
Twist Insecurity

Manfred Lochter? and Andreas Wiemers??

Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany

Abstract Several authors suggest that the use of twist secure Elliptic Curves automati-
cally leads to secure implementations. We argue that even for twist secure curves a point
validation has to be performed. We illustrate this with examples where the security of
EC-algorithms is strongly degraded, even for twist secure curves.
We show that the usual blindig countermeasures against SCA are insufficient (actually
they introduce weaknesses) if no point validation is performed, or if an attacker has access
to certain intermediate points. In this case the overall security of the system is reduced to
the length of the blinding parameter. We emphazise that our methods work even in the
case of a very high identification error rate during the SCA-phase.

Keywords. Twist security, deterministic ECDSA, ECDH, random blinding, SCA

1 Introduction

Let
E : Y 2 = X3 + aX + b

be an elliptic curve over a finite prime field Fp with p > 3. By the Hasse-Weil theorem
E has p + 1 + x points defined over GF (p), where |x| ≤ 2

√
p. The twisted1 curve ETw

then has p + 1 − x points defined over Fp. E is called twist-secure if both E and ETw

are cryptographically strong2. As a minimum both #E(Fp) and #ETw(Fp) have to be
almost prime. We fix a base point P0 of prime order q in E(Fp).

[6] thoroughly discusses the security of twist secure curves and explains why relying
on twist security may introduce dangers into ECC systems. The authors state: “Moreover
twist security won’t protect against potential side channel attacks where one would detect
if the computation took place on the curve or its twist and gain information on some
bits of the secret”. Our paper affirms this statement using methods introduced in [11].
However, contrary to [11], we do not have to make assumptions on the form of p.

[3] summarizes applications of twist secure elliptic curves in cryptography and dis-
cusses fault attacks on unblinded Montgomery-Ladder implementations of ECC. Our
method applys to a broader class of EC-scalar-multiplication methods.

Assume that a cryptographic mechanism computes dP for a secret scalar d and
P ∈ 〈P0〉.
? Manfred.Lochter@bsi.bund.de

?? Andreas.Wiemers@bsi.bund.de
1 More exactly: If #E(GF (p)) = p + 1 + x we consider the (GF(p)-isomorphism) class of curves ETw :
y2 = x3 + au2x + bu3 with #ETw(GF (p)) = p + 1 − x as twist of E.

2 The criteria for a curve being cryptographically strong may depend on the context the curve will be
used in

1

At first glance, using twist secure curves seems to protect against some types of
attacks attacks (see ([6], §1.2.3) for additional information). It is widely believed that
the use of twist secure curves helps to improve security in the following situations:

• Invalid x: If only the x-coordinates of points are used an expanded x-coordinate
could lead to a point Q in ETw(Fp) instead of E(Fp). If ETw is not cryptographically
strong and if Q has smooth order on ETw an attacker might take advantage of this
situation by providing x-coordinates of points that lie on ETw.
• Fault-Injection: During the computation of dP0 a fault is introduced, that leads to

computations on ETw instead of E. Then the same ideas as for ”Invalid x” apply.
For simplicity one can assume that the fault is injected immediately at the beginning
of the computation.

Static multiplication with a secret value is used, for example, with static ECDH or
with the decryption process of the elliptic curve integrated encryption scheme (ECIES)
[9]. A proposal has been made by H. Krawczyk [5] that defines an authentication process
for TLS 1.3 that does not rely on a signature. Within this context, static ECDH may
take on additional importance.

Another area where our work is applicable are deterministic signatures [8], where
deterministic ephemeral keys can be recovered and subsequently used to compute the
long term signature key.

In real world applications the computation of dP is performed by using a blinded
value d+ riq with a randomly chosen ri ∈ {1, . . . , 2R}, where R is a system parameter.
Blinding is a widely used counter method to thwart side-channel attacks on implemen-
tation that can be accessed by an attacker.

While the ECDSA does not use a static point multiplication its first step is a multi-
plication of the base-point P0 by a random-number k ∈ {1, . . . , q − 1}. We will see that
performing this computation with a point P ′0 on one of the twists of E instead of P0

can compromise the secret signature key for static variants of ECDSA (e.g. [8]) if no
point-validation on kP0 is performed. Q := kP0 typically is also computed as (k+ riq)P0

using a blinded value k + riq instead of k.

Remark 1. While Coron’s original proposal [2] was to use R = 20 bit blinding it turned
out that this length is not suffient. The length of the blinding needed also strongly
depends on the structure of the underlying prime field. While for random prime fields
64 bit randomisation seem to be secure [10,1] recent work [11] shows that elliptic curves
over special prime fields are much more vulnerable. Here up to log2(

√
q) bit blinding

can be attacked, depending on the so called gap of q. The success rate depends on the
quality of the measurements.

The important observation is, that

(d+ riq)P
′
0 6= (d+ rjq)P

′
0 on ETw (∗)

since q = ordE(P0) doesn’t cancel out in the calculation on ETw. In combination with
the following assumption (based on results of Side-Channel-Analysis)

2

With a fixed known error rate of ε ∈ [0, 0.5) we can measure
each individual bit of d+ riq correctly for every i.

