
Cryptanalysis of a modern rotor machine in a
multicast setting

Shane Kepley, David Russo, and Rainer Steinwandt?

Florida Atlantic University
{skepley,drusso2012,rsteinwa}@fau.edu

Abstract. At FSE ’93, Anderson presented a modern byte-oriented ro-
tor machine that is suitable for fast software implementation. Building
on a combination of chosen ciphertexts and chosen plaintexts, we show
that in a setting with multiple recipients the recovery of an (equivalent)
secret key can be feasible within minutes in a standard computer algebra
system.

Keywords: cryptanalysis, rotor machine, stream cipher

1 Introduction

The most common mode of operation for stream ciphers is the generation of a
pseudo-random sequence which is then added to a plaintext stream. Other modes
of operation can be considered, however, and at FSE ’93, Anderson proposed an
elegant construction which combines a basic linear feedback shift register (LFSR)
with three random permutations (rotors) on Z256 [1]. This results in an efficient
byte-oriented (stream) cipher that is suitable for software implementations. To
the best of our knowledge, no cryptanalytic weaknesses in this scheme have been
published so far.

Anderson’s design is minimalistic, and our attack shows that at least some
form of strengthening is required to establish an acceptable security margin.
In a standard computer algebra system, we can perform full recoveries of an
(equivalent) secret key within minutes. Conceptually, it may be worth noting
that our attack recovers the rotor positions before recovering the rotor “wiring”.

2 Anderson’s rotor cipher from FSE ’93

At the core of the explored cipher we have an LFSR of length n ≥ 80 over the
binary field F2. The feedback polynomial f(x) is assumed to be primitive and
according to the specification has at least 20 well-distributed nonzero coefficients.

? RS was supported by AFRL/RIKF Award No. FA8750-15-2-0047.

Key space. While the feedback polynomial f(x) is known, the LFSR’s ini-

tial state (κ
(0)
0 , . . . , κ

(0)
n−1) ∈ Fn2 is part of the secret key. The remaining parts

of the secret key are three uniformly and independently chosen permutations
π1, π2, π3 ∈ S256, where S256 denotes the group of permutations on Z256. This
results in a formidable key space of size 2n · (28!)3 > 25051+n. However, as we
show in Section 3.2, the effective key space is significantly smaller than this.

Encryption. The encryption processes a stream of plaintexts one byte at a time.
Shifting the LFSR once per clock cycle, we can encrypt a new byte every 8
clock cycles. To encrypt a new input byte x ∈ Z256 in clock cycle 8t, we use the

LFSR’s internal state (κ
(8t)
0 , . . . , κ

(8t)
n−1) ∈ Fn2 at that time and read off the least

significant three bytes

k
(8t)
i =

7∑
ν=0

κ
(8t)
8i+ν · 2

ν ∈ Z256 (i = 1, 2, 3).

Then we perform 8 shifts (one byte) of the LFSR to update the state, and output

y = π3

(
k
(8t)
3 + π2

(
k
(8t)
2 + π1

(
k
(8t)
1 + x

)
− k(8t)1

)
− k(8t)2

)
− k(8t)3 ∈ Z256. (1)

The intuition here is that π1, π2, π3 represent connected rotors, and the ki-values
represent offsets of these rotors.

Decryption. The recipient knows the secret key and keeps its LFSR synchronized
with the sender. To decrypt a received ciphertext byte y with the current state,
one inverts each step of the encryption process by computing

x = π−11

(
k
(8t)
1 + π−12

(
k
(8t)
2 + π−13

(
k
(8t)
3 + y

)
− k(8t)3

)
− k(8t)2

)
− k(8t)1 ∈ Z256.

