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Abstract. Structure-preserving signatures (SPS) are pairing-based signatures where all the messages, signatures
and public keys are group elements, with numerous applications in public-key cryptography. We present new,
simple and improved SPS constructions under standard assumptions via a conceptually different approach. Our
constructions significantly narrow the gap between existing constructions from standard assumptions and optimal
schemes in the generic group model.

1 Introduction

Structure-preserving signatures (SPS) [4] are pairing-based signatures where all the messages, signatures
and public keys are group elements, verified by testing equality of products of pairings of group elements.
They are useful building blocks in modular design of cryptographic protocols, in particular in combination
with non-interactive zero-knowledge (NIZK) proofs for algebraic relations in a group [29]. Structure-
preserving signatures have found numerous applications in public-key cryptography, such as blind signatures
[4, 25], group signatures [27, 28, 4, 25, 39], homomorphic signatures [37], delegatable anonymous
credentials [24, 11], compact verifiable shuffles [18], network encoding [9], oblivious transfer [26] and
e-cash [13].

A systematic treatment of structure-preserving signatures was initiated by Abe et al. in 2010 [4], building
upon previous constructions in [27, 26, 17]. In the past few years, substantial and rapid progress were made
in our understanding of the construction of structure-preserving signatures, yielding both efficient schemes
under standard assumptions [4, 2, 30, 3] as well as “optimal” schemes in the generic group model with
matching upper and lower bounds on the efficiency of the schemes [5, 6, 8, 7, 10]. The three important
measures of efficiency in structure-preserving signatures are (i) signature size, (ii) public key size (also per-
user public key size for applications like delegatable credentials where we need to sign user public keys),
and (iii) number of pairing equations during verification, which in turn affects the efficiency of the NIZK
proofs.

One of the main advantages of designing cryptographic protocols starting from structure-preserving
signatures is that we can obtain efficient protocols that are secure under standard cryptographic assumptions
without the use of random oracles. Ideally, we want to build efficient SPS based on the well-understood
k-Lin assumption, which can then be used in conjunction with Groth-Sahai proofs [29] to derive protocols
based on the same assumption. In contrast, if we start with SPS that are only secure in the generic group
model, then the ensuing protocols would also only be secure in the generic group model, which offer little
theoretical or practical benefits over alternative – and typically more efficient and pairing-free – solutions in
the random oracle model.
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Unfortunately, there is still a big efficiency gap between existing constructions of structure-preserving
signatures from the k-Lin assumption and the optimal schemes in the generic group model. For instance, to
sign a single group element, the best construction under the SXDH (1-Lin) assumption contains 11 and 21
group elements in the signature and the public key [2], whereas the best construction in the generic group
model contains 3 and 3 elements (moreover, this is “tight”) [5]. The goal of this work is to bridge this gap.

1.1 Our Results

We present clean, simple, and improved constructions of structure-preserving signatures via a conceptually
novel approach. Our constructions are secure under the k-Lin assumption; under the SXDH assumption (i.e.,
k = 1), we achieve 7 group elements in the signature.

Previous constructions use fairly distinct techniques, resulting in a large family of schemes with
incomparable efficiency and security guarantees. We obtain a family of schemes that simultaneously match –
and in many settings, improve upon – the efficiency, assumptions, and security guarantees of all the previous
constructions. Figure 1 summarizes the efficiency of our constructions. (The work of [40] is independent and
concurrent.) Our schemes are fully explicit and simple to describe. Furthermore, our schemes have a natural
derivation from a symmetric-key primitive, and the derivation even extends to a modular and intuitive proof
of security.

We highlight two results:

– For Type III asymmetric pairings, under the SXDH assumption, we can sign a vector of n elements in
G1 with 7 group elements. This improves upon the prior SXDH-based scheme in [2] which requires
11 group elements, and matches the signature size of the scheme in [4] based on (non-standard) q-type
assumptions;

– For Type I symmetric pairings, under the 2-Lin assumption, we can sign a vector of n elements with 10
group elements, improving upon that in [3] which requires 14 group elements.

In each of these cases, we also improve the size of the public key, as well as the number of equations used
in verification. Finally, we extend our schemes to obtain efficient SPS for signing bilateral messages in
Gn1

1 ×Gn2
2 for Type III asymmetric pairings. Particularly, under the SXDH assumption, our scheme can sign

messages in Gn1
1 ×Gn2

2 with 10 group elements in the signature, 4 pairing product equations for verification,
and (n1 + n2 + 8) group elements in the public key. Prior SXDH-based scheme from [2] required 14 group
elements in the signature, 5 pairing product equations, and (n1 + n2 + 22) elements in the public key.

At a high level, our constructions and techniques borrow heavily from the recent work of Kiltz
and Wee [35] which addresses a different problem of constructing pairing-based non-interactive zero-
knowledge arguments [29, 33]. We exploit recent developments in obtaining adaptively secure identity-based
encryption (IBE) schemes, notably the use of pairing groups to “compile” a symmetric-key primitive into an
asymmetric-key primitive [14, 43, 19], and the dual system encryption methodology for achieving adaptive
security against unbounded collusions [42, 36]. Along the way, we have to overcome a new technical hurdle
which is specific to structure-preserving cryptography.

1.2 Our Approach: SPS from MACs

We provide an overview of our construction of structure-preserving signatures. Throughout this overview,
we fix a pairing group (G1,G2,GT ) with e : G1 × G2 → GT , and rely on implicit representation notation
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Security Assumption |m| |σ| |pk| # (PPEs)
AFGHO10 [4] OT 2-KerLin (G2) (n1, 0) (3, 0) 2n1 + 5 2
SPSot (Fig 2) OT Dk-KerMDH (G2) (n1, 0) (k + 1, 0) (n1 + 1)k + RE(Dk) k

AGHO11 [5] full Interactive (Generic) (n1, n2) (2, 1) n1 + n2 + 2 2
AGHO11 [5] full Non-interactive (Generic) (n1, n2) (3, 3) n1 + n2 + 2 2
AGHO11 [5] full Non-interactive (Generic) (n1, 0) (3, 1) n1 + 2 2
ACDKNO12 [2] full SXDH, XDLIN (n1, 0) (7, 4) 20 + n1 4
ACDKNO12 [2] full SXDH, XDLIN (n1, n2) (8, 6) 22 + n1 + n2 5
ADKNO13 [3] full 2-Lin (G1 = G2) n 14 22 + n 7
AFGHO10 [4] full q-SFP (n1, 0) (5, 2) 13 + n1 2
LPY15 [40] full SXDH, XDLIN (n1, 0) (9, 1) 2n1 + 21 5
SPSfull (Fig 3) full Dk-MDDH (G1,G2) (n1, 0) (3k + 3, 1) (n1 + 2k + 3)k + RE(Dk) 2k + 1
BSPSfull (Fig 9) full Dk-MDDH (G1,G2) (n1, n2) (4k + 3, k + 2) (n1 + n2 + 3k + 3)k + 2RE(Dk) 3k + 1

Fig. 1. Structure-preserving signatures for message space M = Gn1
1 × Gn2

2 or M = Gn if G = G1 = G2. Notation (x, y)
means x elements in G1 and y elements in G2. RE(Dk) denotes the number of group elements needed to represent [A]. In case of
k-Lin, we have RE(Dk) = k. Recall that k-Lin is a special case of Dk-MDDH (decisional assumptions) and k-KerLin is a special
case of Dk-KerMDH (search assumptions), for Dk = Lk, the linear distribution. For k = 1 (SXDH) and n1 = 1, we obtain
(|pk|, |σ|,#equations) = (7, 7, 3) forM = Gn1

1 . For comparison, the known lower bound [5, 6] is (|σ|,#equations) ≥ (4, 2).

for group elements, as explained in Section 2.1.4 As a warm-up, we explain in some detail how to build a
one-time structure-preserving signature scheme, following closely the exposition in [35]. While we do not
obtain significant improvement in this setting (nonetheless, we do simplify and generalize prior one-time
schemes [4]), we believe it already illustrates the conceptual simplicity and novelty of our approach over
previous constructions of structure-preserving signatures.

Warm-up: One-Time SPS. We want to build a one-time signature scheme for signing a vector [m]1 ∈ Gn
1

of group elements. The starting point of our construction is a one-time “structure-preserving” information-
theoretic MAC for vectors of group elements. We pick a secret MAC key K←R Z(n+1)×(k+1)

q known to the
verifier (k ≥ 1 is a parameter of the security assumption), and the MAC on [m]1 is given by

σ := [(1,m>)K]1 ∈ G1×(k+1)
1

Verification is straight-forward: check if
σ

?
= (1,m>)K (1)

Security follows readily from the fact that for any pair of distinct vectors m,m∗ ∈ Znq , the vectors (1,m>)
and (1,m∗>) are linearly independent, and therefore the quantities

(1,m>)K, (1,m∗>)K ∈ Z(k+1)
q

are two independently random values; this holds even if m∗ 6= m is chosen adaptively after seeing
(1,m>)K.

To achieve public verifiability as is required for a signature scheme, we publish a “partial commitment”
to K in G2 as given by [A]2, [KA]2, where the choice of A ∈ Z(k+1)×k

q is defined by the security
assumption. The signature on [m]1 is the same as the MAC value, and verification is the natural analogue of
(1) with the pairing:

e(σ, [A]2)
?
= e([(1,m>)]1, [KA]2)

4 For fixed generators g1 and g2 of G1 and G2, respectively, and for a matrix M ∈ Zn×tq , we define [M]1 := gM1 and [M]2 := gM2
(componentwise).
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As [A]2, [KA]2 leaks additional information about the secret MAC key K, we can only prove computational
adaptive soundness. In particular, we rely on the Dk-KerMDH Assumption [41], which stipulates that given
a random [A]2 drawn from a matrix distribution Dk, it is hard to find a non-zero [s]1 ∈ Gk+1

1 such that
s>A = 0; this is implied by the Dk-MDDH Assumption [22], a generalization of the k-Lin Assumption.5

Therefore, for any ([m∗]1, [σ]1) produced by an efficient adversary,

σA = (1,m∗>)KA =⇒ (σ − (1,m∗>)K)A = 0

using assumption
=⇒ σ − (1,m∗>)K = 0 =⇒ σ = (1,m∗>)K.

