
Security of Linear Secret-Sharing Schemes
against Mass Surveillance

Irene Giacomelli1, Ruxandra F. Olimid2, and Samuel Ranellucci1

1 Department of Computer Science, Aarhus University, Denmark
2 Department of Computer Science, University of Bucharest, Romania and Applied

Cryptography Group, Orange

Abstract Following the line of work presented recently by Bellare, Pa-
terson and Rogaway, we formalize and investigate the resistance of linear
secret-sharing schemes to mass surveillance. This primitive is widely used
to design IT systems in the modern computer world, and often it is im-
plemented by a proprietary code that the provider (“big brother”) could
manipulate to covertly violate the privacy of the users (by implementing
Algorithm-Substitution Attacks or ASAs). First, we formalize the secu-
rity notion that expresses the goal of big brother and prove that for any
linear secret-sharing scheme there exists an undetectable subversion of
it that efficiently allows surveillance. Second, we formalize the security
notion that assures that a sharing scheme is secure against ASAs and
construct the first sharing scheme that meets this notion.

Keywords: linear secret-sharing, algorithm-substitution attack, mass
surveillance, kleptography.

1 Introduction

The paper considers the possibility of mass surveillance by algorithm-substitution
attacks (ASAs) against secret sharing. Secret-sharing generally refers to a method
for splitting a secret into pieces (called shares of the secret) so that the secret
can be reconstructed when a qualified set of shares are combined together (re-
construction property); on the other hand, unqualified sets of shares reveal no
information about the original secret (privacy property). An ASA replaces the
real sharing algorithm by a subverted version that allows a privileged party (big
brother) to break privacy and reconstruct the secret from an unqualified sets of
shares. Since secret sharing is widely used as building block for distributed proto-
cols and systems, its insecurity against this kind of attack could have significant
consequences. For example, big brother could mount ASA against a key backup
system based on secret sharing, recover the private keys and break confidential-
ity (in order to maintain the same terminology as in the existing literature [1],
we refer to this kind of scenario as mass surveillance).

Motivation. Applications for access control, key backup and recovery or secure
storage systems sometimes implement proprietary piece of code to perform se-
cret sharing [2–6]. Often, the security of the entire system relies on the privacy

property of the underlying secret sharing scheme (e.g. access control systems
grant permission only if a set of qualified shares are available for reconstruc-
tion). Therefore, mounting ASAs against such systems might lead to serious
consequences: big brother can ruin access control, disclose private keys or learn
secret data.

To exemplify, we focus on the scenario of long-term secure storage systems
that use secret sharing to assure data confidentiality and availability. A client-
side application runs a sharing algorithm to split data in share that are privately
sent to a set of independent storage nodes, which can be located across different
geographical and network areas, benefit of distinct protection mechanisms and
even belong to various storage providers. To later access the stored data, the
client application requests a qualified set of shares from several storage nodes and
reconstructs. The architecture introduces multiple points of trust: reconstruction
is possible only if the adversary breaks into several storage nodes and obtains a
qualified set of shares; the architecture assumes no trust on individual storage
providers, as no one can access the data using its own shares only. Now, suppose
an undetectable ASA replaces the client-side application code with a subverted
version designed by big brother that allows reconstruction from an unqualified
sets of shares; if big brother is a storage provider, then it can perform surveillance
by breaking the privacy property using the shares stored on its own servers; if
big brother is an outsider, it can perform surveillance by only breaking into a
few storage nodes, independently of the access structure. On the other hand,
the client would like a guarantee that no ASAs will succeed, under the minimal
detectability conditions.

Related Work. Kleptography was introduced by Young and Yung in the 90s to
consider undetectable modifications to cryptosystems that deliberately provide
trapdoor capabilities [7,8], as an extension to the existing notions of subliminal
and convert channels [9,10]. Since then, kleptographic attacks have been designed
for a wide range of cryptographic primitives and protocols. Despite the amount
of work that has been done on the field, only recently Bellare, Paterson and Ro-
gaway formalize the security notions in the settings of modern cryptography [1].
They set the terminology for ASAs (Asymmetric Substitution Attacks) and use
a game-based approach to model both negative and positive results, i.e. when
an adversary (big brother) can, respectively cannot perform surveillance without
being detected. Their work focuses on symmetric encryption and highlights its
impact on real-world systems. We follow their line of work, formalize and inves-
tigate the resistance of linear secret-sharing to mass surveillance. The security
in this framework of other fundamental primitives has already been studied: see
the recent work of Ateniese, Magri and Venturi [11] for a formal treatment of
subversion-resilient signature schemes.

