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Abstract. We give a simple and efficient construction of unique signa-
ture on groups equipped with bilinear map. In contrast to prior works,
our proof of security is based on computational Diffie-Hellman problem
in the random oracle model. Meanwhile, the resulting signature consists
of only one group element. Due to its simplicity, security and efficiency,
our scheme is suitable for those situations that require to overcome com-
munication bottlenecks. Moreover, the unique signature is a building
block for designing chosen-ciphertext secure cryptosystems and verifi-
able random functions, which have found many interesting applications
in cryptographic protocol design.
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1 Introduction

Since the invention of public key cryptography, various attempts have been made
to design a provably secure cryptosystem. A remarkable proof of security is a
polynomial time reduction from solving a standard mathematical problem (weak
assumption) to the problem of breaking a cryptosystem in a standard model.
For example, factoring big integers and computing discrete logarithms in prime
order groups are two standard mathematical problems for cryptographic pro-
tocol design. Unlike traditional signature schemes, unique signature, a.k.a. ver-
ifiable unpredictable function (VUF), is a function from the message space to
the signature space under the given public key. This particular property ensures
that each message would have only ”one” possible signature. From the security
perspective, unique signature is not only existentially unforgeable against the
chosen message attack, but also strongly unforgeable against the chosen mes-
sage attack. The latter property assures that the adversary cannot even produce
a valid signature for an earlier signed message.

Intuitively, unique signatures are very fascinating objects, as there is no rea-
son to verify a signature on the same message twice. For instance, if one has
verified a signature on one particular message, it is unnecessary to verify the
message again unless the signature is changed. Another situation includes the
signature scheme with a very efficient signer to generate many signatures for one



particular message. This may simply lead to overload a verifier to verify many
signatures on the same message. Above all, Unique signatures are a building
block for constructing an adaptive CCA-secure IBE encryption scheme from a
selective-identity CPA-secure IBE scheme [3].

Unique signature has significant implication for constructing verifiable ran-
dom functions (VRFs). VRF has found many interesting applications, such as
non-interactive zero-knowledge proofs, micropayment schemes, verifiable trans-
action escrow schemes, compact e-cash, adaptive oblivious transfer protocols,
and keyword search as discussed in [11].

1.1 Contribution

The primary objective of this study is to find a unique signature scheme with
a weaker assumption and a signature of only one group element. This is always
an appealing task for cryptographers. In contrast to earlier findings, we come
up with a new provable scheme under the computational Diffie-Hellman (CDH)
problem. In addition to using a weaker assumption, our unique signature consists
of only one group element, which results in a fixed and small signature on any
arbitrary input message length. Therefore, our unique signature enjoys a shorter
signature than Boneh et al. [6] and Lysyanskaya [14].

Boneh et al. introduced the BLS signature [5], which enjoys a short signa-
ture and efficiency in both signature generation and verification algorithms. They
proved existential unforgeability based on CDH assumption in the random oracle
model. However, it is easy to see that their scheme also achieves strongly exis-
tential unforgeability. BLS signature outputs a signature of one element, and its
signing key and verification key also consist of one element respectively. There-
fore, it is relatively more efficient than our construction. Nevertheless, it still has
some efficiency issues as the output length of the hash function grows. Informally,
in the construction of BLS signature, the purpose of the hash function is to map
a given message m into a group element. However, to ensure the security of the
hash function, we may need to employ an elliptic curve of larger group size1.
This affects the performance of BLS signature and leads to a larger signature.
In contrast to BLS signature, we hash a message to determine the signing key
of the signature. Therefore, the group size in our construction is independent of
the output length of the hash function. There is another difference between BLS
signature and our unique signature. Although the two signatures are all provable
in the random oracle model, they rely on different level of programmability of
random oracle. BLS signature needs a random oracle for embedding the chal-
lenge instance of some hard problem, while our unique signature needs a random
oracle for random outputs only.

Strongly existential unforgeability. Our construction is based on the result of
Lysyanskaya [14], where the signature on an n0-bit message consists of θ(n0)

1 NIST [1] recommends SHA-256, SHA-384, and SHA-512 for minimum security of
digital signatures, but the recommended group size of an elliptic curve is 256 bits.



group elements. Lysyanskaya proves the existential unforgeability based on the
l-CDH problem. She embeds the challenge instance in ` independent indexes of
the public key. Therefore, she can employ an error correcting code to bound
the success probability of the reduction. In contrast with Lysyanskaya, we aim
to give a signature of a single group element on an n0-bit message, and prove
the existential unforgeability based on the CDH problem. The challenging part
is to give a non-negligible lower bound for the success probability of our re-
duction. Therefore, we cannot use the proof technique of Lysyanskaya because
the error correcting code that we need does not exist. We use a different tech-
nique to bound the success probability. Our strategy is to inject variability into
the signature. Therefore, we design a dynamic pattern for the signature, where
the combination of secret exponents is determined by the hash output of the
signed message. Meanwhile, the signature that contains the solution of the CDH
problem has a specific pattern. Hence, we can reduce the failure probability and
obtain a non-negligible lower bound for the success probability of our reduction.

Malicious signer resistance. Lysyanskaya [14] achieves malicious signer resis-
tance. She implicitly represents each codeword symbol by an element of the
signature. If two messages are different, then their signatures are also different.
In contrast with Lysyanskaya, we compress our signature into one group ele-
ment. It is possible that two distinct messages result in the same signature. To
prove that our signature achieves malicious signer resistance, we first work on
giving an upper bound for the number of hash outputs which result in the same
signature. We propose the notion of the equivalent set for a signature and show
that the size of an equivalent set is in a negligible proportion. Then, we can
prove malicious signer resistance in the random oracle model. The next task is
to relax the requirement of the random oracle due to the fact that a malicious
signer may be able to choose the hash function. The difficulty is that most of
the cryptographic protocols rely on a trusted source of randomness. An honest
signer will choose his secret key randomly, but in contrast a malicious signer
would not necessarily do that. We propose the H-F-H structure to resist a ma-
licious signer, where H stands for a hash function and F stands for a one-way
permutation. The H-F-H structure has the following properties:

– To evaluate an output of the H-F-H structure, a malicious signer has to
decide his public key first. Thus, he cannot choose his secret key to force
two hash outputs to be in the same equivalent set. This makes the malicious
signer to guess a message that results in the same signature.