That is, security of the signature reduces to the security for the MAC, with a little more work to account
for the leakage from KA. Moreover, adaptive security for the MAC (which is easy to analyze via a purely
information-theoretic argument) carries over to adaptive security for the signature.

General SPS. To achieve unforgeability against multiple signature queries, we move from a one-time MAC
to a randomized MAC that is secure against multiple queries. As shown in [35, 14], we know that under the
Dk-MDDH assumption in G1, the following construction is a randomized PRF

τ 7→
(
[t>(K0 + τK1)]1, [t

>]1
)
∈ (G1×(k+1)

1 )2, (2)

where K0,K1 is the seed and t is the randomness. We now use the randomized PRF to additively mask the
one-time MAC value [(1,m>)K]1. The new randomized MAC takes as input a vector of group elements
[m]1 ∈ Gn

1 as before, picks a random tag τ ∈ Zq and a fresh t and outputs

(σ1, σ2) := ([(1,m>)K]1 + [t>(K0 + τK1)]1 , [t
>]1 ) ∈ (G1×(k+1)

1 )2 (3)

where K and K0,K1 ←R Z(k+1)×(k+1)
q constitute the key. The boxed terms correspond to the additive

mask from (2). We want to argue that an adversary upon obtaining MAC values on Q message vectors
[m1]1, . . . , [mQ]1, cannot compute the MAC value on a new message vector [m∗]1. First, we may assume
that the MAC values on [m1]1, . . . , [mQ]1 use distinct tags τ1, . . . , τQ. Then, we consider two cases:

– case 1: the adversary uses a fresh tag for [m∗]1. This immediately breaks the pseudorandomness of the
security of the construction in (2);

– case 2: the adversary reuses tag τi. Again, we know from pseudorandomness that the MAC values on
the remaining Q − 1 tags do not leak any information K; therefore, the only leakage about K in the
Q queries comes from (1,m>i )K. We may then rely on the security of the one-time MAC to argue that
given only (1,m>i )K, it is hard to compute (1,m∗>)K.

As before, to obtain a signature scheme, we then publish [A]2, [KA]2, [K0A]2, [K1A]2 for public
verification:

e(σ1, [A]2)
?
= e([(1,m>)]1, [KA]2) · e(σ2, [K0A]2 · [τK1A]2)

Note that the above verification requires knowledge of τ ∈ Zq to compute [τK1A]2.

To obtain a structure-preserving signature, we cannot publish τ ∈ Zq in the signature. The main technical
challenge in this work is to find a way to embed τ as a group element that enables both verification and a
security reduction. The natural work-around is to add [τK1A]2 and [τ ]1 to the signature, but the proof
breaks down as we can no longer transform a forgery for the signature to a forgery to the randomized MAC.

5 We refer the reader to Section 2.2 for a more detailed treatment of the assumptions.
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Instead, we add [τ ]2 and [τt>]1 to the signature to enable verification. This yields a signature with 3k + 4
group elements.

An alternative interpretation. Linearly homomorphic signatures (LHS) [15, 21, 32] are signatures where
the messages consist of vectors over group G1 such that from any set of signatures on [mi]1 ∈ Gn

1 , one can
efficiently derive a signature σ on any element message [m]1 := [

∑
ωimi]1 in the span of m1, . . . ,mQ.

For security, one requires that it is infeasible to produce a signature on a message outside of the span of all
previously signed messages. Linearly homomorphic structure preserving signatures (LHSPS) [37, 16, 35]
have the additional property that signatures and public keys are all elements of the groups G1,G2,GT , while
allowing the use of a tag which is a scalar.

We can construct a SPS with message space Gn
1 from a LHSPS with message space Gn+1

1 as follows:
to sign a message [m]1, we use a LHSPS to sign the (n+ 1)-dimensional vector [1,m>]1 on a random tag.
Suppose the SPS adversary forges a signature on [m∗]1. First, we may assume that all the signatures from
the signing queries [m1]1, . . . , [mQ]1 are on distinct tags τ1, . . . , τQ. Then, we consider two cases:

– case 1: the adversary uses a fresh tag. Then, security of LHSPS tells us that the adversary can only sign
the vector 0 ∈ Gn+1

1 , which does not correspond to a valid message in the SPS.
– case 2: the adversary reuses tag τi. Then, (1,m∗>) must lie in the span of (1,m>i ), which means m∗ =
mi. Here, we crucially rely on the fact that τ1, . . . , τQ are distinct, which ensures that the adversary has
seen at most one signature corresponding to τi.

At this point, we can then embed τ ∈ Zq as a group element as described earlier. Our constructions may
also be viewed as instantiating the above paradigm with the state-of-the-art LHSPS in [35].

1.3 Discussion

Optimality. The linearity in the verification equation of SPS poses severe restrictions on the efficiency of
such constructions. In both Type I and III bilinear groups, it was proved in [5, 8] that any fully secure
SPS requires at least 2 verification equations, at least 3 group elements, the 3 elements not all the same
group (for Type III asymmetric pairings). In fact, [5] shows the above lower bounds by giving attacks the
weaker security model of unforgeability against two random message queries. Furthermore, one-time secure
SPS against random message attack (RMA) in Type I bilinear groups require at least 2 group elements and
2 equations [8]. Furthermore, SPSs in Type III bilinear groups require at least 4 group elements [6] for
unforgeability against adaptive chosen message attack under non-interactive assumptions (such as k-Lin).

Interestingly, for one-time RMA-security, we can match the lower bounds. By combining our main
result on the one-time CMA-secure SPS and the techniques used in [35] to obtain shorter QANIZK, we
obtain an optimal RMA-secure one-time SPS (Section 5). In Type III asymmetric groups, under the SXDH
assumption, signatures requires 1 group element and 1 verification equation which is clearly optimal; in
Type I symmetric groups, under the 2-Lin assumption, our scheme requires 2 elements and 2 verification
equations, matching the lower bound for one-time RMA-secure SPS from [8].

Comparison with previous approaches. The prior works of Abe, et al. [2, 3] presented two generic
approaches for constructing SPS from SXDH and 2-Lin assumptions: both constructions combine a
structure-preserving one-time signature and random-message secure signatures ala [23], with slightly
different syntax and security notions for the two underlying building blocks; the final signature is the
concatenation of the two underlying signatures. Our construction has a similar flavor in that we combine
a one-time MAC with a randomized PRF. However, we are able to exploit the common structure in both
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building blocks to compress the output; interestingly, working with the matrix Diffie-Hellman framework
[22] makes it easier to identity such common structure. In particular, the output length of the randomized
MAC with unbounded security is that of the PRF and not the sum of the output lengths of the one-time MAC
and the PRF; this is akin to combining a one-time signature and a random-message secure signature in such
a way that the combined signature size is that of the latter rather than the sum of the two.

Signatures from IBE. While our construction of signatures exploits techniques from the literature on IBE,
it is quite different from the well-known Naor’s derivation of a signature scheme from an IBE. There, the
signature on a message m ∈ Zq corresponds to an IBE secret key for the identity m. This approach seems
to inherently fail for structure-preserving signatures as all known pairings-based IBE schemes need to treat
the identity as a scalar. In our construction, a signature on [m]1 also corresponds to an IBE secret key: the
message vector (specifically, a one-time MAC applied to the message vector) is embedded into the master
secret key component of an IBE, and a fresh random tag τ ∈ Zq is chosen and used as the identity. The idea
of embedding [m]1 into the master secret key component of an IBE also appeared in earlier constructions
of linearly homomorphic structure-preserving schemes [37, 38, 35]; a crucial difference is that these prior
constructions allow the use of a scalar tag in the signature.

Towards shorter SPS? One promising approach to get even shorter SPS against adaptive chosen message
attack by using our approach is to improve upon the underlying MAC in the computational core lemma
(Lemma 3). Currently, the MAC achieves security against chosen message attacks, whereas it suffices to
use one that is secure against random message attacks. Saving one group element in this MAC would likely
yield a saving of two group elements in the SPS, which would in turn yield a SXDH-based signature with 5
group elements. Note that the state-of-the-art standard signature from SXDH contains 4 group elements [20].
Together with existing lower bounds for SPS, this indicates a barrier of 5 group elements for SXDH-based
SPS; breaking this barrier would likely require improving upon the best standard signatures from SXDH.

Perspective. As noted at the beginning of the introduction, structure-preserving signatures have been a
target of intense scrutiny in recent years. We presented a conceptually different yet very simple approach for
building structure-preserving signatures. We are optimistic that our approach will yield further insights into
structure-preserving signatures as well as concrete improvements to the numerous applications that rely on
such signatures.

2 Definitions

Notation. If x ∈ Bn, then |x| denotes the length n of the vector. Further, x ←R B denotes the process
of sampling an element x from set B uniformly at random. If A ∈ Zn×kq is a matrix with n > k, then

A ∈ Zk×kq denotes the upper square matrix of A and then A ∈ Z(n−k)×k
q denotes the remaining n− k rows

of A. We use span() to denote the column span of a matrix.