Modeling and Results. We assume that big brother subverts the sharing scheme
embedding in it a strategy T and an encryption key. Big brother aims for a
strong form of subversion, that disallows users from detecting ASAs or gain
his abilities to perform surveillance even in case of reverse engineering. So, we

Table 1. Strong Subversion and Resilience Modeling

Strong subversion Strong resilience
(big brother’s goal) (users’ goal)

Detection algorithm PK, T ; choose the secret ∅; access Secret oracle
Subverted algorithm PK, T PK, SK, T

consider asymmetric ASAs, where big brother embeds into the code a public key
PK and keeps the corresponding secret key SK private. In this strong surveillance
model, the subverted algorithm has access to the public key PK and the strategy
T and it remains undetectable by the users even if both PK and T are given
to the detection algorithm (run by the users). We give additional power to the
detection algorithm and allow it to choose the secret to be shared. This models
big brother’s goal to keep subversion hidden for all possible secrets and hence
make the ASA undetectable. Following the strategy T , big brother corrupts a
set of unqualified parties and uses their shares to gain information about the
secret. This is the framework we formalize in Section 3, where we also show our
negative result: for any linear secret-sharing scheme there exists an undetectable
subverted version of it that efficiently allows surveillance.

On the other hand, users aim for a strong form of resilience against surveil-
lance, that allows detectability even if they only have black-box access to the
subverted sharing algorithm. In this strong resilience model, the subverted algo-
rithm can also be given access to the private key SK and it is detectable by users
even if the detection algorithm is given nothing (except the inputs and outputs
of the black-box). Symmetric ASAs suffice, as (PK, SK) can be seen a single secret
key K embedded into the code; however, we maintain the asymmetric notation
for continuity. We now disallow the detection algorithm to choose the secret to
be shared and give it access to a Secret oracle, reflecting that users should
detect surveillance for sampled inputs. We formalize this framework in Section
4, where we also give the first construction of a linear secret-sharing scheme
that is resilient against any efficient subversion. To obtain this positive result,
we require that all the users give input to the sharing algorithm.

In contrast to [1], we consider strong forms of subversion and resilience to
model the goals of big brother, respectively users and give the detection and
subverted algorithms distinct capabilities. Similar to [1] (where big brother is
not allowed to select the encryption key), we do not allow big brother to select
the secret. However, we discuss in Section 4 the settings that allow surveillance
resilience when big brother is allowed to select the secret and show that our
proposal remains secure under this settings.

2 Preliminaries

Let F be a finite field and v ∈ Fn a vector of n components; we denote by v[i]
its i-th component. We denote sampling uniformly at random a value x from a
set X as x� X and assigning a value Y to a variable y as y ← Y .

2.1 Secret Sharing

Let n be the set of parties (e.g. the different storage nodes) P = {P1, . . . , Pn}.
A secret sharing scheme consists of two algorithms Π = (Sh,Rec) such that:

– the sharing algorithm Sh is a randomized algorithm that receives as input a
secret s and outputs a vector of shares S = (S[1], . . . ,S[n]); We call dealer
the entity that runs the algorithm on input s and that receives the output S.
We assume that the sharing algorithm is connected by a bidirectional secure
channel3 with each players Pi, in such a way that the share S[i] is securely
sent to the player Pi.
For any subset of players A ⊂ {P1, . . . , Pn}, let SA be the vector of shares
held by players in A, i.e. SA = (S[i])Pi∈A. A set A ⊂ {P1, . . . , Pn} is called
unqualified if the distribution of SA is independent from s, while it is called
qualified if the secret s is uniquely determined from SA.

– the reconstruction algorithm Rec is a deterministic algorithm that receives as
input a subset of shares SA and outputs the value s if the set of shares cor-
responds to a qualified set of players; otherwise it outputs the special symbol
⊥. We ask that the entire set of players {P1, . . . , Pn} is always qualified.

The access structure of Π, Γ , is defined as the set of all A ⊂ {P1, . . . , Pn}
that are qualified and Γmin is the set of the minimal qualified subsets, i.e. Γmin =
{B ∈ Γ | @B′ ⊂ B,B′ ∈ Γ}. Let γ be the cardinality of the largest set in Γmin,
i.e. γ = max{|B| | B ∈ Γmin} and let ρ the reconstruction threshold, i.e. the
smallest integer such that every A ⊂ {P1, . . . , Pn} of cardinality ρ is qualified.

Remark 1. In general, γ differs from the reconstruction threshold ρ. For example,
let n = 4 and Γmin = {{P2, P3}, {P2, P4}, {P3, P4}}. Then γ = 2, but ρ = 3.
The inequality γ ≤ ρ always holds.

2.2 Linear Secret Sharing

Informally, a secret sharing scheme is called linear if the secret and the shares are
elements of some vector spaces and the shares are computed as a linear function
of the secret.

More precisely, given M a n × m matrix (m > l) with elements in F, the
Linear Secret-Sharing Scheme (LSSS) associated to M , ΠM = (ShM ,RecM),

3 By secure channel we mean an authenticated and private channel that is also sub-
version resilient, that is big bother can not implement surveillance over it. Using the
results of [1] and [11] for encryption scheme and digital signature such a channel can
be easily implemented.

