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Abstract—The society today is better connected as a result of
advancement in technology. The study of these social interactions
and its resulting structure, is an integral component in the field
of network science. However, the study of these social networks
is limited to the availability of data. Privacy concerns restrict
the access to network data with sensitive information. Networks
that capture the relations such as trust, enmity, sexual contact,
are a few examples of sensitive networks. A study of these
sensitive networks is important in unraveling the behavioral
aspects of the concerned individuals. The current paper proposes
a multiparty computation algorithm that allows the construction
of the unlabeled isomorphic version of the underlying network.
The algorithm is information theoretic secure and works under
the malicious adversarial model with the threshold of one third
total corrupt parties.

Index Terms—Multiparty computation, Social networks, Infor-
mation theoretic security

I. INTRODUCTION

The concept of a social network is no more limited to
the field of sociology, where it was first introduced. Today,
the idea is widely applied to a myriad of domains, such as
biology, chemistry, marketing, economics and epidemiology.
The presence of common topological characteristics, across
different networks, is the reason for its wide applicability.
Social networks are modeled as graphs with social entities
represented as nodes and the edges of the graph capturing
the interrelationship between the entities. Some of the most
frequently studied networks include friendship networks (both
online as well as offline), human-contact networks, commu-
nication networks, citation networks, etc. Studying these net-
works has helped in making several observations and better the
understanding of phenomena such as information cascades and
communication patterns, spread of diseases [1], influence [2],
etc. Several online social networks, like Facebook, Twitter and
LiveJournal, have constantly been a playground for analyzing
the network structure and its implications. However, a social
network innately houses sensitive information of the concerned
individuals. The resulting privacy concerns have been a major
impediment to the study of such networks.

A study of sensitive interrelationships like trust, hatred,
sexual contact, etc., can have an unforeseen impact on our
understanding of the behavioral patterns observed across in-
dividuals. For example, the amount of hatred fostered in a
team can have correlations to the team’s overall productivity.
However, gathering data of the hate network would be a
challenge, as individuals would not be willing to reveal the
sensitive information about the team members they dislike.
A surveillance of the trust network, over time, in a defense

institute can better form military teams and select team lead-
ers. Most commonly, studies conducted on networks with
sensitive information, acquire data through surveys [3] and
then anonymize it. The fear of sensitive information being
leaked prevents most of the users from sharing their private
information [4], [5] or could even lead to reporting false
information. To address these drawbacks of surveys, there
is a necessity for constructing a protocol that can generate
the underlying network while guaranteeing the privacy of the
participating individuals.

We require a protocol that generates the underlying network
securely, by amalgamating the data that is available distribut-
edly. It must be done in a way that privacy and integrity
of the inputs is ensured while guaranteeing the correctness
of the generated output. This is precisely what constitutes a
multiparty computation (MPC). It involves a set of parties,
who follow a protocol (specific sequence of instructions) for
computing a function of their private data. The process must
ensure that nothing but the final result is revealed. The first
MPC protocol was proposed by Yao [6], which allowed two
parties to compare and determine who among the two is richer,
without revealing each other’s wealth. Multiparty computation
has evolved as a separate branch of cryptography, whose
tools and techniques have been used in addressing numerous
problems, such as, computing approximations on distributed
data, auctions, private matching and set intersection, secure
rank computation, privacy preserving data classification and
data mining.

The contribution of the current work is to provide a graph
construction protocol that is proven to be correct, private and
robust, in accordance to the requirements of a standard MPC
protocol. The proposed solution is secure in the information
theoretic setting with a threshold of n/3 corrupt parties. The
protocol allows the construction of the unlabeled isomorphic
version of the weighted directed graph on n individuals, who
are participating in the protocol. Each individual, henceforth
referred to as a party, reports her adjacency list (all her out-
going edges) as her private input. The algorithm guarantees
that the parties do not learn any additional information apart
from the data that can be gathered from just their input
and output. The proposed protocol can be easily modified to
construct the unweighted undirected graph as well.