2.1 Pairing Groups

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ returns a description PG =
(G1,G2,GT , q, g1, g2, e) of asymmetric pairing groups where G1, G2, GT are cyclic groups of order q for
a λ-bit prime q, g1 and g2 are generators of G1 and G2, respectively, and e : G1 × G2 is an efficiently
computable (non-degenerate) bilinear map. Define gT := e(g1, g2), which is a generator in GT .
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We use implicit representation of group elements as introduced in [22]. For s ∈ {1, 2, T} and a ∈ Zq,
define [a]s = gas ∈ Gs as the implicit representation of a in Gs. More generally, for a matrix A = (aij) ∈
Zn×mq we define [A]s as the implicit representation of A in Gs:

[A]s :=

ga11s ... ga1ms

gan1s ... ganms

 ∈ Gn×m
s

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈ Gs be an element in
Gs. Note that from [a]s ∈ Gs it is generally hard to compute the value a (discrete logarithm problem in
Gs). Further, from [b]T ∈ GT it is hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion
problem). Obviously, given [a]s ∈ Gs and a scalar x ∈ Zq, one can efficiently compute [ax]s ∈ Gs. Further,
given [a]1, [a]2 one can efficiently compute [ab]T using the pairing e. For two matrices A,B with matching
dimensions define e([A]1, [B]2) := [AB]T ∈ GT .

2.2 Matrix Diffie-Hellman Assumption

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) and the Kernel Diffie-Hellman
assumptions [22, 41].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distribution if it outputs matrices in
Z(k+1)×k
q of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A←R Dk form an invertible matrix. TheDk-Matrix
Diffie-Hellman problem is to distinguish the two distributions ([A], [Aw]) and ([A], [u]) where A←R Dk,
w←R Zkq and u←R Zk+1

q .

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk be a matrix distribution and
s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-Hellman (Dk-MDDH) Assumption holds relative to GGen
in group Gs if for all PPT adversaries A,

Advmddh
Dk,GGen(A) := |Pr[A(G, [A]s, [Aw]s) = 1]− Pr[A(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G ←R GGen(1λ), A←R Dk,w←R Zkq ,u←R Zk+1
q .

The Kernel-Diffie-Hellman assumption Dk-KerMDH [41] is a natural computational analogue of the
Dk-MDDH Assumption.

Definition 3 (Dk-Kernel Diffie-Hellman Assumption Dk-KerMDH). Let Dk be a matrix distribution and
s ∈ {1, 2}. We say that the Dk-Kernel Diffie-Hellman (Dk-KerMDH) Assumption holds relative to GGen in
group Gs if for all PPT adversaries A,

Advkmdh
Dk,GGen(A) := Pr[c>A = 0 ∧ c 6= 0 | [c]3−s ←R A(G, [A]s)] = negl(λ),

where the probability is taken over G ←R GGen(1λ), A←R Dk.

Note that we can use a non-zero vector in the kernel of A to test membership in the column space of A.
This means that the Dk-KerMDH assumption is a relaxation of the Dk-MDDH assumption, as captured in
the following lemma from [41].
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Lemma 1. For any matrix distribution Dk, Dk-MDDH⇒Dk-KerMDH.

For each k ≥ 1, [22, 41] specify distributions Lk, SCk, Uk (and others) such that the corresponding
Dk-MDDH and Dk-KerMDH assumptions are generically secure in bilinear groups and form a hierarchy of
increasingly weaker assumptions.

SCk : A =


1 0 0 ... 0
a 1 0 ... 0
0 a 1 0
0 0 a 0
.
.
.

. . .
. . .

0 0 0 ... a

 , Lk : A =


1 1 1 ... 1
a1 0 0 ... 0
0 a2 0 ... 0
0 0 a3 0
.
.
.

. . .
. . .

0 0 0 ... ak

 , Uk : A =

( a1,1 ... a1,k
.
.
.

. . .
.
.
.

ak+1,1 ... ak+1,k

)
,

where a, ai, ai,j ← Zq. We define the representation size RE(Dk) of a given matrix distribution Dk as
the minimal number of group elements needed to represent [A]s, where A ←R Dk. Then RE(SCk) = 1,
RE(Lk) = k and RE(Uk) = k(k+1). As shown in [22], SCk-MDDH offers the same security guarantees as
Lk-MDDH (k-Linear Assumption of [31]), while having the advantage of a more compact representation.
We define k-Lin := Lk-MDDH and k-KerLin := Lk-KerMDH. Note that 2-KerLin = SDP (Simultaneous
Double Pairing Assumption of [17]). The relations between the different assumptions for Dk = Lk are as
follows:

DDH 2-Lin 3-Lin . . .

1-KerLin 2-KerLin = SDP 3-KerLin . . . CDH

2.3 Structure-Preserving Signatures

Let par be some parameters that contain a pairing group PG. In a structure-preserving signature (SPS) [4],
both the messages and signatures are group elements, verification proceeds via a pairing-product equation.

Definition 4 (Structure-preserving signature). A structure-preserving signature scheme SPS is defined as
a triple of probabilistic polynomial time (PPT) algorithms SPS = (Gen,Sign,Verify):

– The probabilistic key generation algorithm Gen(par) returns the public/secret key (pk, sk), where pk ∈
Gnpk for some npk ∈ poly(λ). We assume that pk implicitly defines a message spaceM := Gn for some
n ∈ poly(λ).

– The probabilistic signing algorithm Sign(sk, [m]) returns a signature σ ∈ Gnσ for nσ ∈ poly(λ).
– The deterministic verification algorithm Verify(pk, [m], σ) only consists of pairing product equations

and returns 1 (accept) or 0 (reject).

(Perfect correctness.) for all (pk, sk)←R Gen(par) and all messages [m] ∈M and all σ ←R Sign(sk, [m])
we have Verify(pk, [m], σ) = 1.

Definition 5 (Unforgeablility against chosen message attack). To an adversary A and SPS we associate
the advantage function

Advcma
SPS(A) := Pr

[
[m∗] /∈ Qmsg ∧ Verify(pk, [m∗], σ∗) = 1

∣∣∣∣ (pk, sk)←R Gen(par)

([m∗], σ∗)←R ASignO(·)(pk)

]
,
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where SignO([m]) runs σ ←R Sign(sk, [m]), adds the vector [m] toQmsg (initialized with ∅) and returns σ
to A. SPS is said to be (unbounded) CMA-secure if for all PPT adversaries A, Advcma

SPS(A) is negligible.
SPS is said to be one-time CMA-secure with corresponding advantage function Advot-cma

SPS (A), if A is
restricted to make at most one query to oracle SignO.

3 One-Time CMA-Secure SPS

The scheme is given in Figure 2 and its parameters are:

|pk| = (n+ 1)k + RE(Dk), |σ| = k + 1.

As defined in Section 2.2, RE(Dk) denotes the number of group elements needed to represent [A]s, where
A ←R Dk. For k-Lin, we achieve 2 group elements in the signature for k = 1 and 3 group elements
for k = 2. Moreover, we note that the verification needs k pairing product equations: for e(σ, [A]2) =
e([(1,m)]1, [C]2) we need to pair the vector σ with every column of [A]2 and thus this check needs k
pairing product equations.

Gen(par):

A←R Dk;K←R Z(n+1)×(k+1)
q

C := KA ∈ Z(n+1)×k
q

sk := K
pk := ([C]2, [A]2)
Return (pk, sk)

Sign(sk, [m]1):

σ :=
[
(1,m>)K

]
1

Return σ ∈ G1×(k+1)
1

Verify(pk, [m]1, σ):
Check: e(σ, [A]2) = e([(1,m>)]1, [C]2)

Fig. 2. One-time CMA-secure structure-preserving signature SPSot with message-spaceM = Gn1 .

We will exploit the following lemma in the analysis of our scheme. Informally, the lemma says that
m 7→ (1,m>)K is a secure information-theoretic one-time MAC even if the adversary first sees (A,KA).

Lemma 2 (Core lemma for adaptive soundness). Let n, k be integers. For any A ∈ Z(k+1)×k
q and any

(possibly unbounded) adversary A,

Pr

[
m∗ 6= m ∧ z> = (1,m∗>)K

∣∣∣∣∣K←R Z(n+1)×(k+1)
q

(z,m∗)←R AO(·)(KA)

]
≤ 1

q
, (4)

where O(m ∈ Znq ) returns (1,m>)K and A only gets a single call to O.

This lemma can be seen as an adaptive version of a special case of [35, Lemma 2] in that we fix t = 1, M
to be the matrix (1,m>) ∈ Z1×(n+1)

q , and we use the fact that if m∗ 6= m, then (1,m∗) /∈ span(M). In our
adaptive version, m may depend on KA but the proof is essentially the same as in [35].

Proof. First, fix any A ∈ Z(k+1)×k
q and any pair of distinct m,m∗ ∈ Znq , along with a non-zero vector

â /∈ span(A). Observe that the following distributions

((1,m>)K,KA, (1,m∗>)Kâ) and ((1,m>)K,KA, u) (5)
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are the same, where K ←R Z(n+1)×(k+1)
q , u ←R Zq. Here, we use the fact that if m 6= m∗, then (1,m∗>)

and (1,m>) are linearly independent. By a standard argument (e.g. complexity leveraging6), this means that
the two distributions are the same even if m,m∗ are adaptively chosen, that is, seeing KA for m, after
seeing (KA, (1,m>)K) for m∗. Therefore, for any adversary A, we have

Pr

[
m∗ 6= m ∧ z>â = (1,m∗>)Kâ

∣∣∣∣∣K←R Z(n+1)×(k+1)
q

(z,m∗)←R AO(·)(KA)

]
≤ 1

q
,

since (1,m∗>)Kâ is uniformly random from the adversary’s view-point. The lemma then follows from the
fact that z> = (1,m∗>)K implies z>â = (1,m∗>)Kâ. ut

Theorem 1. Under the Dk-KerMDH Assumption in G2, SPSot from Figure 2 is a one-time CMA-secure
structure-preserving signature scheme.