3 Description of the attack

The goal of our attack is a full secret key recovery. As explained in Section 3.2,
however, for each secret key there are several other secret keys which are equiva-
lent, i. e., encryptions and decryptions are identical for all inputs. Consequently,
we will restrict to recovering one secret key of this equivalence class. For our
attack, we assume that the adversary controls the communication network as a
middle-person and can perform the following actions:

– obtain encryptions of chosen plaintext bytes from the sender
– obtain decryptions of chosen ciphertext bytes from any recipient

Acting as middle-person, our adversary will replace some observed ciphertext
bytes with ciphertexts of their own choice. Observing the received ciphertexts
and the decryptions of the replaced bytes, linear equations for the initial state
of the LFSR can be derived. We will try to use these equations to identify the

initial state (κ
(0)
0 , . . . , κ

(0)
n−1) and then use this information to recover three secret

permutations which are equivalent to the three actual secret permutations.

2

3.1 Recovering the initial state

By means of the companion matrix [3] of the underlying LFSR, we can ex-

press the state (κ
(8t)
0 , . . . , κ

(8t)
n−1), which determines the encryption of the (t+1)st

plaintext byte, in terms of the initial secret state. More specifically, we have

(κ
(8t)
0 , . . . , κ

(8t)
n−1) = (κ

(0)
0 , . . . , κ

(0)
n−1) ·A8t, (2)

where A is the LFSR’s companion matrix and the 8 in the exponent reflects
that the register is clocked 8 times for each plaintext byte. For each of the initial

state bits κ
(0)
i , we introduce an indeterminate Ki (i = 0, . . . , n− 1), and we set

up a linear system of equations over F2 in these n indeterminates.
There are only 224 possible values for the least significant three bytes of

the LFSR, so we can expect repetitions/collisions of these entries with some
frequency. Suppose for the moment we are given an oracle that informs us that
such a collision occurs at particular clock cycles, say

(κ
(8t0)
n−1 , . . . , κ

(8t0)
n−24) = (κ

(8t1)
n−1 , . . . , κ

(8t1)
n−24).

Then Equation (2) yields 24 linear equations over F2—we can equate the entries
in the 24 least significant positions of (K0, . . . ,Kn−1) · A8t0 with those at the
24 least significant positions of (K0, . . . ,Kn−1) · A8t1 . More generally, from a
multi-collision

(κ
(8t0)
n−1 , . . . , κ

(8t0)
n−24) = (κ

(8t1)
n−1 , . . . , κ

(8t1)
n−24) = · · · = (κ

(8ts)
n−1 , . . . , κ

(8ts)
n−24)

we obtain 24·s linear equations over F2—we can equate the entries in the 24 least
significant positions of (K0, . . . ,Kn−1) ·A8t0 with those of (K0, . . . ,Kn−1) ·A8ti

for each i = 1, . . . , s. One may hope that for 24 ·s ≥ n we can solve for the initial
secret state.

Remark 1. This system of linear equations is homogeneous, but as we are over
F2, a one-dimensional solution space yields a unique solution different from 0n.

For n = 80 this means that we hope to see s + 1 ≥ 5 repetitions of a value of
the least significant LFSR bits. These 24 bits of the LFSR are not distributed
independently and uniformly at random when encrypting plaintext bytes one
by one. Still, to get an idea if an attack requiring 5 repetitions of a value of
these 24 bits might be practical, applying Suzuki et al.’s analysis of the birthday
paradox for multi-collisions [4] seems worthwhile. Based on their work, we can
hope for a success probability 1/2 with about 5

√
5! · (224)4/5 ≈ 220.6 encrypted

plaintext bytes. Section 3.3 shows that this estimate is reasonably in line with
experimental reality.

Realizing the oracle. Suppose we encrypt a fixed plaintext byte x repeatedly,
say at clock cycles 8ti (i = 0, 1, . . .) and record the corresponding ciphertexts

y
(8t0)
0 , y

(8t1)
1 , A necessary condition for the 24 least significant bits of the

3

LFSR to repeat is that we observe a ciphertext that we have recorded earlier—
this happens after no more than 28+1 encryptions of x. However, we must expect
that there are multiple choices of the 24 least significant bits of the LFSR that

explain a single plaintext-ciphertext pair(x, y
(8ti)
i).

