x′ ∈ S and x 6= x′.

The linear independence property follows.

G A Further Generalization of the Framework
G.1 Previous Frameworks for Building RKA-Secure PRFs
In [BC10], Bellare and Cash introduced a framework that allowed to transform a key-malleable PRF
into an RKA-secure PRF. Their framework however had two shortcomings. The first one was the fact
that they only consider claw-free function classes, i.e., such that there does not exist φ1, φ2 ∈ Φ so that
φ1 6= φ2 but φ1(K) = φ2(K) for some key K ∈ K. The second one was that they required a form of key
malleability from the underlying PRF, which restricted the set of classes of RKD functions to which
their framework could be applied. To address these shortcomings, in [ABPP14], Abdalla, Benhamouda,
Passelègue, and Paterson generalized this framework. In particular, by applying their framework to NR∗,
the authors showed how to obtain a Φd-RKA-PRF under the d-DDHI assumption.

In a nutshell, their framework first consists in building a PRF M , which verifies a weaker notion
of security, called unique-input-PRF-RKA security or UI-PRF-RKA security. This notion is similar to
PRF-RKA security, recalled in Section 2, except the adversary is restricted to use different inputs x for
each query. This PRF M is also supposed to be key-collision and statistical-key-collision secure, meaning
that it is hard to find two functions φ1, φ2 ∈ Φ such that φ1(K) = φ2(K), even with access to an oracle
(φ, x) 7→ f(φ(K), x), when f = M (key-collision security), and when f is a random function (statistical
key-collision security).

Then, the framework consists in transforming this UI-PRF-RKA-secure PRF M into an rka-secure
PRF F , as follows:

F (K,x) = M(K,H(x,M(K, ~ω))),

where H is a collision-resistant hash function, and the vector ~ω is a strong key fingerprint, i.e., it is a
vector of inputs such that M(K, ~ω) completely defines K. This transform is exactly the one given by
Bellare and Cash in [BC10]. Under some compatibility conditions on the hash function (to avoid mixing
the inputs ωi with the outputs of the hash function), Theorem 3.1 in [ABPP14] shows that the resulting
PRF is rka-secure.

G.2 Our New Framework
We would like to prove a similar statement for the weighted NR and BMR PRFs. However, given
~w ∈ Zp× (Z∗p)n, if w0 6= 0 or if there exists i ∈ {1, . . . , n} such that wi > 1, there is no practical strong key

34

fingerprint for WNR~w. Also, for any weight, it is not very clear that there exists a strong key-fingerprint
for WBMR. Hence, in general, one cannot apply the above framework to WNR or WBMR.

For the above reason, in this section, we design a new framework, that generalizes the framework given
in [ABPP14] and that can be applied, in particular, to both WNR and WBMR. This generic framework
encompasses in particular the framework we propose in Section 5.2. However, our framework in the main
body of this paper is significantly easier to use, which explains why we chose to give it first and propose
this generic framework only as an appendix, for completeness.

We introduce new notions, defined as follows, that extends the notions introduced in Section 5.2.
Perfectly Binding Key-Commitment. In order to overcome the lack of a strong key fingerprint, we
introduce perfectly binding key-commitment. A perfectly binding key-commitment is a (deterministic)
algorithm Com: K → ComSp that takes a key K ∈ K as input and outputs a value Com(K) such that
for any K,K ′ in K, we have Com(K) = Com(K ′) if and only if K = K ′ (perfectly binding). As we will
see later, we also want that for K ∈ K, Com(K) hides the value of K. However, we do not need special
requirement for this in the present definition, since this requirement will be implied by the extended
definitions of the key-collision and UI-PRF-RKA security problems defined below.
Helper Information. In order to prove the security of our framework, we need to be able to compute
commitments of any related key from some (public) information. Then, we enable the adversary to have
access to some helper information helpΦ = HelpΦ(K) ∈ HelpSp about the secret K, where HelpΦ is a
function from K to HelpSp. The helper function HelpΦ depends on the class Φ of RKD functions we are
interested in. We suppose that it is possible to compute Com(φ(K)) just by knowing φ and HelpΦ(K)
but not K.

Then, we use the extended version of the key-collision and unique-input-rka-prf security games
depicted in Figure 8 and Figure 9, where Initialize also leaks helpΦ to the adversary. We remark that
UI-PRF-RKA security implies that helpΦ hides K, otherwise the extended UI-PRF-RKA security would
be trivial to break. This directly implies that the commitment of K is hiding, since it can be computed
from helpΦ.