– The H-F-H structure is one-way. Therefore, a malicious signer cannot com-
pute a message from an equivalent set. More precisely, the probability of
finding an input of the F-layer for a given output is negligible. Even if the
malicious signer can find an input of the F-layer, the input has to pass the
verification of the H-layer.

– The design of double hash layers makes a malicious signer hard to find a
candidate for the hash function. The two H-layers employ the same hash
function. In addition, the output of the first H-layer will determine the input



of the second H-layer. Even if the malicious signer can find a candidate for
first H-layer, the candidate has to pass the verification of the second H-layer
or vise-versa.

The rest of the paper is organized as follows: In the next section, we review
the related works. Some definitions are provided in Sect. 3. The unique signature
scheme, its efficiency, and its applications are presented in Sect. 4. The security
proofs are provided in Sect. 5. Finally, the conclusion is given in Sect. 6.

2 Related Work

Unique signature has been known to exist in the random oracle model. Until
the result in [15], there was no construction for such schemes in the standard
model. In addition to the seminal work of Micali et al. [15], which is based on the
strong RSA assumption, there are few unique signatures in the standard model.
Lysyanskaya in [14] proposed such a scheme based on the many-DH assump-
tion. This differs from that of Micali et al., in both the underlying assumptions
and signature size. In contrast, Lysyanskaya provided a signature of n elements.
Dodis proposed a unique signature scheme based on a much stronger assump-
tion, sum-free s-decisional Diffie-Hellman assumption (SF-l-DDH). The key size
is half of Lysyanskaya [14]’s. Dodis et al. [8] introduced another unique signature
scheme based on l-Diffie-Hellman inversion assumption (l-DHI). The signature
consists of only one element. Kuchta and Manulis [13] proposed a generic con-
struction for unique aggregate signatures, which can be converted to distributed
verifiable random functions. Jager [12] proposed a nearly identical unique signa-
ture scheme to that proposed by Lysyanskaya, but a new construction of VRF
without having to resort to the Goldreich-Levin transformation [9]. The VRF
presented in [12] is a relatively simple and efficient with large input space and full
adaptive security using q-decisional Diffie-Hellman assumption in the standard
model. Abdalla et al. [2] provided a methodology to construct a VRF by showing
some connections to identity-based encryption. Moreover, they considered a few
constructions without pairings in a more limited setting in which the number
of queries was upper-bounded. They also showed that the Boneh-Franklin ID-
KEM [4] can lead to a very efficient VRF in the random-oracle model. Boneh
et al. [5] proposed the BLS signature, which produces a signature of only one
group element. The signing key and verification key are also short. Their secu-
rity proof is based on the computational Diffie-Hellman (CDH) problem in the
random oracle model. Boneh et al. [6] constructed a strongly unforgeable signa-
ture based on the computational Diffie-Hellman (CDH) problem that produces
signature of 2 group elements plus a short string. Unique signature schemes are
clearly strongly unforgeable, but not all strongly unforgeable signature schemes
are necessarily unique signatures. For instance, in the aforementioned work [6],
as long as there is randomness in the signing algorithm, it is still possible for the
adversary to produce a new valid signature on the previously signed message by
choosing different randomness.



3 Definition

We first recall some standard notations and definitions that will be used through-
out the paper. Let k be a security parameter. We model the participants in the
cryptographic model by probabilistic polynomial-time Turing machines (PPTMs),
whose running time is at most polynomial in k. In the rest of the paper, com-
plexity classes are with respect to k, unless there is an explicit specification.

We say that a function µ : N→ R+ is negligible if for every positive polyno-
mial P (·) and all sufficiently large k, it holds that 0 < µ(k) < 1

P (k) . For instance,

µ(k) = 2−k is a negligible function.
The number of elements in a set X is denoted as |X |, and the bit length of

an element x ∈ X is denoted as |x|. Choosing an element x from set X randomly
and uniformly is denoted as x ∈R X . The value of x mod n is denoted as [x]n.

A binary string of length n consists of n symbols, where each symbol has two
possible values. The set of all binary strings of length n is denoted as {0, 1}n,
and the set of all binary strings of arbitrary length is denoted as {0, 1}∗ =⋃∞
n=0{0, 1}n. The i-th symbol of a string x ∈ {0, 1}n is denoted as x(i − 1),

where the index i− 1 is between 0 and n− 1. The concatenation of two strings
x ∈ {0, 1}n and y ∈ {0, 1}n is denoted as x‖y.

3.1 Unique Signature

The notation of a unique signature was introduced by Goldwasser and Ostro-
vsky [10]2. A unique signature must be a strongly unforgeable signature, but a
strongly unforgeable signature [6] is not necessarily a unique signature. Unique
signature is also known as verifiable unpredictable function. A verifiable un-
predictable function may not be a verifiable random function, but a verifiable
random function [15] must be a verifiable unpredictable function. A unique sig-
nature scheme consists of four polynomial-time algorithms Setup, KeyGen, Sign,
and Verify, which are defined as follows:

– Setup(1k) → π: It is a probabilistic algorithm run by the system manager.
Algorithm Setup takes security parameter k as the input, and outputs public
parameter π.

– KeyGen(π)→ (sk, pk): It is a probabilistic algorithm run by a signer. Algo-
rithm KeyGen takes public parameter π as the input, and outputs secret key
sk and public key pk.

– Sign(π, sk, pk,m) → σ: It is a deterministic algorithm run by a signer. Al-
gorithm Sign takes public parameter π, secret key sk, public key pk, and
message m as inputs, and outputs signature σ.

– Verify(π, pk,m, σ) → {Yes,No}: It is a deterministic algorithm run by a
verifier. Algorithm Verify takes public parameter π, public key pk, message
m, and signature σ as inputs, and outputs the validity of (m,σ) under pk.

These algorithms must satisfy the following requirements:

2 Goldwasser and Ostrovsky called it invariant signature.



– Consistency: For every public parameter π produced by algorithm Setup,
every key pair (sk, pk) produced by algorithm KeyGen, and every message
m, we have that Verify(π, pk,m,Sign(π, sk, pk,m)) = Yes.

