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Abstract. Iterated Even-Mansour scheme (IEM) is a generalization of
the basic 1-round proposal (ASIACRYPT ’91). The scheme can use one
key, two keys, or completely independent keys.
Most of the published security proofs for IEM against relate-key and
chosen-key attacks focus on the case where all the round-keys are derived
from a single master key. Whereas results beyond this barrier are relevant
to the cryptographic problem whether a secure blockcipher with key-size
twice the block-size can be built by mixing two relatively independent
keys into IEM and iterating sufficiently many rounds, and this strategy
actually has been used in designing blockciphers for a long-time.
This work makes the first step towards breaking this barrier and considers
IEM with Interleaved Double independent round-keys:

IDEMr((k1, k2),m) = ki ⊕ (Pr(. . . k1 ⊕ P2(k2 ⊕ P1(k1 ⊕m)) . . .)),

where i = 2 when r is odd, and i = 1 when r is even. As results, this
work proves that 15 rounds can achieve (full) indifferentiability from an
ideal cipher with O(q8/2n) security bound. This work also proves that 7
rounds is sufficient and necessary to achieve sequential-indifferentiability
(a notion introduced at TCC 2012) with O(q6/2n) security bound, so
that IDEM7 is already correlation intractable and secure against any
attack that exploits evasive relations between its input-output pairs.
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3.4 Bounding the Complexity of S̃ẼE,P in Σ2 . . . . . . . . . . . . . . . . . . . . 15
3.5 Transition from Σ1 to Σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Non-Abortion Argument for S̃ in Σ2 . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Final Transition from Σ2 to Σ3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Sequential Distinguisher for IDEM6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 Seq-Indifferentiability for 7-round IDEM . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Simulator for IDEM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Intermediate System Σ′

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Complexity of S and T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Indistinguishability of Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A Independent Keys and Its Consequence: Generalizing to Cases With

More General Key Schedules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B Possibility of Further Reducing Rounds (For the Indifferentiability

Proof) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.1 Reduce the Number of Rounds in Chain Detection Zone. . . . . . . . 45
B.2 Remove the Buffer Rounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C Possibility of Further Reducing the Complexity of S . . . . . . . . . . . . . . . . 49
C.1 The First Failed Attempt: Leading to Another Tradeoff . . . . . . . . 49
C.2 The Second Failed Attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



1 Introduction

Blockciphers are arguably the most important primitives in cryptography. A
blockcipher BC[κ, n] : {0, 1}κ × {0, 1}n → {0, 1}n maps a κ-bit key K and an
n-bit input x to an n-bit output y. For each key K, the map BC[κ, n](K, ·) is a
permutation, and is efficiently invertible.

Most of the existing blockcipher designs can be roughly split into two fam-
ilies, namely Feistel ciphers and substitution-permutation networks. The latter
are known as the structure of AES, and can be generalized as key-alternating ci-
phers [DR02]/iterated Even-Mansour ciphers (IEM for short). An r-round IEM
cipher IEMr consists of r fixed n-bit permutations Pi separated by key addition

IEMr(K,m) = kr ⊕ Pr(. . . k2 ⊕ P2(k1 ⊕ P1(k0 ⊕m)) . . .).

The single round Even-Mansour (the case r = 1) was developed in 1991 [EM93]
in an attempt to turn a single permutation into a family of permutations (blockci-
pher). IEM1 has been proved pseudorandom when the underlying permutation is
random and public while the keys are secret. Since then, a soar of studies on IEM
has been witnessed (especially in the recent half decade), for instance, on mini-
mization [DKS13,CLL+14], on pseudorandomness [BKL+12,Ste12,LPS12,CS14],
on related-key (RK) security [FP15,CS15], and on attacks (notable examples in-
clude [DKS13,DDKS15,DDKS14]). The pseudorandomness results showed that
IEM is provably secure in traditional single secret key settings.

Indifferentiability of IEM. The studies on indifferentiability and sequential-
indifferentiability (seq-indifferentiability) of IEM are mainly motivated by fur-
ther validating the SPN-based blockcipher design methodology by proving IEM
secure against known-key and chosen-key (CK) attacks, in which the adversary
knows and chooses keys and tries to exhibit non-randomness. Roughly speak-
ing, indifferentiability of IEM means that IEM can be as secure as an ideal
cipher [MRH04], whereas seq-indifferentiability of IEM implies that IEM is cor-
relation intractable [CGH04], and there is no relation between the inputs and out-
puts of IEM that can be exploited by an attack (even a chosen-key one) [MPS12].
Here the ideal cipher IC[κ, n] : {0, 1}κ × {0, 1}n → {0, 1}n is taken randomly
from the set of (2n!)2

κ

possible choices of BC[κ, n]. In this work, IC[2n, n] will
be referred by E.

As to (seq-)indifferentiability, we have been aware of four works: [ABD+13],
[LS13], [CS15], and [Ste15]. [ABD+13] showed that IEM5 is indifferentiable from
IC[κ, n], if the round-key is derived from a preimage-aware key derivation func-
tion (KDF). On the other hand, [LS13] and [CS15] concentrated on single-key
EM (SEM) in which the user-provided n-bit master key is directly used at
each round: [LS13] proved that SEM12 (12-round SEM; similarly for SEM4 and
SEM9) is indifferentiable, while [CS15] proved that SEM4 is seq-indifferentiable.
In [Ste15], Steinberger proved the indifferentiability of SEM9. Results on SEM
are closer to concrete designs, since they can be easily generalized to the case
where each round-key is derived by an efficiently invertible permutation.
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Problem: Even-Mansour with Two Keys. Existing works on provable secu-
rity of IEM in RK and CK settings almost all focus on the SEM context: [LS13]
(ASIACRYPT 2013), [FP15] (FSE 2015), [CS15] (EUROCRYPT 2015) (except
for those considered random oracle modeled KDF, e.g. [ABD+13]). This work
makes the first step towards breaking this barrier and considers the following
problem: can we obtain an ideal cipher by mixing two independent keys into
IEM and iterating enough rounds? (a problem left open by Lampe and Seurin
(LS) [LS13]).3 This problem is far from being trivial because all the works on
SEM (in RK and CK settings) crucially rely on the correlation between all
round-keys, so that they cannot be directly generalized to double-key case. Also,
the independence between round-keys may bring in weakness – the most ex-
treme case is IEM with completely independent round-keys, which is vulnerable
to trivial related-key attacks. This problem is also practical since the idea is
really used in existing designs such as AES-256 [DR02], Serpent [ABK98], and
LED-128 [GPPR11] – note that they (certainly) mix the keys into the state
by lightweight and efficient operations and iterate, rather than use some very
complex hash function to seal the 2n key bits first. The intuition is that by
iterating enough rounds, such designs will be “secure”; but the fact that the dif-
fusion of the 2n key bits is relatively slow brings in doubts (e.g. doubts on AES-
256 [KHP07,BDK+10]). The fact that among the three AES variants, AES-256
was the first that is theoretically broken [BK09] seems to support such doubts,
and this attack raises a problem whether there exists a BC[2n, n] design behav-
ing like IC[2n, n];4 due to this, it is necessary to either validate (using a security
proof) or negate (using a generic attack) this intuitive methodology.

To dig out a solution, note that using one key in the first n/2 rounds while
using the other in the last n/2 rounds is trivially insecure [LS13]. Instead, a
(seemingly) more promising approach to mixing two keys into IEM is the idea
behind LED-128 [GPPR11], that is, interleaving the xoring of them: we name it
interleaved double-key Even-Mansour cipher (IDEM for short; see Fig. 1 for an
illustration). More formally, the r-round variant is written as follows:

IDEMr((k1, k2),m) = kt ⊕ Pr(. . . k2 ⊕ P3(k1 ⊕ P2(k2 ⊕ P1(k1 ⊕m)))),

where t = 2 when r is odd, and t = 1 when r is even. LS viewed IDEM as
a promising solution to the problem mentioned before, and gave an extremely
preliminary analysis, which led to the conjecture that 15 rounds is sufficient to
achieve indifferentiability; but no concrete proof exists. Moreover, the provable
security of IDEM with shorter rounds has not been considered yet.

3 A trivial solution to building IC[2n, n] by IEM is hash-than-encrypt, which has been
included in [ABD+13]. It was also discussed in [CDMS10]. But this solution imposes
strong burden on the key derivation and is far from practical designs.

4 Please see [CDMS10], page 275: as of 2009 it is unclear if we have a candidate
block-cipher with key-size larger than block-size that behaves like an ideal cipher.
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Contributions. We give the first indifferentiability proof for 15-round IDEM.
This is the first main result of this work. Interestingly, this matches LS’s conjec-
ture, but the proof is obtained by an approach quite different from they expected.

To obtain security guarantees for shorter round cases, we prove that IDEM7

is seq-indifferentiable from IC[2n, n]; therefore, IDEM7 is also correlation in-
tractable in the random permutation model [MPS12], and resists all attacks
that exploit evasive relation between its inputs and outputs. We also find a se-
quential distinguisher against IDEM6 (which is actually an easy extension of
LS’s attack against SEM3 [LS13]), so that 7 rounds is also necessary. All the
results are summarized by the following informal theorem.
Theorem. For the construction IDEM based on completely independent random
permutations, 6 rounds is not (seq-)indifferentiable; 7 rounds is seq-indifferentiable
from IC[2n, n] with O(q6/2n) security bound, and is also correlation intractable
in the random permutation model; 15 rounds is indifferentiable from IC[2n, n]
with O(q8/2n) security bound.
Due to the independence between the two n-bit round keys, at current time, we
are not sure whether the results can be generalized to IEM with “very general”
key schedules; however, for the first time, these results indeed validate the (seem-
ingly long standing) design principle to some extent in the open-key model, i.e.
a secure blockcipher BC[2n, n] can be built from key-alternating ciphers with-
out using very complex KDFs, or even without any KDF. Especially, they show
that the intuition behind the key schedule of LED-128 is sound. However, they
certainly cannot provide direct security guarantee for LED-128 – in fact, as
theoretical results, they do not guarantee the security of ANY concrete blockci-
pher. As already mentioned, whether there exist some designs that “behave like”
IC[2n, n] have to be supported by more (cryptanalysis) works.

Techniques. To prove indifferentiability and seq-indifferentiability, one first
builds a simulator to mimic the behaviors of all the underlying permutations.
Taking IDEM15 as an example, consider a sequence of pairs of input and output
(IO for short) (x1, y1), . . . , (x15, y15) (called a computation path/chain) of the 15
permutations simulated by the simulator, which satisfies yi ⊕ xi+1 = k2 when
i is odd, and yi ⊕ xi+1 = k1 when i is even. The simulator should ensure that
each such chain simulated by it matches the ideal cipher E, i.e. E((k1, k2), x1 ⊕
k1) = y15 ⊕ k2. The basic idea to reach this goal is Coron et al.’s simulation via
chain completion technique [CHK+14], which has achieved success in (weaker)
indifferentiability proofs for a variety of idealized blockciphers. It requires the
simulator S to detect partial computation chains formed by the queries of the
distinguisher, and completes the chains in advance by querying the ideal cipher
E, such that S is ready for answering queries in the future. To simulate answers
that are consistent with E, S has to use the answer from E to define some
simulated answers; this action is called adaptation.

Detect Chains. To detect the so-called partial chains, note that the construction
IDEM has the following property: given 4 values of 3 permutations yi, xi+1, yi+1,
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and xi+2 (namely, an output of Pi, a pair of IO of Pi+1, and an input to Pi+2),
the two associated keys can be derived as k = yi ⊕ xi+1 and k′ = yi+1 ⊕ xi+2,
and it is possible to move forward and backward along the path. By this, at
some place, using three rounds for chain detection is necessary – this idea has
already appeared in [LS13].

Overall Strategy of the Simulators. As to the overall strategy, the simulator
used to prove seq-indifferentiability of IDEM7 is quite close to those for 6-round
Feistel [MPS12] and SEM4 [CS15]: the simulator detects partial chains at the
three middle round of IDEM7, completes them forward or backward, and finally
adapts them at the first or last round – depending on concrete contexts.

On the other hand, the simulator used to prove the indifferentiability of
IDEM15 is motivated by Steinberger’s illustration of indifferentiability proof for
SEM9 [Ste15]. The overall strategy requires detecting chains both at the two sides
and at the middle – which is similar to several previous works (e.g. [CHK+14]).
The core idea in this part is a so-called “pureness” property which is different
from [CHK+14]: the simulator may fall into a recursive chain completion process;
however, during each such recursive completion process, all the partial chains are
to be adapted at the same round ; as a consequence, when a partial chain is to be
completed, its extending is necessarily due to simulator defining new simulated
answers to random ones rather than the adaptation of some other chains, so
that the “endpoints” of this chain are always random. Whereas in the context
of IDEM, to uniquely specify a chain requires at least 3 values of 3 consecutive
permutations, so that the adversary has more freedom to choose values and make
different chains collide. With this in mind, we arrange two rounds to surround
each adaptation zone to ensure different chains diverge in the adaptation zone;
following an old convention [CHK+14], we call them buffer rounds.5 For a more
detailed overview of the simulator, we refer to subsection 3.1.

In the indifferentiability proof for IDEM15, we used an active-chain-oriented
bad events define strategy, which is motivated by the analysis of IDEM7: we di-
rectly define some bad events to be with respect to the chains that are active
during the completion process. This helps us achieving the O(q8/2n) indifferen-
tiability security bound in spite of the complex character of IDEM. Albeit loose,
this bound has been quite well-looking compared to similar (full) indifferentia-
bility proofs for idealized blockciphers (the best non-flawed one(s) among them
reached the level of O(q10/2n) [ABD+13]).

Summary: What are Inherited and What are Novel? Technically speaking, we in-
herit the simulation via chain completion technique, the randomness mapping ar-
gument, and the basic idea for simulator termination argument from [CHK+14];
we also inherit (and adapt) the overall frameworks of Steinberger (which dates
back to Seurin [Seu09]) and Cogliati et al. [CS15] (which dates back to Mandal et
al. [MPS12]). Our novelties mainly lie in the proof for IDEM15: first, we use a bad

5 But our “buffer” rounds deviate from those in [CHK+14], in the sense that the values
in them can be defined when the simulator is completing other chains.
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event to establish a slightly tighter bound on the size of the history (O(q2/2n))
and the simulator’s complexity; second, we define the bad events to be so-called
active-chain-oriented, so that the probability can be very low (O(q6/2n)). They
two together enable to establish the O(q8/2n) security bound.