ShM (s)

r � Fd

fT ← (s, r)T

S ←M · f
return S

RecM (SB)
if B is qualified then

s←NB · SB
else

s← ⊥
return s

Construction 1: LSSS ΠM = (ShM ,RecM)

is defined in Construction 1. To share a secret s = (s[1], . . . , s[l]) ∈ Fl, the
algorithm first forms a column vector f ∈ Fm where s appears in the first l
entries and with the last d entries chosen uniformly at random and then computes
S = M · f . We will use πl to denote the projection that outputs the first l
coordinates of a vector, i.e. πl(f) = s. Similarly, let πd(f) be the last d elements
of f ; hence, πd(f) = r, where d = m− l.

Let mi be the row i of M and mi be the column i of M . If B ⊆ P, then
MB = (mi)Pi∈B denotes the matrix built from all rows mi such that Pi ∈ B.

It easy to see that a player subset B is qualified if and only if there exists a
l × |B| matrix NB such that for any f ∈ Fd, NB · (MB · f) = πl(f).

Remark 2. The inequality γ > l always holds from the correctness of reconstruc-
tion and the usage of randomness (d > 0).

For the rest of the paper, we fix M and denote ΠM = (ShM ,RecM) by
Π = (Sh,Rec) to simplify notation.

Example 1 (Additive secret-sharing scheme). To share a secret s ∈ F among n
players, the sharing algorithm chooses random values S[1], . . . ,S[n] in F such
that

∑n
i=1 S[i] = s and sends the value S[i] to Pi. It is clear that the set of all

the players can reconstruct the secret from the received values, while any set
of at most n − 1 players has no information on the value s held by the dealer.
Notice that in this case γ = n.

Example 2 (Packed Shamir’s scheme [12]). Let {α1, . . . , αn} and {e1, . . . , el}
be two disjoint sets of distinct random elements of F. To share the secret s ∈
Fl, the sharing algorithm samples a polynomial f(x) ∈ F[x] of degree at most
τ + l − 1 such that f(eb) = s[b] and sends to player Pi the evaluation f(αi).
Using Lagrange’s interpolation it can be proved that any set of τ shares gives
no information about the secret s, while any set of τ + l shares can reconstruct
it. In this scheme we have γ = τ + l.

3 Subverting Secret-Sharing

This section models big brother’s B goal: to subvert the sharing algorithm Sh

to an algorithm S̃h that allows him to perform surveillance, while it remains
undetected under the strong subversion scenario (see Section 1).

Surveillance means that B compromises privacy and learns the secret (or
part of it) from corrupting an unqualified set of parties. To do so, B can embed
in the code a key and a strategy. The embedded key is used to favor B over
other entities, by leaking information in encrypted form. In real life, B aims
to keep decryption capabilities to itself even in case of reverse engineering the
algorithm, so our definitions consider asymmetric ASAs (B embeds a public key
PK in the code and keeps the corresponding secret key SK private). The strategy
T defines the unqualified set of parties B must corrupt to break the privacy of
the scheme. We expect that B embeds in the code and hence follows a strategy T
that maximizes its chances to win (e.g. minimum number of parties, if all parties
are equally susceptible to corruption or easy to corrupt parties otherwise).

Undetectability means that no efficient detection algorithm U that is not
given the decryption key SK can distinguish between the real and the subverted
sharing algorithm. In the absence of the undetectability condition, subversion

is always possible: S̃h simply distributes the secret (or parts of it) in shares in
accordance to the strategy T .

3.1 Definitions

Let Π = (Sh,Rec) be a secret-sharing scheme and let K be a probabilistic key
generation algorithm that outputs a public-private key pair (PK, SK). A subver-

sion of Π is a pair Π̃ = (S̃h, R̃ec), with the following features: the subverted

sharing algorithm S̃h is a randomized algorithm that maps (s, PK, ID, T) to a
share vector S. The input ID identifies the dealer that runs the sharing algo-
rithm; this information is in general available in the system (e.g. the IP address
or any authentication information of the client application for storage systems).
T is a strategy that outputs the subset T ⊂ {P1, . . . , Pn} used to leak infor-

mation. The subverted reconstruction algorithm R̃ec is an algorithm that maps
(ST , ID, SK) to the shared secret s, where ST is the subset of shares that belongs
to the unqualified set T .

We give next the definitions for detection and surveillance games. In contrast
to the traditional unbounded adversarial power in secret sharing, our model is
defined in the computational settings [13, 14]. In the following, we say that a
function ε is negligible in N if for every polynomial function p(N) there exists a
constant c such that ε(N) < 1

p(N) when N > c. With the notation AALG(z) we

mean that the entity A has oracle access to the algorithm ALG with knowledge
of z.

DETECTION ADVANTAGE. Let Π = (Sh,Rec) be a secret sharing scheme

and Π̃ = (S̃h, R̃ec) a subversion of it. Let U be a detection algorithm that is not
given SK. The advantage of U to detect the ASA is defined as:

Game DETECTU
Π,Π̃

b� {0, 1}
(PK, SK) � K
b′ � UShare(PK, T)
return (b = b′)

Share(s)
if b=1 then

S ← Sh(s)
else

S ← S̃h(s, ID, PK, T)
return S

Game 1: DETECT (Detection Game)

Advdet
Π,Π̃

(U) = 2Pr[DETECTU
Π,Π̃
⇒ true]− 1

A subversion Π̃ is undetectable if Advdet
Π,Π̃

(U) is negligible for any efficient U .