– Uniqueness: For every public parameter π produced by algorithm Setup,
every key pair (sk, pk) produced by algorithm KeyGen, every message m,
and every pair of signatures σ1 and σ2, if we have Verify(π, pk,m, σ1) =
Verify(π, pk,m, σ2) = Yes, then it must imply σ1 = σ2.

Strongly Existential Unforgeability. Security for a unique signature scheme
is defined as the security against strongly existential forgery under an adaptive
chosen message attack. Strongly existential unforgeability is a stronger security
property, comparing with existentially unforgeable signature schemes. In both
cases, an adversary who is given a signature for some message of his choice might
not be able to produce a valid signature for a new message. Nevertheless, the
strongly existential unforgeability property ensures that the adversary cannot
even produce a valid signature for a previously signed message. This notion
is defined by the unforgeability game GameUF between a challenger C and an
adversary A:

– Setup. Challenger C runs algorithm Setup(1k) to generate public parameter
π. Then, C runs algorithm KeyGen(π) to generate secret-public key pair
(sk, pk). C holds sk and gives (π, pk) to adversary A.

– Query. AdversaryA queries q messages (m1,m2, . . . ,mq) of his choice. Chal-
lenger C returns q signatures (σ1, σ2, . . . , σq) to answer the queries. These
queries are issued adaptively, namely, A can choose mi after seeing the sig-
natures (σ1, . . . , σi−1).

– Forgery. Adversary A outputs a message-signature pair (m∗, σ∗), where m∗

has not been queried in the query phase.

AdversaryA wins the game ifm∗ /∈ {m1,m2, . . . ,mq} and Verify(π, pk,m∗, σ∗) =

Yes. The advantage AdvUFA is defined as the probability that A wins the game.

Definition 1. A signature scheme achieves (t, q, ε) strongly existential unforge-
ability against adaptive chosen message attack if no adversary, who runs in time
t and queries at most q messages, can win the unforgeability game with advantage
over ε.

Malicious Signer Resistance. Besides strongly existential unforgeability, we
study another important security property which is called malicious signer re-
sistance. A malicious signer will try to find a specific setting of his secret key
so that he can sign two different messages with the same signature. The signer
obtains some benefit from this collision. He can sign a message first and then
claim that the signature is for another message instead. The malicious signer re-
sistance property ensures that an adversary cannot sign two distinct messages to
the same signature even if the secret key is on his choice. This notion is defined
by the malicious signer game GameMS between a challenger C and an adversary
A:



– Setup. Challenger C runs algorithm Setup(1k) to generate public parameter
π. Then, C gives π to adversary A.

– Answer. Adversary A outputs a public key pk, two messages (m1,m2), and
a signature σ, where m1 and m2 are distinct.

Adversary A wins the game if m1 6= m2 and Verify(π, pk,m1, σ) = Yes =
Verify(π, pk,m2, σ). The advantage AdvMS

A is defined as the probability that A
wins the game.

Definition 2. A signature scheme achieves (t, ε) malicious signer resistance if
no adversary, who runs in time t, can win the malicious signer game with ad-
vantage over ε.

3.2 Cryptographic Primitive

One-Way Permutation. Let X be a space of exponent size. A owe-way permu-
tation F : X → X is a bijective one-way function. Specifically, F should satisfy
the following properties:

– Computability. For all input x ∈ X , there is a (deterministic) polynomial-
time algorithm A(·) who can output F (x). That is, we have A(x) = F (x)
for every input x.

– One-Wayness. For a random message x ∈R X , there is no probabilistic
polynomial-time adversary A who can output an inverse of F (x) with non-
negligible probability. That is, for every probabilistic polynomial-time ad-
versary A, every positive polynomial P (·), and all sufficiently large k, we
have

Pr
x∈RX

[
x′ ∈ F−1(F (x)) : A(F (x)) = x′

]
<

1

P (k)
.

Definition 3. We say that a one-way permutation F is (t, ε) one-way if no
adversary can break the one-wayness of F in time t with probability over ε.

Cryptographic Hash Function. Let M be a message space of exponent size, and
D be a digest space of exponent size. A cryptographic hash function H :M→D
is a one-way function. Specifically, H should satisfy the following properties:

– Computability. For all messagesm ∈M, there is a (deterministic) polynomial-
time algorithm A(·) who can output H(m). That is, we have A(m) = H(m)
for every input m.

– Pre-image Resistance. For a random message m ∈R M, there is no prob-
abilistic polynomial-time adversary A who can output an inverse of H(m)
with non-negligible probability. That is, for every probabilistic polynomial-
time adversary A, every positive polynomial P (·), and all sufficiently large
k, we have

Pr
m∈RM

[
m′ ∈ H−1(H(m)) : A(H(m)) = m′

]
<

1

P (k)
.



– Second Pre-image Resistance. Given a random message m ∈R M, there
is no probabilistic polynomial-time adversary A who can output another
inverse m′ ∈ M of H(m) with non-negligible probability. That is, for every
probabilistic polynomial-time adversary A, every positive polynomial P (·),
and all sufficiently large k, we have

Pr
m∈RM

[
m′ ∈ H−1(H(m)) ∧m 6= m′ : A(H,m) = m′

]
<

1

P (k)
.

– Collision Resistance. There is no probabilistic polynomial-time adversary A
who can output two distinct messages m ∈ M and m′ ∈ M such that
H(m) = H(m′) with non-negligible probability. That is, for every proba-
bilistic polynomial-time adversary A, every positive polynomial P (·), and
all sufficiently large k, we have

Pr [H(m) = H(m′) ∧m 6= m′ : A(H) = (m,m′)] <
1

P (k)
.

Definition 4. We say that a cryptographic hash function H is (t, ε) pre-image
resistant if no adversary can break the pre-image resistance of H in time t with
probability over ε.

Definition 5. We say that a cryptographic hash function H is (t, ε) second pre-
image resistant if no adversary can break the second pre-image resistance of H
in time t with probability over ε.

Definition 6. We say that a cryptographic hash function H is (t, ε) collision
resistant if no adversary can break the collision resistance of H in time t with
probability over ε.

