
Cryptanalysis of Reduced-Round Whirlwind (Full Version)?

Bingke Ma1,2,3, Bao Li1,2, Ronglin Hao1,2,4, and Xiaoqian Li1,2,3

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, 100093, China

2Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, 100093, China

{bkma,lb,xqli}@is.ac.cn
3University of Chinese Academy of Sciences, Beijing, China

4Department of Electronic Engineering and Information Science,
University of Science and Technology of China, Hefei, 230027, China

haorl@mail.ustc.edu.cn

Abstract. The Whirlwind hash function, which outputs a 512-bit digest, was designed by Barreto
et al. and published by Design, Codes and Cryptography in 2010. In this paper, we provide a thorough
cryptanalysis on Whirlwind. Firstly, we focus on security properties at the hash function level by
presenting (second) preimage, collision and distinguishing attacks on reduced-round Whirlwind. In
order to launch the preimage attack, we have to slightly tweak the original Meet-in-the-Middle preimage
attack framework on AES-like compression functions by partially fixing the values of the state. Based on
this slightly tweaked framework, we are able to construct several new and interesting preimage attacks
on reduced-round Whirlpool and AES hashing modes as well. Secondly, we investigate security properties
of the reduced-round components of Whirlwind, including semi-free-start and free-start (near) collision
attacks on the compression function, and a limited-birthday distinguisher on the inner permutation.
As far as we know, our results are currently the best cryptanalysis on Whirlwind.
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1 Introduction

Cryptographic hash functions are widely acknowledged as the Swiss Army Knife of modern cryptography
thanks to its versatility and numerous applications. A secure hash function should at least preserve three
basic security properties, namely, collision resistance, preimage resistance and second preimage resistance.
Several other security properties are also concerned, such as the limited-birthday distinguisher on hash
functions [14].

In order to hash an input message, many state-of-the-art hash functions divide the message into many
blocks and process each block iteratively with the inner components. The Merkle-Damg̊ard construction
[27,10] is one of the most classical constructions following this principle, and the underlying component which
processes the message block in the Merkle-Damg̊ard construction is called the compression function. Security
properties of the compression function often have great impacts on the hash function, thus cryptanalysis
of the compression function is important and meaningful. For the compression function, there are security
notions such as semi-free-start (near) collision, free-start (near) collision 1 and (pseudo) preimage. Most of
the compression functions used in practice are constructed with cryptographic permutations adopting proper
modes of operation such as the PGV modes [31]. Security evaluations of the underlying permutation are
quite necessary and helpful in order to know the potential weaknesses, the security margins which are crucial
especially in the design of new primitives and the validity of the security proofs. A noted example is the
limited-birthday distinguisher on permutations [12] which has been applied to many symmetric primitives,
including [12,15,16], to name but a few.

? This article is the full version of the paper published at ACISP 2015.
1 A semi-free-start collision attack aims to find two distinct messages (M,M ′) and an identical chaining value h0

satisfying CF (h0,M) = CF (h0,M
′). A free-start collision attack searches for two messages (M,M ′) and two

chaining values (h0, h
′
0) satisfying CF (h0,M) = CF (h′

0,M
′), and h0 = h′

0 and M0 = M ′
0 do not hold concurrently.



The Whirlwind hash function [6] was designed by Barreto et al. and published by Design, Codes and
Cryptography in 2010. It takes messages up to 2256 bits as inputs and outputs a 512-bit digest. At the high
level construction, Whirlwind adopts a Merkle-Damg̊ard construction with a final output transformation.
At the compression function level, it employs an AES-like [28,9] design embedded in a Davies-Meyer-like
mode. The state of the compression function can be seen as an 8× 8 array of 16-bit elements, while the left
(resp. right) half of the input state array is the 512-bit chaining value (resp. message block). Besides the
high level structure of Whirlwind, it has some unique underlying components, i.e., the interesting 16-bit
SBox and the linear layer which are friendly to both software and hardware implementations. Actually some
of its novelty design philosophies have influences on several recent works, e.g., its linear layer design based
on the strategy of subfield construction has been further investigated in [1] and [19]. Although Whirlwind

contributes many heuristic and inspiring ideas to the design of symmetric cryptographic primitives, its
concrete security properties are less evaluated in literature. Besides the analyses provided by the designers
at the compression function level in [6], Riham et al. recently presented second preimage attacks on 5 and 6
rounds of Whirlwind [2].

Our Contributions. We present a thorough cryptanalysis on Whirlwind. Firstly, we focus on security
properties at the hash function level by presenting several attacks on reduced-round versions of the 12-round
Whirlwind hash function, including improved second preimage attack reduced to 6 rounds, the preimage
attack reduced to 4 rounds, the collision attack reduced to 5 rounds, and the limited-birthday distinguisher
reduced to 6 rounds. Secondly, security properties of the reduced-round inner components of Whirlwind are
evaluated. More precisely, we launch semi-free-start collision and free-start near collision attacks on 6-round
and 7-round Whirlwind compression function, and build a multiple limited-birthday distinguisher [17] on
the inner permutation reduced to 9 rounds. Our attacks show that Whirlwind offers a quite comfortable
security margin with respect to existing attacks. The results are summarized in Table 1.

In order to launch the preimage attacks on 4-round Whirlwind, we need to slightly tweak the original
Meet-in-the-Middle preimage attack framework on AES-like compression functions by partially fixing the
values of the state. Although this small tweak is rather simple, it has several further applications. For
instance, we present two new preimage attacks on 5 and 6 rounds of Whirlpool [7,13], which significantly
reduce the preimage lengths compared with previous attacks [35] (though our attacks require higher time
complexities). We also show the first preimage attacks on several PGV hashing modes instantiated with
6-round AES at the hash function level.

Structure. The remainder of this paper is organized as follows: Section 2 provides a brief description of
the Whirlwind hash function, and the techniques utilized in this paper. We present the (second) preimage
attacks and the collision attacks on reduced-round Whirlwind in Section 3 and Section 4 respectively, along
with the illustrations of the part-fixed Meet-in-the-Middle preimage attack and the part-fixed SuperSBox
technique. The limited-birthday distinguisher on 6-round Whirlwind is elaborated in Section 5. We analyze
the reduced-round components of Whirlwind in Section 6. Section 7 concludes and summarizes the paper.
More details and applications of the part-fixed Meet-in-the-Middle preimage attack are provided in Appendix
A.

2 Preliminaries

2.1 The Whirlwind Hash Function

The Whirlwind hash function takes any message up to 2256 bits as input, and outputs a 512-bit digest.
It adopts the Merkle-Damg̊ard construction with an output transformation, and the padding algorithm of
Whirlwind is MD-strengthening with a 256-bit length padding L.

The compression function of Whirlwind is an AES-like design and has a 1024-bit state which can be
represented by an 8× 8 array of 16-bit elements. As depicted in Fig. 1, the compression function CF takes
a 512-bit chaining value ht and a 512-bit message block M t as inputs, and performs the round function 12
times to derive the 512-bit output chaining value ht+1, namely, ht+1 = CF (ht,M t). Each round function
consists of four maps, which are as follows:



Table 1. Summary of results on Whirlwind †

Target Attack Type Rounds Time Memory Ideal Reference

Hash Function

(12 rounds)

Preimage 4
2496 2255

2512 Section 3
2497 2208

Second Preimage

5 2449 2128 2512 [2]

6 2505 2112 2512 [2]

6 2497 2128 2512 Section 3

Collision
5 2240 2128

2256 Section 4
4 2128 2128

LBD Distinguisher ♦ 6 2353 2160 2449 Section 5

Compression Function

(12 rounds)

SFS. Near Collision ♥ 5.5 2176 232 2224 [6]

SFS. Collision ♥
4.5 264 232 2256 [6]

6 2128 2128 2256 Section 6

FS. Near Collision ♣ 7 2224 2128 2448 Section 6

Inner Permutation

(12 rounds)
MLBD Distinguisher ♠ 9 2730 2128 2763 Section 6

† : We do not consider the attacks starting from a middle round.
♦: Limited-birthday distinguisher on the hash function.
♥: Semi-free-start (near) collision on the compression function.
♣: Free-start near collision (896 colliding bits out of 1024 bits) on the compression function with no truncation.
♠: Multiple limited-birthday distinguisher on the permutation.