Detectability measures the ability of U to detect an ASA. In the DETECT
game, U must detect if it receives shares produced by the real algorithm Sh or

by its subversion S̃h. To capture the case of reverse engineering, we allow U to
use the encryption key PK and the strategy T that are embedded in the code; of
course, the detection algorithm does not have access to the decryption key SK.

Clearly, B wants a subversion to be undetectable. By allowing U full control
over the secret, the shares and the embedded PK, our definition captures the
strongest form of detectability.

SURVEILLANCE ADVANTAGE. Let Π = (Sh,Rec) be a secret sharing scheme

and Π̃ = (S̃h, R̃ec) a subversion of it. Let B (big brother) be an adversary that
knows SK. The advantage of B to detect the ASA is defined as:

Advsrv
Π,Π̃

(B) = 2Pr[SURVB
Π,Π̃
⇒ true]− 1

A scheme Π is secure against surveillance if Advsrv
Π,Π̃

(B) is negligible for any

efficient B and for any Π̃.
Surveillance advantage measures the ability of a scheme to be secure against

ASAs. Clearly, B wants to break privacy. Our definition models the stronger
property that B cannot even distinguish between the real algorithm Sh and its

subversion S̃h; in particular, the subversion gives B no advantage to restore the
secret by corrupting an unqualified set of parties. SURV game is similar to the
DETECT game, except that the adversary B is given the secret key SK and cannot
select the secret to be shared, but interrogates a Secret oracle to obtain it.

We can now model a negative result : a scheme Π is susceptible to ASAs if
there exists an undetectable subversion Π̃ of Π that allows an efficient adversary
B to have a non-negligible surveillance advantage (e.g. to break privacy). We call

Π̃ a successful subversion of Π. We show that this is the case for any LSSS in
Section 3.3.

Game SURVB
Π,Π̃

b� {0, 1}
(PK, SK) � K
b′ � BShare(PK, SK, T)
return (b = b′)

Secret()

s � Fl
return s

Share()
s← Secret()
if b=1 then

S ← Sh(s)
else

S ← S̃h(s, ID, PK, T)
return s,S

Game 2: SURV (Surveillance Game)

3.2 Share-Fixing

Inspired by the existing work on bit-fixing [15, 16], we introduce share-fixing
notions that we will later use to construct undetectable subversion of LSSS.

Let Π = (Sh,Rec) be a secret sharing scheme and T ⊂ {P1, . . . , Pn}. ST
is called a share-fixing vector for a secret s if there exists S a valid sharing of
s such that S[i] = ST [i], for all Pi ∈ T . Intuitively, a share-fixing vector is a
subset of ordered shares that can be expanded to a complete set of valid shares.
A randomized algorithm FΠ that generates ST for a given T and any secret s
is called a share-fixing source. We will use FΠ(s, T) to denote that F runs on
input (s, T). Note that it is always possible to construct a share-fixing source by
simply running Sh(s) and restrict its output to T .

For a share-fixing source FΠ and any secret s, a randomized algorithm Ŝh
that maps (s,FΠ(s, T)) to a valid set of shares S such that S[i] = ST [i], for
all Pi ∈ T is called a share-fixing extractor. Intuitively, a share-fixing extractor
expands the output ST of the share-fixing source to a complete set of valid shares
S. Note that it is always possible to construct a share-fixing extractor by simply
running Sh(s) repeatedly until S expands ST (obviously, the construction is
inefficient).

EXTRACTOR DETECTION ADVANTAGE. Let Π = (Sh,Rec) be a secret
sharing scheme and T ⊆ {P1, . . . , Pn}. Let FΠ be a share-fixing source for (Π,T)

and Ŝh a share-fixing extractor for (Π,FΠ). Let Π̂ = (Ŝh,Rec) be the secret
sharing scheme obtained from Π by replacing the sharing algorithm Sh with

the share-fixing extractor Ŝh. The advantage of an algorithm U to detect the
share-fixing extractor is defined as:

Adve-det
Π,Π̂

(U) = 2Pr[E-DETECTU
Π,Π̂
⇒ true]− 1

Game E-DETECTU
Π,Π̂

b� {0, 1}
b′ � UShare

return b = b′

Share(s,FΠ , T)
if b=1 then

S ← Sh(s)
else

ST � FΠ(s, T)

S ← Ŝh(s,ST)
return S

Game 3: E-DETECT (Extraction Detection Game)

A share-fixing extractor Ŝh is undetectable if Adve-det
Π,Π̂

(U) is negligible for any

efficient U .
Extraction detectability measures the ability of U to distinguish a share-

fixing extractor Ŝh from the real Sh. In the E-DETECT game, U must detect if it
receives shares produced by the real algorithm Sh or by a share-fixing extractor

Ŝh, given a share-fixing source FΠ . Clearly, undetectability is impossible if the
share-fixing source FΠ samples ST from a distribution which can be efficiently
distinguished from the distribution of the shares produced by the original sharing
algorithm. But that is not always the case: in the proof of Theorem 1 we show
that for any LSSS it is always possible to find a nonempty set T such that the
distribution of the shares held by players in T is easy to simulate (i.e. it is the
uniform one).