(∗∗)

we get the following theorem:

Theorem 1. Under the above assumptions on an side channel/fault attack on the static
multiplication with a blinded secret d the security of the overall static Diffie-Hellman
oracle is at most N ∗ 2R/2. (R = bitlength of blinding values. N = number of traces
needed). The full generic security log2(

√
q) of the scheme can only be achieved if the

length of the blinding value equals the bit-length of q.

Remark 2. The number of traces needed depends on ε, but is even for ε near to 0.5
small. See section 2.

Proof: Assume that we have observed N blinded multiplications on the twisted curve.
By assumption we can measure each individual bit of d+riq correctly with an error rate
ε. In addition we know the results of the point multiplications (d + riq)Q ∈ ETw(Fp)
where Q is a known point on ETw with known order `.

We know (d + riq)Q = dQ + riqQ and can compute (ri − rj)qQ ∈ ETw(Fp) As
|ri − rj | ≤ 2R the exact value ri − rj can be computed with complexity 2R/2 using e.g.
Pollard’s kangoroo method [4].

Fix i ∈ {1, . . . , N}. For noisy guesses d̃+ rjq = (d+rjq)⊕∆j = d+rjq+zj compute
the blinding values ri − rj exactly. Then

d̃+ rjq − (rj − ri)q = d+ riq + zj

is a new guess for d+riq. With other words: We are able to compute many noisy guesses
for one value d + riq from guesses for many different values d + rjq. Unfortunately we
do not know, whether the Hamming weight of the new guessing errors is still small.
However, the difference of each pair of guesses can easily be computed:

(d+ riq + zj1)− (d+ riq + zj2) = zj1 − zj2.

Via construction we know that zj can be written as zj =
∑
al2

l, where al = 1 if
(d + rjq)l = 0 and ((d + rjq) ⊕ ∆j)l = 1. Similarly al = −1 if (d + rjq)l = 1 and
((d+ rjq)⊕∆j)l = 0.

Our goal is to find the value D′ = d + riq given all the values d̃+ rjq − (rj − ri)q
with 1 ≤ j ≤ N (Remember: i is fixed). Then we reduce d′ modulo q in order to recover
the secret d. The naive approach is to use a window method where the width w of the

window is determined by the error rate ε. As a rough estimate
(∑bwεc

i=1 i
w

)
should be less

than a bound L which gives the number of possible error patterns in a window of width
w that we want to handle.

We start with the most significant window for d+riq and from the knowledge of zi−zj
can decide whether the most significant window of zj can also come from an admissible
error pattern for d + rjq. If this is not the case the error pattern is not admissible. As

3

we can compare with N − 1 different traces we are able to identify the most significant
bits of d+ riq with high probability and to proceed with the next window. (In practice
one would use overlapping windows, thus taking carrys into account.) Note that we
have made no assumption on the distribution of measurement errors. If the errors are
not independent, or if some bits can be guessed correctly with higher probability this
method can be used to start with high-probability error-patterns.

2 Application of the Wide Window Method

However, it turns out that we have reduced our problem to a problem that can more
efficiently be solved by the Wide Window Method from [11] (see also [10], §3.6.1.) Here
we assume, as in [11], that the bit-errors are independent. Whereas the original paper
[11] assumes an error rate of around 10-15 percent for attacking ECC over special prime
fields, our application is much more error tolerant. Even measurements with a bit-error
of 48 percent suffice, as experiments show.

We set vj = d̃+ rjq, αj = rj − r1 and d′ = d+ r1q. Then we have

vj ⊕ (d+ rjq) = vj ⊕ (d′ + αjq) = ∆j

We treat the ∆j as independent repetitions of a binomially distributed random variable
with parameters p = ε and n the bit length of vj . In particular, the probability of the
sequence

(∆1, ∆2, . . . ,∆N)

only depends on the sum of the Hamming weights of the ∆j . Much like in [11] we try
to find the correct d′ iteratively by considering “bit-windows” of certain lengths. In
each iteration, we decide for an likely candidate for d′ mod 2w under an assumption for
d′ mod 2w

′
with w > w′

For an integer m let hwm(x) be the Hamming weight of the m most significant bits
of x.

Our algorithm – in simplified form – works as follows:

4

Algorithm: The Window Attack

1. We fix a window-size s. We set w′ := 0, w = s and d′ := 0 .
2. Generate all w-bit candidates for d′(mod2w) by varying the most sig-

nificant (w − w′) bits. (Here we assume to have just one candidate for
d′(mod 2w

′
).) For each candidate d̃ compute the evaluation function

S(d̃) :=
N∑
j=1

hww−w′
(

[(vj(mod 2w)]⊕
[
(d̃+ αjq)(mod 2w)

])
3. Decide for the candidate d′(mod 2w) with the minimal S(d′).

(i.e. d′(mod 2w) := argmin {S(d̃)})
4. If d′ has been found (i.e. (d′ mod q) is the secret key): RETURN(d′) and

END.
5. If w > n: END.
6. Set w′ := w and increase w by s. Goto step 2.

The algorithm can be improved by selecting more than one candidate in Step 3.