Remark G.1. We do not need a statistical-key-collision security property, because it is implied by the
extended key-collision security property. The compatibility of the hash function is also simplified. We
just require that it is a collision-resistant hash function and that its range S is such that the extended
(S,Φ)-unique-input-prf-rka security is hard.

proc Initialize
K

$← K
helpΦ ← HelpΦ(K)
Return helpΦ

proc RKFn(φ, x)
y ←M(φ(K), x)
Return y
proc Finalize(φ1, φ2)
Return (φ1 6= φ2 and φ1(K) = φ2(K))

Figure 8: Game defining the extended Φ-key-collision security of a PRF M and helper function Help.

proc Initialize
K

$← K ; b $← {0, 1}
helpΦ ← HelpΦ(K)
Return helpΦ

proc Finalize(b′)
Return b′ = b

proc RKFn(φ, x)
If x ∈ S then

If b = 0 then y ←M(φ(K), x)
Else y $← R

Else y ←⊥
Return y

Figure 9: Game defining the extended (S,Φ)-unique-input-prf-rka security of a PRF M and helper
function Help.

Using these new tools, we obtain the following framework, which generalizes [ABPP14, Theorem 3.1],
as well as Theorem 5.2 from Section 5.2.

Theorem G.2. Let M : K ×D → R be a function and Φ be a class of RKD functions. Let Com: K →
ComSp be a perfectly binding key-commitment. Let HelpΦ: K → HelpSp be the helper function associated

35

to Com and Φ. Let D = D × ComSp and let H: D → S be a compatible collision-resistant hash function,
with S ⊆ D. Define F : K ×D → R by

F (K,x) = M(K,H(x,Com(K)))

for all K ∈ K and x ∈ D. Let A be a Φ-restricted adversary against the PRF-RKA security of F that
makes q ≤ |S| oracle queries. Then we can construct an adversary B against the extended (S,Φ)-unique-
input-prf-rka security of M , an adversary C against the collision-resistance (cr) security of H, and an
adversary D against the extended Φ-kc security of M such that

Advprf-rka
Φ,F (A) ≤ Advext-ui-prf-rka

Φ,S,M (B) + Advcr
H(C) + 2 ·Advext-kc

Φ,M (D) .

Adversaries C has the same running time as A . Adversaries B and D have the same running time as
A plus the time to compute q key-commitments using their helper information.

Proof Overview. The proof of the above theorem is detailed in Appendix G.3 and relies on the sequence
of 10 games (games G0 −G9) described in Figure 10. It is very similar to the proof of Theorem 3.1 from
[ABPP14]. Here we provide a brief overview. Since the RKD functions that we consider in our case may
have claws, we start by dealing with possible collisions on the related keys in the RKAPRFReal case,
using the extended key-collision notion (games G0 −G2). These claws can be detected by looking for
collisions of perfectly binding key-commitments for different RKD functions. Then, in games G3 −G4,
we deal with possible collisions on hash values in order to ensure that the hash values h = H(x,Com(K))
used to compute the output y are distinct. Then, we use the new extended (S,Φ)-unique-input-prf-rka
security notion to show that it is hard to distinguish the output of F from a uniformly random output
(games G5 − G6). Finally, we use once again the extended key-collision security notion to deal with
possible key collisions in the RKAPRFRand case (games G7 −G9) so that G9 matches the description of
the RKAPRFRand Game. These key collisions can still be detected in these games by making crucial use
of the helper function.

G.3 Proof of Theorem G.2
The proof is based on the sequence of games in Figure 10. Much of the proof is similar to the proof of
the original framework that was given in [ABPP14]. We denote by Succi the event that game Gi output
takes the value 1. Boolean flags are assumed initialized to false. Games Gi, Gj are said to be identical
until flag if their code differs only in statements that follow the setting of flag to true. We assume that
adversary A never repeats an oracle query.

Game G1 introduces storage of used RKD functions and values of key-commitment com in sets D
and E respectively and sets flag1 to true if the same value of com arises for two different RKD functions.
Since this storage does not affect the values returned by RKFn

Pr [Succ1] = Pr [Succ0] .

Game G2 adds the boxed code which changes how the repetition of a commitment value com is handled,
by picking instead a random value from ComSp\E that will not repeat any previous one. Games G1 and
G2 are identical until flag1 is set to true, hence we have

Pr [Succ1] ≤ Pr [Succ2] + Pr [E1]

where E1 denotes the event that the execution of A with game G1 sets flag1 to true. We design an
adversary D attacking the extended Φ-key-collision security of M such that

Pr [E1] ≤ Advext-kc
Φ,M (D) .