– SubBytes(γ): process each cell of the state with the 16-bit SBox.
– MixRows(θ): multiply each row of the state array by a matrix.
– Transposition(τ): transpose the k-th column to be the k-th row for k = 0, 1, 2, ..., 7, i.e., transposition

of the state array.
– AddRoundConstant(σr): XOR the 1024-bit constant of the r-th round to the state array.

The designers also provide an alternative understanding for the concatenation of θ and τ , namely, τ ◦ θ as:

– θR: multiply each row of the state array by a matrix in even rounds.
– θC : multiply each column of the state array by a matrix in odd rounds.

CF

12 rounds

M
t

h
t h

t+1

Fig. 1. The compression function of Whirlwind

For the remainder of this paper, we will adopt this alternative understanding of the round function. Now we
give detailed algorithm of the compression function CF .

1. Initialize the state array S0 with the input chaining value ht and the input message block M t:{
S0
i,j = hti,j
S0
i+4,j = M t

i,j
, for 0 ≤ i < 4, 0 ≤ j < 8.

2. Apply 12 iterations of the round function to the initial state S0, and derive the final state S12:

Sk+1 =

{
(σk ◦ θR ◦ γ)(Sk), k is even,
(σk ◦ θC ◦ γ)(Sk), k is odd,

for 0 ≤ k < 12.



3. Truncate the final state S12 and perform the feed-forward to derive the output chaining value ht+1:

ht+1
i,j = hti,j ⊕ S12

i,j , for 0 ≤ i < 4, 0 ≤ j < 8.

After all message blocks have been processed with the compression function iteratively, the output trans-
formation is performed to avoid trivial length extension attacks. Suppose the output chaining value of the
last message block is hLAST, then the final 512-bit digest hX is computed as:

hX = CF (hLAST, 0),

with the message block equal to the 8× 4 null matrix.

2.2 The Meet-in-the-Middle Preimage Attack

The Meet-in-the-Middle (MitM) preimage attack was first introduced by Aoki and Sasaki in their preimage
attacks against MD4 and 63-step MD5 [5]. The basic idea of this technique, which is known as splice-and-cut,
aims to divide the target cipher into two sub-ciphers which can be computed independently. Due to the feed-
forward operations in hash functions, the MitM attack can then be applied. Several advanced techniques
to further improve the basic attack are developed, such as partial matching [5], partial fixing [5], initial
structure [34], indirect partial matching [3], bicliques [20] and differential MitM attack [21].

In [33], Sasaki proposed the first MitM preimage attack on AES-like compression functions. Two main
techniques were presented, namely, initial structure in an AES-like compression function and indirect partial
matching through an MixColumn layer. This work was later improved by Wu et al. in [36]. Thanks to the
delicate descriptions of the MitM preimage attack framework on AES-like compression functions presented
in [36], the chunk separations can be easily represented by introducing several essential integer parameters,
and the best attack parameters can be easily derived through an exhaustive search. In [35], Sasaki et al.
introduced the guess-and-determine approach to extend the basic attack by one more round.

2.3 The Rebound Attack and the SuperSBox Technique

The rebound attack was first introduced by Mendel et al. in their attacks against reduced-round Whirlpool

and Grøstl [24]. It aims to find a pair of inputs satisfying some unique properties for some specific (truncated)
differential characteristics faster than the ideal case. There are two main procedures of the rebound attack,
namely, the inbound phase and the outbound phase. Let C andD denote the certain non-full-active differential
forms (normally with very few active cells) in the inbound phase, and F denote the full-active differential
form, then the differentials in the inbound phase of the basic rebound attack can be denoted as C → F ← D.
The available freedom degrees are used to connect these middle rounds with relatively small amount of
computations using the match-in-the-middle technique. In the outbound phase, solutions from the inbound
phase are propagated both forwards and backwards to connect the differentials in both directions.

The SuperSBox technique for the rebound attack was independently introduced in [12,22]. This technique
exploits the fact that the non-linear layers between two rounds, i.e., SB, SR, MC, AC, SB can be computed
for each column independently. Therefore, by constructing the look-up tables for each individual column, the
SuperSBox technique is able to cover one more full-active state in the inbound phase, namely, C → F ↔ F ←
D. The look-up tables built are hence called the SuperSBoxes. In [15,16], a further extension of the rebound
attack and the SuperSBox technique, which can cover three full-active states C → F ↔ F ↔ F ← D in
the inbound phase, was presented. The core of this technique is the advanced techniques utilized to merge
solutions generated from the forward and backward SuperSBoxes in more efficient manners.

3 (Second) Preimage Attacks on Reduced-Round Whirlwind

Firstly, we present the second preimage attack on 6-round Whirlwind with the aid of the plain MitM preimage
attack on AES-like compression functions. Then the preimage attack on 4-round Whirlwind is illustrated.
The whole preimage attack consists of four steps. In some steps of the attack partial values of the initial
state are fixed, and the plain MitM preimage attack framework on AES-like compression functions cannot
be directly applied under this scenario. Fortunately, we slightly tweak the original attack framework by
partially fixing the values of the state, and make the preimage attack feasible. Despite the simplicity of
this small tweak, its effectiveness are further stated with several new and interesting preimage attacks on
reduced-round Whirlpool and AES hashing modes.



3.1 Second Preimage Attack on 6-Round Whirlwind

Before describing all attacks, we stress that a single compression function computation (resp. the state bit
size of the compression function) is used as the basic unit of time (resp. memory) throughout this paper. The
second preimage attack on 6-round Whirlwind is less complex and more traditional. As depicted in Fig. 2,
suppose we expect to find a second preimage of M1||M2||...||Ms, the attack procedures can be divided into
two phases. In the first phase, we find sufficient pseudo preimages and derive a set of h′t+1s for a chaining
value in the middle ht+2. In the second phase, we launch the traditional MitM method [26, Fact 9.99] to
convert the pseudo preimages into a second preimage. More precisely, we choose random values of Mt to
compute a set of ht+1s from ht, and search for a match of ht+1 in the set of h′t+1s. A second preimage is
successfully constructed if a match is derived.

IV Match

2z  pseudo 

preimages

2512-z  chaining 

values

ht+2

ht+1 h't+1

M1||M2||…||Mt

ht

Mt+3||Mt+4||…||Ms

hs

Mt+1 Mt+2 Output

Transformation
hX

Fig. 2. Second preimage attack on 6-round Whirlwind

The main task lies in the first phase where sufficient pseudo preimages have to be generated. This can be
done by utilizing the MitM preimage attack framework on AES-like compression functions which have been
extensively investigated in [33,36,35]. Without loss of generality, we introduce the plain attack framework
with the MitM preimage attack on 6-round Whirlwind compression function, and Fig. 3 depicts the basic
chunk separation of this attack. Before more details are illustrated, we define several notations which are
used throughout this paper.

n Bit size of the digest.
Nc Bit size of the cell.
Nt Number of columns (or rows) in the state.
b Number of blue columns (or rows) in the initial structure, and
r Number of red columns (or rows) in the initial structure.
c Number of constant cells in each column (or row) corresponding to

the red column (or row) in the initial structure.
g Number of guessed rows (or columns, in purple) in the backward

(or forward) computation.
Db Freedom degrees of the blue chunk in bits.
Dr Freedom degrees of the red chunk in bits.
Dg Bit size of the guessed cells.
Dm Bit size of the match point.
T Time complexity of the attack.
M Memory requirement of the attack.