II. RELATED WORK

General protocols have been proposed for securely evalu-
ating any computable function [7], [8], [9]. These theoretical
models cannot be put to practical use due to the large blow



up in the communication and computation overheads involved.
Thus, problem specific efficient protocols are constructed [10],
[11].

Securely computing algorithms on a network has been
studied in the recent past. Brickell and Shmatikov [12] look at
two party protocols for computing all pair shortest paths and
single source shortest paths securely, in the cryptographic and
the semi-honest adversarial model. In this protocol, each party
possesses a graph, such that both the parties are interested in
computing algorithms over the union of the two input graphs.
Hu, Chow and Lau [13] discuss on how one can detect people
belonging to the same community with minimum information
being leaked. Such a detection allows to suggest friends in
a social network. Zeng et al. [14] also propose a technique
for secure link prediction in online social networks. Aly et al.
[15] study the problem of computing shortest paths in a graph
securely. Aly and Vyve [16] address the problem of finding
minimum mean cycle and the minimum cost flow problems
in a multiparty setting. Blanton et al. [17] propose a data
oblivious method for computing graph algorithms, such as
BFS, shortest paths, minimum spanning tree and network flow
problems.

Securely generating the underlying graph has been previ-
ously studied by Frikken and Golle [18]. It is assumed that
the network information is held in a distributed manner, where
each individual possesses some partial information of the
network. The drawbacks of the protocol is that it uses special
parties called authorities, who help compile the collected data
into the required graph. Also, the use of threshold Elgamal
encryption scheme and re-encryption mix nets in the protocol,
amounts to increased communication and computation cost. It
is to be noted that their protocol is restricted to the crypto-
graphic security model. The protocol proposed in the current
paper avoids the use of dummy parties and is information
theoretically secure, thereby overcoming the above mentioned
drawbacks. Bhat et al. [19] propose an information theoretic
solution for compiling an isomorphic version of a distributedly
held graph in the semi-honest setting with a threshold of

√
n

corrupt parties. The protocol proposed in the current work can
withstand up to n/3 corrupt parties in the malicious adversarial
model.

III. PRELIMINARIES

A multiparty computation protocol is an algorithm, using
which a set of n parties P1, P2, . . . , Pn can compute any
function f over their private information securely. We will
consider the field Fp (where p is a prime number) with the
modular operations of addition (+) and multiplication (∗). A
set of parties are said to be corrupt if they collaborate to reveal
information about the set of honest parties1. In order to model
corruption, we assume the presence of a central adversary, who
controls all corrupt parties. A protocol is said to be secure in
the malicious adversarial model if it is correct, private and
robust. A detailed discussion on security of MPC protocols

1Any party that is not corrupt is said to be honest.

is available in [20], however we briefly describe the security
requirements below:
• Correctness: A protocol is said to be correct if the output

of the protocol matches the required function evaluation
on the private inputs of the parties.

• Privacy: A protocol is said to be private if the adversary
learns nothing more than the inputs and outputs of the
corrupt parties, during the run of the protocol i.e. all the
information gathered by the corrupt parties during the run
of the protocol can be efficiently computed using only the
inputs and outputs of the corrupt parties.

• Robust: In a robust protocol, a set of corrupt parties do not
gain any influence by deviating from the pre-described
protocol i.e. any influence that a set of corrupt parties
gain by deviating from the protocol, can also be achieved
without any deviation from the pre-described protocol.

Further, a protocol is said to be information theoretic secure
if it is secure in the presence of an adversary with unbounded
computation power.

We use a verifiable secret sharing scheme (VSS) for secret
sharing the private information of all the parties and then
securely computing on it. A discussion on VSS schemes like
Shamir secret sharing is available in [20]. In Shamir secret
sharing, a party P shares a secret s in the following two step
process:
• Party P selects a polynomial f(x) = s+ a1x+ a2x

2 +
. . . + atx

t, for some fixed t, where ai ∈ Fp for all 1 ≤
i ≤ t.

• Party P sends the value of the function f evaluated at i
i.e. f(i) to party Pi, for all 1 ≤ i ≤ n.