Organization. Sect. 2 presents preliminaries. Sect. 3 contains the first main
result – the indifferentiability of IDEM15, and the proof sketch. Sect. 4 presents
the (generalized) sequential distinguisher for IDEM6. Sect. 5 contains the second
main result – the seq-indifferentiability of IDEM7. Sect. 6 concludes. Finally, the
Appendices present some further discussions on the model IDEM as well as on
improving results in this work.

2 Preliminaries and Notations

This work focuses on BC[2n, n], say, blockciphers with n-bit blocks and 2n-bit
keys. Throughout the remaining, the n-bit round-keys are denoted by lower-case
letters, i.e. k1 and k2, while the 2n-bit master key is interchangeably denoted by
the capital letter K or the concatenation (k1, k2) (as the reader has seen).

An n-bit random permutation is a permutation that is uniformly selected
from all (2n)! possible choices. In this work, the notation P = (P1, . . . ,Pj)
is used to denote a tuple of random permutations (j = 15 in the context of
IDEM15, and j = 7 in the context of IDEM7), and we let P provide a unified
interface, i.e. P.P(i, δ, z) := {1, . . . , j} × {+,−} × {0, 1}n → {0, 1}n, i indicates
the index, δ ∈ {+,−} indicates direct query or inverse query, and z ∈ {0, 1}n
is the queries value). On the other hand, the interface of the ideal cipher E is
E.E(δ,K, z) := {+,−} × {0, 1}2n × {0, 1}n → {0, 1}n.

Indifferentiability. The indifferentiability framework [MRH04] addresses the
idealized construction in settings where the underlying parameters are exposed

to the adversary. For concreteness, consider IDEMP
15: a distinguisher DIDEMP

15,P

with oracle access to the cipher and the underlying primitives is trying to dis-
tinguish IDEMP

15 from E. Then the formal definition is as follows.

Definition 1 (Indifferentiability). The idealized blockcipher IDEMP
15 with

oracle access to ideal primitives P is said to be statistically and strongly (q, σ, t, ε)-
indifferentiable from an ideal cipher E if there exists a simulator SE s.t. S makes
at most σ queries to E, runs in time at most t, and for any distinguisher D which
issues at most q queries, it holds∣∣∣Pr[DIDEMP

15,P = 1]− Pr[DE,SE

= 1]
∣∣∣ ≤ ε

Such a result means that IDEMP
15 can safely replace E in most “natural” settings

– although this belief does not necessarily hold when the resource of the adver-
sary is limited [RSS11,DGHM13]. Since introduced, indifferentiability framework
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has been applied to various constructions, including variants of Merkle-Damg̊ard,
Feistel [CHK+14], Sponge [BDPVA08], and IEM [ABD+13,LS13].

To formally define seq-indifferentiability, we first specify a restricted distin-
guisher class, namely the sequential distinguisher (seq-distinguisher) [MPS12].

Consider IDEMP
7 and DIDEMP

7 ,P. D is sequential if it issues queries in a specific
order: (1) queries the underlying primitives P as it wishes; (2) queries IDEMP

7

as it wishes; (3) outputs, and cannot query P again. This order is illustrated
in the italic numbers in Fig. 3. We then define the notion total oracle query
cost of D, which equals the total number of queries received by P (from D or
IDEMP

7 ) when D interacts with (IDEMP
7 ,P) [MPS12]. Then, the definition of

seq-indifferentiability can be obtained by tweaking the definition of (full) indif-
ferentiability by restricting the distinguisher to the range of sequential ones, and
replacing the query cost of the distinguisher by the total oracle query cost.

Definition 2 (Seq-indifferentiability). The idealized blockcipher IDEMP
7 with

oracle access to ideal primitives P is said to be statistically and strongly (q, σ, t, ε)-
seq-indifferentiable from an ideal cipher E if there exists a simulator SE s.t. S
makes at most σ queries to E, runs in time at most t, and for any sequential
distinguisher D of total oracle query cost at most q, it holds∣∣∣Pr[DIDEMP

7 ,P = 1]− Pr[DE,SE

= 1]
∣∣∣ ≤ ε

Seq-indifferentiability – although weaker than indifferentiability [MRH04] –
is already proved (by [MPS12,CS15]) sufficient to imply correlation intractabil-
ity in the idealized model. The notion correlation intractability was introduced
by Canetti et al. [CGH04] to capture the feature that there is no exploitable
relation between the inputs and outputs of the target function ensembles. It was
transposed to idealized models to guarantee similar feature on idealized construc-
tions (e.g. IDEMP

7 ). To formally define this notion, we first give the definition
(from [CS15]) of evasive relation.

Definition 3 (Evasive Relation). A relation R over pairs of binary sequences
is said (q, ϵ)-evasive with respect to an ideal cipher E with n-bit blocks, if for any
oracle Turing machine M issuing at most q oracle queries, it holds

Pr[(x1, . . . , xm)←ME(1n) : ((x1, . . . , xm), (E(x1), . . . ,E(xm))) ∈ R] ≤ ϵ.

Then is the correlation intractability itself.

Definition 4 (Correlation Intractability). Let R be an m-ary relation. Then,

an idealized blockcipher IDEMP
7 with oracle access to ideal primitives P is said

to be (q, ϵ)-correlation intractable with respect to R, if for any oracle Turing
machine M issuing at most q oracle queries, it holds

Pr[(x1, . . . , xm)←MP(1n) : ((x1, . . . , xm), (IDEMP
7 (x1), . . . , IDEMP

7 (xm))) ∈ R] ≤ ϵ.

Seq-indifferentiability implies correlation intractability: (Theorem 4 from [CS15])
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Theorem 1. For an idealized blockcipher IDEMP
r which has oracle access to

ideal primitives P and makes at most r queries to P on any input,6 if IDEMP
r is

(q+rm, σ, ϵ)-seq-indifferentiable from E, then for any m-ary relation R which is
(σ+m, ϵR)-evasive with respect to E, IDEMP

r is (q, ϵ+ϵR)-correlation intractable
with respect to R.

When the primitive implemented by the seq-indifferentiable construction is
stateless, seq-indifferentiability implies public indifferentiability – indifferentia-
bility from the target primitive in the setting where all the queries to it are public
(a notion due to [YMO08,DRS09]).

3 Indifferentiability for 15-round IDEM

We prove the first main theorem of this paper in this section, which is:

Theorem 2. The 15-round Even-Mansour cipher IDEM15 from fifteen indepen-
dent random permutations P = (P1, . . . ,P15) and two n-bit keys (k1, k2) alter-
natively xored is strongly and statistically (q, σ, t, ε)-indifferentiable from an ideal

cipher IC[2n, n], where σ = 210 · q8, t = O(q8), and ε ≤ 211·q8
2n + 214·q6

2n = O( q
8

2n ).

As usual, we first present the simulator, then sketch the proof.

3.1 The Simulator

To build the simulator, we borrow a variant of the explicit randomness tech-
nique [CHK+14] from [CS15], that is, letting the simulator S query P as explicit
randomness. We denote by SE,P the simulator for IDEM15 which takes P as
randomness source and interacts with E. SE,P provides an interface S.P(i, δ, z)
(i ∈ {1, . . . , 15}) which is exactly the same as P. As argued [ABD+13,CS15], us-
ing such explicit randomness is actually equivalent to lazily sampling in advance
before the experiment.

We now give a high-level overview of the simulator SE,P (depicted in Fig.
1 (left)). S maintains a history for each simulated permutation under the form
of fifteen sets P1, . . . , P15. Each of the sets has entries in the form of (x, y) for
x, y ∈ {0, 1}n. S will ensure that for any z ∈ {0, 1}n and i ∈ {1, . . . , 15}, there
is at most one z′ ∈ {0, 1}n such that (z, z′) ∈ Pi, and vice versa; once such
consistency cannot be kept, S aborts (will be discussed later). By this, the sets
{P} = {P1, . . . , P15} are expected to define fifteen partial permutations, and we
denote by P+

i (P−
i , resp.) the (time-dependent) set of all n-bit values x (y, resp.)

satisfying that ∃z ∈ {0, 1}n s.t. (x, z) ∈ Pi ((z, y) ∈ Pi, resp.); denote by P+
i (x)

(P−
i (y), resp.) the corresponding value of z (as mentioned the uniqueness of z

is ensured by S).

6 Note that in this case, if the seq-distinguisher D makes qp queries to P and qe queries
to IDEMr, then the total oracle query cost of D is qp + r · qe. For IDEMP

7 studied in
this work, r = 7.
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Queries that have already appeared in the history will be instantly answered
with the contents in {P}. Upon a new query SE,P.P(i, δ, z), SE,P queries P to
draw z′ = P.P(i, δ, z) as the answer and calls a procedure ForceVal(z, z′, δ, i)

to add z and z′ to Pi – inside this procedure, if z′ is found already in P δ
i ,

SE,P aborts due to the broken consistency (as mentioned). Then, if (i, δ) ∈
{(2,+), (6,−), (10,+), (14,−)} it satisfies the chain detection conditions, so that
SE,P enqueues and completes chains formed by previous queries to ensure that
it is ready to simulate answers consistent with those of E in the future.

The cases (i, δ) equals (2,+) and (14,−) are similar: taking the former
P(2,+, x2) as an example, SE,P considers all tuples (x1, y1, x14, y14, x15, y15)
such that (xj , yj) ∈ Pj for j ∈ {1, 14, 15}, recovers two keys k2 := y1 ⊕ x2 and
k1 := y14 ⊕ x15, computes y0 := x1 ⊕ k1 and x16 := y15 ⊕ k2, checks whether
E.E(+, (k1, k2), y0) = x16 via an inner procedure S.Check and enqueues a 5-
tuple (y0, k1, k2, 0, 4) into a queue ChainQueue when this is the case. In this
tuple, the 4-th value 0 informs S that the first value of the tuple is y0, and the
last value 4 describes that when completing the chain characterized by the tuple
(y0, k1, k2, 0), S should add the adapted pair to P4 to ensure consistency with E.
The action towards answering new query P(14,−, y14) is symmetric: S considers
all tuples (x1, y1, x2, y2, x15, y15) such that (xj , yj) ∈ Pj for j ∈ {1, 2, 15}, recov-
ers the two keys, calls S.Check and enqueues (y0, k1, k2, 0, 12) into ChainQueue
when Check returns true. The chain represented by this 5-tuple will be adapted
at P12, which is different from the case (i, δ) = (2,+).

The other two cases P(6,−, y6) and P(10,+, x10) are similar by symmetry:
in each case, S considers all tuples (x7, y7, x8, y8, x9, y9) such that (xj , yj) ∈ Pj

for j ∈ {7, 8, 9}, computes k1 := y8 ⊕ x9 and k2 := y7 ⊕ x8, checks whether
x7⊕k1 = y6∧y9⊕k2 ∈ P+

10 (in case P(6,−, y6)) or x7⊕k1 ∈ P−
6 ∧y9⊕k2 = x10

(in case P(10,+, x10)), and enqueues (y7, k1, k2, 7, l) into ChainQueue when this
is the case, where l = 4 in case P(6,−, y6) and l = 12 in case P(10,+, x10).

After enqueuing, S starts an execution of RecursiveCompletion, during
which it continues taking the tuples out of ChainQueue and completing the
associated partial chains till ChainQueue is empty again. More clearly, for each
chain C dequeued from the queue, S evaluates in the IDEM15 computation
path both forward and backward and queries E once to “wrap” around, until
obtaining xl (when moving forward) or yl (when moving backward). S then calls
ForceVal(xl, yl,⊥, l) to add (xl, yl) to Pl as a newly defined pair of IO, so that
the entire computation path is consistent with the answers of E. Inside this call
to ForceVal, if xl ∈ P+

l or yl ∈ P−
l before they are to be added, S aborts (also

as mentioned).

During the completion of a chain, S adds new entries to Pi which are neces-
sary for its evaluation. Such new values also trigger new chains to be enqueued
when they satisfy the chain detection conditions mentioned before. For this, note
that S continues dequeuing and completing chains till ChainQueue is empty
again. To avoid re-completing the same chain, S maintains a set CompSet to
keep a record of what it has completed, and a chain C dequeued from the queue

10



will be completed only if C /∈ CompSet. After all the works above are finished,
S answers the original query with P δ

i (z).

Note that throughout the process, the entries in S.{P} are never overwritten;
once S finds itself unable to maintain consistency any more, S just aborts.

The pseudocode of SE,P and a modified simulator S̃ẼE,P (please see Sect.
3.3) is presented as follows. When a line has a boxed variant next to it, SE,P

uses the original code, whereas S̃ẼE,P uses the boxed one.