The attack procedures of the first phase can be further divided into five steps which are elaborated as
follows, and the interested readers are referred to [33,36,35] for more detailed descriptions.

Step 1. Initial Structure. The purpose of the initial structure is to use several consecutive rounds as the
starting point and divide the target cipher into two sub-ciphers which can be independently computed.
For this purpose, as shown in Fig. 3, we choose random values for the constants (in grey) which are
used in the linear transformations between states #1 ↔ #2, and states #3 ↔ #4. Following the linear
relations of the θC and θR operations, compute the values in the initial structure for the forward chunk
(in blue) which has Db freedom degrees and the backward chunk (in red) which has Dr freedom degrees.
After this step, the compression function is divided into two independent chunks thanks to the initial
structure.



Step 2. Forward Computation. For all the blue and grey cells at state #4, the forward chunk can be
computed forwards independently until state #5.

Step 3. Backward Computation. For all the red cells at #1, the backward chunk can be computed
backwards independently until state #7. In order to proceed the backward computation by one more
round, the guess-and-determine strategy is applied at state #6 by guessing the value of g rows.

Step 4. Indirect-Partial-Matching through the MixRow Layer. We have partial information of the
red and blue cells from both directions, and linear relations of the θC operation can be further exploited
at the match point to perform the indirect-partial-matching between states #5 ↔ #7.

Step 5. Recheck. Check whether the guessed cells of the partial match derived in step 4 are guessed
correctly. If so, check whether the partial match is also a full match. Repeat the above steps 1-5 until a
preimage is found.

θRγ θCγ

b

Initial Structure

Match Point

Freedom in Blue: Db=NcNt(b-r)

Freedom in Red:  Dr=Nc(Nt-c)(Nt-b)

Guessed Cells:     Dg=gNc(Nt-r)

Match Size:          Dm=NcNt(g+c-Nt)

(b, r, c,g)=(6, 4, 7, 3)

#4#1

r

θR

θR θCγ

θCγγ

γ

#6

Truncated

g

c

#2 #3

#5 #7

Fig. 3. Chunk separation for the 6-round pseudo preimage attack

Deriving the Attack Parameters. As studied in [36,35], the attack parameters, e.g., (Db, Dr, Dg, Dm)
can be easily represented with several predefined integer parameters (b, r, c, g) as shown in Fig. 3. The attack
complexities can be denoted as follows:

T = 2n(2−Dr + 2Dg−Db + 2Dg−Dm),
M = min{2Dr+Dg , 2Db}. (1)

We can derive the optimal attack parameters by enumerating all possible values of (b, r, c, g).
Complexity Analysis. Fig. 3 gives the optimal chunk separation for the pseudo preimage attack on the
compression function, and it requires 2480 time and 2128 memory. In order to balance the overall complexities,
we generate 216 pseudo preimages in the first phase. In the second phase of the attack, we compute 2496 ht+1s,
and find a match with the pseudo preimages generated in the first phase with a high probability. Finally, it
would require 2497 time and 2128 memory to launch a second preimage attack on 6-round Whirlwind.

3.2 Overview of the 4-Round Preimage Attack

Due to the strong impacts introduced by the truncation operation and the partially fixed state of Whirlwind
(especially by the output transformation), our preimage attack can only work up to 4 rounds. The gap
between the attacked rounds of preimage and second preimage attacks demonstrates that the adoptions
of the truncation operation and the partially fixed state do strengthen Whirlwind in terms of preimage
resistance.

Before describing the details, we give a brief overview of the 4-round preimage attack. As depicted in Fig.
4, the three-block preimage attack on 4-round Whirlwind consists of four steps. In the first step, the attack
is carried out on the output transformation, and the given challenge digest hX is inverted. In the second
step, we invert the chaining value h3, and derive the value of the last message block M3 which contains the
padding part. In the third step, we generate several pseudo preimages h′1, and sufficient values for the second
last message block M2 are obtained simultaneously. In the last step, the traditional MitM method [26, Fact
9.99] which converts pseudo preimages in to a preimage is launched, and we expect to find a match between
h1s and h′1s. If all steps succeed, the three-block message M1||M2||M3 is a preimage for 4-round Whirlwind.
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Fig. 4. Overview of the preimage attack on 4-round Whirlwind

3.3 The Slightly Tweaked MitM Preimage Attack on AES-like Compression Functions

The main bottlenecks of the preimage attack lie in step 1 and step 2 where partial values of the initial states
are already fixed before launching the attack. More precisely, in step 1 the rightmost 4 columns of the state
are fixed to 0 in the output transformation. As in step 2, since the preimage we try to build consists of 3
blocks, and the last block contains 255 message bits and 257 padding bits according to the MD-strengthening
padding algorithm, the rightmost 2 columns of the state are fixed to the value 512 + 512 + 255 = 1279. The
plain MitM preimage attack framework on AES-like compression functions described in Section 3.1 seems
inapplicable in this scenario. Luckily, we can apply a small and simple tweak which partially fixes the values
of the state, and thus make the original attack framework feasible.
The Tweaked Attack Framework with Truncation. There are two main differences in the tweaked
attack framework compared to the plain framework, namely, the partially fixed input state before the first
round and the truncation operation carried after the last round. Also notice that the first and the last rounds
are connected by the feed-forward operation, thus the initial structure in the tweaked framework needs to
be located carefully between the first and the last rounds. Without loss of generality, we use the attack on 4-
round Whirlwind compression function as an instance to elaborate the tweaked framework, and Fig. 5 depicts
the basic chunk separation of this attack. Following the definitions in Section 3.1, several additional notations
need to be specified before providing more details. Since the half truncation is performed in Whirlwind, we
will describe the slightly tweaked attack framework under the setting that the output chaining value is
truncated in the following part.

tr Number of columns (or rows) truncated in the output chaining value.
fi Number of columns (or rows) fixed in the initial state before the attack.
b1 Number of blue columns (or rows) with partial freedom degrees in the

initial structure.
b2 Number of blue columns (or rows) with full freedom degrees in the

initial structure, we haveb = b1 + b2.
Db1 Freedom degrees of the blue chunk with partial freedom degrees in bits.
Db2 Freedom degrees of the blue chunk with full freedom degrees in bits,

we have Db = Db1 +Db2 .

Freedom in Blue 1: Db = Ncb1(Nt - g)               Freedom in Blue 2: Db = Ncb2Nt

Freedom in Blue: Db = Nc[b1(Nt - g) + b2Nt]      Freedom in Red:  Dr = rNc(Nt - c)

Guessed Cells:     Dg = gNc(b2 + fi)                    Match Size: Dm = NcNt(g + c - Nt)

Constraints:          b1 + b2 + r + fi = Nt       b1 + b2 = b       b1 + r ≤ Nt - tr

(tr, fi) = (4, 2),   (b1, b2, b, r, c, g) = (2, 3, 5, 1, 7, 3)

γ
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γ
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Fig. 5. The tweaked MitM preimage attack framework with truncation

For the sake of simplicity, we only consider the cases where full columns (or rows) are fixed (resp.
truncated) in the initial state (resp. the output chaining value). Given a specific attack target, the values of
(fi, tr) are prefixed before the attack, and the values of (b1, b2, r, c, g) can be chosen by the attacker in order
to derive optimal attacks. The attack procedures are as follows:



Step 1. Initialization. Set the fi yellow columns in the initial state to the prefixed values, and denote the
target digest as hX .