To eliminate false positives (same ciphertext without the 24 least significant
bits of the LFSR being identical), we derive additional plaintext-ciphertext pairs
through chosen ciphertexts. Namely, the adversary will for each clock cycle 8ti
transmit the ciphertext y

(8ti)
i + ` ∈ Z256 to the `th recipient and record the

resulting decryption x̃
(8ti)
i,` . In this way, we can collect ` (≤ 255) additional

plaintext-ciphertext pairs (x̃
(8ti)
i,` , y

(8ti)
i + `) for clock cycle 8ti that are combined

to increase confidence that the least significant 24 bits of the LFSR have repeated
at that point in time. Specifically, we will guess that equality of these bits holds
at clock cycle 8ti and 8tj if and only if all of the following hold:

– y
(8ti)
i = y

(8tj)
j ,

– x̃
(8ti)
i,` = x̃

(8tj)
j,` for all `.

With a single recipient, we can only choose ` = 1 and have a total of 2 plaintext-
ciphertext pairs available, which still has room for false positives. In a multicast
setting with L recipients we have L+ 1 plaintext-ciphertext pairs available, and
for sufficiently large L we can meaningfully expect that they determine the least
significant 24 bits of the LFSR uniquely—thereby avoiding false positives. In
the experiment documented in the next section, we show that the attack works
reliably and efficiently with L = 4.

3.2 Reconstructing equivalent rotors

For this section, we will assume that the attack described in Section 3.1 has suc-
ceeded, thus the adversary can calculate the LFSR state for any given point in
time. Before trying to recover the remaining part of the secret key—the permu-
tations π1, π2, and π3—we observe that in the cipher under discussion different
secret keys are equivalent. For ∆ ∈ Z256, denote by τ∆ ∈ S256 the cyclic shift

τ∆ : Z256 −→ Z256

a 7−→ a+∆
.

Then we can rewrite Equation (1) as

y = τ−k(8t)3
◦ π3 ◦ τk(8t)3 −k(8t)2

◦ π2 ◦ τk(8t)2 −k(8t)1
◦ π1 ◦ τk(8t)1

(x),

where ◦ denotes functional composition. As the cyclic shifts form an Abelian
subgroup of S256, we observe that Equation (1) remains valid for all plaintext-
ciphertext pairs and rotor positions, if we replace (π1, π2, π3) with

(τ∆ ◦ π1, τ−∆′ ◦ π2 ◦ τ−∆, π3 ◦ τ∆′)

4

for any choice of (∆, ∆′) ∈ Z2
256. This implies that the key space is redundant

and its effective size is smaller than a näıve computation suggests.
For our purposes, we select (∆,∆′) = (−π1(0), π−13 (0)) to obtain permuta-

tions π′1, π′2, π′3 that behave exactly like π1, π2, π3 and satisy π′1(0) = 0 and
π′3(0) = 0. Our attack aims without loss of generality at recovering such a “nor-
malized” triple of permutations, i. e., the inner and outer rotor stabilize 0.

Recovering π′2. Having successfully recovered the initial state, the adversary will

now always choose the plaintext bytes equal to −k(8t)1 ∈ Z256, so that the result
of applying π′1 within the encryption process is always known to be 0. Whenever

a ciphertext y is observed that is equal to −k(8t)3 ∈ Z256, then we conclude from
our normalization condition on π′3 that the argument of π′3 must have been 0.
In other words, from Equation (1) we obtain the equation

k
(8t)
3 + π′2

(
k
(8t)
2 + π′1

(
k
(8t)
1 − k(8t)1

)
︸ ︷︷ ︸

=0

−k(8t)1

)
− k(8t)2 = 0, (3)

revealing that π′2(k
(8t)
2 −k(8t)1) is k

(8t)
2 −k(8t)3 ∈ Z256. The adversary keeps choosing

plaintexts of the form −k(8t)1 ∈ Z256 until the values k
(8t)
2 − k(8t)1 ∈ Z256 covered

255 different values in Z256 with an observed ciphertext −k(8t)3 .1 This yields the
value of π′2 at all but one input. As π′2 is a permutation on Z256, this last missing
value can then be filled in easily.