1: Simulator SE,P: Simulator S̃ẼE,P:
2: Variables
3: Sets {P} = {P1, . . . , P15} and CompSet, initially empty
4: Queue ChainQueue, initially empty
5: public procedure P(i, δ, z)
6: z′ := InnerP(i, δ, z) // Chains are enqueued in this step
7: RecursiveCompletion()
8: return z′

9: // The recursive completion process is extracted as an individual procedure.
10: private procedure RecursiveCompletion()
11: while ChainQueue ̸= ∅ do
12: (yj , k1, k2, j, l) := ChainQueue.Dequeue()
13: if (yj , k1, k2, j) /∈ CompSet then
14: Complete(yj , k1, k2, j, l)
15: // The “inner” permutation interface used by S itself.
16: private procedure InnerP(i, δ, z)
17: if z /∈ P δ

i then
18: z′ := P.P(i, δ, z)
19: ForceVal(z, z′, δ, i)
20: EnqueueChains(i, δ, z)
21: return P δ

i (z)
22: // Procedure that enqueues chains.
23: private procedure EnqueueChains(i, δ, z)
24: if (i, δ) = (2,+) then
25: forall ((x1, y1), x2, y14, (x15, y15)) ∈ P1 × {z} × P−

14 × P15 do
26: k2 := y1 ⊕ x2

27: k1 := y14 ⊕ x15

28: y0 := x1 ⊕ k1
29: x16 := y15 ⊕ k2

30: flag := Check(y0, x16, (k1, k2)) flag := ẼE.Check(y0, x16, (k1, k2))

31: if flag = true then
32: ChainQueue.Enqueue(y0, k1, k2, 0, 4)
33: else if (i, δ) = (14,−) then
34: forall ((x1, y1), x2, y14, (x15, y15)) ∈ P1 × P+

2 × {z} × P15 do
35: k2 := y1 ⊕ x2

36: k1 := y14 ⊕ x15

37: y0 := x1 ⊕ k1
38: x16 := y15 ⊕ k2

39: flag := Check(y0, x16, (k1, k2)) flag := ẼE.Check(y0, x16, (k1, k2))

40: if flag = true then

11
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Fig. 1. (left) IDEM15 with the zones where the simulator detects chains and adapts
them; (right) IDEM7 and how the simulator for sequential indifferentiability works.
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41: ChainQueue.Enqueue(y0, k1, k2, 0, 12)
42: else if (i, δ) = (6,−) ∨ (i, δ) = (10,+) then
43: forall ((x7, y7), (x8, y8), (x9, y9)) ∈ P7 × P8 × P9 do
44: k1 := y8 ⊕ x9

45: k2 := y7 ⊕ x8

46: if (i, δ) = (6,−) ∧ z = x7 ⊕ k1 ∧ y9 ⊕ k2 ∈ P+
10 then

47: ChainQueue.Enqueue(y7, k1, k2, 7, 4)
48: else if z = y9 ⊕ k2 ∧ x7 ⊕ k1 ∈ P−

6 then // (i, δ) = (10,+)
49: ChainQueue.Enqueue(y7, k1, k2, 7, 12)
50: private procedure Complete(yj , k1, k2, j, l)
51: (yl−1, k1, k2, l − 1) := EvalFWD(yj , k1, k2, j, l − 1)
52: (yl, k1, k2, l) := EvalBWD(yj , k1, k2, j, l)
53: ForceVal(yl−1 ⊕ k2, yl,⊥, l) // Always k2, since l ∈ {4, 12}.
54: (y0, k1, k2, 0) := EvalFWD(yj , k1, k2, j, 0)
55: (y7, k1, k2, 7) := EvalFWD(y0, k1, k2, 0, 7)
56: CompSet := CompSet ∪ {(y0, k1, k2, 0), (y7, k1, k2, 7)}
57: // Procedure that adds entries to {P}.
58: private procedure ForceVal(z, z′, δ, l)
59: // When δ = ⊥ then it’s an adaptation

60: if z ∈ P δ
l ∨ z′ ∈ P δ

l then abort
61: else if δ = − then Pl := Pl ∪ {(z′, z)}
62: else Pl := Pl ∪ {(z, z′)} // δ = + or ⊥
63: private procedure Check(x, y,K) // S̃ does not own such a procedure
64: return E.E(+,K, x) = y
65: // Two procedures that help evaluate forward and backward respectively in IDEM.
66: private procedure EvalFWD(yj , k1, k2, j, l)
67: while j ̸= l do
68: if j = 15 then
69: x16 := y15 ⊕ k2

70: y0 := E.E(−, (k1, k2), x16) y0 := ẼE.E(−, (k1, k2), x16)

71: j := 0
72: else
73: if j is odd then
74: yj+1 := InnerP(j + 1,+, yj ⊕ k2)
75: else
76: yj+1 := InnerP(j + 1,+, yj ⊕ k1)
77: j := j + 1
78: return (yl, k1, k2, l)
79: private procedure EvalBWD(yj , k1, k2, j, l)
80: while j ̸= l do
81: if j = 0 then

82: x16 := E.E(+, (k1, k2), y0) x16 := ẼE.E(+, (k1, k2), y0)

83: y15 := x16 ⊕ k2
84: j := 15
85: else
86: if j is odd then
87: yj−1 := InnerP(j,−, yj)⊕ k1
88: else
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89: yj−1 := InnerP(j,−, yj)⊕ k2
90: j := j − 1
91: return (yl, k1, k2, l)

As in previous works, to show the indifferentiability, we have to achieve the
following two sub-goals for any fixed, deterministic,7 and computationally un-
bounded distinguisher D:

(i) the simulated system Σ1(E,SE,P) and the real system Σ3(IDEMP
15,P) are

indistinguishable;
(ii) S works with polynomial complexity, except with negligible probability.

3.2 Distinguisher that Completes All Chains

As an almost standard step in indifferentiability proofs, we introduce distin-
guisher which completes all chains. More clearly, fix a deterministic distinguisher
D which issues at most q queries, and consider a distinguisher D which first runs
D and then emulates a call to EvalFWD(x, k1, k2, 0, 15) (resp. Evalbwd(y ⊕
k2, k1, k2, 15, 0)) for all queries E(+, (k1, k2), x) (resp. E(−, (k1, k2), y)) issued by
D and outputs whatever D outputs: clearly D has exactly the same advantage
as D in distinguishing Σ1 and Σ3, and all the rest arguments concentrate on
D.8 Limiting D to deterministic ones is wlog since the advantage of a probabilis-
tic distinguisher cannot exceed the corresponding deterministic version with the
best random coins [ABD+13].

3.3 Intermediate System

We use an intermediate system Σ2(Ẽ
E, S̃ẼE,P), which consists of a modified

ideal cipher ẼE and an also slightly modified simulator S̃ẼE,P. ẼE maintains a
set ES to keep the history of queries it has received, which contains entries of the
form (x, y,K) ∈ {0, 1}n×{0, 1}n×{0, 1}2n. ẼE provides an additional interface

Check to the simulator. Once being called on Check(x, y,K), ẼE looks in ES
to check whether (x, y,K) ∈ ES and returns the answer. The modified ideal

cipher ẼE is implemented as follows. On the other hand, the pseudocode of

S̃ẼE,P has been presented along with SE,P, in subsection 3.1.

Modified ideal cipher ẼE:
Variables
Set ES, initially empty

public procedure E(δ,K, z)
if (K, z) /∈ ESδ then
z′ := E.E(δ,K, z)

7 This is wlog since the advantage of any probabilistic distinguisher cannot exceed the
advantage of the corresponding optimal deterministic version.

8 Here we warn the readers that although the main body seems to focus on the original
D, the formal proof actually focus on the corresponding D. But it is clear that all
the bounds for D also hold for the original D.
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if δ = + then ES := ES ∪ {(z, z′,K)}
else ES := ES ∪ {(z′, z,K)} // δ = −

return ESδ(K, z)
public procedure Check(x, y,K)
if (x, y,K) ∈ ES then return true
return false

To simplify notations and highlight the randomness source, in the following
sections: Σ1(E,SE,P) may be referred by Σ1(E,P), or even Σ1 if the randomness

source is not important; Σ2(Ẽ
E, S̃ẼE,P) may be referred by Σ2(E,P), Σ2(Ẽ, S̃),

Σ2(α) when α = (E,P) or Σ2; and Σ3(IDEMP
15,P) may be referred by Σ3(P)

and Σ3. The three systems are depicted in Fig. 2.
Since all the entries of ES indeed come from (an ideal cipher) E, ES always

defines a partial cipher, and we use a notation system similar to that for {P}.
More clearly, we denote by ES+ the set of tuples (K,x) s.t. ∃y : (x, y,K) ∈
ES, and denote by ES+(K,x) the corresponding y. Similarly for ES− and

ES−(K, y). Finally, denote by |Ẽ.ES| the size of Ẽ.ES.

D

0/1

Σ1

E S

D

0/1

Σ2

Ẽ S̃

D

0/1

Σ3

IDEM15 P

P E P

Fig. 2. Systems used in the indifferentiability proof for IDEM15.

3.4 Bounding the Complexity of S̃ẼE,P in Σ2

In this section we show that the simulator S̃ẼE,P in Σ2 works with polynomial
complexity. The idea is inherited from [CHK+14], with a bit novelty.

The first step is exactly the same as [CHK+14]: the number of chains com-
pleted due to the detection zones at the sides (P1,P2,P14,P15) is at most q.

Lemma 1. During the execution D
Σ2

, S̃ dequeues at most q times a tuple of
the form (y0, k1, k2, 0, l) for which (y0, k1, k2, 0) /∈ CompSet.

Proof. By construction, (y0, k1, k2, 0, l) can be enqueued only if (y0, x16, (k1, k2))
has already been in ES for the corresponding x16. Moreover, this entry cannot
have been added due to S̃, since S̃ only queries Ẽ during the completion of
a chain, so that (y0, k1, k2, 0) ∈ CompSet when it is dequeued. So the entry

(y0, x16, (k1, k2)) can only be added due to D querying Ẽ (at most q times). ⊓⊔
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The second step is to bound the size of each set of S̃. This step slightly
deviates from [CHK+14]: we prove that the complexity of S̃ is at a lower level
with overwhelming probability, rather than at a higher level in all possible cases.

Consider the sets {P} of S̃ standing at the end of D
Σ2

. As the beginning,
note that by Lemma 1, for i ∈ {6, . . . , 10}, |Pi| ≤ 2q. The reason is that for such
values of i, |Pi| can only be enlarged by at most 1 when D queries P(i, δ, z) or

when S̃ completes a chain (y0, k1, k2, 0, l) (at most q times, by Lemma 1). It can
be easily seen that for a certain value of i, each query of D corresponds to at
most one query from D to P(i, δ, z), so that |Pi| ≤ q + q for i ∈ {6, . . . , 10}.

Till now, the chains detected by the middle detection zone can be bounded
to

∏9
i=7 |Pi| ≤ 8q3. But we take a step further to bound it to O(q2) rather than

O(q3).9 For this, we introduce a bad event BadLockMid,10 which happens if any
of the three sub-events BadLockMidA, BadLockMidB, or BadLockMidC happens:

Definition 5. After a random assignment in P7, P8, or P9, the event BadLock-
MidA happens if there are two 3-tuples ((x7, y7), (x8, y8), (x9, y9)) ∈ P7×P8×P9

and ((x′
7, y

′
7), (x

′
8, y

′
8), (x

′
9, y

′
9)) ∈ P7 × P8 × P9 such that the following three are

simultaneously fulfilled:

– the two tuples are “totally different”, i.e. x7 ̸= x′
7 ∧ x8 ̸= x′

8 ∧ x9 ̸= x′
9;

– x7 ⊕ y8 ⊕ x9 = x′
7 ⊕ y′8 ⊕ x′

9;

– y7 ⊕ x8 ⊕ y9 = y′7 ⊕ x′
8 ⊕ y′9.

There are at most |P7|2 · |P8|2 · |P9|2 ≤ (2q)6 such pairs of tuples. For each such
pair of tuples, the probability that the last random assignment (before this pair
exists) leads to such a situation is at most 1

2n−2q , so that Pr[BadLockMidA] ≤
27·q6
2n (assuming 2q < 2n/2). To illustrate more clearly, consider two such tu-

ples which satisfy the above constraints, and wlog assume that the last ran-
dom assignment adds (x7, y7) to P7. Then, if this assignment is forward, we’ve
Pr[P.P(7,+, x7) = y7 = x8⊕ y9⊕ y′7⊕x′

8⊕ y′9] ≤ 1
2n−2q ; if it is backward, we’ve

Pr[P.P(7,−, y7) = x7 = y8 ⊕ x9 ⊕ x′
7 ⊕ y′8 ⊕ x′

9] ≤ 1
2n−2q .

Definition 6. For (i, j) ∈ {(7, 8), (8, 9)}, after a random assignment in P7, P8,
or P9, the event BadLockMidB happens if there are two pairs ((xi, yi), (xj , yj)) ∈
Pi × Pj and ((x′

i, y
′
i), (x

′
j , y

′
j)) ∈ Pi × Pj such that the following three are simul-

taneously fulfilled:

– the two pairs are “totally different”, i.e. xi ̸= x′
i ∧ xj ̸= x′

j;

– xi ⊕ yj = x′
i ⊕ y′j;

– yi ⊕ xj = y′i ⊕ x′
j.

9 This, in fact, comes from an intuition: although the three middle sets form O(q3)
possible chains, the two sets (P6 and P10) surrounding them only have size of O(q).
How could as many as O(q3) chains share as few as O(q) endpoints?

10 Bad events due to a Lock of values in the Middle rounds.
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Since |P7|, |P8|, |P9| ≤ 2q, there are at most 2 · (2q)4 such pairs of pairs. For
each such pair, the probability that the last random assignment leads to such

a situation is at most 1
2n−2q , so that Pr[BadLockMidB] ≤ 26·q4

2n (assuming 2q <

2n/2). The analysis is similar to BadLockMidA.

Definition 7. After a random assignment in P7 or P9, the event BadLockMidC
happens if there are two pairs ((x7, y7), (x9, y9)) ∈ P7×P9 and ((x′

7, y
′
7), (x

′
9, y

′
9)) ∈

P7 × P9 such that the following three are simultaneously fulfilled:

– the two pairs are “totally different”, i.e. x7 ̸= x′
7 ∧ x9 ̸= x′

9;
– x7 ⊕ x9 = x′

7 ⊕ x′
9;

– y7 ⊕ y9 = y′7 ⊕ y′9.

There are at most (2q)4 such pairs of pairs. For each such pair, the probability
that the last random assignment leads to such a situation is at most 1

2n−2q , so

that Pr[BadLockMidC] ≤ 25·q4
2n . Therefore, Pr[BadLockMid] ≤ 28·q6

2n .
Armed with the event BadLockMid, we are now able to bound the number of

chains due to the middle detection zone to O(q2).

Lemma 2. During D
Σ2

, if BadLockMid does not happen, then it holds:

(i) for any pair (y6, x10), there exists at most one tuple ((x7, y7), (x8, y8), (x9, y9)) ∈
P7 × P8 × P9 such that x7 ⊕ y8 ⊕ x9 = y6 and y7 ⊕ x8 ⊕ y9 = x10;

(ii) S̃ enqueues at most 4q2 times a tuple of the form (y7, k1, k2, 7, l).

Proof. For proposition (i), assume otherwise, i.e. there exists another tuple
((x′

7, y
′
7), (x

′
8, y

′
8), (x

′
9, y

′
9)) ∈ P7 × P8 × P9 s.t. (x7, x8, x9) ̸= (x′

7, x
′
8, x

′
9) and:

– x7 ⊕ y8 ⊕ x9 = y6 = x′
7 ⊕ y′8 ⊕ x′

9; and:
– y7 ⊕ x8 ⊕ y9 = x10 = y′7 ⊕ x′

8 ⊕ y′9.