Bilinear Map. Let G and GT be two multiplicative cyclic groups of prime order
q. Let g be a generator of G. A map ê : G × G → GT is called an admissible
bilinear map if it satisfies the following properties:

– Bilinearity: for all u, v ∈ G and x, y ∈ Zq, we have ê(ux, vy) = ê(u, v)xy.
– Non-degeneracy: we have ê(g, g) 6= 1, where 1 is the identity element of GT.
– Computability: there is a polynomial-time algorithm to compute ê(u, v)
∀ u, v ∈ G

3.3 Hardness Assumption

The security of our unique signature scheme will be reduced to hardness of the
computational Diffie-Hellman (CDH) problem.

Definition 7. Let G be a multiplicative cyclic group of prime order q. Let g be
a generator of G. The CDH problem is to compute gab when given g, ga, gb ∈ G,
where a, b ∈R Zq.

Definition 8. We say that the (t, ε)-CDH assumption holds in the group G if
no adversary can solve the CDH problem in G in time t with probability over ε.



4 Unique Signature Scheme

In this section, we give a simple construction for unique signatures. Our con-
struction is based on a result due to Lysyanskaya [14], where the signature on
an n0-bit message consists of θ(n0) group elements. We show that our solution
gives rise to a signature of a single group element on an n0-bit message.

4.1 Construction

We use the cryptographic hash function, one-way permutation, and bilinear map
to build our unique signature scheme. The construction is described as follows:

– Setup(1k) → π. Let k be the security parameter, and n0 be the message
length, where n0 = poly(k). Let n be 2t + 1, and [x] denote [x]n = x mod n,
where t ∈ N and n = θ(n0). Let q be a k-bit prime, G and GT be two
multiplicative cyclic groups of prime order q, and g be a generator of G. Let
ê : G×G→ GT be an admissible bilinear map, H : {0, 1}∗ → {0, 1}n+t−1 be
a cryptographic hash function, and F : {0, 1}n+t−1+n0 → {0, 1}n+t−1+n0 be
a one-way permutation. The system manager publishes the public parameter

π = (k, n0, n, q,G,GT, g, ê, H, F ) .

– KeyGen(π) → (sk, pk). A signer randomly chooses 2n exponents ai,j ∈R Z∗q
and computes Ai,j = gai,j , where i ∈ Zn and j ∈ Z2. These exponents have
to satisfy the two requirements:
1. For every i, i′ ∈ Zn and every j, j′ ∈ Z2, we have ai,j = ai′,j′ iff. (i, j) =

(i′, j′). It can be verified without knowing the exponents by checking
whether every Ai,j is unique.

2. For every h ∈ {1, 2, . . . , n−12 }, every i ∈ Zn, and every j, j′ ∈ Z2, we have
ai,j +a[i+2h],j′ 6= 0. It can be verified without knowing the exponents by
checking whether every Ai,j ×A[i+2h],j′ 6= 1.

The signer stores his secret key

sk = {(a0,0, a0,1), (a1,0, a1,1), . . . , (an−1,0, an−1,1)}

and publishes his public key

pk = {(A0,0, A0,1), (A1,0, A1,1), . . . , (An−1,0, An−1,1)} .

– Sign(π, sk, pk,m)→ σ. To sign a message m ∈ {0, 1}n0 of n0 bits3, a signer
generates the signature σ as follows:
1. Use his public key pk and the cryptographic hash function H : {0, 1}∗ →
{0, 1}n+t−1 to compute x = H(pk‖m).

2. Use the one-way permutation F : {0, 1}n+t−1+n0 → {0, 1}n+t−1+n0 to
compute y = F (x‖m).

3 A cryptographic hash function H ′ : {0, 1}∗ → {0, 1}n0 can be used to expand the
message space.



3. Use the cryptographic hash function H : {0, 1}∗ → {0, 1}n+t−1 to com-
pute z = H(y).

4. Let h = LSBt−1(z)+1, where LSBt−1(z) is the least t−1 significant bits of
z. Use his secret key sk = {(a0,0, a0,1), (a1,0, a1,1), . . . , (an−1,0, an−1,1)}
to compute signature

σ =

n−1∏
i=0

gai,z(i)a[i+h],z([i+h]) .

– Verify(π, pk,m, σ) → {Yes,No}. Suppose that the signer’s public key pk is
well-formed. A verifier verifies a message-signature pair (m,σ) of the signer
as follows:

1. Use the cryptographic hash function H : {0, 1}∗ → {0, 1}n+t−1 and the
signer’s public key pk to compute x = H(pk‖m).

2. Use the one-way permutation F : {0, 1}n+t−1+n0 → {0, 1}n+t−1+n0 to
compute y = F (x‖m).

3. Use the cryptographic hash function H : {0, 1}∗ → {0, 1}n+t−1 to com-
pute z = H(y).

4. Let h = LSBt−1(z) + 1, where LSBt−1(z) is the least t−1 significant bits
of z. Use the bilinear map ê : G × G → GT and the signer’s public key
pk = {(A0,0, A0,1), (A1,0, A1,1), . . . , (An−1,0, An−1,1)} to check whether

ê(σ, g) =

n−1∏
i=0

ê
(
Ai,z(i), A[i+h],z([i+h])

)
.

Consistency. If the signature σ is well-formed, then we have

ê(σ, g) = ê

(
n−1∏
i=0

gai,z(i)a[i+h],z([i+h]) , g

)

=

n−1∏
i=0

ê (gai,z(i) , ga[i+h],z([i+h]))

=

n−1∏
i=0

ê
(
Ai,z(i), A[i+h],z([i+h])

)
Uniqueness. If there are two signatures (σ1, σ2) for the same message m under
a secret-public key pair (sk, pk), then we have

ê(σ1, g) =

n−1∏
i=0

ê
(
Ai,z(i), A[i+h],z([i+h])

)
= ê(σ2, g)

because σ1 and σ2 share the same x = H(pk‖m), y = F (x‖m), z = H(y), and
h = LSBt−1(z) + 1. Thus, it must be σ1 = σ2 unless g is not a generator.