Theorem 1. Let Π = (Sh,Rec) be a LSSS. Then, there exists a nonempty un-
qualified set of players T of cardinality t such that if FΠ is an algorithm that
maps s ∈ Fl to a uniformly random ST ∈ Ft, it holds that FΠ is a share-fixing
source for (Π,T).

Proof. Let B ∈ Γmin with |B| = b. By definition, we have that rank(MB) = b
and rank(πd(MB)) ≥ b − l > 0 with πd(MB) denoting the last d columns of
MB . Let t = rank(πd(MB)), then there exists T ⊂ B of cardinality t such that
rank(πd(MT)) = t (take as T a set of players that corresponds to nonempty
proper subset of the indices of the rows that are linear independent in πd(MB)).
Notice that T is trivially unqualified. The proof reduces to the existence of r
such that πd(f) = r and MT ·f = ST , where both ST and πl(f) = s are fixed.
Let MT = (πl(MT) | πd(MT)). Under this notation, MT · f = ST becomes
πl(MT) · s + πd(MT) · r = ST or equivalently πd(MT) · r = ST − πl(MT) · s,
which always has a solution because the matrix πd(MT) has full row-rank by
construction.

Then, it follows that for any LSSS there exists a share-fixing extractor. More
precisely:

Ŝh(s,FΠ , T)
πl(f)← s
ST ← FΠ(s, T) (T and FΠ as in Theorem 1)

solve πd(MT) · r = ST − πl(MT) · s for r, where πd(MT) and πl(MT)
denote the last d columns, respectively the first l columns of MT

(if t < d, fix r uniformly at random from the set of possible solutions)

f ← (s, r)T

S ←M · f
return S

Construction 2: Share-fixing extractor Ŝh for (Π,FΠ)

Theorem 2. Let Π = (Sh,Rec) be a LSSS and FΠ be a sharing-fixing source

as defined in Theorem 1. Then, the algorithm Ŝh in Construction 2 is an unde-

tectable share-fixing extractor Ŝh for (Π,FΠ).

Proof. Let Ŝh be defined as in Construction 2, where T is as in Theorem 1. Ŝh
computes r as a solution of πd(MT)·r = ST−πl(MT)·s (see Theorem 1). From
the hypothesis, FΠ outputs ST uniformly at random and hence ST −πl(MT) ·s
is uniformly at random. Since πd(MT) has full rank t, r is uniformly random
in Fd. Note that from the definition of LSSS, Sh also chooses r uniformly at

random in Fd. Once r is fixed, Ŝh follows Sh exactly: forms the column vector

f and computes S = M · f . To conclude, the output distribution of Ŝh equals

the output distribution of Sh and the share-fixing extractor Ŝh is undetectable
with Adve-det

Π,Π̂
(U) = 0.

Example 3 (Additive secret-sharing scheme). FΠ from Theorem 1 can fix up to

n − 1 shares S[ij] = ST [ij], j = 1 . . . , n − 1. The share fixing extractor Ŝh

computes S[in] = s−
∑n−1
j=1 S[ij].

Example 4 (Packed Shamir’s scheme). FΠ from Theorem 1 can fix up to τ shares

f(αj) = ST [ij]. The share fixing extractor Ŝh interpolates f of degree at most
τ + l − 1 such that f(eb) = s[b], b = 1, . . . , l and f(αj) = ST [ij], j = 1, . . . , τ .

3.3 Shares Replacement Attack

We show that for any LSSS there exists an undetectable subverted version that
efficiently allows surveillance. Let Π = (Sh,Rec) be a LSSS. Then, we construct

a successful subversion Π̃ = (S̃h, R̃ec) of Π such that an efficient adversary B
learns the secret s or parts of it with probability 1.

Let T = {Pi1 , . . . , Pit}, as defined in Theorem 1. The subverted sharing

algorithm S̃h implements a share fixing source FΠ to generate a subset of shares

S̃h(s, ID, PK, T)
T ← T
ST � FΠ(s, T)

S ← Ŝh(s,ST)
return S

FΠ(s, T)
x� F
ST [i1]← E(PK, x)
S′ ← PRG(x)
for j = 2 . . . t do

ST [ij]← s[j − 1] + S′[j − 1]
return ST

R̃ec(ST , ID, SK)
x← D(SK,S[i1])
S′ ← PRG(x)
for j = 2 . . . t do

s[j − 1]← ST [ij]− S′[j − 1]
return (s[1], . . . , s[t− 1])

Construction 3: Subverted scheme Π̃ = (S̃h, R̃ec) (t ≥ 2)

ST that allows B to compute the secret s (or a part of it), then expands ST
to a full set of shares S using the share-fixing extractor Ŝh from Theorem 2. To

hide information about s into ST , S̃h uses a deterministic public key encryption
scheme (K, E ,D) such that if m is sampled uniformly at random from F then
E(m) is uniformly distributed in F and a pseudo-random generator PRG that
maps a seed in F to an element in Ft. It is natural to assume such constructions
exist [17–22]4.