The running time of each iteration is O(N2w−w
′
). The success probability of the

algorithm depends on the parameters N, ε, s = w−w′. For the correct choice of d′(mod
2w) the evaluation function is again binomially distributed with parameter p = ε. For an
incorrect choice of d′(mod 2w) we treat the evaluation function as binomially distributed
with parameter p = 1/23. For large N(w−w′) we can approximate both distributions by
the normal distribution4. Under these assumptions we just have to distinguish between
two normal distributions with very high confidence of at least δ = 1− 2−(w−w

′). See also
[7].

2.1 Experimental results

As a proof of concept we simulated the attack. Surprisingly, the attack was successful
even for values of ε very near to 0.5. We set ε := 0.48, w − w′ := 10, and chose the bit
length n := 250 for vj . In this case the variances of the two normal distributions are
almost equal so that we can use formula (4.34) of [7] to compute the minimum number
N of measurements needed. We get N = 1200.

Results of our simulations are given in the next table. For eachN we used 25 iterations
of the algorithm stepping through the bits of vj by windows of length 10. Furthermore,

3 This means that for every summand

hww−w′(·) ≈
{

0.5 · (w − w′) ; if d̃ incorrect

ε(w − w′) ; if d̃ correct

holds.
4 Note: Every hww−w′(·) is the sum of (w − w′) distributions and so S(·) is the sum of N(w − w′)

distributions.

5

we repeated the experiment 10 times for each N giving 250 computations of the minimal
evaluation function. For each N in the table we give the number of good “ranks” where
“Rank” is the rank of the correct d(mod2w) compared to candidates output by the
algorithm (“Rank 1” means that the correct d(mod 2w) was found by the algorithm.)

N # of rank 1 # of rank 2 # of rank ≥ 3

600 64 34 152
1200 139 49 62
2400 232 13 5

Table1. Window attack: Exemplary simulation result

In addition, for N = 2400 the rank of the correct d(mod 2w) was always ≤ 3. We can
interpret the table as follows: For N = 2400 we can expect that – on average – 2 decisions
of the 25 iterations are incorrect. A closer look at the simulations shows that in this case
the minimal evaluation function of this iteration tends to be somewhat larger. Therefore,
a good strategy is to keep more than one candidate per iteration if the minimum S(d̃
of the evaluation function is larger than a certain bound. We did not elaborate on this
further since the results of our simulation already demonstrate the basic behaviour of
our attack.

3 Conclusion

Relying on twist security can lead to sloppy implementations of ECC that can degrade
the security of the system. We have described vulnerabilities of implementations of ECC-
algorithms using blinded static point multiplications that may result from unjustified
trust into twist security. These algorithms include static Diffie-Hellman and deterministic
ECDSA as well as the ECIES decryption.

We have given, and confirmed by experiments, an algorithm to exploit these vul-
nerabilities. This algorithm relies on methods that have previously been used to attack
blinded point multiplications over special prime fields. In our scenario the algorithm
turns out to be extremely efficient.

We conclude that twist security should not be considered as an feature that automat-
ically increases the security of Elliptic Curve Cryptography. Contrary to common beliefs
using twist secure curves can lead to insecure implementations and degrade security.

References

1. W. Schindler, K. Itoh. Exponent Blinding Does not Always Lift (Partial) SPA Resistance to Higher-
Level Security. In In: J. Lopez, G. Tsudik (eds.): Applied Cryptography and Network Security —
ACNS 2011, Springer, LNCS 6715.

2. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In
Cryptographic Hardware and Embedded Systems, 1999.

6

3. P.-A. Fouque, R. Lercier, D. Réal, and F. Valette. Fault Attack on elliptic curve with Montgomery
ladder implementation. In L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert,
editors, 5th Workshop on Fault Diagnosis and Tolerance in Cryptography : FDTC 2008, pages 92–
98, Washington DC, United States, Aug. 2008. IEEE Computer Society Press.

4. S. D. Galbraith. Mathematics of public key cryptography. Cambridge University Press., 2012.
5. H. Krawczyk. [TLS] OPTLS: Signature-less TLS 1.3. November 1, 2014. https://www.ietf.org/mail-

archive/web/tls/current/msg14385.html.
6. Jean-Pierre Flori, Jérôme Plût, Jean-René Reinhard. Diversity and transparency for ECC. NIST

workshop on ECC Standards, June 11-12, 2015.
7. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of Smart Cards

(Advances in Information Security). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.
8. T. Pornin. RFC 6797 Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic

Curve Digital Signature Algorithm (ECDSA). 2013.
9. V.G. Mart́ınez, F.H. Álvarez, L.K. Encinas, C.S. Ávila:. A Comparison of the Standardized Versions

of ECIES. Sixth International Conference on Information Assurance and Security, 2010.
10. W. Schindler, A. Wiemers. Power Attacks in the Presence of Exponent Blinding. J Cryptogr Eng 4

(2014), 213-236.
11. Werner Schindler and Andreas Wiemers. Efficient Side-Channel Attacks on Scalar Blinding on

Elliptic Curves with Special Structure. NIST Workshop on ECC Standards.

7