Using Shamir secret sharing scheme has various advantages,
a comprehensive account of which is available in [20]. The
VSS implementation using Shamir secret sharing is informa-
tion theoretic secure in the malicious adversarial model with
less than n/3 corrupt parties.

The notation [a] represents that the secret a is distributedly
held by all the parties using a VSS scheme. Further we
assume that the VSS scheme under consideration provides the
following operations:
• Addition

[c]← [a] + [b] i.e. c contains the sum (a+ b).
• Multiplication

[c]← [a] ∗ [b] i.e. c contains the product (a ∗ b).
• Comparison

[c] ← [a > b], where c contains 1 if (a > b) else c
contains 0.

• Equality
[c] ← [a = b], where c contains 1 if a equals b, else c
contains 0.

• Release
a ← [a] implies that the distributedly held value a is
released in public.

The work of [9] provides a secure implementation of ad-
dition and multiplication, using which [21] provided a secure
implementation for comparison and equality operations.



For an n×n matrix A, the notation [A] signifies that all the
entries of the matrix are distributedly held using a VSS scheme
with the above mentioned properties. The release operation
A← [A] signifies that each entry of the matrix A is released
in public.

An adjacency matrix A = (aij)n×n can also be represented
as a vector of adjacency lists i.e. A = (vi)n×1, where vi is
the ith adjacency vector of A or the ith row of matrix A.

IV. THE PROPOSED PROTOCOL

In this section, we provide a protocol for securely computing
a random isomorphic unlabeled version of a network distribut-
edlty held by a set of parties. The graph to be constructed
may be distributedly held by the n parties in various forms.
For example, each party may hold a row of the adjacency
matrix as her private information. Such scenarios may arise
in the case of trust networks, enmity networks and sexual
networks, where each individual has her outgoing links as her
private information. It may also be the case that each party
may hold information about a subgraph in the network. Such
scenarios may arise in the case of financial networks2 and
distributed social networks. The details of these various forms
of inputs are discussed in [22]. In this paper, we assume that
each party Pi possesses an adjacency vector vi as her private
input, such that the adjacency matrix A under consideration
equals (vi)n×1. This protocol can easily be extended for other
input forms of parties, using the functionalities available in
[22].

Further we breifly describe the proposed protocol
isomorphic graph construction(). The protocol starts by
constructing [A] i.e. a distributedly held matrix in steps 1-
3, which implies that all the entries of the matrix A are
distributedly held. In steps 4-14, we assign a unique random
number ri to each party Pi, for all 1 ≤ i ≤ n. The ri values are
distributedly held by the n parties such that no party learns any
of the ri values. The above step is implemented by assigning
a random number to each party, and then checking if any two
random numbers match. If yes, we repeat this procedure until
we find a unique sequence of random numbers. In steps 15-
19, we calculate a random permutation σ = (σ1, σ2, . . . , σn)
of the set {1, 2, . . . , n}. We do so by assigning σi as the
cardinality of the set {rj |ri > rj , 1 ≤ j ≤ n}. Next we
permute the adjacency matrix A to construct another matrix
A′′, such that (i, j)th entry of matrix A is set as the (σi, σj)

th

entry of A′′. We do so by constructing a matrix A′ from A,
which in turn helps in constructing the matrix A′′. In steps 21-
24, we construct the matrix A′ from A, such that (i, j)th entry
of matrix A is set as the (σi, j)

th entry of A′. In steps 25-28
we construct the adjacency matrix to be output A′′ from the
matrix A′ using a column shuffle operation i.e. (σi, j)

th entry
of matrix A′ is set as the (σi, σj)

th entry of A′′. Hence, A′ is
obtained by permuting the rows of A, while A′′ is obtained by
permuting the columns of A′. Here, both the row and column
permutations are with respect to σ.

2The financial network is distributedly held between a set of banks.