Step 2. Initial Structure. Randomly choose values for the constants which are denoted in grey in the
initial structure. According to the prefixed values in step 1 and the chosen constants in step 2, compute
all values for the blue and red cells in the initial structure. After this step, the compression function is
divided into two independent chunks.

Step 3. Backward Computation. In order to perform the backward computation, we have to apply the
guess-and-determine strategy by guessing g rows which are denoted in purple at state #1. For all values
of the red and guessed purple cells, compute backwards to the matching point at state #6 and store all
partial matching values in a sorted table TL (e.g. hash table).

Step 4. Forward Computation. The blue cells in the forward computation can be further classified into
two categories. For the b1 columns, their values are constrained by the constant values in the initial
structure, and there are overall 2Db1 values for these blue cells. Due to the truncation, we have to ensure
r+b1 ≤ Nt− tr. For the b2 columns, they can take all 2Db2 possible values of these blue cells. Combining
these two categories, the freedom degrees in the blue cells are 2Db = 2Db1

+Db2 . For all values of the blue
cells, compute forwards to the matching point at state #5.

Step 5. Indirect-Partial-Matching. Check whether the partial matching values derived in step 4 is also
in the table TL built in step 3.

Step 6. Recheck. Check whether the guessed cells of the partial match derived in step 5 are guessed
correctly. If so, check whether the partial match is also a full match. Repeat the above steps 2-6 until a
preimage is found.

Complexity Analysis. Note that we can also swap the orders of step 3 and step 4, and the selection
depends on which step requires less memory. Similar to the plain framework described in Section 3.1, the
complexities of the tweaked attack are as follows:

T = 2n(2−Dr + 2Dg−Db + 2Dg−Dm),
M = min{2Dr+Dg , 2Db}.

We do not provide detailed deductions, but it is convenient to check that the quartet (Db, Dr, Dg, Dm) can
be represented with the integer variables defined as given in Fig. 5. The optimal attack parameters can be
easily achieved by an exhaustive search for all valid values of (b1, b2, r, c, g) with a prefixed (fi, tr).

The Tweaked Attack Framework without Truncation and Its Applications. Another interesting
problem is to study the tweaked attack framework without truncation. We present detailed descriptions of
this framework in Appendix A. As shown in the analyses, the attacked rounds can be further extended to 5
and even 6 rounds.

A natural scenario to adapt this tweaked framework without truncation is to generate short preimages
for certain hash primitives by fixing partial values of the padding. The idea of generating short preimages by
fixing the padding values is simple and widely applied to hash functions with the generalized Feistel structure
and permutation-based message schedules such as MD5 [34] and SHA-0/1 [4], because the message blocks are
commonly added into the round functions leaving enough freedom degrees to fix the padding message blocks.
However, for most of the AES-like hash primitives, the input message block is immediately mixed into the input
state, and thus restrain the ability to choose and fix proper values of the padding message block (normally
the last one). In practice, many previous preimage attacks on AES-like hash functions do not impose any
restraints on the padding values, and they largely rely on the expandable messages [18] which often result in
preimages with very large and impractical lengths. After the investigations of this tweaked framework, we
find out that for some practical AES-like hash constructions, there are freedom degrees to prefix partial values
of the padding message block, and thus it is possilbe to derive preimages with relatively short (even practical)
lengths for these constructions (though normally with higher time complexities). As direct applications, we
launch two new preimage attacks against 5 and 6 rounds of Whirlpool, which reduce the preimage length
from 2256 bits [35] to two blocks and 2128 bits respectively. Furthermore, under a very reasonable adoption of
the padding algorithm, namely, MD-strengthening with the 64-bit length padding which is also used by MD5

[32], SHA-1 and SHA-224/256 [29], we apply this technique to generate preimages with practical lengths for
some PGV modes (including Matyas-Meyer-Oseas and Miyaguchi-Preneel) instantiated with 6-round AES,



while no preimage attacks exist in literature for these constructions instantiated with (reduced-round) AES

at the hash function level. The details of these proposed attacks are also provided in Appendix A, and the
results are summarized in Table 4.

3.4 Details of the 4-Round Preimage Attack

Step 1. In this step, we need to invert the output transformation and derive the chaining value h3. Since the
right half of the input state #1 is fixed to 0, and the right half of the output state #2 is truncated, we have to
utilize the tweaked MitM preimage attack framework with truncation under the parameters (fi, tr) = (4, 4).
As shown in Fig. 6, we derive the optimal chunk separation with parameters (b1, b2, r, c, g) = (3, 0, 1, 7, 3)
after an exhaustive search. Finally, it requires 2496 time and 2208 memory to invert the output transformation
of 4-round Whirlwind. Note that since we need to match a 512-bit target digest, but there are only 2512

freedom degrees in the input chaining value h3, step 1 will succeed with probability 1− e−1.
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Step 2. In this step, given the value of h3, we have to invert the compression function in order to derive
the input chaining value h2 and the last message block M3 which contains the padding part. Since we aim
to build a three-block preimage, according to the MD-strengthening padding algorithm, the last 257 bits of
M3 are fixed to the padding value. Consequently, the 2 rightmost columns of the initial state are prefixed as
denoted with yellow in Fig. 7. Note that since the 256-th bit of M3 has to be ’1’ due to the padding, we lose
one bit freedom degree of the blue chunks. We utilize the tweaked MitM preimage attack framework with
truncation under the parameters (fi, tr) = (2, 4), and exhaustively search for all valid values of (b1, b2, r, c, g).
The chunk separation with (b1, b2, r, c, g) = (0, 2, 4, 7, 3) as shown in Fig. 7 is the best result achieved. As
a result, step 2 requires 2449 time and 2255 memory. Since step 2 requires much less computations than
step 1, one can also carry out step 2 with parameters (b1, b2, r, c, g) = (3, 2, 1, 7, 3) to minimize the memory
requirement. The corresponding complexities are (T,M) = (2496, 2208).
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Fig. 7. Step 2. Derive the last message block

Step 3. In this step, given the value of h2, we have to invert the compression function in order to derive
the value of the second message block M2 and the input chaining value h1. The only constraint of this
step is the final truncation, thus the traditional MitM preimage attack can be launched. We omit these
details. As depicted in Fig. 8, with parameters (b, r, c) = (5, 3, 4), the attack is optimized with complexities
(T,M) = (2320, 2192). Since we will perform the traditional MitM procedure [26, Fact 9.99] to convert the
pseudo preimages into a preimage in step 4, we have to generate and store multiple say 2x pairs of (h1,M2),
which require 2320+x time and 2x memory.
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Step 4. In this step, we launch the traditional MitM method to connect the values of h′1 generated in step
3. More precisely, we choose random values of M1 and compute the corresponding output chaining values
h1, then match it with the values of h′1 generated in step 3. After choosing 2512−x distinct values of M1, we
expect to find a match and finally derive a preimage of 4-round Whirlwind. Since each h1 can be checked
on the fly, the memory requirement for step 4 is negligible. We choose x = 96 to minimize the overall time
complexity for step 3 and step 4 which is 2512−96 + 2320+96 = 2417.
Complexity Analysis. Now to sum up, the time complexity is dominated by step 1, and the memory
requirement is dominated by step 2. Finally, the complexities for the 4-round preimage attack are (T,M) =
(2496, 2255). One can also minimize the memory requirement by adopting the alternative attack parameters
provided in step 2, which results in complexities of (T,M) = (2497, 2208).