4.2 Efficiency

Let Hash be an execution of hash function H, Perm be an execution of one-way
permutation F , and Pair be an execution of bilinear map ê. Let AddZq be the
operation of addition in Zq, MulZq be the operation of multiplication in Zq, ExpG
be the operation of scalar exponentiation in G, and MulGT be the operation of
multiplication in GT. The computational complexity of algorithm Sign is 2Hash+
Perm+(n−1)AddZq+nMulZq+ExpG. The computational complexity of algorithm
Verify is 2Hash + Perm + (n+ 1)Pair + (n− 1)MulGT .

We now compare our construction with the related works in Table 1. The
schemes [7, 11] are verifiable random functions, the scheme [6] is a strongly un-
forgeable signature, and the others are verifiable unpredictable functions (unique
signatures). Our unique signature scheme is based on the standard CDH assump-
tion. Our key size is the same as [14], but our signature consists of only one group
element instead of n elements. This differs from that of Micali et al. [15], in the
size of signature as discussed in [8]. For the RSA assumption to have the same
security level as DDH-based assumptions for the same input size, the signature
size will grow in the order of a few hundred kilobytes. There are number of im-
portant differences between our construction and Jager [12] in both signature
size and underlying hard assumption. The BLS signature [5] enjoys shorter key
size besides signature size. It is also based on the standard CDH assumption.
As we mentioned earlier, its group size is dominated by the output length of the
employed hash function. Our construction and Boneh et al.’s [6] differ not only
in signature size and key size, but also in the type of signatures. Their construc-
tion is not a unique signature. The strongly existential unforgeability does not
necessarily implies the uniqueness.

4.3 Applications

Our scheme produces a signature of only one group element. When such a sig-
nature scheme is used with arbitrary input message length, a better bandwidth
is obtained, as a shorter signature needs to be transferred.

In addition to explicit applications of unique signatures for authenticity, in-
tegrity and non-repudiation of a message, there is a natural transformation from
unique signatures to VRFs by an early work of Goldreich and Levin [9]. VRFs
behave similarly to pseudorandom functions, namely, giving the adversary the
oracle access of the VRF function to evaluate for some input of his choice. Even-
tually, the adversary should not be able to distinguish the output of a VRF
function from a random source. Besides, the VRF has another additional prop-
erty that, given the output of the VRF function to the verifier, it is easy for the
prover to non-interactively convince the verifier that the given commitment is
correct with respect to prover’s public key. Due to these properties, VRFs found
some significant applications such as resettable zero-knowledge proofs, adaptive
oblivious transfer protocols, and verifiable transaction escrow schemes.

Unique signatures have also found an important application for building a
secure cryptosystem. Boneh et al. [3] proposed a conversion from a selective-



Table 1. Comparison with Related Work

Scheme Type Assumption Secret Key (bits) Public Key (bits) Output (bits)

[15] VUF RSA k (2k2 + 1)k + t k
[12] VUF l-CDH 2nk (2n + 2)` n`
[14] VUF l-CDH 2nk 2n` n`
[8] VUF l-DHI k ` `
[7] VRF SF-l-DDH lk l` l`
[11] VRF l-DDHE (n + 1)k + 2` (n + 3)` (n + 1)` + `T
[6] SUS CDH ` (n + 5)` 2` + k
[5] VUF CDH k ` `

Ours VUF CDH 2nk 2n` `
– k is the security parameter
– ` is the size of an element in G
– `T is the size of an element in GT
– l is the parameter of complexity assumption
– t is the size of random coin
– n is the equivalent size of a message
– SUS stands for strongly unforgeable signature
– VUF stands for verifiable unpredictable function
– VRF stands for verifiable random function

identity CPA-secure IBE cryptosystem to an adaptive CCA-secure IBE cryp-
tosystem. In this conversion, they manipulate the selective-identity CPA-secure
IBE encryption function to sign the ciphertext by a one-time strongly unforge-
able signature scheme. Therefore, the sender of a messagem, first evokes KeyGen(π)
to obtain verification key vk and secret key sk. The sender then encrypts the
message m using recipient pk and also computes Signsk(π, sk, vk, C). The fi-
nal ciphertext is 〈vk, C, σc〉. The recipient, after receiving 〈vk, C, σc〉, checks if
Verify(π, vk, C, σc) = Yes holds and then decrypts the ciphertext to obtain the
message m.

5 Security Proof

The unique signature scheme is provable to achieve strongly existential unforge-
ability and malicious signer resistance against any probabilistic polynomial-time
adversary.

5.1 Strongly Existential Unfogeability

We give a proof of strongly existential unforgeability in the random oracle model.
Theorem 1 states that if the CDH assumption holds, the unique signature scheme
achieves strongly existential unforgeability.

Theorem 1. Let k be the security parameter. Let OS be the signing oracle of the
unique signature scheme. Suppose that an adversary queries at most qs messages



to OS, and each query is handled in time ts. Let OH be the random oracle of hash
function H : {0, 1}∗ → {0, 1}n+t−1, where n = 2t + 1 ∈ poly(k) and n ≥ qs+3

2 .
Suppose that an adversary queries at most qh messages to OH , and each query
is handled in time th. If the (t, ε)-CDH assumption holds, the unique signature
scheme achieves (t− qhth − qsts, qs, 2e(n− 1)ε) strongly existential unforgeabil-
ity, where e is the Euler’s number.

Proof. Assume that adversary A breaks (t′, qs, ε
′) strongly existential unforge-

ability of the unique signature scheme. We construct an algorithm B to solve the
CDH problem as follows:

Setup. Let π = (k, n0, n, q,G,GT, g, ê, H, F ) be the public parameter, where
n = 2t + 1 ≥ qs+3

2 . Let (g, ga, gb) be an instance of the CDH problem in G.
To generate public key pk = {(A0,0, A0,1), (A1,0, A1,1), . . . , (An−1,0, An−1,1)}, B
randomly chooses h∗ ∈R {1, 2, . . . , n−12 }, i

∗ ∈R Zn, and bi∗ , b[i∗+h∗] ∈R Z2.

Then, B embeds (ga, gb) in pk by setting Ai∗,bi∗ = ga and A[i∗+h∗],b[i∗+h∗] = gb.