Protocol 1 isomorphic graph construction()

1: for i = 1 to n do
2: for j = 1 to n do
3: Party Pi shares aij
4: for i = 1 to n do
5: for j = 1 to n do
6: Party Pi shares rij
7: for i = 1 to n do
8: [ri]←

∑n
j=1[rji]

9: [flag]← 0
10: for i = 1 to n-1 do
11: for j = i+1 to n do
12: [flag]← [flag] + [ri = rj ]

13: if flag != 0 then
14: goto Step 4
15: for i = 1 to n do
16: [σi]← 1

17: for i = 1 to n do
18: for j = 1 to n do
19: [σi]← [σi] + [ri > rj ]

20: [A′]← [0]n×n, [A′′]← [0]n×n
21: for i = 1 to n do
22: for j = 1 to n do
23: for k = 1 to n do
24: [a′jk]← [a′jk] + [σi = j] ∗ [aik]

25: for i = 1 to n do
26: for j = 1 to n do
27: for k = 1 to n do
28: [a′′kj ]← [a′′kj ] + [σi = j] ∗ [a′ki]

29: A′′ ← [A′′]

The running time of the protocol depends on the number
of times the goto statement in step 14 of the protocol is
executed. To analyze the same, we define a random variable
X to represent the number of times the goto step is executed.
Let exp represent the exponential operator.

Lemma 1. E[X] ≤ exp (n2/p)

Proof. The random variable X is a geometric random variable

with the probability of success equal to
n−1∏
i=1

(1− i/p).

=⇒ E[X] =

(
n−1∏
i=1

(
1− i

p

))−1

=⇒ E[X] ≤
(

1− n

p

)−n
=⇒ E[X] ≤ exp (n2/p)

Hence, the expected number of times that the goto step is
executed can be made smaller than any constant number. This
is achievable by using a sufficiently large prime number p, for



a given n. The proposed protocol makes the above assumption
regarding the field size p.

Next we analyze the distribution of the permutation σ =
(σ1, σ2, . . . , σn) generated by reassigning labels to all the
vertices in the network. Let Sn represent the permutation set
consisting of all n! permutations of the set {1, 2, . . . , n}.

Lemma 2. σ ∈R Sn i.e. σ is a randomly generated permuta-
tion of the set {1, 2, . . . , n}

Proof. This follows directly from the fact that the sequence of
numbers (r1, r2, . . . , rn) are guaranteed to be unique random
numbers and by the definition of σi as the cardinality of the
set {rj |ri > rj , 1 ≤ j ≤ n}.

Theorem 1. The proposed isomorphic graph construction
protocol is information theoretic secure under the malicious
adversarial model with less than n/3 corrupt parties.

Proof. The correctness of this protocol follows from Lemma
2 and the fact that in steps 21-24 we obtain a row permuted
matrix A′ and in steps 25-29 we column permute A′ to obtain
the isomorphic network A′′ with respect to the permutation σ.
The privacy and robustness of the proposed protocol follows
directly from the privacy and robustness of the VSS scheme
under consideration.

The computation cost for constructing a random isomorphic
network in a non-secure manner for a given n node network
would be at least Θ(n2). This is because we would need to
access each entry of the adjacency matrix, at least once, for
constructing a random isomorphic version of it. As shown
below, our protocol for computing an isomorphic version uses
Θ(n3) operations, which has an extra factor of n compared to
the non-secure variant.

Theorem 2. The proposed isomorphic graph construction
protocol on an average uses Θ(n3) addition operations, Θ(n3)
multiplication operations and Θ(n3) comparison/equality
check operations.

Proof. This follows directly from the structure of the proposed
protocol and the fact that the goto step in the protocol is
executed a constant number of times on an average, for a
sufficiently large field size p.

V. CONCLUSION

In this paper, we propose a multiparty computation protocol
for securely constructing an unlabeled random isomorphic
version of a graph that is distributedly held by a set of n
parties. The proposed protocol is information theoretic secure
in the malicious adversarial model, tolerating less than n/3
corrupt parties. The proposed protocol can be used to study
the behavioral aspects of individuals while guaranteeing the
privacy of their sensitive data. Before releasing sensitive data
in public, the data is generally anonymized. The current
work performs naive anonymization, on a distributedly held
network, without the use of a trusted third party. One can fur-
ther implement multiparty computation protocols for network
specific anonymization techniques.
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