4 Collision Attacks on Reduced-Round Whirlwind

This section presents the collision attack on 4- and 5-round Whirlwind hash function. Due to the Davies-
Meyer-like mode of Whirlwind, it is feasible to launch semi-free-start or free-start collision attacks on the
reduced-round compression function with the rebound attack, but deriving a collision attack at the hash
function level seems difficult. Fortunately, with the aid of the multi-block strategy, we are able to launch
collision attacks on 4 and 5 rounds of the Whirlwind hash function.

4.1 Overview of the 5-Round Collision Attack

The previous collision attacks on Grindahl [30] and Grøstl [25] generate colliding messages which contain
several consecutive message blocks. The general strategy in these attacks is after introducing the differences
into the chaining values, the differences are gradually cancelled with the posterior message blocks, and
eventually lead to collisions by eliminating the differences in the output chaining values. Our attack is based
on a similar multi-step process which gradually introduces, restricts and finally cancels the differences. As
shown in Fig. 9, the overall attack consists of three steps and outputs a 3-block colliding pair, and each step
targets on a certain message block.
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Fig. 9. Collision attack on 5-round Whirlwind

Before providing more detailed descriptions of the collision attack, it is necessary to specify several
notations used. As depicted in Fig. 9, we use ∆St = St ⊕ St′ to denote the difference between two states
St and St′. LEFT(St) and RIGHT(St) denote the left half and the right half of the state St respectively. Also
note that in the figures of the collision attacks, active (resp. inactive) cells are denoted in grey (resp. white).
The red cells correspond to the input message blocks which can be freely controlled by the attacker, and



the green cells in the output chaining value of the compression function are truncated. The overall collision
attack consists of three steps, and the collision pair has three blocks, i.e., (M1||M2||M3,M1||M ′2||M ′3).

Step 1. Provide the freedom degrees. The purpose of the first step is to provide sufficient freedom
degrees for the subsequent two steps. We randomly choose the values of the first message block M1 and
compute the output chaining values LEFT(T1).

Step 2. Introduce the input differences and restrict the output differences. We introduce the in-
put differences by choosing different values for the second message block, i.e., (M2,M

′
2), such that the

difference of the output chaining values for the second compression function call, namely, LEFT(∆T2),
satisfies that LEFT(∆T2) = LEFT(∆Q2), where ∆Q2 = θR(∆P2) and the difference of P2 only lies in the
first column.

Step 3. Cancel the output differences. We need to generate the message block pair (M3,M
′
3), such that

the output difference of the permutation for the third compression function call, namely, LEFT(∆Q3),
satisfies that ∆Q3 = θR(∆P3), where the difference of P3 only lies in the first column. It is clear
that the values of ∆Q2 and ∆Q3 are in the same subspace thanks to their unique differential forms,
and moreover, if ∆P2 = ∆P3 is satisfied, we can directly deduct that ∆Q2 = ∆Q3 due to the linear
properties of θR. Consequently, the output difference of the third compression function call, namely,
LEFT(∆T3) will be 0, since we have LEFT(∆T3) = LEFT(∆T2)⊕ LEFT(∆Q3) = LEFT(∆Q2)⊕ LEFT(∆Q3)
due to the feed-forward operation. Finally, appending any identical message blocks which satisfy padding
to (M1||M2||M3,M1||M ′2||M ′3) will lead to a collision on the hash function.

4.2 Impacts of the Partially Fixed States

As shown in Fig. 9, partial values of the input states are fixed in the last two steps of the attack. More
precisely, the left half of S2 is fixed to LEFT(T1) in the second step of the attack, and the left half of the
paired values S3 are fixed to LEFT(T2) and LEFT(T ′2) in the last step of the attack. Since the SuperSBox
technique is utilized at the input states of the last two steps, it is essential to discuss the impacts brought
by the partially fixed states.
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Fig. 10. Illustrations of the tweaked SuperSBox technique with partially fixed states

Without loss of generality, we use the inbound phase of step 3 which connects S3 and U3 as an instance to
discuss a similar and generalized problem as depicted in Fig. 10. Suppose that both the differences and the
values of the Nf grey columns in S3 are fixed, and the differences and the values of the Nt −Nf remaining
red columns in S3 can be freely chosen. According to the SuperSBox technique, the three layers γ → θR → γ
can be seen as Nt parallel row-wise SuperSBoxes, namely, SSB0, SSB1, ..., SSBNt−1. Regarding some of the
definitions in Section 3.1, the exact attack steps of the tweaked SuperSBox technique with partially fixed
states are as follows:

1. From the forward direction, for every difference of the red cells in SSB0, we enumerate all 2Nc(Nt−Nf )

possible values conforming to this difference, and compute the corresponding values and differences in
γ(W3). We save them in a sorted table. Since we can enumerate all 2Nc(Nt−Nf ) differences in SSB0, so
the lookup table of SSB0 has at most 22Nc(Nt−Nf ) entries. For the remaining Nt − 1 SuperSBoxes, the
procedures are similar.

2. From the backward direction, we select a random difference of U3, and compute it backwards to get
the value of θ−1C (∆U3). We match this difference with the Nt SuperSBox tables built in step 1. Since a
NcNt-bit difference needs to be matched for each SuperSBox, two different cases need to be considered:
Case 1. The number of entries in each table is insufficient to derive a NcNt-bit match, namely, 2Nc(Nt−

Nf ) < NcNt (equivalent to 2Nf > Nt). In this case, we have to compute 2NcNt−2Nc(Nt−Nf ) =
2Nc(2Nf−Nt) differences of θ−1C (∆U3) to derive a match for a single SuperSBox. Consequently, in order



to derive a match for all Nt SuperSBoxes simultaneously, we have to choose 2NcNt(2Nf−Nt) different
values of θ−1C (∆U3). Since there are overall 2NcNt possible differences of U3, ifNcNt < NcNt(2Nf−Nt)
which is equivalent to 2Nf > Nt + 1, we are not able to derive a match for all the SuperSBoxes at
the same time.

Case 2. The number of entries in each table is sufficient to derive a match, namely, 2Nc(Nt−Nf ) ≥ NcNt

(equivalent to 2Nf ≤ Nt). In this case, instead enumerating all differences and values of the red cells
in each row of S3, we only need to select suffiecient say 2X differences of the red cells, and exhaust
all 2X+Nc(Nt−Nf ) corresponding values for each SuperSBox. We choose X + Nc(Nt − Nf ) = NcNt

(equivalent to X = NcNf ), because we only need to match a NcNt-bit difference for each SuperSBox.
It requires 2NcNt time and memory to generate and store the Nt SuperSBoxes tables. Given a specific
difference θ−1C (∆U3), we expect to get a match for each of the Nt SuperSBoxes simultaneously, thus
derive a solution for the inbound phase. After exhausting all 2NcNt differences of U3, we expect to
get 2NcNt solutions for the inbound phase with 2NcNt time and memory. Since there are overall
22NcNt(Nt−Nf ) differences and corresponding values of the red cells S3, and Nt active cells in U3, we
can generate at most 22NcNt(Nt−Nf )−NcNt(Nt−1) = 2NcNt(Nt−2Nf+1) solutions for the inbound phase.

To summarize the above analysis, if 2Nf ≤ Nt, we can generate 2NcNt solutions for the inbound phase
with 2NcNt time and memory, and at most 2NcNt(Nt−2Nf+1) solutions can be generated for the inbound
phase. Otherwise if 2Nf > Nt, the attack would be infeasible due to the lack of freedom degrees.