Proof. Perfect correctness and the structure-preserving property are straight-forward. We proceed to
establish one-time CMA-security based on the Dk-KerMDH assumption. We will show that for all
adversaries A, there exists an adversary B with T(A) ≈ T(B) and

Advot-cma
SPSot (A) ≤ Advkmdh

Dk,GGen(B) + 1/q. (6)

Adversary B(PG, [A]2 ∈ G(k+1)×k
2 ) generates pk = ([C]2, [A]2) as in the real scheme by picking K ∈

Z(n+1)×(k+1)
q and computing C := KA. Next, B runsA on pk, simulates a signature on [m]1 honestly using

K, and obtains ([m∗]1, σ∗) satisfying m∗ 6= m and e(σ∗, [A]2) = e([(1,m∗>)]1, [KA]2) with probability
Advot-cma

SPSot (A). Finally, B returns [s]1 computed as

[s]1 = σ∗ − [(1,m∗>)]1K.

Clearly, s ·A = 0 and Pr[s = 0] ≤ 1/q by Lemma 2. This proves equation (6). ut

4 Unbounded CMA-Secure SPS

4.1 Computational Core Lemma

We present a variant of the computational core lemma from [35, Lemma 3].

Lemma 3 (Computational core lemma for unbounded CMA-security). For all adversaries A, there
exists an adversary B with T(A) ≈ T(B) and

Pr


τ∗ /∈ Qtag

∧ b′ = b

∣∣∣∣∣∣∣∣∣∣∣

A,B←R Dk
K0,K1 ←R Z(k+1)×(k+1)

q

(P0,P1) := (B>K0,B
>K1)

pk := ([P0]1, [P1]1, [B]1,K0A,K1A,A)

b←R {0, 1}; b′ ←R AOb(·),O
∗(·)(pk)


≤ 1

2
+ 2Q ·Advmddh

Dk,GGen(B) +Q/q,

where
6 Using complexity leveraging, we can transform any adaptive distinguisher into a non-adaptive one with an exponential loss in the

distinguishing advantage. If the optimal non-adaptive distinguishing advantage is 0 as is the case for two identical distributions,
then the optimal adaptive distinguishing advantage must also be 0.
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– Ob(τ) returns (
[
bµa⊥ + r>(P0 + τP1)

]
1
, [r>B>]1) ∈ (G1×(k+1)

1 )2 with µ←R Zq, r←R Zkq and adds

τ to Qmsg. Here, a⊥ is non-zero vector in Z1×(k+1)
q that satisfies a⊥A = 0.

– O∗([τ∗]2) returns [K0 + τ∗K1]2 . A only gets a single call τ∗ to O∗.
– Q is the number of queries A makes to Ob.

Compared to [35, Lemma 3], oracle O∗ is modified as follows. Instead of getting tag τ∗ and returning
K0+τ

∗K1 in the clear, both the query and the output are encoded in G2. The change is boxed in the lemma.
It is straight-forward to check that the proof goes through as in [35]:

– the security reduction knows K0,K1, and therefore it can compute [K0 + τ∗K1]2 given [τ∗]2;
– the quantity [K0+τ

∗K1]2 does not reveal any additional information about K0,K1 beyond K0+τ
∗K1.

For completeness, we reproduce the proof of [35, Lemma 3] and mark the modifications with †’s below.

Proof. We proceed via a series of games, exactly as in the proof of [35, Lemma 3]. For i = 0, 1, . . . , Q,
in Game i, we answer the first i queries to Ob using O0, and the last Q − i queries using O1. Let Advi
denote the probability that A wins the game, that is, τ∗ /∈ Qmsg ∧ b′ = b. It suffices to show that for all
i = 0, 1, . . . , Q− 1,

|Advi −Advi+1| ≤ 2Advmddh
Dk,GGen(B) + 1/q.

The main difference between Game i and Game i+ 1 is that we answer the i’th query τ to Ob using O0 in
Game i and O1 in Game i+ 1, where Ob returns:([

bµa⊥ + r>B>(K0 + τK1)
]
1
, [r>B>]1

)
,where µ←R Zq, r←R Zkq .

Using the MDDH assumption twice, we may switch [Br]1 with [w]1 ←R Gk+1
1 and then reverse the switch.

Here, we use the fact that the security reduction on input either ([B]1, [Br]1) or ([B]1, [w]1), picks K0,K1

at random, and can compute [K0 + τ∗K1]2 given [τ∗]2 while simulating O∗.†

To complete the proof, we need to bound the advantage ofA in an experiment where we answer the i’th
query τ to Ob with([

bµa⊥ +w>(K0 + τK1)
]
1
, [w>]1

)
,where µ←R Zq,w←R Zk+1

q ;

and the remaining q − 1 queries are handled using the normal O0,O1 as before. We may then proceed via
an information-theoretic argument to bound the advantage for this experiment. As shown in [35], for all
A,B← Dk, with probability 1− 1/q over w←R Zk+1

q : for all τ 6= τ∗, the following distributions

(pk,w>(K0 + τK1),K0 + τ∗K1) and (pk, µa⊥ +w>(K0 + τK1),K0 + τ∗K1)

are the same, where K0,K1 ←R Z(k+1)×(k+1)
q . This implies that for all τ 6= τ∗, the following distributions

(pk, [w>(K0 + τK1)]1, [K0 + τ∗K1]2) and (pk, [µa⊥ +w>(K0 + τK1)]1, [K0 + τ∗K1]2)

are the same†. The quantities in the distributions above correspond to the answers for the i’th query to Ob
and the query to O∗; moreover, given pk, we can compute a⊥ and simulate the remaining Q− 1 queries to
O0 and O1. This completes the proof. ut
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4.2 Our Scheme

The parameters are:

|pk| = (n+ 1)k + 2(k + 1)k + RE(Dk), |σ| = (3(k + 1), 1),

where notation (x, y) means x elements in G1 and y elements in G2. For k-Lin, this yields (n+6, (6, 1)) for
k = 1 and (2n+ 16, (9, 1)) for k = 2. Moreover, we note that the verification needs 2k+ 1 pairing product
equations: for e(σ1, [A]2) = e([(1,m)]1, [C]2)·e(σ2, [C0]2)·e(σ3, [C1]2) we need to pair the vector σ1 with
every column of [A]2 and thus this check needs k pairing product equations; and for e(σ2, [τ ]2) = e(σ3, [1]2)
we need to pair every element from σ2 with [τ ]2 ∈ G2 and thus this requires k+1 pairing product equations.

Gen(par):

A,B←R Dk;K←R Z(n+1)×(k+1)
q

K0,K1 ←R Z(k+1)×(k+1)
q

C := KA ∈ Z(n+1)×k
q

(C0,C1) := (K0A,K1A) ∈ (Z(k+1)×k
q )2

(P0,P1) := (B>K0,B
>K1) ∈ (Zk×(k+1)

q )2

sk := (K, [P0]1, [P1]1, [B]1)
pk := ([C0]2, [C1]2, [C]2, [A]2)
Return (pk, sk)

Sign(sk, [m]1):

r←R Zkq ; τ ←R Zq;
σ1 :=

[
(1,m>)K+ r>(P0 + τP1)

]
1
∈ G1×(k+1)

1

σ2 :=
[
r>B>

]
1
∈ G1×(k+1)

1

σ3 :=
[
r>B>τ

]
1
∈ G1×(k+1)

1

σ4 := [τ ]2 ∈ G2

Return (σ1, σ2, σ3, σ4)

Verify(pk, [m]1, σ):
Parse σ = (σ1, σ2, σ3, σ4 = [τ ]2)
Check:
e(σ1, [A]2) = e([(1,m)]1, [C]2) · e(σ2, [C0]2) · e(σ3, [C1]2)
∧ e(σ2, [τ ]2) = e(σ3, [1]2)

Fig. 3. Structure-preserving signature SPSfull with message-spaceM = Gn1 .

Theorem 2. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption in G2, SPSfull from
Figure 3 is an unbounded CMA-secure structure-preserving signature scheme.

Proof. Perfect correctness and the structure-preserving property are straight-forward. We proceed to
establish the unbounded CMA-security. We will show that for any adversaryA that makes at mostQ signing
queries, there exists adversaries B0,B1 with T(A) ≈ T(B0) ≈ T(B1) and

Advcma
SPSfull

(A) ≤ Advkmdh
Dk,GGen(B0) + 2Q(Q+ 1) ·Advmddh

Dk,GGen(B1) + (Q+ 1)2/q +Q2/2q. (7)

We proceed via a series of games and we use Advi to denote the advantage of A in Game i.

Game 0. This is the CMA-security experiment from Definition 5.

Advcma
SPSfull

(A) = Adv0

Game 1. Switch Verify to Verify∗:
Verify∗(pk, [m]1, σ):
Parse σ = (σ1, σ2, σ3, σ4 = [τ ]2)
Check: e(σ1, [1]2) = e([(1,m>)K]1, [1]2) · e(σ2, [K0 + τK1]2)
∧ e(σ2, [τ ]2) = e(σ3, [1]2)
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Suppose e(σ2, [τ ]2) = e(σ3, [1]2). We note that

e(σ1, [A]2) = e([(1,m>)]1, [C]2) · e(σ2, [C0]2) · e(σ3, [C1]2)

⇐⇒ e(σ1, [A]2) = e([(1,m>)]1, [KA]2) · e(σ2, [K0A]2) · e(σ3, [K1A]2)

⇐= e(σ1, [1]2) = e([(1,m>)]1, [K]2) · e(σ2, [K0]2) · e(σ3, [K1]2)

⇐⇒ e(σ1, [1]2) = e([(1,m>)]1, [K]2) · e(σ2, [K0 + τK1]2)

Hence, for any ([m]1, σ) that passes Verify but not Verify∗, the value

σ1 − ([(1,m>)K]1 + σ2K0 + σ3K1) ∈ G1×(k+1)
1

is a non-zero vector in the kernel of A, which is hard to be computed under theDk-KerMDH assumption
in G2. This means that

|Adv0 −Adv1| ≤ Advkmdh
Dk,GGen(B0).