Adversary D gets helper information helpΦ = HelpΦ(K), then runs A . When the latter makes a
RKFn-query (φ, x), adversary D computes com = Com(φ(K)) using its helper information and then
h = H(x, com) and finally queries (φ, h) to its oracle and sends the value it gets to A . When A halts, D
searches for two different RKD functions φ queried by A that lead to the same commitment value com
and returns these two functions if found. Since Com is a perfectly binding key-commitment, two such
functions lead to the same key, so D wins if he finds such two functions.

36

proc Initialize // G0

K
$← K

proc RKFn(φ, x) // G0

com← Com(φ(K))
h← H(x, com)
y ←M(φ(K), h)
Return y
proc Finalize(b’) // All Games
Return b′

proc Initialize // G1,G2

K
$← K ; D ← ∅ ; E ← ∅

proc RKFn(φ, x) // G1, G2

com← Com(φ(K))
If com ∈ E and φ /∈ D then

flag1 ← true ; com $← ComSp\E
D ← D ∪ {φ} ; E ← E ∪ {com}
h← H(x, com)
y ←M(φ(K), h)
Return y

proc Initialize // G3,G4

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G3, G4

com← Com(φ(K))
If com ∈ E and φ /∈ D

then com $← ComSp\E
D ← D ∪ {φ} ; E ← E ∪ {com}
h← H(x, com)
If h ∈ G then flag2 ← true

h
$← S\G

G← G ∪ {r}
y ←M(φ(K), h)
Return y

proc Initialize // G5

K
$← K ; D ← ∅ ; E ← ∅ ; G← ∅

proc RKFn(φ, x) // G5

com← Com(φ(K))
If com ∈ E and φ /∈ D

then com $← ComSp\E
D ← D ∪ {φ} ; E ← E ∪ {com}
h← H(x, com)
If h ∈ G then h $← S\G
G← G ∪ {r}
y

$←R
Return y

proc Initialize // G6

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G6

y
$←R

Return y

proc Initialize // G7, G8

K
$← K ; D ← ∅ ; E ← ∅

G
$← Fun(K,D,R)

proc RKFn(φ, x) // G7 , G8

If φ(K) ∈ E and φ /∈ D then

y
$←R ; flag3 ← true

else y ← G(φ(K), x)
D ← D ∪ {φ} ; E ← E ∪ {φ(K)}
Return y

proc Initialize // G9

K
$← K ; G $← Fun(K,D,R)

proc RKFn(φ, x) // G9

y ← G(φ(K), x)
Return y

Figure 10: Games for the proof of Theorem G.2.

Game G3 introduces the storage of hash values in a set G and sets flag2 to true if the same hash
output arises twice. Since this storage does not affect the values returned by RKFn, we have

Pr [Succ3] = Pr [Succ2] .

Game G4 adds the boxed code which changes how repetition of hash values is handled, by picking instead
a random value h from S\G that will not repeat any previously used hash value. Games G3 and G4 are
identical until flag2 is set to true, hence we have

Pr [Succ3] ≤ Pr [Succ4] + Pr [E2]

where E2 denotes the event that the execution of A with game G3 sets flag2 to true. We design an
adversary C attacking the cr-security of H such that

Pr [E2] ≤ Advcr
H(C) .

Adversary C starts by picking K $← K and initializes j ← 0. It runs A . When the latter makes a
RKFn-query (φ, x), adversary C responds via

com← Com(φ(K))

37

j ← j + 1 ; φj ← φ ; xj ← x

If com ∈ E and φ /∈ D then com $← ComSp\E (∗)
D ← D ∪ {φ} ; E ← E ∪ {com}
comj ← com
h← H(x, com)
hj ← h
y ←M(φ(K), h)
Return y.

When A halts, C searches for a, b satisfying 1 ≤ a < b ≤ j such that ha = hb and, if it finds them,
outputs (xa, coma), (xb, comb) and halts. The pairs (xa, coma) and (xb, comb) are distinct. Indeed,
consider two cases: first, if φa = φb then since A never repeats an oracle query, xa 6= xb hence
(xa, coma) 6= (xb, comb). Second, if φa 6= φb, then condition (∗) ensures that coma 6= comb. Hence once
again, (xa, coma) 6= (xb, comb), and then

Pr [Succ3] ≤ Pr [Succ4] + Advcr
H(C) .

In game G5, instead of returning the value M(φ(K), h), we always return a random value. To show that
games G4 and G5 are indistinguishable, we design an adversary B against the extended (S,Φ)-unique-
input-prf-rka security of M such that

Pr [Succ4] ≤ Pr [Succ5] + Advext-ui-prf-rka
Φ,S,M (B) .