4.3 Details of the Collision Attack

For Whirlwind, Nc = 16, Nt = 8, Nf = 4 which satisfies the condition discussed in Section 4.2, and the
SuperSBox technique can be adapted. We illustrate the detailed procedures of the 5-round collision attack
as shown in Fig. 9.

Step 1. From the specified IV , we choose a random value for the first message block M1, and compute its
output chaining value which is LEFT(T1) due to the truncation.

Step 2. From LEFT(T1), we utilize the SuperSBox technique by exploiting the freedom degrees in both the
values and the differences of M2 in the inbound phase (in red). We get 2128 solutions for the inbound phase
with 2128 time and 2128 memory. Based on the analysis in Section 4.2, the overall number of solutions
for the inbound phase is 2128. The probability of the outbound phase (in blue) is 2−16×7 = 2−112, thus
we expect to get 216 pairs of (M2,M

′
2).

Step 3. From a specific pair of LEFT(T2) and LEFT(T ′2) which is generated in step 2, we utilize the SuperSBox
technique by exploiting the freedom degrees in both the values and the differences of M3 in the inbound
phase (in red). We get 2128 solutions for the inbound phase with 2128 time and 2128 memory. The
probability of the outbound phase (in blue) is 2−16×7 = 2−112, and we need to guarantee ∆P3 = ∆P2

which happens with probability 2−16×8 = 2−128 in order to eliminate the difference. So we need 2240

solutions from the inbound phase of step 3, and the freedom degrees seem insufficient. By choosing 296

different values of M1 in step 1, and combining the 216 solutions (LEFT(T2), LEFT(T ′2)) generated in step
2 for each value of M1, the overall number of solutions reaches 296+16+128 = 2240, and we expect to
derive a collision.

Complexity Analysis. As illustrated above, it requires 2240 compression function computations to generate
a collision for 5-round Whirlwind. The memory requirement is 2128 due to the SuperSBox technique.

4.4 The Four Round Collision Attack

As depicted in Fig. 11, we can also launch a collision attack on 4-round Whirlwind. Note that the freedom
degrees are sufficient in the 4-round attack, thus we only need to launch a two-block attack. The attack strat-
egy is similar to the 5-round attack through a multi-step process by introducing, restricting and cancelling
the differences. We omit more descriptions and it requires 2128 time and 2128 memory to find a collision for
4-round Whirlwind. Since the designers recommend the adoption of Whirlwind with truncated digest, it is
notable that the 4-round collision attack can also be applied to Whirlwind-384, i.e., the Whirlwind variant
with the 384 LSBs as the digest.
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Fig. 11. Collision attack on 4-round Whirlwind

5 Limited-Birthday Distinguisher on Reduced-Round Whirlwind

The limited-birthday distinguisher on hash functions [14], which was proposed at ASIACRYPT 2013, converts
semi-free-start collisions on the compression function into a distinguisher on the hash function. This section
presents the limited-birthday distinguisher on 6-round Whirlwind. There are two main procedures to build a
limited-birthday distinguisher, i.e., generating sufficient semi-free-start collisions on the compression function
and connecting the chaining values with the traditional MitM method. In order to achieve better balance
between these two procedures, we follow the ideas presented in [23].

Step 1. Truncated differential trails for the 6-round semi-free-start collision attack with x=3, y=4
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Fig. 12. Limited-birthday distinguisher on 6-round Whirlwind

Step 1. Build the Semi-free-start Collisions. The truncated differential trail for the 6-round semi-free-
start collision attack is shown in Fig. 12, and it follows the following pattern:

4x
r0−→ 8x

r1−→ 64
r2−→ 64

r3−→ 8y
r4−→ 4y

r5−→ 32y,

where x, y = 1, 2, ..., 8 denote the number of active rows in S1 and S4 respectively. The rebound attack
and the SuperSBox technique are utilized to find the collisions, and the specific details are omitted. In
the inbound phase, given a random difference of γ(S1), we calculate the corresponding SuperSBoxes with
2128 time and 2128 memory. Then we choose 2128 differences from all possible differences of S4, and match
with the SuperSBoxes. According to the SuperSBox technique, we expect to generate 2128 solutions for the
inbound phase at the cost of 2128 time and 2128 memory. In other words, the average complexity to generate
a solution for the inbound phase is only 1. If the solutions are insufficient, we can choose other difference
values of γ(S1) and S4 and repeat the above procedures.

The outbound phase has a probability of 2−64(x+y), thus the average complexities to generate one semi-
free-start collision is 264(x+y) time and 2128 memory. Note that there are 2128x differences in γ(S1) and 2128y

differences in S4, so we can generate at most 2128(x+y) solutions for the inbound phase, and consequently
2128(x+y)−64(x+y) = 264(x+y) semi-free-start collisions.



Step 2. Build the Limited-Birthday Distinguisher. As depicted in Fig. 12, suppose 2z semi-free-start
collisions are generated in step 1, we compute 2512−z output chaining values and hope to find a match using
the traditional MitM method with a high probability.

Complexity Analysis. Combining both steps, the time complexity to launch the attack is

T = 2z+64(x+y) + 2512−z.

Note that the difference of the input messages lies in a subspace of size 216×4x = 264x, and the difference of
the output lies in a subspace of size 1 due to the collision property. Hence, for an ideal one-way function, it
would require max{2256, 2513−64x} computations to find a message pair corresponding to the limited-birthday
problem.

Now we show how to minimize T and also make the distinguisher valid. Two different occasions need to
be considered. In the first occasion, the amount of the semi-free-start collisions is sufficient to achieve balance
for step 2, thus we let z + 64(x+ y) = 512− z in order to balance the complexities of the two steps, and we
need to guarantee z ≤ 64(x+ y). The above conditions are equivalent to x+ y ≥ 3 and z = 256− 32(x+ y),
and the time complexity can be rewritten as

T = 2257+32(x+y).

In the second occasion, the amount of the semi-free-start collisions is insufficient to achieve balance for step
2, thus we need to maximize z to minimize the time complexity. These restraints are equivalent to x+ y ≤ 2
and z = 64(x+ y), and the time complexity can be rewritten as

T = 2512−64(x+y).

Finally, we consider both occasions and find out that when x = 1, y = 2 the overall time complexity is
minimized to 2353 computations, where the generic attack would require 2449 computations. As a result, a
valid limited-birthday distinguisher is constructed for 6-round Whirlwind with 2353 time and 2160 memory
(the semi-free-start collisions need to be stored).

6 Analyses of the Reduced-Round Components of Whirlwind

This section presents analyses of the reduced-round compression function and inner permutation of Whirlwind.