Game 2. Let τ1, . . . , τQ denote the randomly chosen tags in the Q queries to SignO. We abort if τ1, . . . , τQ
are not all distinct.

Adv2 ≥ Adv1 −Q2/2q.

Game 3. We define τQ+1 := τ∗. Now, pick i∗ ←R [Q + 1] and abort if i∗ is not the smallest index i for
which τ∗ = τi. In the rest of the proof, we focus on the case we do not abort, which means that τ∗ = τi∗

and τ1, . . . , τi∗−1 are all different from τ∗. This means that given τ , SignO can check whether τ∗ equals
τ : for the rest i∗− 1 queries, answer NO, and starting from the i∗’th query, we know τ∗. It is easy to see
that

Adv3 ≥
1

Q+ 1
Adv2.

Game 4. Switch SignO to SignO∗ where
SignO∗([m]1): // adds µa⊥ for τ 6= τ∗

r←R Zkq ; τ ←R Zq; µ←R Zq;
if τ = τ∗ then µ := 0
σ1 :=

[
(1,m>)K+ µa⊥ + r>(P0 + τP1)

]
1

σ2 :=
[
r>B>

]
1

σ3 :=
[
r>B>τ

]
1

σ4 := [τ ]2

Return (σ1, σ2, σ3, σ4) ∈ G1×(k+1)
1 ×G1×(k+1)

1 ×G1×(k+1)
1 ×G2

Here a⊥ ∈ Z1×(k+1)
q is non-zero vector in the kernel of A such that a⊥A = 0. We will use Lemma 3 to

show that
|Adv3 −Adv4| ≤ 2QAdvmddh

Dk,GGen(B1) +Q/q

Basically, we pick K ourselves and use Ob to simulate either SignO or SignO∗ and O∗ to simulate
Verify∗ as follows:

– For the i’th signing query [m]1 where i 6= i∗,we query Ob at τ ←R Zq to obtain

(σ′1, σ2) := (
[
bµa⊥ + r>(P0 + τP1)

]
1
, [r>B>]1),

and we return
(σ1 := [(1,m>)K]1 · σ′1, σ2, σ3 := σ2τ, σ4 := [τ ]2)

13



– For the i∗’th signing query [m]1 where i∗ ≤ Q, we run Sign honestly using our knowledge of
K, [P0]1, [P1], [B]1.

– For Verify∗, we will query O∗ on [τ∗]2 to get [K0 + τ∗K1]2. The latter is sufficient to simulate the
Verify∗ query by computing e(σ2, [K0 + τ∗K1]2).

This allows us to then build a distinguisher for Lemma 3.

Game 5. Switch K←R Z(n+1)×(k+1)
q in Gen to K := K′+ua⊥, where K′ ←R Z(n+1)×(k+1)

q ,u←R Zn+1
q .

Since ua⊥ is masked by a uniform matrix K′, K in Game 5 is still uniformly random and thus Game 4
and 5 are identical. We have

Adv5 = Adv4.

To conclude the proof, we bound the adversarial advantage in Game 5 via an information-theoretic
argument. We first consider the information about u leaked from pk and signing queries:

– C = (K′ + ua⊥)A = K′A completely hides u;
– the output of SignO∗ on (m, τ) for τ 6= τ∗ completely hides u, since (1,m>)(K′ + ua⊥) + µa⊥ is

identically distributed to (1,m>)K′ + µa⊥ (namely, (1,m>)u is masked by µ←R Zq).
– the output of SignO∗ on τ∗ leaks (1,m>)(K′ + ua⊥), which is captured by (1,m>)u.

To convince Verify∗ to accept a signature σ∗ on m∗, the adversary must correctly compute

(1,m∗>)(K′ + ua⊥)

and thus (1,m∗>)u ∈ Zq. Given (1,m>)u, for any adaptively chosen m∗ 6= m, we have that (1,m∗>)u
is uniformly random over Zq from the adversary’s view-point. Therefore, Adv5 ≤ 1/q.

ut

5 Security against Random Message Attacks

In this section, we consider possible efficiency improvements on the structure-preserving signatures (SPS)
from Sections 3 and 4 for the weaker security notion of unforgeability against random message attacks
(RMA). Precisely, we obtain a one-time RMA-secure SPS with signature size one less than that from Figure
2 and an unbounded RMA-secure SPS with signature size k + 1 less than that from Figure 3. Figure 4
summarizes our results.

Our rSPSot is optimal for both the Type I and III settings: in the Type I setting, under the 2-Lin
assumption, rSPSot requires 2 elements and 2 verification equations, matching the lower bound for one-
time RMA-secure SPS from [8]; in the Type III setting, under the SXDH assumption, rSPSot requires 1
element and 1 verification equation, which is clearly optimal.

Security Assumption |m| |σ| |pk| # equations
AGOT14 (Fig. 2) [8] OT Generic (Type I) 1 2 3 2
AGOT14 (Fig. 3) [8] OT Generic (Type III) n (1, 0) n+ 3 1
ACDKNO12 [2] full 2-Lin 6 8 13 7
rSPSot (Fig 5) OT Dk-KerMDH (G2) n (k, 0) (n+ 1)k + RE(Dk) k
rSPSfull (Fig 6) full Dk-MDDH (G1,G2) n (2k + 2, 1) (n+ 2k + 3)k + RE(Dk) 2k + 1

Fig. 4. Structure-preserving signatures secure against random message attacks forM = Gn1 in the Type I and III setting. For the
Type I setting we have G = G1 = G2. Notation (x, y) represents x elements in G1 and y elements in G2.

14



5.1 Unforgeability against Random Message Attacks

RMA-security states that it is hard for an adversary to forge a signature even if he sees many signatures on
randomly chosen messages. The security is formally defined as follows:

Definition 6 (Unforgeability against random message attacks). To an adversaryA and SPS we associate
the advantage function

Advrma
SPS(A) := Pr

[
[m∗] /∈ Qmsg ∧ Verify(pk, [m∗], σ∗) = 1

∣∣∣∣ (pk, sk)←R Gen(par)

([m∗], σ∗)←R ASignO()(pk)

]
,

where SignO() chooses a random message [m] ←R Gn, runs σ ←R Sign(sk, [m]), adds the vector [m]
to Qmsg (initialized with ∅) and returns ([m], σ) to A. SPS is said to be RMA-secure if for all PPT
adversaries A, Advrma

SPS(A) is negligible. SPS is said to be one-time RMA-secure with corresponding
advantage function Advot-rma

SPS (A), if A is restricted to make at most one query to oracle SignO.

5.2 One-Time RMA-Secure SPS

Motivated by the techniques used in [34, 1, 35] to obtain shorter QANIZK proofs for linear subspaces, we
construct a one-time RMA-secure SPS in Figure 5 with the following parameters:

|pk| = (n+ 1)k + RE(Dk), |σ| = k.

For k-Lin, this yields (|pk|, |σ|) = (n + 2, 1) for k = 1 and (2n + 4, 2) for k = 2. Moreover, we note
that verification needs k pairing product equations for e(σ1,

[
A
]
2
) = e([(1,m>)]1, [C]2). Compared with

SPSot, we reduce the signature size by one element.

Gen(par):

A←R Dk;K←R Z(n+1)×k
q

C := KA ∈ Z(n+1)×k
q

sk := K
pk := ([C]2, [A]2)
Return (pk, sk)

Sign(sk, [m]1):

σ :=
[
(1,m>)K

]
1

Return σ ∈ G1×k
1

Verify(pk, [m]1, σ):

Check: e(σ,
[
A
]
2
) = e([(1,m>)]1, [C]2)

Fig. 5. One-time RMA-secure structure-preserving signature rSPSot with message-space M = Gn1 . Recall that A denotes the
upper k × k submatrix of A.

Theorem 3. Under the Dk-KerMDH Assumption in G2, rSPSot from Figure 5 is a one-time RMA-secure
structure-preserving signature scheme.

Our proof is similar to that in [35, Theorem 2]. As we choose m←R Znq in the security game ourselves,

we can compute the kernel basis M⊥ ∈ Z(n+1)×n
q of (1,m>) such that (1,m>) ·M⊥ = 0 and then we

embed M⊥ in the secret key K. This way we do not need to compute the kernel of [A]2 when answering the
signing query. However, for the forgery m∗ 6= m, since (1,m∗>)M⊥ 6= 0, the adversary has to compute
an element from the kernel to break RMA-security, which is infeasible under the Dk-KerMDH Assumption.
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Proof. Perfect correctness and the structure-preserving property are straight-forward to verify. We proceed
to establish one-time RMA-security based on the Dk-KerMDH assumption. We will show that for all
adversaries A, there exists an adversary B with T(A) ≈ T(B) and

Advot-rma
rSPSot (A) ≤ Advkmdh

Dk,GGen(B) + 1/q. (8)

Adversary B(PG, [A]2 ∈ G(k+1)×k
2 ) chooses m ←R Znq before generating the public and secret keys; m

corresponds to the random message [m]1 chosen by SignO(·). Let M⊥ ∈ Z(n+1)×n
q be a basis for the kernel

of (1,m>) such that (1,m>)M⊥ = 0 ∈ Z1×n
q . M⊥ = (−m||In)> can be efficiently computed by B, as

he knows m over Zq. Next, B picks K′ ←R Z(n+1)×k
q , R←R Z(n−1)×(k+1)

q and defines

A′ :=

(
A

R ·A

)
∈ Z(k+n)×k

q .