Adversary B starts by initializing sets D ← ∅, E ← ∅, G ← ∅. Then B gets helper information
helpΦ = HelpΦ(K), then runs A . When the latter makes an RKFn-query (φ, x), B responds as follows.
First, it computes com = Com(φ(K)) using its helper information. Then, B checks if com ∈ E and φ ∈ D.
If they do, B picks com $← ComSp\E at random. B then sets D ← D ∪ {φ} and E ← E ∪ {com}. Next,
B computes h← H(x, com) and checks if h ∈ G. If it does, B picks h $← S\G at random. Notice that
this step guarantees that all values h are in S and are all distinct as long as A makes at most |S| queries.
Finally, B sets G← G ∪ {h}, makes the query (φ, h) to its oracle, and returns the value it gets, which is
either M(φ(K), h) or a uniformly random value, to A . When A halts, B halts with the same output. It
follows from these observations that B is a unique-input adversary for queries in S. Finally, it is clear
that if B’s oracle gives real outputs of M for queries in S, then it simulates exactly game G4 and if B’s
oracle gives uniformly random values for queries in S, then it simulates exactly game G5.

In game G6, we simply set the value y to a uniformly random value. Clearly, G5 and G6 are identical
since the value returned is a uniformly random value for any query. Then, we have

Pr [Succ5] = Pr [Succ6] .

In game G7, we check if two different queries can lead to a key collision. Since the “If” test ensures that
the returned value is still uniformly random over R even when two different queries result in the same
key, games G6 and G7 are identical. Hence,

Pr [Succ6] = Pr [Succ7] .

In game G8, we compute the output of RKFn using a random function G in Fun(K,D,R). Since games
G7 and G8 are identical until flag3 is set to true, we have

Pr [Succ7] ≤ Pr [Succ8] + Pr [E3]

where E3 denotes the event that the execution of A with game G8 sets flag3 to true. To bound the
probability of event E3, we design an adversary D attacking extended Φ-key-collision security of M such
that

Pr [E3] ≤ Advext-kc
Φ,M (D) .

Adversary D starts by initializing a list L ← empty list and by choosing an element ψ in Φ and by setting
ψ1 ← ψ and ψ2 ← ψ. Then, it runs A . When the latter makes an RKFn-query (φ, x), adversary D
does the following: it first computes com← Com(φ(K)) using its helper information and searches for all
tuples (φi, comi) ∈ L such that comi = com. If it does find such tuples, it checks for all of them if φ 6= φl

38

and in that case sets ψ1 ← φl and ψ2 ← φ. Finally, D picks y $← R at random, returns y to A and adds
(φ, com) to L. When A halts, B halts and outputs (ψ1, ψ2). If the execution of A sets flag3 to true, then
A has queried φ1 6= φ2 such that φ1(K) = φ2(K) and assuming it has first queried φ1, when D computes
Com(φ2(K)) and checks if this value is already in L, it finds that this value matches Com(φ1(K)) and
since φ1 6= φ2, it sets ψ1 = φ1 and ψ2 = φ2, so D wins. Then, we have

Pr [E3] ≤ Advext-kc
Φ,M (D) .

Since A does not repeat oracle queries and since key collisions are dealt with in a similar way, it follows
that games G8 and G9 are identical. Thus,

Pr [Succ8] = Pr [Succ9] .

Theorem G.2 now follows by combining the bounds arising in the different game hops.

H Definitions and Proofs for Section 6
H.1 Definitions: Monomial Order and Leading Commutative Monomials
Definition H.1. [Monomial order] Let n be a positive integer. A monomial order for Zp[T1, . . . , Tn] is a
total order such that, for any monomials u, v, w:

• if u < v, then uw < vw,

• 1 ≤ u.

We write ~T ~i = T i11 · · ·T inn for~i = (i1, . . . , in). The leading monomial of a polynomial P (~T) =
∑
~i α~i

~T
~i

is the maximum of the set {~T ~i | α~i 6= 0} for the monomial order <, and is denoted LM(P). The leading
term of this polynomial P is α~i? ~T

~i? , when LM(P) = ~T
~i? .

We extend this definition to non-commutative polynomials as follows: let

π: Zp〈T1, . . . , Tn〉 → Zp[T1, . . . , Tn]

be the (canonical) linear map defined by π(Tj1 · · ·Tjk) = Tj1 · · ·Tjk . The leading monomials set of a
non-commutative polynomial

P (~T) =
∑
k≥1

j1,...,jk∈{1,...,n}

αj1,...,jkTj1 · · ·Tjk

as the set of monomials Tj1 · · ·Tjk such that π(Tj1 · · ·Tjk) is the maximum of

{π(Tj1 · · ·Tjk) | αj1,...,jk 6= 0} .