6.1 Semi-free-start Collision Attack on 6-Round Whirlwind Compression Function

The truncated differential trail is depicted in Fig. 13. The three middle rounds are covered with the inbound
phase by utilizing the SuperSBox technique, and in the outbound phase two rounds and one round are
propagated in the forward and the backward directions respectively. The inbound phase generates 2128

solutions with 2128 time and 2128 memory. There are two 8→ 4 transitions in the outbound phase, thus the
probability of the outbound phase is 2−16×8 = 2−128. Consequently, it requires 2128 time and 2128 memory
to find a semi-free-start collision.
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Fig. 13. Semi-free-start collision attack on 6-round Whirlwind compression function

6.2 Free-start Near Collision Attack on 7-Round Whirlwind Compression Function

We consider the Whirlwind Compression Function where the whole state is preserved without the half
truncation. The truncated differential trail is depicted in Fig. 14. The three middle rounds are covered
with the inbound phase by utilizing the SuperSBox technique, and in the outbound phase two rounds are



propagated in both the forward and the backward directions. The inbound phase generates 2128 solutions
with 2128 time and 2128 memory, and can generate at most 2256 solutions. There are two 8 → 1 transitions
in the outbound phase, thus the probability of the outbound phase is 2−16×14 = 2−224. Consequently, it
requires 2224 time and 2128 memory to find a free-start near collision on 896 bits out of 1024 bits, while
for an ideal compression function it would require 2448 computations. Note that in order to find a free-start
collision, we have to cancel the four leftmost cells of the active row, thus it would require 2224+64 = 2288

solutions from the inbound phase. Consequently, it is almost impossible to derive a free-start collision with
this truncated differential trail due to the lack of freedom degrees.
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Fig. 14. Free-start near collision attack on 7-round Whirlwind compression function

6.3 Limited-Birthday Distinguisher on 9-Round Whirlwind Inner Permutation

The truncated differential trail to build the limited-birthday distinguisher on the permutation [12] is depicted
in Fig. 15. The distinguisher is actually a straightforward application of the generic distinguisher on AES-like
permutations which has been comprehensively studied [15,16], thus we omit more descriptions. In a word, we
can find two messages satisfying the limited-birthday problem with 2736 time and 2128 memory, while for an
ideal permutation it would require 2769 computations. Finally, combining the multiple-birthday distinguisher
[17] which takes all possible outbound patterns into account, the time complexity can be further reduced to
2730, while the best known generic algorithm would require no less than 2763 computations.
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7 Conclusion

We provide a thorough security analysis of Whirlwind. Firstly, we focus on security properties at the hash
function level, and present 6-round second preimage, 4-round preimage, 5-round collision and 6-round distin-
guishing attacks out of the 12-round hash function. Then we investigate security properties of the Whirlwind
components with several reduced-round attacks on the compression function and the underlying permutation.

Moreover, we show how to generate preimages with significantly reduced lengths for reduced-round ver-
sions of Whirlpool, and also present the first preimage attacks at the hash function level for several PGV
modes instantiated with 6-round AES.
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Full Whirlpool Compression Function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143.
Springer, Heidelberg (2009)

23. Ma, B., Li, B., Hao, R., Li, X.: Improved Cryptanalysis on Reduced-Round GOST and Whirlpool Hash Func-
tion. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 289–307. Springer
International Publishing (2014), full version available at http://eprint.iacr.org/2014/375
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A The Tweaked MitM Preimage Attack Framework without Truncation and
Its Applications

A.1 The Tweaked MitM Preimage Attack Framework without Truncation

Fig. 16 shows the basic chunk separation for the tweaked MitM preimage attack framework on 6-round AES-
like compression function without truncation. The symbols follow the same definitions in Section 3, and we fix
n = 512, Nc = Nt = 8 for this case. The initial structure has to be built in the last round (or the first round)
due to the influences from both the partially fixed values in the input state before the first round and the
feed-forward computation performed after the last round. After the construction of the initial structure, the
blue and the red chunks can be computed independently. By utilizing the guess-and-determine technique, the
backward computation of the red chunk can be extended by one more round. We omit detailed descriptions
of the attack procedures. Also note that we have to remove the guessed round under some circumstances
because of the lack of freedom degrees in the state, and the attack can only reach 5 rounds. The memoryless
attacks can also be achieved with proper attack parameters. The complexities for the 5- and 6-round attacks
can be denoted as follows:

T6R = 2n(2−Dr + 2Dg−Db + 2Dg−Dm), M6R = min{2Dr+Dg , 2Db},
T6R,ML = 2n(2−Dr + 2Dg−Db + 2Dg−Dm/2),
T5R = 2n(2−Dr + 2−Db + 2−Dm), M5R = min{2Dr , 2Db},
T5R,ML = 2n(2−Dr + 2−Db + 2−Dm/2).

where ML refers to the memoryless attacks. The attack parameters can be easily enumerated, and we list
the results in Table 2.

Table 2. Summary of the results for the tweaked MitM preimage attacks without truncation

Rounds fi
Parameters I Parameters II

Time Memory
#(b, r, c, g) #(Db, Dr, Dg, Dm)

6
1 (6,5,7,2) (64,8,48,64) 2504 256

2 (5,3,7,3) (128,8,120,128) 2504 2128

5

1
(5,4,5,-) (64,48,-,64) 2464 248

(5,3,6,-)† (128,32,-,64) 2480 O(1)

2
(4,3,6,-) (64,32,-,64) 2480 232

(4,3,6,-)† (64,32,-,64) 2480 O(1)

3
(4,3,6,-) (64,16,-,64) 2496 216

(4,3,6,-)† (64,16,-,64) 2496 O(1)

4
(3,2,7,-) (64,8,-,64) 2504 28

(3,2,7,-)† (64,8,-,64) 2504 O(1)

† : The memoryless MitM preimage attack.
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Fig. 16. The tweaked MitM preimage attack framework on AES-like compression function without truncation

A.2 Two-Block Preimage Attack on 5-Round Whirlpool and More

Whirlpool is an ISO standardized hash function [13] which operates on 512-bit input message blocks and
produces a 512-bit digest. It adopts the classical MD-strengthening padding, which adds a single bit ‘1’
followed with multiple ‘0’s, and appends a 256-bit length padding L. Its compression function adopts the
Miyaguchi-Preneel mode. We refer to [7] for the detailed specifications of Whirlpool. There are several
preimage attacks on reduced-round Whirlpool [36,35], but these attacks rely on the expandable messages
and construct preimages with very long and impractical lengths. We present two preimage attacks on reduced-
round Whirlpool, namely, the two-block preimage attack on 5-round Whirlpool and the preimage attack
on 6-round Whirlpool which significantly reduce the length of the preimage from a maximum size of 2256

bits to a maximum size of 2128 bits.

Two-Block Preimage Attack on 5-Round Whirlpool. As shown in Fig. 17 (a), the two-block preimage
attack consists of two steps. In the first step, we choose random values of the first message block M1, and
compute its output chaining value h1 from the initial value of Whirlpool. In the second step, given h1 and
the target digest hX , we launch the tweaked MitM preimage attack on the 5-round compression function to
derive the second message block M2. Since we have to match a 512-bit digest, and partial values of M2 are
prefixed due to padding, it seems the freedom degrees are insufficient. However, since we can freely choose
the values of M1 and repeat the second step, thus we have 512 bits freedom degrees in h1 which guarantee
the feasibility of the attack.

Before we show how to deal with the padding part of M2, we clarify that the technique utilized in [35]
which exploits the freedom degrees in the chaining value is not applicable in our attack because the initial-
structure now has to be placed in the last attacked round. As depicted in Fig. 17 (b), the yellow cells of
the initial state #4 relate to the 256-bit length padding L, and are fixed to the hex value 0x2ff which
is the bit length of M1||M2 before padding. Since we have to append a single bit ‘1’ to M2 according to



the MD-strengthening padding, we also lose 1-bit freedom degree in the blue chunk. The expressions of the
attack parameters are provided in Fig. 17 (b). After an exhaustive search for the best attack parameters,
the two-block preimage attack on 5-round Whirlpool can be launched with 2504 time and 28 memory. The
attack can also be memoryless with the same time complexity.
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Fig. 17. Two-block preimage attack on 5-round Whirlpool

Extend the Attack to 6-Round Whirlpool. The current best preimage attack on Whirlpool [35] reaches
6 rounds with 2481 time and 2256 memory. However, this attack adds no restraints on the padding part, and
the length of the preimage generated can reach a maximum size of 2256 bits. Now we show how to launch
the preimage attack on 6-round Whirlpool which significantly reduces the maximum size of the preimage
from 2256 bits to 2128 bits.