If t ≥ 2, a random seed x is encrypted under the public key PK of B to obtain

ST [i1], the first share in ST . Then, S̃h simply hides in the remaining components
of ST some of the components of s by adding them (using the addition operation
from F) to the pseudo-random values given by the output of the pseudo-random
generator.

The subverted scheme is correct. Since S is a valid vector of shares, recon-
struction and privacy hold by construction.

Theorem 3. Let Π = (Sh,Rec) be a LSSS with γ − l ≥ 2 (this assures t ≥ 2).

Then, its subversion Π̃ = (S̃h,Rec) defined in Construction 3 is successful and
B learns the first t− 1 components of s with probability 1.

Proof. In the subversion game, B extracts ST from S accordingly to the em-

bedded strategy T and then runs R̃ec(S′T , ID, SK) to get (s′[1], . . . , s′[t − 1]). If
s′[i] = s[i] for all i = 1, . . . , t− 1, then B outputs 0, otherwise B outputs 1. The
surveillance advantage Advsrv

Π,Π̃
(B) = 2|1− 1/|F|t| − 1 is clearly non-negligible.

In the detection game, ST is indistinguishable from random in Ft by ex-
ploiting encryption and PRG security. Thus, by Theorem 2, FΠ is a share-fixing

4 For [17] see Section X. Avoiding Reblocking when Encrypting a Signed Message

S̃h(s, ID, PK, T)
T ← T
ST � FΠ(s, T)

S ← Ŝh(s,ST)
return S

FΠ(s, T)
x� F such that lsb(x) = lsb(s[1])
ST [i1]← E(PK, x)
return ST

R̃ec(ST , ID, SK)
x← D(SK,S[i1])
lsb(s[1]) = lsb(x))
return lsb(s[1])

Construction 4: Subverted scheme Π̃ = (S̃h, R̃ec) (t = 1)

source and Ŝh is undetectable with Adve-det
Π,Π̂

(U) = 0. Then, the detection ad-

vantage is Advdet
Π,Π̃

(U) ≤ AdvE(U) + AdvPRG(U), which is negligible because of

the security of the PRG and the assumption on the encryption scheme. We can
therefore conclude that Π̃ is a successful subversion.

The condition γ− l ≥ 2 is satisfied by many commonly used sharing schemes.
For example, it is satisfied by the additive scheme with more than 2 players
(Example 1 with n > 2) and by Shamir’s scheme with at least 2 privacy (Example
2 with τ ≥ 2).

We give in Construction 4 an undetectable subversion for t = 1, which reveals
one bit of the secret. Naturally, the construction works for any t ≥ 1, but it gives
big brother significantly less information about s (which might be less desirable
in real life). Constructions for t = 1 and t ≥ 2 can easily be combined into a
single one, but we keep them separated for clearness of exposure.

Let (K, E ,D) be a deterministic public key encryption scheme as defined
before, which will be used to securely encrypt the lsb (least significant bit) of
s[1].5

Theorem 4. Let Π = (Sh,Rec) be a LSSS. Then, its subversion Π̃ = (S̃h,Rec)
defined in Construction 4 is successful and B learns the least significant bit of
s[1] with probability 1.

Proof. In the subversion game, B extracts ST from S accordingly to the embed-

ded strategy T and then runs R̃ec(S′T , ID, SK) to get a bit b′. If b′ = lsb(s), then
B outputs 0, otherwise B outputs 1. B wins with probability 1 when b′ 6= lsb(s)
and with probability 1/2 when b′ = lsb(s). Hence, the surveillance advantage
Advsrv

Π,Π̃
(B) = 2|1/2 · 1 + 1/2 · 1/2| − 1 = 1/2 is clearly non-negligible.

5 Again, such encryption systems exists, for example padded RSA where encryption
is repeated until the ciphertext lies in F.

In the detection game, ST is indistinguishable from random in Ft by ex-
ploiting encryption security. Thus, by Theorem 2, FΠ is a share-fixing source

and Ŝh is undetectable with Adve-det
Π,Π̂

(U) = 0. Then, the detection advantage is

Advdet
Π,Π̃

(U) ≤ AdvE(U), hence negligible. We can therefore conclude that Π̃ is a

successful subversion.

4 Subversion Resilient Secret Sharing

4.1 Multi-Input Secret Sharing

We aim to define (linear) secret-sharing schemes that stands against ASAs. To
achieve this, we allow the parties to give input to the sharing algorithm: each
player in P inputs a random element u[i] to Sh, while the dealer inputs, as
always, the secret s.

Let Π = (Sh,Rec) be a multi-input secret sharing scheme that consists of
two algorithms such that:

– the sharing algorithm Sh receives as input from the dealer a secret s and as
input from P a vector u = (u[1], . . . ,u[n]), where u[i] is given by Pi and
outputs a set of shares S = (S[1], . . . ,S[n]); note that since we assume the
existence of authenticated, private and subversion resilient channels between
the sharing algorithm and the players, u[i] remains unknown to all parties,
except Pi;

– the reconstruction algorithm Rec remains unchanged; it receives as input a
set of shares S and outputs the secret s if the set of shares corresponds to a
qualified set.