It is denoted CLM(P). We say a polynomial has unique commutative leading monomial if CLM(P) is a
singleton {Tj1 · · ·Tjk}, in which case, we also often write CLM(P) = Tj1 · · ·Tjk , to simplify notations.

We remark that if we identify (commutative) polynomials with non-commutative polynomials (by
writing them as P =

∑
~i α~i

~T
~i =

∑
~i α~i T

i1
1 · · ·T inn), then polynomials have unique commutative leading

monomial.

Example H.2. For n = 2 and < the lexicographic order with T1 > T2, we have:

LM(5T 2
1 T2 + T1T

3
2 + T2) = T 2

1 T2 LM(T 3
1 + 3T1T

7
2) = T 3

1

for commutative polynomials, and

LM(5T 2
1 T2 + T1T

3
2 + T2) = {T 2

1 T2}
LM(5T 2

1 T2 + T1T2T1 + T2T
2
1 + T2 + T1) = {T 2

1 T2, T1T2T1, T2T
2
1 }

for non-commutative polynomials.

39

H.2 Main Lemma
We will make use of the following lemma in the security proof of E2,d-MDDH in generic bilinear groups in
Section H.3 and in the proof of Theorem 6.2 in Section H.5.

Lemma H.3. Let n and m be two positive integers. We suppose fixed a monomial order < for
Zp[T1, . . . , Tn]. Let (Ps)s=1,...,q be a family of polynomials with distinct and unique commutative leading
monomial. Let

R = Zp[(Xk,i,j)k=1,...,n
i=1,2
j=1,2

, (Yi,j) i=1,2
j=1,...,m

].

Let us define ~A ∈
(
R2×2)n a vector of 2× 2 matrices of (commutative) polynomials with indeterminates

Xk,i,j, such that ak,i,j = Xk,i,j. Let us also define A′ ∈ R2×m, such that a0,i,j = Yi,j. In other words:

A′ =
(
Y1,1 . . . Y1,m
Y2,1 . . . Y2,m

)
Ak =

(
Xk,1,1 Xk,1,2
Xk,2,1 Xk,2,2

)
.

Let Qs,i,j ∈ R be the polynomial corresponding to the coordinate (i, j) ∈ {1, 2} × {1, . . . ,m} of the matrix
Ps(~A) ·A′.

Finally let assume there exists coefficients λs1,s2,i1,i2,j1,j2 such that:∑
s1=0,...,q
i1=1,2

j1=1,...,m

∑
s2=0,...,q
i2=1,2

j2=1,...,m
(s2,i2,j2)�(s1,i1,j1)

λs1,s2,i1,i2,j1,j2Qs1,i1,j1Qs2,i2,j2 = 0, (6)

with � the lexicographic order (just to ensure that each term Qs1,i1,j1Qs2,i2,j2 to appear only once). Then,
all these coefficients λs1,s2,i1,i2,j1,j2 are zero.

Proof. Let us assume, without loss of generality that:

CLM(P1) < . . . < CLM(Pq).

First, we order monomials of R using the product order on {Yi,j}k×{Xk,2,2}k×{Xk,1,2}k×{Xk,2,1}k×
{Xk,1,1}k, with the lexicographic order on {Yi,j} (with Y1,1 > Y1,2 > . . . > Y1,m > Y2,1 > . . . > Y2,m),
and, for any i, j, the same order on {Xk,i,j}k,i,j than on {T1, . . . , Tn}.

Second, let us prove that λs1,s2,i1,i2,j1,j2 = 0 when i1 6= i2. For that purpose, let us set Xs,1,2 and
Xs,2,1 to 0 in Equation (6) (i.e., we choose diagonal matrices Ai). Then, we get:

Ps(~A) ·A′ =
(
Ps(X1,1,1, . . . , Xn,1,1) 0

0 Ps(X1,2,2, . . . , Xn,2,2)

)
·A′

=
(
Ps(X1,1,1, . . . , Xn,1,1) · Y1,1 . . . Ps(X1,1,1, . . . , Xn,1,1) · Y1,m
Ps(X1,2,2, . . . , Xn,2,2) · Y2,1 . . . Ps(X1,2,2, . . . , Xn,2,2) · Y2,m

)
.

where Ps(X1,1,1, . . . , Xn,1,1) = π(Ps)(X1,1,1, . . . , Xn,1,1), with π the canonical surjection from the vector
space Zp〈T1, . . . , Tn〉 to the vector space Zp[T1, . . . , Tn] defined above. Thus,

Qs,i,j = Ps(X1,i,i, . . . , Xn,i,i) · Yi,j .