We argue that BadLockMid happened before this pair of tuples exists:

– if x7 ̸= x′
7 ∧ x8 ̸= x′

8 ∧ x9 ̸= x′
9, then BadLockMidA happens after the last

random assignment before this pair is in {P};
– if xi = x′

i for i = 7, 8, or 9, then either BadLockMidB (in case i = 7 or 9)
or BadLockMidC (in case i = 8) happened. For instance, if x7 = x′

7, then
it necessarily be x8 ̸= x′

8 and x9 ̸= x′
9, otherwise the constraints cannot be

fulfilled. Conditioned on x7 = x′
7, it can be derived that y8 ⊕ x9 = y′8 ⊕ x′

9

and x8 ⊕ y9 = x′
8 ⊕ y′9, and BadLockMidB happened when ((x8, y8), (x9, y9))

and ((x′
8, y

′
8), (x

′
9, y

′
9)) were added to {P}.

These discussions establish proposition (i). Then, proposition (ii) immediately
follows from |P6| · |P10| ≤ 4q2. ⊓⊔

Finally, the complexity of S̃ is bounded as follows.

Lemma 3. If BadLockMid does not happen during the execution D
Σ2

, then at

the end of D
Σ2

it holds:

17



– for i ∈ {1, 2, 14, 15}, |Pi| ≤ 5q2; for i ∈ {3, 4, 5, 11, 12, 13}, |Pi| ≤ 6q2; and

|Ẽ.ES| ≤ 5q2;

– S̃ issues at most (5q2)4 queries to Ẽ.Check.

Proof. For i ∈ {1, 2, 14, 15}, |Pi| can only be enlarged by at most 1 when: D

queries P(i, δ, z) (≤ q, already discussed), or S̃ completes a chain (y7, k1, k2, 7)
(≤ 4q2 if ¬BadLockMid).11 Hence in total the bound is q+4q2 ≤ 5q2. Whereas for
i ∈ {3, 4, 5, 11, 12, 13}, the completion of a chain (y0, k1, k2, 0) (≤ q, by Lemma
1) may also enlarge |Pi|, so that the bound is 6q2.

Then, by construction, |ES| can only be enlarged by at most 1 when D

queries Ẽ (≤ q times) or S̃ completes a chain (y7, k1, k2, 7) (≤ 4q2 times if
¬BadLockMid). Hence in total the bound is q + 4q2 ≤ 5q2.

Finally, S̃ calls Ẽ.Check at most |P1| · |P2| · |P14| · |P15| ≤ (5q2)4 times. ⊓⊔

3.5 Transition from Σ1 to Σ2

This section gives the transition from Σ1 to Σ2. It consists of three steps: first,
specifying a bad event BadCheck1 in Σ1; second, under the condition that neither
of the two bad events BadCheck1 and BadLockMid happens, showing that the
two systems have the same behaviors when they share the same randomness
source; third, upper bounding the complexity of S in Σ1.

Bad Event BadCheck1, and No BadCheck1 Implies Same Behaviors
of Σ1 and Σ2. Consider two systems Σ1(E,P) and Σ2(E,P) which take ran-
domness from the same source (E,P). The only essential difference between they

two lies in procedure Check: in Σ2, the return value of a call Ẽ.Check(x, y,K)

depends on Ẽ.ES, i.e. the history of queries to Ẽ, whereas in Σ1 the return
value of S.Check(x, y,K) completely depends on E. For this, we define an event
BadCheck1:12 consider a pair of random primitives (E,P), BadCheck1 happens

during the execution D
Σ1(E,SE,P)

if ∃(x, y,K) s.t. all the following hold:

(i) SE,P makes a call to Check(x, y,K).
(ii) E.E(+,K, x) = y.
(iii) Before the call in (i), neither E.E(+,K, x) nor E.E(−,K, y) has been issued.

Consider the transcripts of queries and random answers appeared in the
two systems, where the queries include E, P, and Check. More clearly, such
transcripts include the following queries:

(i) in D
Σ2

: all the Ẽ.E, Ẽ.Check, and P.P queries issued by D and S̃;

11 Note that when S̃ completes a chain (y0, k1, k2, 0), it does not add new entries to
{P1, P2, P14, P15}, nor ES.

12 The number 1 indicates that the event is defined for Σ1. Similarly for BadLockEP2,
which will be introduced.
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(ii) in D
Σ1

: all the S.Check and P.P queries issued by D and S, and all the
queries E.E issued outside the Check procedure by D and S.

Differences can only occur around Check, so that for a fixed pair of random
primitives (E,P), it holds:

(i) during D
Σ2(Ẽ

E,S̃ẼE,P)
, if BadLockMid does not happen, then ẼE.Check is

called at most (5q2)4 times;
(ii) conditioned on (i), if the return values of the first (5q2)4 calls to Check equal

correspondingly in D
Σ1(E,SE,P)

and D
Σ2(Ẽ

E,S̃ẼE,P)
, the transcript obtained

by (D,S) in Σ1 is the same as the transcript obtained by (D, S̃) in Σ2, and
D gives the same output.

The idea is formally captured by the following lemma and proof.

Lemma 4. |PrE,P[D
Σ1(E,SE,P)

= 1]− PrE,P[D
Σ2(Ẽ

E,S̃ẼE,P)
= 1]| ≤ 211·q8

2n .

Proof. Consider the pair (E,P), and denote by BadLockEP2 the event that Bad-

LockMid happens during the Σ2 execution D
Σ2(Ẽ

E,S̃ẼE,P)
. Then by Lemma 3,

conditioned on ¬BadLockEP2, ẼE.Check is called at most (5q2)4 times.

Now, conditioned on ¬BadLockEP2, we further assume that duringD
Σ1(E,SE,P)

,
BadCheck1 does not happen in the first (5q2)4 calls to S.Check. Then by an

induction, the transcripts generated during D
Σ1(E,SE,P)

and D
Σ2(Ẽ

E,S̃ẼE,P)
are

the same: the answers of Check equal correspondingly; the answers of E and
P clearly equal since they are due to the same randomness source. Since D is
deterministic, D gives the same output in the two executions.

Now, assume that E is queried q∗ < 2n/2 times during D
Σ1(E,SE,P)

. Then
the probability that BadCheck1 occurs in the first (5q2)4 calls is clearly no more
than (5q2)4/(2n − q∗) ≤ 2 · 54 · q8/2n. By this, it holds

|PrE,P[D
Σ1(E,SE,P)

= 1]− PrE,P[D
Σ2(Ẽ

E,S̃ẼE,P)
= 1]|

≤PrE,P[BadCheck1 occurs during D
Σ1(E,SE,P) | ¬BadLockEP2]

+ PrE,P[BadLockEP2] ≤
2 · 54 · q8

2n
+

28 · q6

2n
≤ 211 · q8

2n

as claimed. ⊓⊔

Complexity of S. Lemma 4 leads to the termination argument for S (in Σ1).

Lemma 5. During a Σ1 execution D
Σ1(E,SE,P)

, with probability at least 1 −
211·q8
2n , S issues no more than 210 · q8 queries to E, and runs in time no more

than O(q8).
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Proof. S issues at most |P1| · |P2| · |P14| · |P15| queries to E. By Lemma 4, the

probability of the event that the transcripts in D
Σ1(E,SE,P)

and D
Σ2(Ẽ

E,S̃ẼE,P)

are the same and BadLockMid does not happen in D
Σ2(Ẽ

E,S̃ẼE,P)
is at least

1 − 211·q8
2n , so that in D

Σ1(E,SE,P)
, the bounds given in Lemma 3 holds with

probability at least 1 − 211·q8
2n , and the bound on queries is (5q2)4 ≤ 210 · q8.

Moreover, consider the loops in S. It is not hard to check that the most frequently
executed ones are the two forall loops at line 25 and 34, which are executed at
most O(q6) ·O(q2) times. This yields the bound O(q8) on running time. ⊓⊔

3.6 Non-Abortion Argument for S̃ in Σ2

The formal transition from Σ2 to Σ3 also consists of three steps: first, specifying
several bad events in Σ2; second, showing that the absence of these events con-
stitute a sufficient condition for S̃ not aborts; third, showing that if S̃ does not
abort then Σ2 and Σ3 are indistinguishable. For clearness, they are divided into
two subsections: this one contains non-abortion argument for S̃, and the next
one (3.7) contains the third step.

For further discussions, we introduce some necessary notions first.

Necessary Notions and Functions. As mentioned in the main body, in
this work, the partial chains are characterized by 4-tuples C = (yi, k1, k2, i) ∈
{0, 1}n ×{0, 1}n ×{0, 1}n ×{0, . . . , 15}; we further denote C[1] = yi, C[2] = k1,
C[3] = k2, and C[4] = i. A merit of this definition is that the set of all pos-
sible partial chains is time-independent. After carefully checking, we think the
most notable drawback of this definition is that it is quite hard to formalize the
“table-defined” notion with respect to it. However, as the reader will see, this
work uses the notion chains in the history (will be introduced later) instead.

Then, consider a snapshot of the sets Ẽ.ES and S̃.{P} at some point in the

execution D
Σ2

: we borrow helper functions val+l and val−l from [LS13] to help
probe in the computation path defined in these sets. More clearly, val+l and val−l
move forward and backward respectively along the path formed by the entries
of the sets, and return the input and output value of Pl respectively, or ⊥, if
the value is not computable due to the lack of some necessary entries. They are
implemented as follows.

function val+l (C)
// for l = 1, . . . , 16, returns xl, if possible
j := C[4] + 1
if C[4] is odd then z := C[1] ⊕ C[3]
else z := C[1] ⊕ C[2]
while j ̸= l do
if j ≤ 15 then
if z /∈ P+

j then return ⊥
if j is odd then
z := P+

j (z) ⊕ C[3]

else // j is even

z := P+
j (z) ⊕ C[2]

j := j + 1
else // j = 16

if ((C[2], C[3]), z) /∈ ES− then return ⊥
z := ES−((C[2], C[3]), z) ⊕ C[2]
j := 1

return z
function val−l (C)
// for l = 0, . . . , 15, returns yl, if possible
j := C[4]
z := C[1]
while j ̸= l do
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if j ≥ 1 then
if z /∈ P−

j then return ⊥
if j is odd then
z := P−

j (z) ⊕ C[2]

else // j is even

z := P−
j (z) ⊕ C[3]

j := j − 1
else // j = 0

if ((C[2], C[3]), z) /∈ ES+ then return ⊥
z := ES+((C[2], C[3]), z) ⊕ C[3]
j := 15

return z

The notion equivalent partial chains of [CHK+14] is also imported.

Definition 8. Two partial chains C = (yi, k1, k2, i) and D = (yj , k1, k2, j)
which share the same associated keys are equivalent (denoted C ≡ D) if val−j (C) =

yj or val−i (D) = yi.
13

By construction, each Pi always defines a partial permutation while ES always
defines a partial blockcipher, so that the relation ≡ is an equivalence relation.

History of Partial Chains. As mentioned in the main body, the bad events

in D
Σ2

are due to the random answers from (E,P) hitting some values of the
“active” chains. For this, we first formally define the notion “active”, under the
term history for partial chains CH for a random assignment (indifferently in
ES or in {P}). Just before the random assignment, the history for external
partial chains ECH is a set which includes all the tuples (y0, k1, k2, 0) such that
((k1, k2), y0) ∈ ES+, while the history for middle partial chains MCH is a set
which includes all the tuples (y7, k1, k2, 7) such that y7 ∈ P−

7 , x8 = y7⊕k2 ∈ P+
8 ,

and x9 = P+
8 (x8)⊕ k1 ∈ P+

9 . Then CH = ECH ∪MCH.14

Sufficient Condition for Non-abortion: Bad Events. At the beginning,
note that all the discussions in the rest part of this subsection are made under the
condition that the event BadLockMid does not happen. Under this condition, the
bounds in Lemma 3 hold, and we have |ECH| ≤ 5q2, |MCH| ≤ 8q3, |CH| ≤ 13q3.

The Random Values from P Hit Adapted Values. Some entries in P4 and P12

are due to adaptation (forceval(x, y,⊥, l)). They may not be consistent with
the values due to P, so that during a later execution of InnerP(l, δ, z), it might

be that P.P(l, δ, z) ∈ P δ
l and S̃ aborts. The first event BadHitAdapt is due to

this situation.

Definition 9. The event BadHitAdapt occurs if when S̃ queries P, the obtained

random value z′ = P.P(i, δ, z) has already been in P δ
i .

Since |P4|, |P12| ≤ 6q2, the overall probability that BadHitAdapt occurs is at

most |P4| · |P4|
2n−|P4| + |P12| · |P12|

2n−|P12| ≤
72q4

2n−6q2 .

13 Note that if C = D then both yi = val−i (D) and yj = val−j (C) hold.
14 The middle chain set can also be defined as the 5-tuples formed by the entries in

the five middle rounds. Conditioned on ¬BadLockMid, the size of such a set is only
O(q2). However, this modification does not essentially improve the overall security
bound, because at current time, the bottleneck is the O(q8) quantity brought in by
Lemma 4 rather than the probability of the bad events in this part.
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The Random Value from E Unexpectedly Hits Entries in {P}. An answer from
E is bad if it hits any entry in P1 or P15. This is captured by BadE.

Definition 10. The event BadE occurs if when Ẽ makes a query (+, (k1, k2), y0)

to E.E, the answer satisfies E.E(+, (k1, k2), y0)⊕ k2 ∈ P−
15; or, when Ẽ queries

(−, (k1, k2), x16), the answer satisfies E.E(−, (k1, k2), x16)⊕ k1 ∈ P+
1 .

Since both |P1| and |P15| are at most 5q2, Pr[BadE] ≤ |ES| · 5q2

2n−|ES| ≤
25q4

2n−5q2 .

Assume that BadE does not happen. Then it can be easily checked that for any
chain C and any i ≤ 14, if C ∈ CH ∧ val−i (C) = ⊥ before a random forward
assignment in ES, then val−i (C) remains ⊥ after this assignment. Similarly, for
any chain C and any i ≥ 2, if C ∈ CH∧val+i (C) = ⊥ before a random backward
assignment in ES, then val+i (C) remains ⊥ after this assignment.

The Random Values from P Unexpectedly Extend Active Chains. Consider a
chain C ∈ CH. We expect that after a “random assignment with direction δ” in
{P}, at most one value valδi (C) changes from ⊥ to non-empty (BadP), while no

value valδi (C) changes from ⊥ to non-empty (BadInvP).

Definition 11. The event BadP happens if one of the following happens in D
Σ2

:

– (due to a random forward assignment) when S̃ queries P.P(i,+, xi), there
is a chain C = (yj , k1, k2, j) ∈ CH such that val+i (C) = xi, and after the
subsequent random forward assignment in Pi it holds val+i+1(C) ∈ P+

i+1 (in

case i+ 1 ≤ 15) or ((k1, k2), val
+
i+1(C)) ∈ ES− (in case i+ 1 = 16).