Let TA′ := A′ · (A′)−1 ∈ Zn×kq , where A′ denotes the first k rows of A′ (i.e., A′ = A) and A′ denotes
the last n rows of A′. By defining K := K′ +M⊥TA′ , B can compute

[C]2 = [K ·A]2 = [(K′ +M⊥TA′) ·A]2 = [K′A′ +M⊥A′]2 = [(K′||M⊥)A′]2

and runs A(pk := ([C]2, [A]2)). Upon the single random message signing query, B computes

σ := [(1,m>)K]1 = [(1,m>)(K′ +M⊥TA′)]1 = [(1,m>)K′ + 0]1 = [(1,m>)K′]1

and returns ([m]1, σ). We note that the simulated distribution is identical to the real distribution.

Let ([m∗]1, σ∗ := [z>]1) be a valid forgery from A and y> := (1,m∗>), i.e., z> ·A = y> ·C. By the
definitions of C and A′,

z>A = (z>||0)A′ = y> ·C = y>(K′||M⊥) ·A′

such that [c]1 with
c> = ((z> − y>K′)|| − y>M⊥)

satisfies c>A′ = 0. As m∗ 6= m, y> /∈ span(1,m>) and thus y> ·M⊥ 6= 0. That implies c 6= 0. Finally,
B can extract a solution [s]1 to the Dk-KerMDH problem in G2, from [c>]1 = [c>1 ||c>2 ]1 ∈ G1×(k+1)

1 ×
G1×(n−1)

1 . Define s> := c>1 + c>2 R ∈ Z1×(k+1)
q such that

s>A = c>1 A+ c>2 RA = (c>1 ||c>2 ) ·
(

A
R ·A

)
= c>A′ = 0.

As B knows R,K′ and M⊥ over Zq, he can efficiently compute [s]1. It remains to show that s 6= 0, with
high probability. As c 6= 0 and matrix R is only leaked through A′ via RA, we have

Pr
R←RZ(n−1)×(k+1)

q

[c>1 +Rc>2 = 0|RA] ≤ 1

q
.

This proves equation (8).
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5.3 Unbounded RMA-Secure SPS

Consider the scheme SPSfull from Figure 3 with the modification that in the signing algorithm, vector Br is
chosen as a random vector as t←R Zk+1

q . Clearly, under the Dk-MDDH Assumption, this modified scheme
is also a CMA-secure SPS. Suppose that the message space is Gn

1 with n = n′ + k + 1 ≥ k + 1. Then we
can view the random vector [t]1 ∈ Gk+1

1 as part of the message space which reduces the signature size from
3k + 4 elements to 2k + 3. The modified scheme is presented in Figure 6. Its parameters are:

|pk| = (n+ 1)k + 2(k + 1)k + RE(Dk), |σ| = (2(k + 1), 1),

where notation (x, y) means x elements in G1 and y elements in G2. For k-Lin, (|pk|, |σ|) = (n+ 6, (4, 1))
for k = 1 and (2n + 16, (6, 1)) for k = 2. Moreover, we note that the verification needs 2k + 1 pairing
product equations. Compared with the SPSfull from Figure 3, rSPSfull requires (k + 1) elements less in the
signature.

Gen(par):

A←R Dk;K←R Z(n+1)×(k+1)
q

K0,K1 ←R Z(k+1)×(k+1)
q

C := KA ∈ Z(n+1)×k
q

(C0,C1) := (K0A,K1A) ∈ (Z(k+1)×k
q )2

sk := (K,K0,K1)
pk := ([C0]2, [C1]2, [C]2, [A]2)
Return (pk, sk)

Sign(sk, [m]1):

Parse [m]1 = ([s]1, [t]1) ∈ Gn
′

1 ×Gk+1
1

τ ←R Zq;
σ1 :=

[
(1,m>)K+ t>(K0 + τK1)

]
1

σ2 :=
[
τt>

]
1

σ3 := [τ ]2

Return (σ1, σ2, σ3) ∈ G1×(k+1)
1 ×G1×(k+1)

1 ×G2

Verify(pk, [m]1, σ):
Parse σ = (σ1, σ2, σ3 = [τ ]2)
Parse [m]1 = ([s]1, [t]1)
Check:
e(σ1, [A]2) = e([(1,m>)]1, [C]2) · e([t>]1, [C0]2) · e(σ2, [C1]2)
∧ e(σ2, [1]2) = e([t>]1, [τ ]2)

Fig. 6. An unbounded RMA-secure structure-preserving signature rSPSfull with message-spaceM = Gn1 where n = n′+ k+1 ≥
k + 1.

Theorem 4. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption in G2, rSPSfull from
Figure 6 is an unbounded RMA-secure structure-preserving signature scheme.

The proof is given in Appendix A.

6 Structure-Preserving Signatures for Bilateral Message Spaces

Let M := Gn1
1 × Gn2

2 be a message space. In Type III pairing groups, M is bilateral if both n1 6= 0
and n2 6= 0; otherwise,M is unilateral. In this section, we extend the construction from Section 4 to sign
bilateral message spaces.

The main idea of our construction is to use the Even-Goldreich-Micali (EGM) framework [23] and a
method of Abe et al. [2]: for m = ([m1]1, [m2]2) ∈ Gn1

1 × Gn2
2 we sign [m1]1 by using a one-time SPS
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with a fresh public key pkot over G2 and then sign message ([m2]2, pkot) using an unbounded CMA-secure
SPS; the signature on ([m1]1, [m2]2) is pkot together with the concatenation of both signatures. However,
this yields long signatures as pkot contains O(n1k) group element for the best known one-time SPS. Next,
we observe that our one-time SPS is in fact a so-called “two-tier” signature scheme, i.e. opk can decomposed
into a reusable long primary key plus a one-time short secondary key which contains only k group elements.
For the transformation sketched above it is sufficient to put the short secondary key in the signature which
leads to short signatures.

Concretely, under the SXDH assumption, our signature on messages in Gn1
1 ×Gn2

2 contain (7, 3) group
elements (7 elements in G1 and 3 elements in G2), 4 pairing product equations for verification and (n1 +
n2 +8) group elements in public keys. A previous SXDH-based construction from [2] required (8, 6) group
elements in the signature, 5 pairing product equations, and (n1 + n2 + 22) elements in the public key.

We note that our idea gives a generic way to extend message space M1 to M1 ×M2 for signature
schemes, whereM1 andM2 are arbitrary message spaces. In Subsection 6.1, we present our transformation
for arbitrary (not necessarily structure-preserving) signatures and show that SPSot from Figure 2 satisfies
the stronger notion of two-tier signatures. Finally, in Subsection 6.2, we instantiate the transformation with
the above two-tier SPS and the unbounded CMA-secure SPSfull from Figure 3. By our generic composition
theorem the resulting scheme is unbounded CMA secure. Furthermore, it can be verified to be structure-
preserving for bilateral message spaces.

6.1 Two-Tier Signatures

The notion of two-tier signatures was firstly proposed by Bellare and Shoup [12] and considered to the
structure-preserving setting by Abe et al. [2] (called partial one-time signatures in [2]). A two-tier signature
scheme is like a standard signature scheme except that the public (secret) key is split into a fixed primary
part pk (sk) and a variable secondary part opk (osk). We recall the definition of a two-tier signature scheme
and its security.

Definition 7 (Two-tier signature). A two-tier signature scheme TTS is defined as a tuple of probabilistic
polynomial time (PPT) algorithms TTS := (PGen, SGen,TTSign,TTVerify):

– The probabilistic primary key generation algorithm PGen(par) returns the primary public/secret key
(pk, sk). We assume that pk implicitly defines a message space M and a secondary public key space
OPK.

– The probabilistic secondary key generation algorithm SGen(pk, sk) returns the secondary public/secret
key (opk, osk).

– The probabilistic signing algorithm TTSign(sk, osk,m) returns a signature σ.
– The deterministic verification algorithm TTVerify(pk, opk,m, σ) returns 1 (accept) or 0 (reject).

(Perfect correctness.) for all (pk, sk)←R PGen(par), all (opk, osk)←R SGen(pk, sk), all messages m ∈M
and all σ ←R TTSign(sk, osk,m) we have TTVerify(pk, opk,m, σ) = 1.

In the following, we define two-tier CMA security (TT-CMA-security) for TTS (which was called
OT-NACMA-security in [2]). It is weaker than the original security notion from [12] but sufficient for our
application. (We note that our two-tier SPS in Figure 7 satisfies the stronger security from [12].)

Definition 8 (TT-CMA-security). To an adversary A and TTS we associate the advantage function

Advtt-cma
TTS (A) := Pr

[
(i∗,m, σ) ∈ Qmsg ∧m∗ 6= m
∧TTVerify(pk, opki∗ ,m∗, σ∗) = 1

∣∣∣∣ (pk, sk)←R PGen(par)

(i∗,m∗, σ∗)←R ATTSignO(·)(pk)

]
,
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where

– TTSignO(m): i = i + 1 (initialized with 0), generates (opki, oski) ←R SGen(pk, sk), computes σ ←R

TTSign(sk, oski,m), adds (i,m, σ) to Qmsg (initialized with ∅) and returns (opki, σ).

TTS is said to be TT-CMA-secure if for all PPT adversaries A, Advtt-cma
TTS (A) is negligible.