As all the commutative leading monomials of Ps are unique and distinct, so are the leading monomials of

Ps1(X1,i1,i1 , . . . , Xn,i1,i1)Ps2(X1,i2,i2 , . . . , Xn,i2,i2)Yi1,j1Yi2,j2 ,

for any s1, s2, i1, i2, j1, j2 such that i1 6= i2 (the proof is straightforward from the definition of the
monomial order < on R: we first compare the Yi,j part, then the Ps1(X1,i1,i1 , . . . , Xn,i1,i1) part and
finally the Ps2(X1,i2,i2 , . . . , Xn,i2,i2) part; each part corresponds to a different set of monomials of the
product order <). Therefore λs1,s2,i1,i2,j1,j2 = 0, when i1 6= i2.

Third, let us prove that λs1,s2,1,1,j1,j2 = 0 for all s1, s2, j1, j2. For that purpose, let us set Xs,2,1 = 0
and Xs,1,2 = Xs,2,2. In other words:

Ak =
(
Xk,1,1 Xk,2,2

0 Xk,2,2

)
.

40

Then, we get (by recursion, linearity, and the product definition of <):

Ps(~A) ·A′ =
(
Ps(X1,1,1, . . . , Xn,1,1) LT(Ps(X1,2,2, . . . , Xn,2,2)) + . . .

0 Ps(X1,2,2, . . . , Xn,2,2)

)
·A′,

where LT(Ps(X1,2,2, . . . , Xn,2,2)) + . . . is a polynomial for which the leading term LT(Ps(X1,2,2, . . . ,
Xn,2,2)). By contradiction, let us suppose that there exists some λs1,s2,1,1,j1,j2 6= 0, and let us consider
one with the highest (s2, s1) for the lexicographic order (as (s2, 1, j2) � (s1, 1, j1), s2 ≥ s1 and this means
that s2 and s1 are both the highest possible). We have:

Qs1,1,j1Qs2,1,j2

= (Ps1(X1,1,1, . . . , Xn,1,1)Y1,j1 + (LT(Ps1(X1,2,2, . . . , Xn,2,2)) + . . .)Y2,j1)
· (Ps2(X1,1,1, . . . , Xn,1,1)Y1,j2 + (LT(Ps2(X1,2,2, . . . , Xn,2,2)) + . . .)Y2,j2),

which contains the following monomial:

u = LM(Ps1(X1,1,1, . . . , Xn,1,1))Y1,j1 LM(Ps2(X1,2,2, . . . , Xn,2,2))Y2,j2 .

Let us prove this monomial is in no other term of Equation (6). By contradiction, let us suppose
there is some other term λs′1,s′2,1,1,j′1,j′2Qs′1,1,j′1Qs′2,1,j′2 containing this monomial. Then the monomial u
can be written:

u = v1 · Y1,j1 · v2 · Y2,j2

with (v1, v2) monomials of Ps′1(X1,1,1, . . . , Xn,1,1) and LT(Ps′2(X1,2,2, . . . , Xn,2,2)) + . . . (respectively;
in which case j1 = j′1 and j2 = j′2), or of Ps′2(X1,1,1, . . . , Xn,1,1) and LT(Ps′1(X1,2,2, . . . , Xn,2,2)) + . . .
(respectively; in which case j1 = j′2 and j2 = j′1). But, from the choice of s1, s2 and the fact that we
suppose (s′2, 1, j2) � (s′1, 1, j1), we have that s2 ≥ s′2 ≥ s′1, and so LM(Ps2) ≥ LM(Ps′2) ≥ LM(Ps′1).
Therefore s2 = s′2. We have two cases:

• if s′2 > s′1, then necessarily (v1, v2) comes from the polynomials Ps′1(X1,1,1, . . . , Xn,1,1) and
LT(Ps′2(X1,2,2, . . . , Xn,2,2)) + . . . (respectively), and j1 = j′1, j2 = j′2. In addition, as s1 ≥ s′1
and LM(Ps1) ≥ LM(Ps′1), s1 = s′1. So (s1, s2, j1, j2) = (s′1, s′2, j′1, j′2), which is a contradiction;

• otherwise s′2 = s′1, then as s1 ≥ s′1 and LM(Ps1) ≥ LM(Ps′1), s1 = s′1 = s2 = s′2. In that case,
as (s2, 1, j2) � (s1, 1, j1) and (s′2, 1, j′2) � (s′1, 1, j′1), j2 ≥ j1 and j′2 ≥ j′1. In addition, it is clear
that {j1, j2} = {j′1, j′2}, hence j1 = j′1 and j2 = j′2. So (s1, s2, j1, j2) = (s′1, s′2, j′1, j′2), which is a
contradiction.