– (due to a random backward assignment) when S̃ queries P.P(i,−, yi), there
is a chain C = (yj , k1, k2, j) ∈ CH such that val−i (C) = yi, and after the
subsequent random backward assignment in Pi it holds val

−
i−1(C) ∈ P−

i−1 (in

case i− 1 ≥ 1) or ((k1, k2), val
−
i−1(C)) ∈ ES+ (in case i− 1 = 0).

Since |CH| ≤ 13q3, there are at most 13q3 · 15 random assignments that are able
to lead to BadP (indifferently forward or backward ones), each with probability

at most 6q2

2n−6q2 since |ES|, |Pi| ≤ 6q2 for any i.15 Hence Pr[BadP] ≤ 13q3 · 15 ·
6q2

2n−6q2 ≤ 1170q5

2n−6q2 .

Definition 12. The event BadInvP happens if one of the following happens in

D
Σ2

:

– (due to a random forward assignment) when S̃ queries P.P(i,+, xi), there
is a chain C = (yj , k1, k2, j) ∈ CH such that val−i (C) = P.P(i,+, xi).

– (due to a random backward assignment) when S̃ queries P.P(i,−, yi), there
is a chain C = (yj , k1, k2, j) ∈ CH such that val+i (C) = P.P(i,−, yi).

15 For clearness, consider an example: for a forward one which adds (x1,P.P(1,+, x1))
to P1 and C = (yj , k1, k2, j) ∈ CH, if val+1 (C) = x1, then the probability is

Pr[P.P(1,+, x1) ⊕ k2 ∈ P+
2 ] ≤ |P2|

2n−|P1|
≤ 6q2

2n−6q2
. The claim that |Pi| ≤ 6q2 for

any i follows from Lemma 3.
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Since |Pi| ≤ 6q2 for any i, there are at most 6q2 · 15 possible random as-
signments in {P}, each (indifferently forward or backward) is able to lead to

BadInvP with probability at most |CH|
2n−6q2 (also consider an example: for a for-

ward one which adds (x1,P.P(1,+, x1)) to P1, the probability is Pr[∃C ∈
CH s.t. P.P(1,+, x1) = val−1 (C)] ≤ |CH|

2n−|P1| ). Hence Pr[BadInvP] ≤ 6q2 · 15 ·
13q3

2n−6q2 ≤ 1170q5

2n−6q2 .

Bad Events around the Middle Rounds. The event BadMidP concentrates on the
random assignments in the 3 middle rounds.16 In D

Σ2
, consider a set of chains

LMC,17 which consists of all the 5-tuples (y6, (x7, y7), (x8, y8), (x9, y9), x10) ∈
P−
6 × P7 × P8 × P9 × P+

10 such that y6 ⊕ x7 = y8 ⊕ x9 and y7 ⊕ x8 = y9 ⊕ x10.

Definition 13. In D
Σ2

, the event BadMidP happens if |LMC| is enlarged by
any random assignment in P7, P8, or P9.

Consider a random assignment in P7: if it is a forward one, then the prob-

ability that it leads to BadMidP is at most |P8|·|P9|·|P10|
2n−|P7| ≤ 8q3

2n−2q ; if it is a

backward one, then the probability is at most |P6|·|P8|·|P9|
2n−|P7| ≤ 8q3

2n−2q . Similarly

for a random assignment in P10. For random assignments in P8, a forward one

triggers BadMidP with probability at most |P6|·|P7|·|P9|
2n−|P8| ≤ 8q3

2n−2q , while a back-

ward one triggers with probability at most |P10|·|P9|·|P7|
2n−|P8| ≤ 8q3

2n−2q . By the above,

Pr[BadMidP] ≤ 3 · (2q) · 8q3

2n−2q ≤ 48q4

2n−2q .

Colliding Chains. An answer from P is bad if two active chains C and D un-
expectedly valδi (C) = valδi (D) after a random assignment. This is captured by
BadlyCollide (this term is borrowed from [CHK+14]).

Definition 14. We say that event BadlyCollide happens if during D
Σ2

, there ex-
ist two chains C,D ∈ CH such that with respect to a random forward assignment
in {P}, the following three are simultaneously fulfilled:

– Before the assignment, C and D are not equivalent;
– Before the assignment, val+l (C) ̸= val+l (D), and val+l+1(C) = ⊥∨val+l+1(D) =

⊥;18

– After the assignment, val+l+1(C) = val+l+1(D) ̸= ⊥.

BadlyCollide also happens if the following three are simultaneously fulfilled with
respect to a random backward assignment in {P}:
16 It seems a bit inelegant to define three (actually four, if BadLockMid is counted) bad

events around random assignment in {P}. However we really did not figure out an
approach which is both elegant and able to result in such a low security bound.

17 Long Middle Chain.
18 Different from BadlyCollide in [CHK+14], here the two values are restricted to be

obtained from the same direction.
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– Before the assignment, C and D are not equivalent;
– Before the assignment, val−l (C) ̸= val−l (D), and val−l−1(C) = ⊥∨val−l−1(D) =

⊥;
– After the assignment, val−l−1(C) = val−l−1(D) ̸= ⊥.

With respect to a fixed pair of chains C,D ∈ CH and a single random for-
ward assignment, consider the probability of BadlyCollide (due to val+l+1(C)

suddenly equals val+l+1(D)). Wlog assume that val+l+1(C) = ⊥ before this as-
signment. Then, conditioned on ¬BadP, this random assignment has to define
P+
l (val+l (C)); and after the assignment, it holds val+l+1(C) = P.P(l,+, val+l (C))⊕

k′ where k′ is the corresponding key. By this, Pr[val+l+1(C) = val+l+1(D)] ≤
1

2n−|Pl| ≤ 1
2n−6q2 (as val+l+1(D) ̸= ⊥ after the assignment and val+l (C) ̸=

val+l (D), val+l+1(D) ̸= ⊥ must already hold before it). The discussion for Bad-
lyCollide due to random backward assignments is similar by symmetry. Since
CH ≤ 13q3, there are at most (13q3)2 pairs of chains (C,D); for each (C,D),
there are at most 15 random assignments that are possible to lead to BadlyCollide

(indifferently forward or backward). Hence Pr[BadlyCollide | ¬BadP] ≤ 2535q6

2n−6q2 .

A tuple of primitives (E,P) is good if none of the seven bad events (BadLockMid,
BadHitAdapt, BadE, BadP, BadInvP, BadMidP, BadlyCollide) happens during the

Σ2 execution D
Σ2(Ẽ

E,S̃ẼE,P)
; and such Σ2 executions are also good. The overall

probability of the seven cumulates to 28·q6
2n + 72q4

2n−6q2 +
25q4

2n−5q2 +
1170q5

2n−6q2 +
1170q5

2n−6q2 +
48q4

2n−2q +
2535q6

2n−6q2 ≤ 213.4·q6
2n (assuming 6q2 < 2n/2). In the next paragraph, we will

show that S̃ does not abort during such good Σ2 executions.

No Abortion in Good Executions: the Formal Proof. The abortions are
mainly due to the adaptations of chains, hence this paragraph mainly focus on
proving this type of abortion impossible. Following an old convention [CHK+14],

we first exhibit basic properties of good executions, then prove that S̃ does not
abort due to adaptations, and finally present the main non-abortion argument
(at the end of this paragraph). Note that all the lemmas below implicitly assume

that in the Σ2 execution, up to the point they focus on, S̃ has not aborted.

Basic Properties. First, the relation ≡ is invariant during random assignments.

Lemma 6. During a good execution D
Σ2

, two chains C, D ∈ CH are equiva-
lent before any random assignment if and only if they are equivalent after the
assignment.

Proof. Since no entry in the sets will be overwritten, C ≡ D before a ran-
dom assignment trivially implies C ≡ D after it. As to the backward direction,
the case C[4] = D[4] is trivial. Wlog assume that C[4] = 0 and D[4] = 7,
and val−0 (D) ̸= C[1] ∧ val−7 (C) ̸= D[1] before a random assignment while
val−0 (D) = C[1] after it. Note that the random assignment is necessarily in
{P}, since assignments in ES cannot suddenly lead to val−0 (D) = C[1]; also,
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since no overwriting, it must be that there exists j ∈ {1, 2, 3, 4, 5} such that
the random assignment is in Pj and val+j (C) /∈ P+

j ∧ val−j (D) /∈ P−
j before the

assignment. Then, if the assignment is a forward one, BadInvP happens with
respect to D; if it is a backward one, BadInvP happens with respect to C. ⊓⊔

Second, a chain C in ChainQueue has been in CH even before it is enqueued.

Lemma 7. During an execution D
Σ2

, if at some point a chain C is enqueued
during a call to InnerP, then it has been in CH right before this call to InnerP.

Proof. This can be seen by construction: a chain C = (y0, k1, k2, 0) can be en-
queued only if it has been in ES, while a chain C = (y7, k1, k2, 7) can be enqueued
only if y7 ∈ P−

7 and x8 = y7 ⊕ k2 ∈ P+
8 and x9 = P+

8 (x8)⊕ k1 ∈ P+
9 . ⊓⊔

Third, all the chains completed during the same execution of RecursiveCo-
mpletion are to be adapted at the same Pl.

Lemma 8. During a good execution D
Σ2

, we have:

(i) Assume that a chain C is to be adapted at Pl. Then all the chains enqueued
during the completion of C are also to be adapted at Pl;

(ii) All the chains completed during the same execution of RecursiveComplet-
ion are to be adapted at the same Pl.

Proof. First, consider proposition (i). Consider any tuple (C, 4) in ChainQueue
where C = (y0, k1, k2, 0). By construction, val−14(C) ∈ P−

14 even before C was
enqueued, so that during the execution of Complete(C, 4), the subsequent call
InnerP(14,−, val−14(C)) (in EvalBWD) will not enqueue any chain; only the
subsequent call InnerP(6,−, val−6 (C)) may enqueue chains. By construction,
these chains are to be adapted at P4, which is exactly the same as C.

Consider any tuple (C, 4) in ChainQueue where C = (y7, k1, k2, 7). By con-
struction, val+10(C) ∈ P+

10 even before C was enqueued, so that when C is com-
pleted, the subsequent call InnerP(10,+, val+10(C)) (in EvalFWD) will not
enqueue any chain; only the subsequent call InnerP(2,+, val+2 (C)) enqueues
chains. These chains are to be adapted at P4, which is exactly the same as C.

The other two cases (y0, k1, k2, 0, 12) and (y7, k1, k2, 7, 12) are similar by sym-
metry. These discussions establish proposition (i).

Then, wlog consider the case RecursiveCompletion(2,+, x2), in which
l = 4. The initial call which led to RecursiveCompletion(2,+, x2) is of the
form InnerP(2,+, x2), and all the tuples enqueued by this InnerP call are of
the form (yj0, k

j
1, k

j
2, 0, 4), so that by proposition (i), all the chains enqueued and

completed during this execution are to be adapted at P4. The other three cases
where RecursiveCompletion is called with parameters (6,−, y6), (10,+, x10),
and (14,−, y14) are similar. These establish proposition (ii). ⊓⊔

The forth one is an implication of Lemma 8: a chain C will not suddenly be
equivalent to a chain in ChainQueue.
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Lemma 9. During a good execution D
Σ2

, let C be a partial chain which is
enqueued at some time, and assume that no chain equivalent to C was enqueued
before C is enqueued. Then from the point C is enqueued, at any point until C
is dequeued, it is not possible that D ≡ C for any chain D in ChainQueue.

Proof. The case C[4] = D[4] is trivial. For other cases, note that by construction,
C andD must be enqueued during the same execution ofRecursiveCompletion,
so that by Lemma 8 (ii), they are to be adapted at the same Pl.Wlog assume that
l = 4, D[4] = 0, and C[4] = 7. Also assume that D[2] = C[2] and D[3] = C[3],
since otherwise they are never equivalent. Then if val−7 (D) ̸= ⊥∧val−7 (D) ̸= C[1]
before C is enqueued, val−7 (D) = C[1] is never possible, so that D ≡ C is not
possible. Otherwise, if val−7 (D) = ⊥ before C is enqueued, then since there is
no call to ForceVal(·, ·,⊥, 12) in this execution of RecursiveCompletion
(Lemma 8 (ii)), the last assignment before val−7 (D) ̸= ⊥ has to be a random
one, after which D ≡ C is not possible by Lemma 6 (note that C,D ∈ CH by
assumption and Lemma 7). The arguments for all the other possible cases follow
the same line. ⊓⊔

Last, a computation path will not be completed twice.

Lemma 10. During a good execution D
Σ2

, assume that at some point a chain
C = (yi, k1, k2, i) is enqueued. If a chain D equivalent to C had been enqueued
before this point, then C ∈ CompSet when C is dequeued.

Proof. By construction, no entry in any of the sets can be overwritten; hence
the equivalence of C and D is kept till D is adapted, so that right after D is
adapted, it still holds D ≡ C. Regardless of the value of i, C will be obtained by
the two subsequent calls to EvalFWD, so that C ∈ CompSet holds right after
the execution Complete(D, ·, ·), and also keeps holding till C is dequeued. ⊓⊔

S̃ Does Not Abort due to Adaptations. The goal is to show that val+l (C) /∈ P+
l

and val−l (C) /∈ P−
l right before any call to ForceVal(val+l (C), val−l (C),⊥, l).

Assume that in a good execution D
Σ2

, C is a partial chain which is enqueued at
some time and to be adapted at Pl, and no chain equivalent to C was enqueued
before C is enqueued (this constitutes the common assumption for Lemma 11,
12, and 13). Consider the whole completion process of C, we have: first, before
C is enqueued, the “endpoints” of C are sufficiently far from its adaptation zone
Pl, so that the two values val+l (C) and val−l (C) are ⊥ and are not in Pl.

Lemma 11. Before the call to InnerP which led to C being enqueued, it holds
val+l−1(C) = ⊥ and val−l+1(C) = ⊥.19

Proof. Consider the case C = (y0, k1, k2, 0, 4) is enqueued by InnerP(2,+, x2):
then before this call, val+3 (C) = ⊥ clearly holds, since val+2 (C) = x2 /∈ P+

2 .
On the other hand, assume that val−5 (C) ̸= ⊥, then we have val−i (C) ∈ P−

i

for i = 6, 7, 8, 9, 10. Denote by (xi, yi) these 5 entries. Then, consider the last
random assignment before all these 5 entries are in {P}:
19 Note that val+l (C) = val−l (C) = ⊥ /∈ P δ

l is an implication of this claim.
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(i) it cannot have been in any of P7, P8, and P9, otherwise BadMidP happens;
(ii) it cannot have been a forward assignment in P6 nor a backward one in P10,

otherwise BadInvP happens (with respect to the chain (y7, y8⊕x9, y7⊕x8, 7)).