If Ai∗,bi∗ = A[i∗+h∗],b[i∗+h∗] or Ai∗,bi∗A[i∗+h∗],b[i∗+h∗] = 1, B sets Ai∗,bi∗ = ga+1

and C = gb. Otherwise, B sets C = 1. For the rest of Ai,j , B randomly chooses
ai,j ∈R Z∗q and computes Ai,j = gai,j such that the public key pk satisfies the

requirements in algorithm KeyGen. B invokes A as a subroutine AOS ,OH (π, pk).

Query. A can query at most qs messages to the signing oracle OS and at most
qh messages to the random oracle OH . B simulates the signing oracle OS and
the random oracle OH as follows:

– OH : B maintains a table TH = {(m,H(m))} to record the OH -queries, where
m ∈ {0, 1}∗ and H(m) ∈ {0, 1}n+t−1. B takes a message m ∈ {0, 1}∗ as the
input. If record (m,H(m)) ∈ TH , then B outputs H(m) for consistency.
Otherwise, B randomly chooses x ∈R {0, 1}n+t−1 and inserts (m,x) into
TH . Finally, B outputs H(m) = x.

– OS : B takes a message mi ∈ {0, 1}n0 as the input. Then, B computes x =
H(pk‖mi), y = F (x‖mi), and z = H(y). Let h = LSBt−1(z) + 1. If h = h∗,
z(i∗) = bi∗ , and z([i∗ + h∗]) = b[i∗+h∗], B has to abort because computing
the signature σi of mi is equivalent to solving the CDH problem. If h 6= h∗,
z(i∗) = bi∗ , and z([i∗ + h∗]) = b[i∗+h∗], B can compute σi as follows:

σi =
(
Ai∗,z(i∗)

)a[i∗−h],z([i∗−h])+a[i∗+h],z([i∗+h])
×
(
A[i∗+h∗],z([i∗+h∗])

)a[i∗+h∗−h],z([i∗+h∗−h])+a[i∗+h∗+h],z([i∗+h∗+h])
×

∏
i∈Zn\{i∗−h,i∗,i∗+h∗−h,i∗+h∗}

gai,z(i)a[i+h],z([i+h])

If z(i∗) 6= bi∗ and z([i∗+h∗]) 6= b[i∗+h∗], B can compute σi = Sign(π, sk, pk,mi)
because all the needed exponents of sk are chosen by B. For the other cases,
either z(i∗) = bi∗ or z([i∗+h∗]) = b[i∗+h∗], let i′ ∈ {i∗, [i∗+h∗]} be the index



such that z(i′) = bi′ . B can compute σi as follows:

σi =
(
Ai′,z(i′)

)a[i′−h],z([i′−h])+a[i′+h],z([i′+h])
×

∏
i∈Zn\{i′−h,i′}

gai,z(i)a[i+h],z([i+h])

Forgery. If A outputs a forgery (m∗, σ∗) such that m∗ /∈ {m1,m2, . . . ,mqs} and
Verify(π, pk,m∗, σ∗) = Yes, then B computes x = H(pk‖m∗), y = F (x‖m∗), and
z = H(y). Let h = LSBt−1(z) + 1. If h = h∗, z(i∗) = bi∗ , and z([i∗ + h∗]) =
b[i∗+h∗], B can solve the CDH problem by computing

gab = σ∗ × C−1 ×
(
Ai∗,z(i∗)

)−a[i∗−h∗],z([i∗−h])
×
(
A[i∗+h∗],z([i∗+h∗])

)−a[i∗+2h∗],z([i∗+2h∗])

×
∏

i∈Zn\{i∗−h∗,i∗,i∗+h∗}

g−ai,z(i)a[i+h],z([i+h])

The remaining work is to analyze the success probability and the execution
time of B. In the query phase, B has to abort if any queried message results in
(z, h) such that h = h∗, z(i∗) = bi∗ , and z([i∗ + h∗]) = b[i∗+h∗]. In the forgery
phase, B succeeds if the forgery results in (z, h) such that h = h∗, z(i∗) = bi∗ ,
and z([i∗ + h∗]) = b[i∗+h∗]. Therefore, the success probability of B is

Pr
[
BA
OS,OH

(g, ga, gb) = gab
]

=

(
1− 2

n− 1
· 1

4

)qs
× ε′ × 2

n− 1
· 1

4

≥
(

1− 1

qs + 1

)qs
× ε′ × 1

2(n− 1)

≥ e−1 × ε′

2(n− 1)

The execution time of B is t′ + qhth + qsts. By choosing appropriate parameters
n, qh, th, qs, ts ∈ poly(k), we complete the proof: if the (t, ε)-CDH assumption
holds, the unique signature signature scheme achieves (t′, qs, ε

′) strongly exis-
tential unforgeability, where t′ = t− qhth − qsts and ε′ = 2e(n− 1)ε. ut

5.2 Malicious Signer Resistance

We define the equivalent set of a signature to prove malicious signer resistance.
Given a secret key sk = {(a0,0, a0,1), ((a1,0, a1,1), . . . , ((an−1,0, an−1,1)} and a

signature σ of the unique signature scheme, the equivalent set E
(sk)
σ of the sig-

nature σ under the secret key sk is the collection of hash outputs which result
in the signature σ. That is,

E(sk)
σ =

{
z ∈ {0, 1}n+t−1

∣∣∣∣ h = LSBt−1(z) + 1∏n−1
i=0 g

ai,z(i)a[i+h],z([i+h]) = σ

}
.



We can partition the equivalent set E
(sk)
σ =

(n−1)/2⋃
h=1

E
(sk)
σ,h , where

E
(sk)
σ,h =

{
z ∈ {0, 1}n+t−1

∣∣∣∣ LSBt−1(z) + 1 = h∏n−1
i=0 g

ai,z(i)a[i+h],z([i+h]) = σ

}
.

A malicious signer intends to choose a secret key sk which maximizes the size

of an equivalent set E
(sk)
σ . Thus, the malicious signer has the largest chance to

find two messages which result in the same signature σ. We give an upper bound

for the size of an equivalent set E
(sk)
σ by analyzing the size of each partition E

(sk)
σ,h .