That concludes the third point.
Fourth, using a similar proof with

Ak =
(
Xk,1,1 0
Xk,1,1 Xk,2,2

)
,

we get that λs1,s2,2,2,j1,j2 = 0.
This concludes the proof.

H.3 Proof of Security of E2,d-MDDH in Generic Bilinear Groups
Similarly to the proof of Theorem 3 of [EHK+13] and the proof for Über assumptions [BBG05, Boy08],
to prove the security of E2,d-MDDH in generic symmetric bilinear groups, we just need to show that there
is no (non-trivial) polynomial relation of degree 2 between entries of Γ and Z, both when Z = Γ ·W
and when Z = U , with

Γ =


A′

A1 ·A′
...

Ad ·A′

 .

Indeterminates are entries of A1 and A′ (a1,i,j , a′i,j , for i = 1, 2, j = 1, 2), entries of W (wi, for i = 1, 2),
and entries of U (ui,j , for i = 1, . . . , 2(d + 1), j = 1, 2). The polynomial independence follows from
Lemma H.3, with n = 1, q = d+ 1, and Ps = T s−1

1 , for s = 1, . . . , d+ 1.

41

H.4 Proof of Theorem 6.1

Proof Intuition. By renaming the indeterminates, we can assume that Tn appears before Tn−1, Tn−1
before Tn−2, . . . Then, the proof is similar to the one for the LIP theorem, except the assumption
E1,d-MDDH is replaced by E2,d-MDDH (and if we write [A]B = [BA] and [A] · [B] = [A + B] for
any matrices A,B ∈ Zk×kp). In particular, the statistical test for linear dependence of multivariate
polynomials remains the same.

An important technical detail remain: we need to partially evaluate polynomials in some matrices. If
we do it naively, we will end up with polynomials with matrix coefficients and the proof will fail. Instead,
we remark that we can decompose these polynomials with matrix coefficients as sum of products of one
matrix and one classical polynomial, when polynomial representations satisfy Condition 2 (in Section B.2).
This intuition is captured by the following decomposition lemmas (which are stated even for matrices of
size k × k and not just for 2× 2 matrices).

The full proof of Theorem 6.1 is then straightforward.
Decomposition Lemmas.
Lemma H.4. Let k ≥ 2 be an integer. There exists a polynomial-time algorithm which takes as input:
• an integer j ∈ {0, . . . , n},

• n− j matrices Aj+1, . . . ,An in Zk×kp ,

• an expression P̃ of a multivariate polynomial P ∈ Zp[T1, . . . , Tn] satisfying Condition 2,
and which outputs a decomposition of P̃ as N polynomials Q1, . . . , QN ∈ Zp[T1, . . . , Tj] and N matrices
C1, . . . ,CN such that:

P (T1, . . . , Tj ,Aj+1, . . . ,An) =
N∑
ν=1

Cν ·Qν(T1, . . . , Tj).

In addition, N is less than the number of internal nodes in the expression or AST P̃ ; and the representations
of the polynomials Q1, . . . , QN satisfy Condition 2.
Proof. We do the proof by recursion:
• Base case (a leaf): an indeterminate Ti or a scalar in Zp. Straightforward.

• Recursive case 1: additive node P̃1 + P̃2. We decompose recursively P̃1 and P̃2.

• Recursive case 2: multiplicative node P̃1 · P̃2. This is the most important case. We consider two
sub-cases:

– P̃1 only contain leaves with scalars or indeterminates Tj+1, . . . , Tn. In that case, its decompo-
sition is just a matrix in Zk×kp . The decomposition of P̃1 · P̃2 then contains as many terms as
in the decomposition of P̃2.

– Otherwise, P̃2 does not contain indeterminates Tj+1, . . . , Tn (otherwise that would break
Condition 2, and so the decomposition of P̃2 is just a polynomial (matrices are identity
matrices). The decomposition of P̃1 · P̃2 then contains as many terms as in the decomposition
of P̃1.