By these, the last random assignment must have been a backward one in P6

or a forward one in P10, after which a chain equivalent to C would have been
enqueued, a contradiction. Hence the lemma holds in this case.

Next, consider the case C = (y7, k1, k2, 7, 4) is enqueued by InnerP(6,−, y6):
then before this call, val−5 (C) = ⊥ clearly holds. On the other hand, assume
val+3 (C) ̸= ⊥, then we have ((k1, k2), val

+
16(C)) ∈ ES− and val+i (C) ∈ P+

i for
i = 1, 2, 14, 15. Denote by (xi, yi) the four corresponding entries in {P}, and let
x16 = val+16(C) and y0 = ES−((k1, k2), x16). Then, consider the last random
assignment before this situation:

(i) it cannot have been in ES, otherwise either E.E(+, (k1, k2), y0) ⊕ k2 ∈ P−
15

or E.E(−, (k1, k2), x16)⊕ k1 ∈ P+
1 and BadE happens;

(ii) it cannot have been a backward one in P1 or P2, nor a forward one in P14 or
P15, otherwise BadInvP happens (with respect to the chain (y0, k1, k2, 0));

(iii) it cannot have been a forward one in P1 nor a backward one in P15, otherwise
BadP happens (with respect (y0, k1, k2, 0)).

By these, the last random assignment must have been a forward one in P2 or
a backward one in P14, after which a chain equivalent to C would have been
enqueued, a contradiction. Hence the lemma also holds in this case.

The two cases when l = 12 are similar by symmetry. ⊓⊔

Then, during the period between the point C is enqueued and the point C is
dequeued, if val+l (C) or val−l (C) is added to Pl, then there is a chain D which
shares the same val+l or val−l value with C.20

Lemma 12. If valδl (C) ∈ P δ
l (δ ∈ {+,−}) when C is dequeued, then there is a

chain D such that valδl (C) = valδl (D) ̸= ⊥ and valδl (C) is added to P δ
l during

completion of D.

Proof. To simplify notations, we assume l = 4, and focus on val+4 (C); but the ar-
gument is completely generic. From Lemma 11 we get that before C is enqueued,
val+3 (C) = ⊥, which implies val+4 (C) = ⊥.

Consider the last assignment in the sets before val+4 (C) ̸= ⊥ holds. We show
that immediately after this assignment, it holds val+4 (C) /∈ P+

4 . By Lemma
11, this assignment happens earliest right before C is enqueued, at which point
C ∈ CH (by Lemma 7), so that:

(i) it cannot have been a random backward one in {P} as otherwise BadInvP
occurs;

(ii) it cannot have been in ES as otherwise BadE occurs;

20 The proofs of Lemma 12 and Lemma 13 are respectively similar to the first and
second half of the proof of Lemma 16 in the full version of [LS13]. The flow is a bit
too long for IDEM, hence we divide it, and hope this improves readability.
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(iii) it cannot have been due to ForceVal, since by Lemma 8 (ii), the previous
calls to ForceVal during the current execution of RecursiveCompletion
only add entries to P4, so that it is not possible that val+4 (C) = ⊥ due to a
missed entry in P12 which is added by a call to ForceVal.

Therefore the last assignment has to be a random forward one in {P}, after
which val+4 (C) /∈ P+

4 as otherwise BadP happens.
Now, since val+4 (C) /∈ P+

4 immediately after val+4 (C) ̸= ⊥ holds, while
val+4 (C) ∈ P+

4 when C is dequeued, the only possibility is that val+4 (C) is
added to P+

4 during completion of another chain D, for which at least val+4 (C) =
val+4 (D) ̸= ⊥ holds. ⊓⊔

But it is not possible that C shares the same val+l /val
−
l value with some

chain D. Consequently, during the period between the point C is enqueued and
the point C is dequeued, the two values val+l (C) and val−l (C) cannot be added
to Pl even if they are changed to non-empty.

Lemma 13. When C is dequeued, it holds val+l (C) /∈ P+
l and val−l (C) /∈ P−

l .

Proof. To simplify notations, we assume l = 4, and show x4 /∈ P+
4 when C

is dequeued; but the argument is completely generic. Assume otherwise, i.e.
val+4 (C) ∈ P+

4 when C is dequeued, then from Lemma 12, we get that there is
a chain D such that: (i) val+4 (D) = val+4 (C) ̸= ⊥ when C is dequeued; (ii) D is
enqueued before C is enqueued and is dequeued after C is enqueued; (iii) at any
point, C and D are not equivalent. For the third point, note that by assumption
(the common assumption of Lemma 11, 12, and 13), C and D are not equivalent
when C is enqueued, and then by Lemma 9, from the point C is enqueued, at
any point until C is dequeued, it is not possible that C ≡ D.

We then argue that val+4 (D) = val+4 (C) ̸= ⊥ is not possible for any such
chain D. Consider three cases as follows:

Case I: at some point (in D
Σ2

), it holds val+2 (D) ̸= val+2 (C). Consider the point
right before the call to InnerP(i, δ, zC) which led to C being enqueued. At this
point, we have:

(i) C has been in CH (Lemma 7);
(ii) D also has been in CH since D is enqueued even earlier (note that this

also holds in the case where D and C are enqueued by the same call to
InnerP(i, δ, zC));

(iii) val+3 (C) = ⊥ (by Lemma 11).

So that the last assignment (which happens earliest right before C is enqueued)
before val+3 (C) ̸= ⊥ ∧ val+3 (D) ̸= ⊥ has to be a random forward one in {P},
because:

(i) it cannot have been a backward one in {P} as otherwise BadInvP occurs;
(ii) it cannot have been in ES as otherwise BadE occurs;
(iii) by Lemma 8 (ii), it cannot have been due to ForceVal (similar to the

discussion in the proof of Lemma 12).
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Therefore, right after val+3 (C) ̸= ⊥ ∧ val+3 (D) ̸= ⊥ holds, it holds val+3 (C) ̸=
val+3 (D), otherwise the last random forward assignment implies BadlyCollide
(we’ve argued that C, D are never equivalent). Similarly, val+4 (C) ̸= val+4 (D)
must hold in the future, otherwise one of the bad events happens.

The discussions in Case I exclude the possibility that val+2 (D) ̸= val+2 (C)
while val+3 (D) = val+3 (C) ̸= ⊥. In this case, val+4 (D) = val+4 (C) ̸= ⊥ is possible;
but this case itself is not possible.

Case II: at some point, it holds val+2 (D) = val+2 (C) ̸= ⊥ and val+3 (D) ̸=
val+3 (C). Similarly to Case I, the last assignment (which happens after C and
D are enqueued) before val+4 (C) ̸= ⊥ ∧ val+4 (D) ̸= ⊥ holds has to be a random
forward one in {P}, after which val+4 (C) = val+4 (D) ̸= ⊥ is not possible due to
the absence of BadlyCollide.

Case III: at some point, it holds val+2 (D) = val+2 (C) ̸= ⊥ and val+3 (D) =
val+3 (C) ̸= ⊥. In this case val+4 (D) = val+4 (D) ̸= ⊥ is clearly not possible as
otherwise D ≡ C.

These terminate the proof. ⊓⊔

The above establish that S̃ does not abort due to adaptations.

Lemma 14. In a good execution D
Σ2

, before any call to ForceVal(xl, yl,⊥, l)
(l ∈ {4, 12}), xl /∈ P+

l ∧ yl /∈ P−
l must hold.

Proof. Assume that the call to ForceVal(xl, yl,⊥, l) is made during the exe-
cution of Complete(C, l). Then it necessarily be that C /∈ CompSet when C is
dequeued, as otherwise the ForceVal call would not happen. Then from Lemma
13 we get that when C is dequeued, it holds val+l (C) /∈ P+

l and val−l (C) /∈ P−
l .

Consider val+l (C): if val+l (C) ̸= ⊥ when C is dequeued, then val+l (C) /∈ P+
l is

clearly kept; if val+l (C) = ⊥ when C is dequeued, then by construction, val+l (C)
can only be changed non-empty by a random forward assignment in Pl−1 which
happens during the execution of Complete(C, l) (otherwise BadP happens),
and val+l (C) /∈ P+

l holds after this point otherwise BadP happens. Similarly,
val−l (C) /∈ P−

l right before the call to ForceVal. ⊓⊔

S̃ Does Not Abort. Since the abortion due to adaptations has been proved im-
possible, we finally obtain the non-abortion lemma itself.

Lemma 15. S̃ does not abort in a good execution D
Σ2

.

Proof. By construction, S̃ only aborts during calls to ForceVal. But in a good
execution, we have: first, S̃ does not abort during the calls ForceVal(z, z′,+, i)
and ForceVal(z, z′,−, i), otherwise BadHitAdapt happens; second, by Lemma

14, the calls ForceVal(x, y,⊥, l) also do not lead to S̃ aborts. ⊓⊔
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3.7 Final Transition from Σ2 to Σ3

This part is achieved by a tweaked version of the randomness mapping argu-
ment [CHK+14], and is actually very standard. As the beginning, with respect
to D, we introduce some notions first (borrowed from [ABD+13] and [CS15]).

First, recall the notion good Σ2-tuple: α = (E,P) is a good Σ2-tuple if none

of the bad events defined around Σ2 executions happens during D
Σ2(Ẽ

E,S̃ẼE,P)

(page 24). Second, denote by R the set of all possible tuples of sets {P} (of S̃)
standing at the end of Σ2 executions when running with good Σ2-tuples. For a
good Σ2-tuple α = (E,P) and a tuple of sets {P} ∈ R, if the sets of S̃ standing

at the end of D
Σ2(α)

share exactly the same contents with {P}, then denote

by D
Σ2(α) → {P}. Third, consider a set-tuple {P} = {P1, . . . , P15} ∈ R. For a

tuple of random permutations P, if for any z ∈ P δ
i , it holds P.P(i, δ, z) = P δ

i (z),
then we said that P coincides with {P}, and denote P ∼= {P}.

Then, we have the following lemma, which states that the encryption and
decryption results of IDEM15 computed from {P} are the same as those of Ẽ.

Lemma 16. Suppose that Ẽ.E(δ, (k1, k2), z) is queried during a good execution

D
Σ2

. Then, at the end of D
Σ2

, when δ = +, we have Ẽ.E(+, (k1, k2), x) =

val+16(x, k1, k2, 0); and Ẽ.E(−, (k1, k2), y) = val−0 (y ⊕ k2, k1, k2, y, 15) when δ =
−.

Proof. Wlog consider δ = +. If Ẽ.E(+, (k1, k2), z) is made by S̃, then S̃ is com-
pleting a chain, so that the equality holds right after this completion – and will
keep holding till the end since no entry will be overwritten. If Ẽ.E(+, (k1, k2), z)
is issued by D, then D will emulate a call to EvalFWD(x, k1, k2, 0, 15). Let
C = (x, k1, k2, 0), and let xi = val+i (C) and yi = val−i (C) for i = 6, 7, 8, 9, 10;

by the above, at the end of D
Σ2

, it holds (xi, yi) ∈ Pi. Consider the last call to
InnerP before this situation: some impossibilities are excluded

– it cannot have been InnerP(7, ·, ·), InnerP(8, ·, ·), nor InnerP(9, ·, ·), oth-
erwise BadMidP happens;

– it cannot have been InnerP(6,+, x6) nor InnerP(10,−, y10), otherwise
BadInvP happens with respect to (y7, k1, k2, 7).

So that the only two possibilities are InnerP(6,−, y6) and InnerP(10,+, x10),
after which (y7, k1, k2, 7) ≡ C would have been enqueued and completed and the
equality holds. ⊓⊔

The number of adaptations is the same as the number of queries to E.

Lemma 17. During a good Σ2 execution D
Σ2(Ẽ

E,S̃ẼE,P)
, the number of adapted

entries in {P} (i.e. calls to ForceVal(x, y,⊥, l)) equals |ẼE.ES|.

Proof. By construction, each call ForceVal(x, y,⊥, l) corresponds to an execu-

tion Complete which further corresponds to a query to Ẽ. On the other hand,
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each query to Ẽ made by S̃ clearly corresponds to a call to ForceVal(x, y,⊥, l);

while each query to Ẽ made by D will lead to an execution of EvalFwd (or
EvalBwd) and an execution of Complete – a call to ForceVal(x, y,⊥, l).

Above is the previous proof in the submission. It indeed oversimplified. We
complement the points: (i) it’s clear that two different ForceVal-calls/two dif-

ferent Complete-calls cannot correspond to the same entry in ẼE.ES; (ii) two

different entries in ẼE.ES cannot correspond to the same call to ForceVal ei-
ther. Because two different entries in ẼE.ES ((y0, k1, k2, 0), (y

′
0, k

′
1, k

′
2, 0)) must

correspond to two different Complete-calls. As Complete-calls are processed
one-by-one, if two such calls lead to the same ForceVal-call, the execution
would abort during the second one. ⊓⊔

The Σ2 and Σ3 executions that are “linked” by the sets of S̃ behave the same
in the view of D.

Lemma 18. Let α = (E,P) be a good Σ2-tuple, and denote by {P} the sets of

S̃ standing at the end of D
Σ2(α)

. Then for any tuple P′ such that P′ ∼= {P}, the
transcripts of queries and answers of D in D

Σ2(α)
and D

Σ3(P
′)

are the same;

and D
Σ2(α)

= D
Σ3(P

′)
.

Proof. By an induction, assume that the transcripts obtained by D are the same
up to some point in the two executions, and consider the next query of D. Since
D is deterministic, the next query in the two executions are the same. We argue
that the answers obtained in the two executions are the same. Depending on the
type of this query, we distinguish two cases:

(i) the query is to P: then the answers are the same, since the answer obtained

in D
Σ2(α)

equals the value in {P}, and P′ coincides with {P};
(ii) the query is to E: then due to Lemma 16 and the fact that P′ ∼= {P}, the

answers obtained in D
Σ2(α)

and D
Σ3(P

′)
are the same.