Our two-tier signature scheme. We now show that SPSot from Figure 2 can be modified to be a two-tier
signature scheme with message spaceM = Gn

1 in Figure 7. We split the secret key of SPSot (matrix K) into
the first row k> and the lower n rows K′. Matrix K′ is the primary secret key and vector k is the secondary
secret key. The reason why we can reuse K′ is that in each signing query a fresh ki is chosen which hides
m>K′. The only information leaked from signing queries is (1,m>)(

k>
i∗

K′
). Given that, (1,m∗>)(k

>
i∗

K′
) is

uniform for m∗ 6= m by the same arguments as in Section 3. Lemma 4 formalizes the above intuition and
security of TTSPSot is shown in Theorem 5. We note that TTSPSot is a generalization of POSu2 from [2].

PGen(par):

A←R Dk;K′ ←R Zn×(k+1)
q

C′ := K′A ∈ Zn×kq

Return (pk := ([C′]2, [A]2), sk := K′)

SGen(pk, sk)

k←R Zk+1
q ; c := k>A ∈ Z1×k

q

Return (opk := [c]2, osk := k)

TTSign(sk, osk, [m]1):

K :=

(
k>

K′

)
σ :=

[
(1,m>)K

]
1

Return σ ∈ G1×(k+1)
1

TTVerify(pk, opk = [c]2, [m]1, σ):

C :=

(
c
C′

)
Check: e(σ, [A]2) = e([1,m>]1, [C]2)

Fig. 7. Two-tier signature scheme TTSPSot with message-spaceM = Gn1 .

The following is the main computational core lemma required for the proof of TTSPSot.

Lemma 4. Let n, k be integers. For any A ∈ Z(k+1)×k
q and any (possibly unbounded) adversary A,

Pr

[
(i∗,m) ∈ Qmsg ∧m∗ 6= m

∧(z> = (1,m∗>) · (k
>
i∗

K′
))

∣∣∣∣∣K′ ←R Zn×(k+1)
q

(i∗,m∗, z)←R AO(·)(K′A)

]
≤ 1

q
, (9)

where:

– O(m): i = i + 1 (initialized with 0), picks ki ←R Zk+1
q , adds (i,m) to Qmsg (initialized with ∅) and

returns k>i A and (1,m>) · (k
>
i

K′
).

Proof. Fix any A ∈ Z(k+1)×k
q . Let a⊥ ∈ Z1×(k+1)

q be a non-zero vector in the kernel of A such that
a⊥ ·A = 0 ∈ Z1×k

q . We make the following changes to the distribution of the experiment:

– Switch K′ ←R Zn×(k+1)
q to K′ = K′′ + ua⊥, where K′′ ←R Zn×(k+1)

q and u←R Znq .
– Switch ki ←R Zk+1

q in O to ki = k′i + (uia
⊥)>, where k′i ←R Zk+1

q and ui ←R Zq.
We note that the modified distribution is identical to the real distribution of the experiment, since K′′ and k′i
are uniformly chosen,
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In the following, we consider the information about (ui∗ ,u) leaked from K′A and the answers of theO
queries in order to argue that equation (9) holds for any (possibly unbounded) adversary A:

– Since K′A = (K′′ + ua⊥)A = K′′A, the matrix K′A leaks nothing about u. By the same argument,
the values k>i A from the O queries leak nothing about the ui.

– The output of the j-th query to O on mj for j 6= i∗ hides u. The reason is that (1,m>j )(
k>j
K′

) =

k>j +m>j K
′ = k′>j +uja

⊥+m>j (K
′′+ua⊥) is identically distributed to k′>j +uja

⊥+m>j K
′′, since

m>j u ∈ Zq is masked by fresh randomness uj ←R Zq.

– The output of the i∗-th O query on m leaks (1,m>)

(
ui∗

u

)
, since (1,m>)(

k>
i∗

K′
) = (1,m>)(

k′>
i∗

K′′
) +

(1,m>)(ui∗u ) · a⊥.

To compute (i∗,m∗, z) such that z> = (1,m∗>)

(
k>i∗
K′

)
= (1,m∗>)(

k′>
i∗

K′′
) + (1,m∗>)(ui∗u ) · a⊥ holds, A

has to compute (1,m∗>)

(
ui∗

u

)
. Given (1,m>)

(
ui∗

u

)
, for any adaptively chosen m∗ 6= m, we have that

(1,m∗>)

(
ui∗

u

)
is uniformly random over Zq from the adversary’s view. This shows equation (9). ut

Theorem 5. Under theDk-KerMDH Assumption in G2, TTSPSot from Figure 7 is a TT-CMA-secure two-
tier signature scheme.

Proof. Perfect correctness is straight-forward to verify. We proceed to establish TT-CMA-security based
on the Dk-KerMDH assumption. We will show that for all adversaries A, there exists an adversary B with
T(A) ≈ T(B) and

Advtt-cma
TTSPSot(A) ≤ Advkmdh

Dk,GGen(B) + 1/q. (10)

Adversary B(PG, [A]2 ∈ G(k+1)×k
2 ) generates pk = ([C′]2, [A]2) as in the real scheme by picking K′ ∈

Zn×(k+1)
q and computing [C′]2 := [K′A]2. Next, B runs A on pk and simulates TTSignO as in the real

scheme:

– TTSignO([m]1): i = i + 1, picks ki ←R Zk+1
q , computes opki := [k>i A]2, computes σ := [(1,m>) ·

(k
>
i

K′
)]1, adds (i, [m]1, σ) to Qmsg and returns σ.

With probability Advtt-cma
TTSPSot(A), B obtains (i∗, [m∗]1, σ∗) such that there exists (i∗, [m]1, σ) ∈ Qmsg and

m∗ 6= m and e(σ∗, [A]2) = e([1,m∗>]1, [K
∗A]2), where K∗ := (

k>
i∗

K′
). Then B returns [s]1 computed as

[s]1 = σ∗ − [1,m∗>]1K
∗.

Clearly, s · A = 0. The information-theoretic argument of Lemma 4 captures the fact that, for any A ∈
Z(k+1)×k
q and any adversary A, given (A,K′A) over Zq and Q-many (1,m>i )(

k>i
K′

) for adversarial chosen

mi (K′ ←R Zn×(k+1)
q ,ki ←R Zk+1

q ), A can not come up with (z,m∗) such that z − (1,m∗>)(
k>
i∗

K′
) = 0

(i∗ ∈ {1, . . . , Q}). Thus, Pr[s = 0] ≤ 1/q by Lemma 4. ut

Transformation. Let TTS := (PGen, SGen,TTSign,TTVerify) be a two-tier signature scheme with
message space over M1 and secondary public key space over OPK. Let S := (Gen′,Gen′,Verify′) be
an unbounded CMA-secure signature scheme with message spaceM2 ×OPK. Our transformed signature
scheme TS[S,TTS] with message spaceM =M1 ×M2 is defined as in Figure 8.
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Gen(par):
(pk1, sk1)←R PGen(par)
(pk2, sk2)←R Gen′(par)
pk := (pk1, pk2); sk := (sk1, sk2)
Return (pk, sk)

Sign(sk, (m1,m2)):
(opk, osk)←R SGen(pk, sk)
σ1 ←R TTSign(sk1, osk,m1)
σ2 ←R Sign′(sk2, (m2, opk))
Return (opk, σ1, σ2)

Verify(pk, (m1,m2), σ):
Parse σ = (opk, σ1, σ2)
Check:
TTVerify(pk1, opk,m1, σ1) = 1
∧Verify′(pk2, (m2, opk), σ2) = 1

Fig. 8. Generic construction of a signature scheme TS[S,TTS] with message spaceM = M1 ×M2 from a two-tier signature
scheme with message spaceM1 and secondary public key spaceOPK. and signature scheme S with message spaceM2×OPK.

Theorem 6. Under the TT-CMA-security of TTS and unbounded CMA-security of S, TS[S,TTS] is an
unbounded CMA-secure signature scheme.

Perfect correctness is implied by perfect correctness of TTS and S. We will show that for any adversary
A, there exist adversaries B1 and B2 with T(B1) ≈ T(A) ≈ T(B2) and

Advcma
TS[S,TTS](A) ≤ Advtt-cma

TTS (B1) +Advcma
S (B2). (11)

Since the proof is similar to that for the EGM framework [23, 2], we only sketch the proof. Let
(m∗1,m

∗
2, σ
∗ = (opk∗, σ∗1, σ

∗
2)) be a forgery from A. A can make at most Q signing queries to SignO

for TS[S,TTS] and we denote the i-th query by (m
(i)
1 ,m

(i)
2 ) and its answer as (opk(i), σ(i)1 , σ

(i)
2 ). There are

two complementary cases:

– There exists an i ∈ {1, . . . , Q} such that (m∗2, opk
∗) = (m

(i)
2 , opk(i)). As (m∗1,m

∗
2) /∈ Qmsg, m∗1 6=

m
(i)
1 . Thus, (i,m∗1, σ

∗
1) is a valid forgery that breaks the TT-CMA-security of TTS.

– (m∗2, opk
∗) 6= (m

(i)
2 , opk(i)) for all i ∈ {1, . . . , Q}. Clearly, ((m∗2, opk

∗), σ∗2) is a valid forgery that
breaks the unbounded CMA-security of S.

6.2 Instantiation

Combining TTSPSot from Figure 7 and SPSfull from Figure 3 we obtain an UFCMA-secure signature
scheme BSPSfull, see Figure 9. One can verify that it is structure preserving with bilateral message space
M = Gn1

1 ×Gn2
2 and the following parameters:

|pk| = (n1 + n2)k + 3(k + 1)k + 2RE(Dk), |σ| = (k + 2, 4k + 3), #equations = 3k + 1.