Lemma 1 states the upper bound for the size of an equivalent set.

Lemma 1. Suppose that secret key sk consists of 2n secret exponents. The size

of an equivalent set E
(sk)
σ is at most 2n/3+t−1.

Proof. Our analysis has three steps:

1. For every z, z′ ∈ E(sk)
σ,h , if z 6= z′, there are at least two indexes i′, i′′ ∈ Zn

such that z(i′) 6= z′(i′) and z(i′′) 6= z′(i′′).

We prove it by contradiction. Assume that there is only one index i′ ∈ Zn
such that z(i′) 6= z′(i′). Then, we have

n−1∏
i=0

gai,z(i)a[i+h],z([i+h]) =

n−1∏
i=0

gai,z′(i)a[i+h],z′([i+h])

⇒ ai′,z(i′)
(
a[i′−h],z([i′−h]) + a[i′+h],z([i′+h])

)
= ai′,z′(i′)

(
a[i′−h],z([i′−h]) + a[i′+h],z([i′+h])

)
⇒ a[i′−h],z([i′−h]) + a[i′+h],z([i′+h]) = 0 ∨ ai′,z(i′) = ai′,z′(i′) ,

which violates the requirements in algorithm KeyGen. Thus, the above as-
sumption is false.

2. The size of partition E
(sk)
σ,n/3 is at most 2n/3.

Suppose that n is divisible by three. Thus, partition E
(sk)
σ,n/3 has the maxi-

mized size. E
(sk)
σ,n/3 determines a pattern for the combinations of secret expo-

nents. The pattern is

n/3−1∑
i=0

 ai,z(i)a[i+n
3 ],z([i+n

3 ])

+ a[i+n
3 ],z([i+n

3 ])a[i+ 2n
3 ],z([i+ 2n

3 ])

+ a[i+ 2n
3 ],z([i+ 2n

3 ])ai,z(i)

 ,

which has n/3 circular chains of three secret exponents. By the result of
the first step, a circular chain of three secret exponents (three indexes) can
contribute two choices to construct a segment of a hash output. Therefore,

there are 2n/3 hash outputs in E
(sk)
σ,n/3.



3. No partition have size greater than 2n/3.

Suppose that the pattern of partition E
(sk)
σ,h has n/` circular chains of `

secret exponents. Note that ` must be odd because n is odd. The result of

the first step gives a trivial construction for
(
`+1
2

)n/`
hash outputs. We give

a systematic construction for more hash outputs when ` ≥ 7. The idea is
that we separate a circular chain into many linear chains, and make two
hash outputs have the same sum of each linear chain. Given a hash output

z ∈ E(sk)
σ,h , we consider another hash output z′ ∈ E(sk)

σ,h . Let I = z⊕z′ denote
the difference between z and z′. For each circular chain ai,z(i)a[i+h],z([i+h]) +
a[i+h],z([i+h])a[i+2h],z([i+2h]) + · · ·+ a[i+(`−1)h],z([i+(`−1)h])ai,z(i), if we choose

I([i+ 2h]) = I([i+ 5h]) = · · · = I([i+ (3b`/3c − 1)h]) = 0 ,

then the circular chain is divided into b`/3c linear chains, where b`/3c − 1
linear chains have two variable exponents and one fixed exponent, and one
linear chain has `−3b `3c+2 variable exponents and one fixed exponent. The
reason is that if a[i+2h],z([i+2h]) and a[i+5h],z([i+5h]) are fixed, then the changes
of a[i+3h],z([i+3h]) and a[i+4h],z([i+4h]) will not propagate to the other variable
exponents. Thus, we obtain two linear chains a[i+2h],z([i+2h])a[i+3h],z([i+3h])+
· · ·+ a[i+4h],z([i+4h])a[i+5h],z([i+5h]) and a[i+5h],z([i+5h])a[i+6h],z([i+6h]) + · · ·+
a[i+h],z([i+h])a[i+2h],z([i+2h]). As a result, a circular chain of ` secret exponents

can contribute 2b`/3c choices to construction a segment of a hash output if
` 6≡ 2 (mod 3), and 2b`/3c−1 × 3 choices if ` ≡ 2 (mod 3). Therefore, there

are 2
n
` b

`
3 c hash outputs in E

(sk)
σ,h if ` 6≡ 2 (mod 3), and

(
2b`/3c−1 × 3

)n/`
hash

outputs if ` ≡ 2 (mod 3). For ` 6≡ 2 (mod 3), we have 2
n
` b

`
3 c ≤ 2n/3 clearly.

For ` ≡ 2 (mod 3), we have(
2b`/3c−1 × 3

)n/`
=
(

2
`−2
3 −1+log2 3

)n/`
<
(

2`/3
)n/`

= 2n/3 .

An equivalent set E
(sk)
σ has n−1

2 partitions, and each partition E
(sk)
σ,h has size

at most 2n/3. Thus, the size of an equivalent set E
(sk)
σ is at most n−1

2 × 2n/3 =

2n/3+t−1. ut

The unique signature scheme is provable to achieve malicious signer resis-
tance in the random oracle model. Lemma 2 states the result of malicious signer
resistance.

Lemma 2. Let k be the security parameter. Let OH be the random oracle of hash
function H : {0, 1}∗ → {0, 1}n+t−1, where n = 2t + 1 ∈ poly(k). If malicious
signer S runs in time tS and queries at most qh messages to OH , then the unique

signature scheme achieves
(
tS ,

qh(qh−1)
2

(
2−n−t+1 + 2−2n/3

)
+ 3qh × 2−n−t+1

)
malicious signer resistance.

The proof of Lemma 2 is similar to the proof of Theorem 2, where random
oracle OH returns a uniformly random answer for each fresh oracle query and is(
tS ,

qh(qh−1)
2 × 2−n−t+1

)
collision resistant.



We give a proof of malicious signer resistance under a more relaxed condition.
Theorem 2 states that if the hash function is collision resistant and the one-way
permutation is indeed one-way, then the unique signature achieves malicious
signer resistance.