Therefore, the two transcripts of D are the same. Since D is deterministic, the
two outputs of D are also the same. ⊓⊔

For any {P} ∈ R, the probabilities of the following two events are close:

(i) a Σ2 execution with a random tuple (E,P) generates {P};
(ii) a random tuple P coincides with {P}.

Lemma 19. For any {P} ∈ R, it holds

PrP[P ∼= {P}]

PrE,P[D
Σ2(E,P) → {P}]

≥ 1− 25q4

2n
.

Proof. Let {P} = {P1, . . . , P15}. Then PrP[P ∼= {P}] =
∏15

i=1

∏|Pi|−1
j=0

1
2n−j . As

to Pr[D
Σ2(E,P) → {P}], consider a good Σ2-tuple α′ = (E′,P′) which satisfies
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D
Σ2(E

′,P′) → {P}. It can be easily checked that D
Σ2(E,P) → {P} if and only

if the transcripts of the combination (D, S̃) in D
Σ2(E,P)

and D
Σ2(E

′,P′)
are the

same21 – also, the random values accessed during D
Σ2(E,P)

are exactly the same

as those accessed during D
Σ2(E

′,P′)
. Assume that during D

Σ2(E
′,P′)

, there are
u (v, resp.) entries in P4 (P12, resp.) that are defined by random assignments,

and let w = |ẼE′
.ES|. Then it holds

Pr[D
Σ2(E,P) → {P}] ≤(

3∏
i=1

|Pi|−1∏
j=0

1

2n − j
) · (

11∏
i=5

|Pi|−1∏
j=0

1

2n − j
) · (

15∏
i=13

|Pi|−1∏
j=0

1

2n − j
)

· (
u−1∏
j=0

1

2n − j
) · (

v−1∏
j=0

1

2n − j
) · ( 1

2n − w
)w.

By Lemma 17, it holds u + v + w = |P4| + |P12|. Moreover it holds w ≤ 5q2

(Lemma 5), |P4| ≥ u, and |P12| ≥ v, hence

PrP[P ∼= {P}]

PrE,P[D
Σ2(E,P) → {P}]

≥
(
∏|P4|−1

j=0
1

2n−j ) · (
∏|P12|−1

j=0
1

2n−j )

(
∏u−1

j=0
1

2n−j ) · (
∏v−1

j=0
1

2n−j ) · (
1

2n−w )w

≥
( 1
2n )

w

( 1
2n−w )w

≥ 1− w2

2n
≥ 1− 25q4

2n
.

as claimed. ⊓⊔

An implication of Lemma 18 is that the good Σ2 executions can be parti-
tioned with respect to the sets generated by them: for any {P} ∈ R and any two

tuples (E,P) and (E′,P′), once D
Σ2(E,P) → {P} and D

Σ2(E
′,P′) → {P}, then

D
Σ2(E,P)

= D
Σ2(E

′,P′)
. With this in mind, let Θ1 be a subset of R such that for

any tuple (E,P) such that D
Σ2(E,P) → {P} ∈ Θ1 it holds D

Σ2(E,P)
= 1. Then

the following inequality holds. Its interpretation is that the Σ3 executions in
which D outputs 1 can be partitioned with respect to the member of Θ1 without
any “repeat count”.

Lemma 20. PrP[D
Σ3(P)

= 1] ≥
∑

{P}∈Θ1
PrP[P ∼= {P}].

Proof. We show that for any tuple P∗, there exists at most one {P} ∈ R s.t.
P∗ ∼= {P}. Assume otherwise, i.e. ∃{P}′ ∈ R s.t. {P} ̸= {P}′ ∧ P∗ ∼= {P} ∧
P∗ ∼= {P}′. Assume that for two good tuples α = (E,P) and α′ = (E′,P′),

it holds D
Σ2(α) → {P} and D

Σ2(α
′) → {P}′. Then, consider any query of the

combination (D, S̃) in the two executions D
Σ2(α)

and D
Σ2(α

′)
: (i) any query

to P/P′ obtains the same answer, since P.P(i, δ, z) = P δ
i (z) = P∗.P(i, δ, z) =

P ′δ
i (z) = P′.P(i, δ, z); (ii) by Lemma 16, any query to E/E′ also obtains the same

21 This can be shown by an induction similar to that of Lemma 18.
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answer. By an induction similar to Lemma 18, we have that the transcripts of

the combination (D, S̃) in the two executions D
Σ2(α)

and D
Σ2(α

′)
are the same,

so that the two set-tuples {P} and {P}′ should be the same, a contradiction.
After this, we have

PrP[D
Σ3(P)

= 1] ≥ PrP[D
Σ3(P)

= 1 ∧ ∃{P} ∈ R s.t. P ∼= {P}]

=
∑

{P}∈Θ1

PrP[P ∼= {P}] (by Lemma 18)

as claimed. ⊓⊔

Then the following lemma completes the transition from Σ2 to Σ3, and ter-
minates the indifferentiability proof for IDEM15.

Lemma 21. |PrP[D
Σ3(IDEMP

15,P)
= 1]− PrE,P[D

Σ2(Ẽ
E,S̃ẼE,P)

= 1]| ≤ 214·q6
2n .

Proof. Wlog assume that PrE,P[D
Σ2(E,P)

= 1] ≥ PrP[D
Σ3(P)

= 1], then

|PrP[D
Σ3(P)

= 1]− PrE,P[D
Σ2(E,P)

= 1]|
≤PrE,P[(E,P) is not good]

+ PrE,P[(E,P) is good ∧D
Σ2(E,P)

= 1]− PrP[D
Σ3(P)

= 1]

≤213.4 · q6

2n
+

∑
{P}∈Θ1

(PrE,P[D
Σ2(E,P) → {P}]− PrP[P ∼= {P}]) (by Lemma 20, 15)

≤213.4 · q6

2n
+

∑
{P}∈Θ1

25q4

2n
· PrE,P[D

Σ2(E,P) → {P}] (by Lemma 19) ≤ 214 · q6

2n

as claimed. ⊓⊔

4 Sequential Distinguisher for IDEM6

Consider IDEMP
6 from six independent permutations P = (P1, . . . ,P6). The

distinguisher DIDEMP
6 ,P fixes k2 to an arbitrarily value to reduce IDEM6 to

SEM3, and then runs LS’s distinguisher on SEM3 [LS13], as follows:

(1) choose an arbitrary value k2 ∈ {0, 1}n;
(2) choose arbitrary values x5, k1, k

′
1 ∈ {0, 1}n, where k1 ̸= k′1;

(3) compute y4 := x5 ⊕ k1 and y′4 := x5 ⊕ k′1;
(4) compute x3 := P−1

3 (k2 ⊕P−1
4 (y4)) and x′

3 := P−1
3 (k2 ⊕P−1

4 (y′4)), by issuing
queries to P;

(5) compute y2 := x3 ⊕ k1 and y′2 := x′
3 ⊕ k′1;

(6) compute k′′1 := y2 ⊕ x′
3 and k′′′1 := y′2 ⊕ x3, and output 0 if k1, k

′
1, k

′′
1 , and

k′′′1 are not pairwise distinct;
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(7) compute x1 := P−1
1 (k2 ⊕P−1

2 (y2)) and x′
1 := P−1

1 (k2 ⊕P−1
2 (y′2)), by issuing

queries to P;
(8) compute x := x1 ⊕ k1, x

′ := x′
1 ⊕ k′1, x

′′ := x1 ⊕ k′′1 , and x′′′ := x′
1 ⊕ k′′′1 ;

(9) query y := E((k1, k2), x), y
′ := E((k′1, k2), x

′), y′′ := E((k′′1 , k2), x
′′), and

y′′′ := E((k′′′1 , k2), x
′′′);

(10) output 1 if y ⊕ y′ ⊕ y′′ ⊕ y′′′ = 0, while output 0 otherwise.

By this, we have the following theorem.

Theorem 3. IDEMP
6 is not seq-indifferentiable from E.

Proof. With respect to the key k2 chosen by DIDEMP
6 ,P, IDEM6 is equivalent to

the following 3-round single-key Even-Mansour cipher SEM∗
3:

SEM∗
3(k1, y0) = k1 ⊕P∗

3(k1 ⊕P∗
2(k1 ⊕P∗

1(k1 ⊕ y0))),

where P∗
1(z) = P2(k2 ⊕P1(z)), P

∗
2(z) = P4(k2 ⊕P3(z)), and P∗

3(z) = P6(k2 ⊕
P5(z)). Moreover, step (2) to step (10) of DIDEMP

6 ,P are equivalent to the se-
quential distinguisher against SEM3 introduced in [LS13]. Then by Theorem 1

in [LS13], DIDEMP
6 ,P has advantage negligibly close to 1. ⊓⊔

As mentioned, the hope of attacking even one more round has been ruled out
by the sequential indifferentiability proof for IDEM7.

5 Seq-Indifferentiability for 7-round IDEM

It is natural to ask whether the additional n-bit key offers more freedom to the
adversary and enable to attack more than this trivial 2× 3 rounds. The second
main result – also the main theorem of this section – provides a negative answer,
and is as follows:

Theorem 4. The 7-round Even-Mansour cipher IDEM7 from seven indepen-
dent random permutations P = (P1, . . . ,P7) and two n-bit keys (k1, k2) alter-
natively xored is strongly and statistically (q, σ, t, ε)-seq-indifferentiable from E,

where σ = q3, t = O(q3), and ε ≤ 27q6

2n = O( q
6

2n ).

The proof is much simpler than that of Theorem 2, since there is no recursive
chain completion. In the following, we first present the simulator, then give the
proof.

5.1 Simulator for IDEM7

To make a distinction from the notations used in Sect. 3, we denote by SE,P

the simulator for IDEM7 with access to E and P. Similarly to SE,P, SE,P also
offers an interface P(i, δ, z) where (i, δ, z) ∈ {1, . . . , 7} × {+,−} × {0, 1}n and
maintains a set Pi for each i to keep the already defined pairs of IO. The other
notations P+

i , P−
i , and |Pi| are all similar to those introduced in the context of
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IDEM15. SE,P uses an additional set ES to maintain the history of its queries
to E, which is similar to the set of ẼE introduced in Sect. 3. We also use the
notations ES+, ES−, and |ES| similar to Sect. 3.

Upon a query to SE,P.P(i, δ, z), SE,P calls an inner procedure SE,P.Pin,
and SE,P.Pin answers with P δ

i (z) if x ∈ P δ
i , or queries P.P(i, δ, z) to obtain the

answer z′ and adds z and z′ to Pi if z
′ /∈ P δ

i while aborts otherwise.
The chain completing mechanism of SE,P is much simpler than that of SE,P,

and is somehow close to that appeared in [CS15]: SE,P completes the potential
partial chains upon receiving a new query SE,P.P(i, δ, x) with i ∈ {3, 4, 5}.
More clearly, when the query is of the form SE,P.P(3,+, x), SE,P.P(4,−, y), or
SE,P.P(5,+, x), SE,P considers all newly created tuples (x3, x4, x5) ∈ P+

3 ×P+
4 ×

P+
5 , and computes k1 := P+

4 (x4)⊕ x5, k2 := P+
3 (x3)⊕ x4. SE,P then evaluates

in IDEM7 both backward and forward until obtaining the corresponding y7 and
x7, that is, computing the following values by calling SE,P.Pin and querying
E, in the order: (1) y2 := x3 ⊕ k1; (2) y1 := SE,P.Pin(2,−, y2) ⊕ k2; (3) y0 :=
SE,P.Pin(1,−, y1)⊕k1; (4) y7 := E.E(+, (k1, k2), y0)⊕k2; (5) x6 := P+

5 (x5)⊕k2;
(6) x7 := SE,P.Pin(6,+, x6) ⊕ k1. SE,P finally aborts if x7 ∈ P+

7 or y7 ∈ P−
7 ,

otherwise adds (x7, y7) to P7 as a newly defined pair of IO.
When the query is SE,P.P(3,−, y), SE,P.P(4,+, x), or SE,P.P(5,−, y), SE,P

considers all newly created tuples (x3, x4, x5) ∈ P+
3 × P+

4 × P+
5 , computes k1

and k2, evaluates in IDEM7 both forward and backward until obtaining the
corresponding x1 and y1, and finally adds (x1, y1) to P1 or aborts if x1 ∈ P+

1 or
y1 ∈ P−

1 . The strategy is illustrated in Fig. 1 (right).
To simplify the reasoning, we introduce a modified simulator T E,P, which is

obtained by embedding two early abort conditions into SE,P:

(i) when a chain C is to be adapted at P1 (P7, resp.), right after the assign-
ment (line 13 or 16 in the code below) inside the call to Pin which led
to C being detected, if the value y2 (x6, resp.) corresponding to C has
been in P−

2 (P+
6 , resp.), then T aborts. This is captured by the procedure

CheckFreeBuffer;
(ii) right after an assignment in P3, P4, or P5 (line 13/16), T aborts if the assign-

ment creates a “lock” in the middle three rounds: for (i, j) ∈ {(3, 4), (4, 5)},
if ∃(xi, yi), (x

′
i, y

′
i) ∈ Pi and (xj , yj), (x

′
j , y

′
j) ∈ Pj such that xi⊕ yj = x′

i⊕ y′j
and yi ⊕xj = y′i ⊕x′

j . This is captured by the procedure CheckLock. This
situation is harmful for the procedure CompChain in some cases.

With all the above in mind, we have the pseudocode of S and T as follows. Note
that the underlined lines only exist in T (say, S does not early abort).