Recovering π′3. Again, we restrict to plaintexts of the form −k(8t)1 , so that π′1
evaluates to 0. Having π′2 available and knowing that π′1 evaluates to 0, we can
evaluate the argument of π′3—which is just the left-hand side of Equation (3).

Because of Equation (1), adding k
(8t)
3 to the observed ciphertext yields the value

of π′3 for this argument. Once the left-hand side of Equation (3) has taken 255
different values in Z256, we can complete the last missing value by exploiting
that π′3 is a permutation.

Recovering π′1. From the imposed normalization condition, we know already that

π1(0) = 0. Now, with π′2 and π′3 being known, from encryptions of x − k(8t)1 ∈
Z256 for x = 1, . . . , 254, we directly deduce the values π′(1), . . . , π′(254) from
Equation (1). The only remaining value π′1(255) then follows from π′1 being a
permutation.

3.3 Experimental validation

To test the practicality of the above attack, we implemented it in Magma [2] on
a Dell PowerEdge T420. With SetSeed(1234567890), we ran 20 experiments,

1 It is actually sufficient to induce a chosen ciphertext only at those times when k
(8t)
2 −

k
(8t)
1 takes a value in Z256 at which the evaluation of π′

2 is not known yet.

5

each time choosing the feedback polynomial f(x) at random of degree n = 80
subject to the condition that it is primitive and the total number of terms is 21.
In six runs the linear system of equations did not have a unique solution, and we
counted these as failures, but even in these cases the solution space was only two-
dimensional, i. e., only three non-zero candidates for the initial state were left.
In the other 14 cases, the initial state was each time recovered successfully. From
here, normalized rotors were each time found. None of these attacks used more
than 2, 150, 000 chosen plaintext bytes, and the majority of these were needed
for the state recovery of the LFSR. Once this state was found, determining the
rotor positions never required more than an additional 530, 000 chosen plaintext
bytes. The total CPU time for finding a secret key was in each case less than
200 seconds.

4 Conclusion

The analysis above shows that the modern rotor machine in [1] is vulnerable to a
practical attack. Our approach exploits that the underlying stepping mechanism
for the rotors is a basic LFSR whose internal state can ultimately be recovered
with linear algebra. To collect the necessary linear equations, our approach relies
on the feasibility of recognizing multi-collisions of a certain portion of the internal
state of the LFSR. To avoid false positives, we assume a multicast scenario, which
allows us to collect multiple plaintext-ciphertext pairs.

At this point, we have not explored the security of Anderson’s construction
when using a more involved stepping mechanism, which defeats the attack as de-
scribed here. So while our cryptanalysis shows that the basic form of Anderson’s
proposal from FSE’93 is vulnerable, tweaks of this elegant design still deserve
further exploration.

References

1. Ross Anderson. A Modern Rotor Machine. In Ross Anderson, editor, Fast Software
Encrytion – FSE ’93, volume 809 of Lecture Notes in Computer Science, pages
47–50. Springer, 1994.

2. Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma Algebra System
I: The User Language. Journal of Symbolic Computation, 24:235–265, 1997.

3. Todd Rowland. Companion Matrix. From MathWorld–A Wolfram Web Resource,
created by Eric W. Weisstein.

4. Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyoya. Birthday
Paradox for Multi-collisions. In Min Surp Rhee and Byoungcheon Lee, editors,
Information Security and Cryptology – ICISC 2006, volume 4296 of Lecture Notes
in Computer Science, pages 29–40. Springer, 2006.

6