Theorem 2. Let k be the security parameter. Let c be a positive real num-
ber, where 1/3 < c < 1. Let tS be the execution time of a malicious signer
S, where tS ∈ poly(k). Suppose that hash function H : {0, 1}∗ → {0, 1}n+t−1
is (tH , εH) collision resistant, where n = 2t + 1 ∈ poly(k). Suppose that one-
way permutation F : {0, 1}n+t−1+n0 → {0, 1}n+t−1+n0 is (tF , εF ) one-way. If

we choose εH ≤ 1 − e−
tS (tS−1)

2 ×2−cn−t+1

, the unique signature scheme achieves(
tS , εH + tS(tS−1)

2 × 2(1/3−c)n + 2εF + tS × 2−cn−t+1
)

malicious signer resistance.

Proof. Our analysis has three steps:

1. If we choose εH ≤ 1 − e−
tS (tS−1)

2 ×2−cn−t+1

, the output distribution of hash
function H : {0, 1}∗ → {0, 1}n+t−1 has min-entropy δ ≥ cn+ t− 1.

Suppose that the output distribution of hash function H has min-entropy δ.
Consider the birthday attack. The probability that S outputs tS messages

and finds a collision of H is about 1− e−
tS (tS−1)

2 ×2−δ . The hash function H
is (tH , εH) collision resistant. Thus, we have

1− e−
tS (tS−1)

2 ×2−δ ≤ εH
⇒ e−

tS (tS−1)

2 ×2−δ ≥ 1− εH

⇒ − tS(tS − 1)

2
× 2−δ ≥ ln(1− εH)

⇒ 2−δ ≤ 2

tS(tS − 1)
ln

1

(1− εH)

⇒ δ ≥ − lg

(
2

tS(tS − 1)
ln

1

(1− εH)

)

If we choose εH ≤ 1− e−
tS (tS−1)

2 ×2−cn−t+1

, we have δ ≥ cn+ t− 1.

2. If the malicious signer S chooses his secret-public key pair (sk, pk) and
evaluates the output of the H-F-H structure, he has probability at most

εH + tS(tS−1)
2 × 2(1/3−c)n to find two messages m,m′ ∈R {0, 1}n0 such that

m 6= m′ and Sign(π, sk, pk,m) = Sign(π, sk, pk,m′).

Suppose that S outputs tS messages m1,m2, . . . ,mtS ∈R {0, 1}n0 . Let xi =
H(pk‖mi), yi = F (xi‖mi), and zi = H(yi). If mi 6= mj , we have yi 6= yj .
If Sign(π, sk, pk,mi) = σ = Sign(π, sk, pk,mj), we have zi = zj or zi, zj ∈



E
(sk)
σ . Thus, the success probability of S is

Pr
[
yi 6= yj ∧ zi = zj

∨
zi 6= zj ∧ zi, zj ∈ E(sk)

σ

]
≤ Pr [yi 6= yj ∧ zi = zj ] + Pr

[
zi 6= zj ∧ zi, zj ∈ E(sk)

σ

]
≤ εH +

tS(tS − 1)

2
× 2n/3+t−1

2cn+t−1

= εH +
tS(tS − 1)

2
× 2(1/3−c)n

3. If the malicious signer S tries to invert the H-F-H structure, he has proba-
bility at most 2εF +tS×2−cn−t+1 to find a secret-public key pair (sk, pk) and
two messagesm,m′ ∈ {0, 1}n0 such that Sign(π, sk, pk,m) = Sign(π, sk, pk,m′).
The H-F-H structure has three layers. The first H-layer computes xi =
H(pk‖mi), the F-layer computes yi = F (xi‖mi), and the last H-layer com-
putes zi = H(yi). The malicious signer S tries to invert the H-F-H structure

from an equivalent set E
(sk)
σ in time tS . Note that the secret-public key

pair (sk, pk) is determined once the equivalent set E
(sk)
σ is chosen. The first

method is to determine (sk, pk) by zi, invert the last two layers, and pass the
verification of the first H-layer. The second method is to determine (sk, pk)
by yi, invert the F-layer, and pass the verification of the first H-layer. The
third method is to determine (sk, pk) by xi‖mi and pass the verification of
the first H-layer.
We give an upper bound for the probability that S succeeds by the first
method and the second method. The success probability is

Pr

 S(π, pk, zi) = yi ∈ H−1(zi)
S(π, pk, yi) = xi‖mi ∈ F−1(yi)

H(pk‖mi) = xi

+ Pr

[
S(π, pk, yi) = xi‖mi ∈ F−1(yi)

H(pk‖mi) = xi

]
≤ Pr

[
S(π, pk, yi) = xi‖mi ∈ F−1(yi)

]
+ Pr

[
S(π, pk, yi) = xi‖mi ∈ F−1(yi)

]
= 2 Pr

[
S(π, pk, yi) = xi‖mi ∈ F−1(yi)

]
The one-way permutation F is (tF , εF ) one-way, where the probability is on
the random choice of an input. It implies that there are at most εF -portion
of inputs whose outputs are invertible in time tF . The one-way permutation
F is bijective. Therefore, there are at most εF -portion of outputs that are
invertible in time tF . Thus, we have

Pr
[
S(π, pk, yi) = xi‖mi ∈ F−1(yi)

]
≤ εF .

By the result of the first step, we give an upper bound for the probability
that S succeeds by the third method. The success probability is

Pr

H(pk‖mi) = xi :

S(π) = xi‖mi

F (xi‖mi) = yi
H(yi) = zi
zi  (sk, pk)

 ≤ tS × 2−cn−t+1 .



Putting the above analyses together, we prove that the unique signature

scheme achieves (tS , εH + tS(tS−1)
2 × 2(1/3−c)n + 2εF + tS × 2−cn−t+1) malicious

signer resistance. ut

6 Conclusion

We propose a unique signature scheme based on the computational Diffie-Hellman
problem on groups equipped with bilinear map. The key feature of this study is
its efficiency and signature size. Our unique signature scheme produces a signa-
ture of only one group element. The security of the proposed scheme is based on
the computational Diffie-Hellman assumption in the random oracle model.

The strong unforgeability of unique signature ensures that the adversary
cannot even produce a valid signature for a previously signed message. This is
due to the fact that the unique signature scheme is a function from the message
space to the signature space. As a result, every message has only one unique
signature under given public key.
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