4.2 Definitions

Similar to Section 3, we introduce the definitions for detection and surveillance
advantages. Notice that this section models the users’ goal, so what we want is
strong resilience: B can embed in the code the secret key SK, while U is not given
access to the strategy and the public key. Even more, we disallow U to select
the secret or the inputs of the players and give it access to a Secret oracle,
reflecting that U should detect surveillance for any input. To differentiate the
games from the ones in Section 3 defined for strong subversion, we prefix them
by R (which stands for resilience).

DETECTION ADVANTAGE. Let Π = (Sh,Rec) be a (multi-input) secret shar-

ing scheme and Π̃ = (S̃h, R̃ec) a subversion of it. Let U be a detection algorithm
that is not given PK and T . The advantage of U to detect an ASA is defined as:

Advr-det
Π,Π̃

(U) = 2Pr[R-DETECTU
Π,Π̃
⇒ true]− 1

A subversion Π̃ is undetectable if Advr−det
Π,Π̃

(U) is negligible for any efficient

U .

Game R-DETECTU
Π,Π̃

b� {0, 1}
(PK, SK) � K
b′ � UShare

return (b = b′)

Secret()

s � Fl
u � Fn
return s,u

Share()
s,u← Secret()
if b=1 then

S ← Sh(s,u)
else

S ← S̃h(s,u, ID, PK, SK, T)
return s,u,S

Game 4: R-DETECT (Detection Game)

Clearly, honest players want all subversions to be easily detectable (even
when they cannot perform reverse engineering). By restricting U from accessing
anything except the interface of the sharing algorithm and allowing B to embed in
the code the secret key SK, our definition captures a strong notion of detectability.

SURVEILLANCE ADVANTAGE. Let Π = (Sh,Rec) be a (multi-input) secret

sharing scheme and Π̃ = (S̃h, R̃ec) a subversion of it. Let B (big brother) be an
adversary that knows SK. The advantage of B to detect an ASA is defined as:

Advr-srv
Π,Π̃

(B) = 2Pr[R-SURVB
Π,Π̃
⇒ true]− 1

A scheme Π is secure against surveillance if Advr−srv
Π,Π̃

(B) is negligible for any

efficient B and for any Π̃.
SURV game is similar to the DETECT game, except that the adversary B is

given the keys PK, SK and the strategy T .
We can now model a positive result : a scheme Π is resilient to ASAs if all

possible subversions Π̃ of Π are detectable. We call Π subversion resilient. We
give a secure construction in this sense in Section 4.3.

4.3 Subversion Resilient Multi-Input LSSS

Let Π = (Sh,Rec) be a LSSS. We construct Π∗ = (Sh∗,Rec∗) multi-input LSSS
that cannot be subverted without violating detectability. Let PRG be a pseudo-
random generator that maps a seed in F to an element in Fd.

Theorem 5. The multi-input LSSS Π∗ = (Sh∗,Rec∗) defined in Construction
5 is subversion resilient.

Game R-SURVB
Π,Π̃

b� {0, 1}
(PK, SK) � K
b′ � BShare(PK, SK, T)
return (b = b′)

Secret()

s � Fl
u � Fn
return s,u

Share()
s,u← Secret()
if b=1 then

S ← Sh(s,u)
else

S ← S̃h(s,u, ID, PK, SK, T)
return S

Game 5: R-SURV (Surveillance Game)

Sh(s,u)
r ← PRG(u[1]⊕ · · · ⊕ u[n])

fT ← (s, r)T

S←M · f
return S

Rec(SB)
if B is qualified then

s←NB · SB
else

s← ⊥
return s

Construction 5: Subversion Resilient Multi-Input LSSS Π∗ =
(Sh∗,Rec∗)

Proof. First, we note that the shares by Sh∗ are a deterministic function of u
and s. The detection algorithm simply takes the values u[i] produced by each
player and verifies that the shares sent are the ones that would be produced by
Sh∗. Any subversion with advantage δ must produce a different set of shares with
probability greater or equal to δ (if at least one player is honest, u[1]⊕. . .⊕u[n] is
uniformly random and hence r is uniformly random from the security of PRG).
We can therefore conclude that Advr-det

Π∗,Π̃∗(U) ≥ δ for any possible subversion

Π̃∗.

Discussion. Our modeling does not allow big brother to select the secret. Oth-
erwise, if detection and surveillance games run independently, it is trivial for
big brother to generate an undetectable subversion. Namely, it subverts the
algorithm as follows: if the secret queried is a fixed element (e.g. an element
deterministically computed from the key), then the subverted algorithm out-
puts specific shares, otherwise it generates proper shares. Note that this sub-

version is undetectable since the key is randomly sampled. This reflects the fact
that in practice big brother can always embed hidden pattern which will allow
surveillance when this pattern is matched by a secret. This could be used to no-
tice unauthorized storage of sensitive documents by embedding a secret pattern
within the documents and then subverting the algorithm to misbehave under
this hidden pattern. The best that a user can therefore hope to do is to be able
to detect whether or not the sharing could have allowed surveillance. Hence, we
could allow big brother to input the secret in the surveillance game, but require
that detection is continuously performed at runtime. In terms of games, this can
be easily modeled by giving the subverted algorithm permission to select the
secret, while detection algorithm runs on all this secrets and the correspond-
ing outputs. It is immediate that our construction remains secure under this
settings, since any subversion would require different shares than the ones that
would have been produced by Sh with very high probability.