Lemma H.5. Let k ≥ 1 and j ≥ 1 be two integers. There exists a polynomial-time algorithm which takes
as input an expression P̃ of a multivariate polynomial P ∈ Zp[T1, . . . , Tj] of degree at most d < p in Tj
and satisfying Condition 1, and which outputs d+ 1 polynomials Q0, . . . , Qd ∈ Zp[T1, . . . , Tj−1] such that

P = Q0 +Q1 · Tj + · · ·+Qd · T dj .

In addition, the representations of Q0, . . . , Qd satisfy Condition 1.
Proof. We can use the Lagrange interpolation

P =
d∑
i=0

P (T1, . . . , Tj−1, i)
∏

i′=0,...,d
i′ 6=i

(Tj − i′),

and regroup terms correctly.

42

H.5 Proof of Theorem 6.2
Similarly to the proof of Theorem 3 of [EHK+13] and the proof for Über assumptions [BBG05, Boy08], to
prove Theorem 6.2 in generic symmetric bilinear groups, we just need to show that there is no (non-trivial)
polynomial relation of degree 2, between entries of matrices Pj(~A) ·A′, where indeterminates are entries
of ~A and of A′ (as,i,j , a′i,j , for s = 1, . . . , n, i = 1, 2, and j = 1, 2).

When polynomials Pj have distinct and unique leading monomials (i.e., when M is the identity matrix
in the DLM condition), this is exactly what shows Lemma H.3.

In the general case, where M is any invertible matrix, let us write (P̃s)s = M · (Ps)s the family
obtained after applying M , where here, we view the families (P̃s)s and (Ps)s as column vectors. Let us
write Qs,i,j the polynomials corresponding to the entries of the matrices Ps(~A) ·A′ (as in Lemma H.3),
and Q̃s,i,j the polynomials corresponding to the entries of the matrices P̃s(~A) ·A′. Polynomials P̃s have
distinct and unique leading monomials, so that we can apply Lemma H.3 on them, and show that there
is no non-trivial relation of the form:∑

s1,s2,i1,i2,j1,j2

λs1,s2,i1,i2,j1,j2Q̃s1,i1,j1Q̃s2,i2,j2 = 0.

Suppose now by contradiction that there exists a non-trivial polynomial relation of degree 2 between
(Qs,i,j). This means that there exists a non-zero polynomial R of degree 2 in indeterminates Us,i,j , such
that R((Qs,i,j)) = 0 (where R((Qs,i,j)) is the polynomial R, where Us,i,j is replaced by Us,i,j). But then,
let R̃ be the polynomial R after the linear coordinate transform (Us,i,j) 7→M · (Us,i,j). This polynomial
R̃ has degree 2, is non-zero (as M is invertible), and verifies R̃((Q̃s,i,j)) = 0. That contradicts the absence
of non-trivial polynomial relation between the polynomials Q̃s,i,j , and conclude the proof.

43

	Introduction
	Definitions
	Linearly Independent Polynomial Security
	Warm-up: Expanded Multilinear Polynomials
	Main Theorem: LIP Security

	Recovering and Extending Existing Number-Theoretic PRFs
	Application to Related-Key Security
	Direct Constructions of RKA-Secure PRFs
	Constructions via Unique-Input RKA-Secure PRFs

	Extension to PRFs in Symmetric Bilinear Groups
	High-Level Overview of Existing Constructions and Challenges
	Generalized Polynomial Framework
	Applications

	Acknowledgments
	Usual Definitions and Assumptions
	Standard Definitions
	Random Self-Reducibility of E k,d-MDDH and (E k,d,N)-MDDH
	From E 1,d-MDDH to DDHI

	Multivariate Polynomial Representation
	Multivariate Polynomial Representation for the LIP Theorem (Theorem 3.1)
	Extension to the GP Security Notion

	Proof of the LIP Theorem (Theorem 3.1)
	Proofs for Section 4
	Weighted NR
	Weighted BMR

	Proof of Theorems in Section 5
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Linearly Independence Property for Section 5.2

	Other Applications to Related-Key Security
	RKA-PRFs for Univariate Polynomial Functions
	RKA-PRF for Affine Multivariate Functions
	Proof of Linearly Independence Properties for Section F.1 and Section F.2

	A Further Generalization of the Framework
	Previous Frameworks for Building RKA-Secure PRFs
	Our New Framework
	Proof of Theorem G.2

	Definitions and Proofs for Section 6
	Definitions: Monomial Order and Leading Commutative Monomials
	Main Lemma
	Proof of Security of E 2,d-MDDH in Generic Bilinear Groups
	Proof of Theorem 6.1
	Proof of Theorem 6.2