Notation (x, y) means x elements in G1 and y elements in G2. We note that the representation of G2

elements is longer than that of G1 elements. To simplify the efficiency comparison, one can use TTSPSot
to sign [m2]2 and SPSfull to sign ([m1]1, [z]1), which gives us a scheme with |σ| = (4k + 3, k + 2). Under
the SXDH assumption, our scheme achieves (|pk|, |σ|,#equations) = (n1 + n2 + 8, (7, 3), 4). Compared
with (n1 + n2 + 22, (8, 6), 5) of [2], we obtain better efficiency under standard assumptions.

Acknowledgments. We thank Olivier Blazy and Georg Fuchsbauer for helpful discussions.
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A Proof of Theorem 4

Our proof requires the Q-fold Dk-MDDH problem, which is tightly related to the standard Dk-MDDH

problem by Lemma 1 in [22]. Let Q ≥ 1. For W ←R Zk×Qq ,U ←R Z(k+1)×Q
q , consider the Q-fold Dk-

MDDH problem which is distinguishing the distributions ([B], [BW]) and ([B], [U]) for B←R Dk. That is,
theQ-foldDk-MDDH problem containsQ independent instances of theDk-MDDH problem (with the same
B but different wi). By the random self reducibility (Lemma 1 in [22]), the Q-fold Dk-MDDH problem is
tightly related to the standardDk-MDDH problem. For completeness, we recall Lemma 1 in [22] as follows:

Lemma 5 (Random self reducibility [22] ). For any matrix distribution Dk, Dk-MDDH is random self-
reducible. In particular, for any Q ≥ 1,

Advmddh
Dk,GGen(D) +

1

q − 1
≥ AdvQ-MDDH

Dk,GGen (D′) := Pr[D′(G, [B], [BW])⇒ 1]−Pr[D′(G, [B], [U])⇒ 1],

with G ← GGen(1λ), B←R Dk,W←R Zk×Qq ,U←R Z(k+1)×Q
q .

Proof (of Theorem 4). Perfect correctness and the structure-preserving property are straight-forward. We
proceed to establish RMA-security. We will show that for any adversary A that makes at most Q random
message signing queries, there exists adversaries B0,B1 with T(A) ≈ T(B0) ≈ T(B1) and

Advrma
rSPSfull

(A) ≤ Advkmdh
Dk,GGen(B0) +O(Q2) ·Advmddh

Dk,GGen(B1) +O(Q2)/q. (12)

We proceed via a series of games and we use Advi to denote the advantage of A in Game i.

Game 0. This is the RMA-experiment from Definition 6.

Game 1. Switch Verify to Verify∗ for the forgery:
Verify∗(pk, [m]1, σ):
Parse σ = (σ1, σ2, σ3 = [τ ]2)
Parse [m]1 = ([s]1, [t]1)
Check: e(σ1, [1]2) = e([(1,m>)K]1, [1]2) · e([t>]1, [K0 + τK1]2)
∧ e(σ2, [1]2) = e([t>]1, [τ ]2)

Suppose e(σ2, [1]2) = e([t>]1, [τ ]2). We note that

e(σ1, [A]2) = e([(1,m>)]1, [C]2) · e([t>]1, [C0]2) · e(σ2, [C1]2)

⇐⇒ e(σ1, [A]2) = e([(1,m>)]1, [KA]2) · e([t>]1, [K0A]2) · e(σ2, [K1A]2)

⇐= e(σ1, [1]2) = e([(1,m>)]1, [K]2) · e([t>]1, [K0]2) · e(σ2, [K1]2)

⇐⇒ e(σ1, [1]2) = e([(1,m>)K]1, [1]2) · e([t>]1, [K0 + τK1]2)

By the same argument in Game 3 of Theorem 2, if any ([m]1, σ) passes Verify but not Verify∗, then the
value

x> := σ1 − ([(1,m>)K]1 + [t>K0]1 + σ2K1) ∈ G1×(k+1)
1

is a non-zero vector in the kernel of A, which is hard to be computed under theDk-KerMDH assumption
in G2. We note that the vector x can be computed by B0, since B0 knows K,K0,K1 over Zq and
[m]1, , σ1 and σ2 are from the forgery of A. This means that

|Adv0 −Adv1| ≤ Advkmdh
Dk,GGen(B0).
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Game 2. Let τ1, . . . , τQ denote the randomly chosen tags in the Q queries to SignO(). We abort if
τ1, . . . , τQ are not all distinct.

Adv2 ≥ Adv1 −Q2/2q.

Game 3. We define τQ+1 := τ∗. Now, pick i∗ ←R [Q + 1] and abort if i∗ is not the smallest index i for
which τ∗ = τi. In the rest of the proof, we focus on the case we do not abort, which means that τ∗ = τi∗

and τ1, . . . , τi∗−1 are all different from τ∗. This means that given τ , SignO can check whether τ∗ equals
τ : for the rest i∗− 1 queries, answer NO, and starting from the i∗’th query, we know τ∗. It is easy to see
that

Adv3 ≥
1

Q+ 1
Adv2.

Game 4. By choosing the matrix B←R Dk in the key generation, we switch SignO to SignO′ where
SignO′():
τ ←R Zq
r←R Zkq ; t := Br ∈ Zk+1

q

s←R Zn
′
q ; m := (s, t)

σ1 :=
[
(1,m>)K+ t>(K0 + τK1)

]
1

σ2 :=
[
τt>

]
1

σ3 := [τ ]2

σ := (σ1, σ2, σ3) ∈ G1×(k+1)
1 ×G1×(k+1)

1 ×G2

Return ([m]1, σ)

The only difference between SignO and SignO′ is that we compute t = Br instead of picking a random
vector t. It is easy to see that the difference is bounded by the Dk-MDDH Assumption in G1.
Precisely, we construct an adversary B1 to break theQ-foldDk-MDDH Assumption ifA can distinguish
Game 0 and 1. Let ([B]1, [H]1) be the Q-fold Dk-MDDH challenge. B1 picks K,K0 and K1 over Zq
and runs Gen(par) honestly. On answering the i-th SignO′ query, B1 defines [t]1 := [Hi]1 and the rest
is simulated by using the explicit expressions of τ,K,K0 and K1 over Zq.
One can see that if [H]2 = [BW]2 then the simulation is identical to Game 4; and, otherwise, the
simulation is identical to Game 3. By Lemma 5, we can tightly bound Adv3 and Adv4

|Adv3 −Adv4| ≤ Advmddh
Dk,GGen(B1) + 1/(q − 1).

Game 5. Switch SignO′ to SignO∗, where
SignO∗(): // adds µa⊥ for τ 6= τ∗

τ ←R Zq; µ←R Zq;
r←R Zkq ; t = Br ∈ Zk+1

q

s←R Zn
′
q ; m := (s, t)

if τ = τ∗ then µ := 0
σ1 :=

[
(1,m>)K+ µa⊥ + t>(K0 + τK1)

]
1

σ2 :=
[
τt>

]
1

σ3 := [τ ]2

σ := (σ1, σ2, σ3) ∈ G1×(k+1)
1 ×G1×(k+1)

1 ×G2

Return ([m]1, σ)

We will use Lemma 3 to show that

|Adv4 −Adv5| ≤ 2QAdvmddh
Dk,GGen(B2) +Q/q.

Basically, in the reduction B2 picks K itself and uses Ob to simulate either SignO′ or SignO∗ and O∗ to
simulate Verify∗:
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– For the i’th signing query where i 6= i∗,we query Ob at τ ←R Zq to obtain

(σ′1 =
[
bµa⊥ + r>B>(K0 + τK1)

]
1
, [t>]1 = [r>B>]1),

We pick s←R Zn′q , define m = (s, t) and return

([m]1, (σ1 := [(1,m>)K]1 · σ′1, σ2 := τ [t>]1, σ3 := [τ ]2))

– For the i∗’th signing query where i∗ ≤ Q, B2 picks τ ←R Zq, r ←R Zkq and computes [t]1 :=

[Br]1. With the knowledge of r,K, [P0]1 := [B>K0]1, [P1]1 := [B>K1]1, [B]1, B2 can compute
(σ1, σ2, σ3) honestly:

σ1 := [(1,m>)K+ r>(P0 +P1)]1

σ2 := [τr>B>]1, σ3 := [τ ]2

– For Verify∗, we will query O∗ on [τ∗]2 to get [K0 + τ∗K1]2. The latter is sufficient to simulate the
Verify∗ query by computing e([t∗>]1, [K0 + τ∗K1]2).

This allows us to then build a distinguisher for for Lemma 3, since B2 simulates Game 5 if b = 1, or
Game 4 if b = 0.

Game 6. Switch K←R Z(n+1)×(k+1)
q in Gen to K := K′+ua⊥, where K′ ←R Z(n+1)×(k+1)

q ,u←R Zn+1
q .

Since ua⊥ is masked by a uniform matrix K′, K in Game 6 is still uniformly random and thus Game 5
and 6 are identical. We have

Adv6 = Adv5.

To conclude the proof, we bound the adversarial advantage in Game 6 via an information-theoretic argument.
We first consider the information about u leaked from pk and signing queries:

– C = (K′ + ua⊥)A = K′A completely hides u;
– the output of SignO∗ on (m, τ) for τ 6= τ∗ completely hides u, since (1,m>)(K′ + ua⊥) + µa⊥ is

identically distributed to (1,m>)K′ + µa⊥ (namely, (1,m>)u is masked by µ←R Zq).
– the output of SignO∗ on τ∗ leaks (1,m>)(K′ + ua⊥), which is captured by (1,m>)u;

To convince Verify∗ to accept a signature σ∗ on m∗, the adversary must correctly compute

(1,m∗>)(K′ + ua⊥)

and thus (1,m∗>)u ∈ Zq. Given (1,m>)u, for any adaptively chosen m∗ 6= m, we have that (1,m∗>)u is
uniformly random over Zq from the adversary’s view-point. Therefore, Adv6 ≤ 1/q. ut
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