Acknowledgements. Samuel Ranellucci and Irene Giacomelli acknowledge
support from the Danish National Research Foundation and The National Sci-
ence Foundation of China (under the grant 61361136003) for the Sino-Danish
Center for the Theory of Interactive Computation and from the Center for Re-
search in Foundations of Electronic Markets (CFEM), supported by the Danish
Strategic Research Council within which part of this work was performed. Par-
tially supported by Danish Council for Independent Research via DFF Starting
Grant 10-081612. Partially supported by the European Research Commission
Starting Grant 279447.

Ruxandra F. Olimid was supported by the strategic grant POSDRU/159/1.5/
S/137750, “Project Doctoral and Postdoctoral programs support for increased
competitiveness in Exact Sciences research” cofinanced by the European Social
Found within the Sectorial Operational Program Human Resources Development
2007-2013.

References

1. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceed-
ings, Part I. (2014) 1–19

2. Subbiah, A., Blough, D.M.: An approach for fault tolerant and secure data storage
in collaborative work environments. In: StorageSS. (2005) 84–93

3. Storer, M.W., Greenan, K.M., Miller, E.L., Voruganti, K.: Potshards - a secure,
recoverable, long-term archival storage system. TOS 5(2) (2009)

4. Wylie, J.J., Bigrigg, M.W., Strunk, J.D., Ganger, G.R., Kiliççöte, H., Khosla, P.K.:
Survivable information storage systems. Computer 33(8) (2000) 61–68

5. Cleversafe. http://www.cleversafe.com/ Last accessed: September 2015.
6. Dyadic. https://www.dyadicsec.com/ Last accessed: September 2015.
7. Young, A.L., Yung, M.: The dark side of ”black-box” cryptography, or: Should

we trust capstone? In: Advances in Cryptology - CRYPTO ’96, 16th Annual

International Cryptology Conference, Santa Barbara, California, USA, August 18-
22, 1996, Proceedings. (1996) 89–103

8. Young, A.L., Yung, M.: Kleptography: Using cryptography against cryptography.
In: Advances in Cryptology - EUROCRYPT ’97, International Conference on the
Theory and Application of Cryptographic Techniques, Konstanz, Germany, May
11-15, 1997, Proceeding. (1997) 62–74

9. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10)
(1973) 613–615

10. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Advances in
Cryptology, Proceedings of CRYPTO ’83, Santa Barbara, California, USA, August
21-24, 1983. (1983) 51–67

11. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. Cryp-
tology ePrint Archive, Report 2015/517 (2015) http://eprint.iacr.org/. To ap-
per in Proceedings of the 2015 ACM SIGSAC Conference on Computer and Com-
munications Security.

12. Franklin, M.K., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: STOC. (1992) 699–710

13. Beimel, A.: Secret-sharing schemes: A survey. In: Coding and Cryptology - Third
International Workshop, IWCC 2011, Qingdao, China, May 30-June 3, 2011. Pro-
ceedings. (2011) 11–46

14. Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified ac-
count of classical secret-sharing goals. In: Proceedings of the 2007 ACM Conference
on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, 2007. (2007) 172–184

15. Gabizon, A., Raz, R., Shaltiel, R.: Deterministic extractors for bit-fixing sources
by obtaining an independent seed. SIAM J. Comput. 36(4) (2006) 1072–1094

16. Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM J. Comput. 36(5) (2007) 1231–1247

17. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2) (1978) 120–126

18. Naccache, D., Stern, J.: A new public-key cryptosystem. In: Advances in Cryptol-
ogy - EUROCRYPT ’97, International Conference on the Theory and Application
of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding.
(1997) 27–36

19. Chevallier-Mames, B., Naccache, D., Stern, J.: Linear bandwidth Naccache-Stern
encryption. In: Security and Cryptography for Networks, 6th International Confer-
ence, SCN 2008, Amalfi, Italy, September 10-12, 2008. Proceedings. (2008) 327–339

20. Bogdanov, A., Viola, E.: Pseudorandom bits for polynomials. SIAM J. Comput.
39(6) (2010) 2464–2486

21. Viola, E.: The sum of D small-bias generators fools polynomials of degree D.
Computational Complexity 18(2) (2009) 209–217

22. Wang, L., Hu, Z.: New sequences of period pn and pn+1 via projective linear
groups. In: Information Security and Cryptology - 8th International Conference,
Inscrypt 2012, Beijing, China, November 28-30, 2012, Revised Selected Papers.
(2012) 311–330