As depicted in Fig. 18 (a), this attack consists of three steps. In the first step, we build a (119, 119 +
2119− 1)-expandable messages with 2119 + 119× 2256+1 ≈ 2264 time and negligible memory2. We denote the
output chaining value of the expandable messages as ht−1. In the second step, from ht−1, we choose random
values for the message block Mt−1 and compute the output chaining value ht. In the third step, given ht and
the target digest hX , we launch the tweaked MitM preimage attack on the 6-round compression function to
derive the last message block Mt. We need to repeat the last two steps to exploit the freedom degrees in ht
which guarantee the validity of the attack. After we derive the value of Mt, we choose message blocks from
the expandable messages corresponding to the padding part of Mt. There is a negligible probability that the
message length does not correspond to the expandable messages. However, we can repeat the last two steps
to derive another value of Mt and make adaptive selection from the expandable messages. If all three steps
succeed, we manage to construct a preimage for 6-round Whirlpool.

2 The collision search in order to build the expandable messages can be memoryless by adopting the cycle detection
techniques such as Floyd’s cycle-finding algorithm [11].



Based on the results in Appendix A.1, the 6-round attack can work with at most two prefixed columns
(or rows, depending on whether the MixColumn or the MixRow is performed). Consequently, two yellow
rows are fixed to 0 in the initial state #5 as depicted in Fig. 18 (b), and the maximum size of the message
reduces to 2128 bits (equivalent to 2119 512-bit message blocks, thus explain the structure of the expandable
messages built in the first step). We also have to fix the 256-th bit to ‘1’ due to the MD-strengthening
padding, and thus lose 1 bit freedom degree of the blue chunk. The last 9 bits have to be fixed to 0xff since
the last block Mt contains 255 message bits, but these bits lie in the constants in the initial structure which
can be freely chosen by the attacker, thus we do not lose any freedom degrees of the red chunk. Finally,
we derive the optimal attack parameters through an exhaustive search, and this step requires 2505 time and
2127 memory. Combining all three steps of the 6-round attack, we need 2505 time and 2127 memory to find
a preimage for 6-round Whirlpool whose length is at most 2128 bits.
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Fig. 18. Preimage attack on 6-round Whirlpool with relatively short length

A.3 Preimage Attacks on 6-Round AES Hashing Modes with Practical Lengths

It is also interesting to apply the tweaked MitM preimage attack to the PGV modes instantiated with
(reduced-round) AES. Table 3 lists the 12 secure PGV modes. In [33], Sasaki evaluated the (second) preimage
resistance of the PGV modes instantiated with 7-round AES. More precisely, preimage attacks were launched
for No.1 to No.4. However, only second preimage attacks were launched for No.5 to No.12 (including Matyas-
Meyer-Oseas and Miyaguchi-Preneel) because the padding cannot be satisfied. The preimage resistance of
AES hashing modes has also been studied in later works including [36] (slight improvements of [33]) and [8]
(accelerated full-round exhaustive search at the compression function level), but it remains an open problem
to launch preimage attacks on the PGV modes from No.5 to No.12 instantiated with (reduced-round) AES.



Table 3. Twelve secure PGV modes, Xi refers to Hi ⊕Mi.

No. Computation No. Computation No. Computation No. Computation

1 EMi
(Hi)⊕Hi † 2 EMi

(Xi)⊕Xi 3 EMi
(Hi)⊕Xi 4 EMi

(Xi)⊕Hi

5 EHi(Mi)⊕Mi ‡ 6 EHi(Xi)⊕Xi 7 EHi(Mi)⊕Xi § 8 EHi(Xi)⊕Mi

9 EXi
(Mi)⊕Mi 10 EXi

(Hi)⊕Hi 11 EXi
(Mi)⊕Hi 12 EXi

(Hi)⊕Mi

†: Davies-Meyer ‡: Matyas-Meyer-Oseas §: Miyaguchi-Preneel

We present the first preimage attacks on the PGV modes from No.5 to No.12 instantiated with 6-round
AES under a very reasonable adoption of the padding algorithm. Since the digest size is 128 bits, we assume
the padding algorithm is MD-strengthening with the 64-bit length padding. Before describing the attacks, we
stress that only AES-128 is applicable to instantiate the PGV modes from No.5 to No.12 since the message
block and the chaining value have identical length. Also note that the MixColumn operation in the last AES
round is omitted in our attacks as [33] already did, because the full AES does not perform this operation in
the final round either.

As depicted in Fig. 19 (a), the attack consists of three steps, and the first two steps are almost identical
to the attack on 6-round Whirlpool in Appendix A.2, hence we omit more descriptions. The main difference
is that we now build (33, 33 + 233 − 1)-expandable messages with 233 + 33× 264+1 ≈ 270 time and negligible
memory.

(a) sketch of the 6-round preimage attack

(b) chunk separation for step 3
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Fig. 19. Preimage attack on 6-round AES-128 in the Matyas-Meyer-Oseas mode

The chunk separation for the MitM preimage attack in the last step on 6-round AES in the Matyas-
Meyer-Oseas mode is depicted in Fig. 19 (b), while the remaining PGV modes from No.5 to No.12 can be
analyzed similarly. Since the initial structure has to be placed in the first round and the last round, the
attack cannot be extended to 7 rounds as the attacks in [33]. The 3 yellow cells are fixed to 0, thus the
maximum size of the message is reduced from 264 bits to 240 bits (equivalent to 233 128-bit message blocks,
and also equivalent to a practical 128 GB storage). We have to fix the 64-th bit to ‘1’ and the last 7 bits to
0x3f due to the padding algorithm, thus lose 8 bits freedom degrees in the red chunk. As a result, we can
see from #3 to #2 that the freedom degree in the red chunk is 16 − 8 = 8 bits. From #4 to #5, we can
see freedom degree in the blue chunk is 8 bits. The size of the match point is 32 bits. Finally, the last step



requires 2128 × (2−8 + 2−8 + 2−32) ≈ 2120 time and 28 memory. This step can also be memoryless thanks to
the specific attack parameters with a relatively small size of the match point.

For the PGV modes from No.5 to No.8, the input chaining value of the last block can be prefixed, thus
the preimage attack on these modes instantiated with 6-round AES requires 2120 time and negligible memory.
However, for the PGV modes from No.9 to No.12, the input chaining value is generated after the last step,
thus cannot be predefined. We need to invoke the generic MitM method [26, Fact 9.99] to convert the pseudo
preimages into a preimage, and the complexities of the preimage attack become 2125 time and 24 memory.
Table 4 summarizes our new preimage attacks on Whirlpool and AES hashing modes.

Table 4. Summary of preimage attacks on Whirlpool and AES hashing modes, only

preimage attacks on the hash functions are listed.

Target Rounds Time Memory Reference Remarks

Whirlpool

5

2448 296
[35] Long preimage up to 2256 bits.

2465 O(1)

2504 O(1) Appendix A.2 Two-block preimage.

6

2481 2256
[35] Long preimage up to 2256 bits.

2504 O(1)

2505 2127 Appendix A.2 Long preimage up to 2128 bits.

AES hashing

modes

7
2125 28 [33] PGV modes No.1 to No. 4,

2122.7 216 [36] preimage with short length.

6 † 2120 O(1) Appendix A.3
PGV modes No.5 to No. 8,

long preimage up to 128 GB.

6 † 2125 24 Appendix A.3
PGV modes No.9 to No. 12,

long preimage up to 128 GB.

† : The padding algorithm is MD-strengthening with 64-bit length padding.
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