1: Simulator SE,P: Simulator T E,P:
2: Variables: Sets {P} = {P1, . . . , P7} and ES, initially empty
3: public procedure P(i, δ, z)
4: return Pin(i, δ, z)
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5: private procedure Pin(i, δ, z)
6: if z /∈ P δ

i then
7: z′ := P.P(i, δ, z)

8: if z′ ∈ P δ
i then // when i = 1, 7

9: abort
10: CheckFreeBuffer(i, δ, z′)
11: if δ = + then
12: CheckLock(i, z, z′)

13: Pi := Pi ∪ {(z, z′)}
14: else // δ = −
15: CheckLock(i, z′, z)

16: Pi := Pi ∪ {(z′, z)}
17: if i = 3 ∧ δ = + then
18: forall (x4, x5) ∈ P+

4 × P+
5 do

19: CompChain(z, x4, x5, 3, 7)

20: else if i = 4 ∧ δ = + then
21: forall (x3, x5) ∈ P+

3 × P+
5 do

22: CompChain(x3, z, x5, 4, 1)
23: else if i = 5 ∧ δ = + then
24: forall (x3, x4) ∈ P+

3 × P+
4 do

25: CompChain(x3, x4, z, 5, 7)
26: else if i = 3 ∧ δ = − then
27: forall (x4, x5) ∈ P+

4 × P+
5 do

28: CompChain(z′, x4, x5, 3, 1)
29: else if i = 4 ∧ δ = − then
30: forall (x3, x5) ∈ P+

3 × P+
5 do

31: CompChain(x3, z
′, x5, 4, 7)

32: else if i = 5 ∧ δ = − then
33: forall (x3, x4) ∈ P+

3 × P+
4 do

34: CompChain(x3, x4, z
′, 5, 1)

35: return P δ
i (z)

36: private procedure CompChain(x3, x4, x5, i, l)
37: k1 := P+

4 (x4)⊕ x5

38: k2 := P+
3 (x3)⊕ x4

39: if l = 1 then
40: x6 := P+

5 (x5)⊕ k2
41: x7 := Pin(6,+, x6)⊕ k1
42: x8 := Pin(7,+, x7)⊕ k2
43: y0 := E.E(−, (k1, k2), x8)
44: ES := ES ∪ {(y0, x8, (k1, k2))}
45: x1 := y0 ⊕ k1
46: y2 := x3 ⊕ k1
47: y1 := Pin(2,−, y2)⊕ k2
48: if x1 ∈ P+

1 ∨ y1 ∈ P−
1 then

49: abort

50: P1 := P1 ∪ {(x1, y1)}
51: else // l = 7
52: y2 := x3 ⊕ k1
53: y1 := Pin(2,−, y2)⊕ k2
54: y0 := Pin(1,−, y1)⊕ k1
55: x8 := E.E(+, (k1, k2), y0)
56: ES := ES ∪ {(y0, x8, (k1, k2))}
57: y7 := x8 ⊕ k2
58: x6 := P+

5 (x5)⊕ k2
59: x7 := Pin(6,+, x6)⊕ k1
60: if x7 ∈ P+

7 ∨ y7 ∈ P−
7 then

61: abort
62: P7 := P7 ∪ {(x7, y7)}

63: private procedure CheckFreeBuffer(i, δ, z′)
64: if (i, δ) = (3,+) ∧ ∃(x4, y5) ∈ P+

4 × P−
5 s.t. z′ ⊕ x4 ⊕ y5 ∈ P+

6 then
65: abort
66: else if (i, δ) = (4,+) ∧ ∃(x3, x5) ∈ P+

3 × P+
5 s.t. x3 ⊕ z′ ⊕ x5 ∈ P−

2 then
67: abort
68: else if (i, δ) = (5,+) ∧ ∃(y3, x4) ∈ P−

3 × P+
4 s.t. y3 ⊕ x4 ⊕ z′ ∈ P+

6 then
69: abort
70: else if (i, δ) = (3,−) ∧ ∃(y4, x5) ∈ P−

4 × P+
5 s.t. z′ ⊕ y4 ⊕ x5 ∈ P−

2 then
71: abort
72: else if (i, δ) = (4,−) ∧ ∃(y3, y5) ∈ P−

3 × P−
5 s.t. y3 ⊕ z′ ⊕ y5 ∈ P+

6 then
73: abort
74: else if (i, δ) = (5,−) ∧ ∃(x3, y4) ∈ P+

3 × P−
4 s.t. x3 ⊕ y4 ⊕ z′ ∈ P−

2 then
75: abort
76: private procedure CheckLock(i, x, y)
77: if i = 3 ∧ ∃((x3, y3), (x4, y4), (x

′
4, y

′
4)) ∈ P3 × P4 × P4

78: s.t. x⊕ y′
4 = x3 ⊕ y4 ∧ y ⊕ x′

4 = y3 ⊕ x4 then abort
79: if i = 5 ∧ ∃((x5, y5), (x4, y4), (x

′
4, y

′
4)) ∈ P5 × P4 × P4

80: s.t. x4 ⊕ y5 = x′
4 ⊕ y ∧ y4 ⊕ x5 = y′

4 ⊕ x then abort
81: if i = 4 ∧ ∃((x3, y3), (x

′
3, y

′
3), (x4, y4)) ∈ P3 × P3 × P4

82: s.t. x3 ⊕ y4 = x′
3 ⊕ y ∧ y3 ⊕ x4 = y′

3 ⊕ x then abort
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83: if i = 4 ∧ ∃((x5, y5), (x
′
5, y

′
5), (x4, y4)) ∈ P5 × P5 × P4

84: s.t. x4 ⊕ y5 = x⊕ y′
5 ∧ y4 ⊕ x5 = y ⊕ x′

5 then abort

5.2 Intermediate System Σ′
2.

Denote by Σ′
1(E,SE,P) the simulated system, and by Σ′

3(IDEMP
7 ,P) the real

system. As a quite standard first step, we introduce an intermediate system

Σ′
2(IDEMT E,P

7 , T E,P), in which the cipher IDEM7 calls the interfaces of T to
compute (as done in [MPS12,CS15]). The three systems involved in this proof
are depicted in Fig. 3.

D

0/1

Σ′
1 Σ′

2

E
Σ′

3

E S IDEM7 T

P

D

0/1

IDEM7 P

D

0/1

12 2 1 2 1

P

3 3 3

Fig. 3. Systems used in the seq-indifferentiability proof for IDEM7. The number in red
and italic illustrates the order of the queries/actions (of the sequential distinguisher).

5.3 Complexity of S and T

The termination argument of SE,P and T E,P is captured by the following lemma.

Lemma 22. For any tuple of primitives (E,P) and any seq-distinguisher D of
total oracle query cost at most q, the following hold:

(i) At the end of the Σ′
2 execution DΣ′

2(E,P), with respect to the sets of T E,P, for
i ∈ {3, 4, 5}, it holds |Pi| ≤ q; for i ∈ {1, 2, 6, 7}, |Pi| ≤ 2q3; and |ES| ≤ q3;

(ii) during the Σ′
1 execution DΣ′

1(E,P), SE,P issues at most q3 queries to E, and
runs in time at most O(q3).

Proof. Since the total oracle query cost of D is at most q, T receives at most q
queries of the form P(3, δ, z), so that |P3| ≤ q. The same for |P4| and |P5|. By
this, the procedure CompChain is called at most |P3| · |P4| · |P5| ≤ q3 times.

Next, consider |P1|: |P1| can by enlarged by at most 1 when T receives a
query of the form P(1, δ, z) (at most q), or when T calls CompChain, so that
it is at most q + q3 ≤ 2q3. The same for |P2|, |P6|, and |P7|. Then |ES| ≤ q3

follows from the fact that T queries E only during an execution of CompChain.
It can be easily seen that the argument for proposition (i) as well as the

bounds also hold for SE,P (in DΣ′
1), so that SE,P makes at most q3 queries to

E. Moreover, the time complexity of SE,P is clearly dominated by the executions
of CompChain, so that is at most O(q3). ⊓⊔
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5.4 Indistinguishability of Outputs

As done in Sect. 3, we first upper bound the abort probability of T , then give
the formal transition between the systems.

The Abort Probability of T is Negligible. For ease of description, we
adapt the two helper functions val+l and val−l used in the IDEM15 context, and
denoted sval+l and sval−l . But they only accept the input values of the middle
three rounds as inputs (so that they can be much simpler than val+l and val−l ).

function sval+l (x3, x4, x5)

if x3 /∈ P+
3 ∨ x4 /∈ P+

4 ∨ x5 /∈ P+
5

then return false
if l ∈ {3, 4, 5} then return xl

k2 := P+
3 (x3) ⊕ x4

k1 := P+
4 (x4) ⊕ x5

j = 6
z = P+

5 (x5) ⊕ k2

while j ̸= l do
if j ≤ 7 then
if z /∈ P+

j then return ⊥
if j is odd then
z = P+

j (z) ⊕ k2

else // j is even

z = P+
j (z) ⊕ k1

j := j + 1
else // j = 8

if ((k1, k2), z) /∈ ES− then return ⊥
z = ES−((k1, k2), z) ⊕ k1

j := 1
return z

function sval−l (x3, x4, x5)

if x3 /∈ P+
3 ∨ x4 /∈ P+

4 ∨ x5 /∈ P+
5

then return false
if l ∈ {3, 4, 5} then return P+

l (xl)

k2 := P+
3 (x3) ⊕ x4

k1 := P+
4 (x4) ⊕ x5

j = 2
z = x3 ⊕ k1

while j ̸= l do
if j ≥ 1 then
if z /∈ P−

j then return ⊥
if j is odd then
z = P−

j (z) ⊕ k1

else // j is even

z = P−
j (z) ⊕ k2

j := j − 1
else // j = 0

if ((k1, k2), z) /∈ ES+ then return ⊥
z = ES+((k1, k2), z) ⊕ k2

j := 7
return z

Note that in the arguments throughout this section, each time we call the
two functions, they are called on parameters with the correct form, and won’t
return the tag false.

Then we can give the arguments. First, each value obtained from E during
the chain completion is a fresh random value – for this, note that in DΣ′

2 , E can
only be queried by T , so that the set T .ES is actually the query history of E.

Lemma 23. During any execution DΣ′
2(IDEM7,T E,P), each time T E,P issues a

query E(δ, (k1, k2), z) to E, it holds ((k1, k2), z) /∈ ESδ right before the query.

Proof. T queries E only when it completes a partial chain (x3, x4, x5). Since the
contents of the sets are never overwritten, if two such queries are the same, then
it can be easily deduced that the two chains corresponding to the two queries
are the same, which is not possible by construction. ⊓⊔

Then we are able to bound the overall abort probability.

Lemma 24. For any seq-distinguisher D of total oracle query cost at most q

(q3 < 2n

4 ), during the execution DΣ′
2(IDEM7,T E,P), Pr[T E,P aborts] ≤ 26q6

2n .
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Proof. Since CompChain is called at most q3 times, by the lemmas (25, 26, 27,
and 28) below, we have

Pr[T E,P aborts] ≤ 4q6

2n − 2q3
+

2q6

2n − q
+

2q4

2n − q
+ q3 · ( 5q3

2n − 2q3
) ≤ 26q6

2n

as claimed. ⊓⊔

For any seq-distinguisher D of total oracle query cost at most q, the following
lemmas analyze the abort probability due to each possibility.

Lemma 25. The overall probability that T aborts at line 9 is at most 4q6

2n−2q3 .

Proof. Since P are 7 permutations, if the abort condition at line 8 holds, then
it is necessarily due to the random value P.P(i, δ, z) colliding with a value in

P δ
i added by previous adaptations (line 50, 62). As a consequence, only calls to

Pin(1, δ, z) and Pin(7, δ, z) are able to lead to abortion. For Pin(1, δ, z), since
CompChain is executed at most q3 times (Lemma 22), the number of values

added by line 50 is at most q3, so that the probability is at most |P1| · q3

2n−|P1| ≤
2q6

2n−2q3 . Similarly for Pin(7, δ, z), so that the bound in total is 4q6

2n−2q3 . ⊓⊔

Lemma 26. The overall probability that T aborts during CheckFreeBuffer

is at most 2q6

2n−q .

Proof. Consider a chain ((x3, y3), (x4, y4), (x5, y5)) detected by T . Regardless
of the concrete type of the last assignment before this chain is detected, the
probability that T aborts during CheckFreeBuffer due to this chain is at

most Max{|P2|,|P6|}
2n−Max{|P3|,|P4|,|P5|} ≤ 2q3

2n−q – for concreteness, consider an example: if the

last assignment defines P+
3 (x3) to P.P(3,+, x3), then the condition at line 64

holds with probability Pr[P.P(3,+, x3)⊕ x4 ⊕ y5 ∈ P+
6 ] ≤ |P6|

2n−|P3| . By Lemma

22, at most q3 chains are detected, so that the overall probability is at most
2q6

2n−q . ⊓⊔

Lemma 27. The overall probability that T aborts during CheckLock is at

most 2q4

2n−q .

Proof. The analysis is a bit similar to Lemma 26: at the end of DΣ′
2 , consider

a 4-tuple ((x3, y3), (x
′
3, y

′
3), (x4, y4), (x

′
4, y

′
4)) ∈ P3 × P3 × P4 × P4. Regardless of

the concrete type of the last assignment before this tuple is in {P}, the prob-
ability that T aborts during CheckLock due to this tuple is at most 1

2n−q

– for example, if the last assignment defines P+
3 (x3) to P.P(3,+, x3), then

the condition at line 77 holds with probability Pr[P.P(3,+, x3) = y3 ⊕ x4 ⊕
x′
4] ≤ 1

2n−q . By Lemma 22, there are at most q4 such tuples. Ditto for 4-tuples

((x4, y4), (x
′
4, y

′
4), (x5, y5), (x

′
5, y

′
5)) ∈ P4×P4×P5×P5, so that the overall prob-

ability is at most 2q4

2n−q . ⊓⊔
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Lemma 28. During an execution CompChain(x3, x4, x5, i, l), the probability
that T aborts at line 49 (in case l = 1) or line 61 (in case l = 7) is at most

5q3

2n−2q3 .

Proof. Let C = (x3, x4, x5), denote by k1 and k2 the two associated keys, and
wlog consider CompChain(C, i, 1). Consider the probability that sval+1 (C) is
in P+

1 right before the adaptation of C: by Lemma 23, this probability equals

Pr[E.E(−, (k1, k2), sval
+
8 (C))⊕ k1 ∈ P+

1 ], which is at most |P1|
2n−|ES| ≤

2q3

2n−q3 .

Then, consider the probability that sval−1 (C) is in P−
1 right before the

adaptation of C. Briefly speaking, right after sval−1 (C) ̸= ⊥ holds, it holds

Pr[sval−1 (C) ∈ P−
1 ] ≤ |P1|

2n−|P2| ≤
2q3

2n−2q3 ; if sval
−
1 (C) /∈ P−

1 at this point, then

during the period between this point and the adaptation of C, the probabil-

ity that sval−1 (C) is added to P−
1 is at most q3

2n−2q3 . Hence the overall prob-

ability that sval−1 (C) is in P−
1 right before the adaptation of C is at most

2q3

2n−2q3 + q3

2n−2q3 ≤ 3q3

2n−2q3 . The detailed discussions for this probability are as
follows, and are divided into two cases depending on the value of i.

Case 1: i ∈ {3, 4}. Since T did not abort during CheckFreeBuffer right
before this execution CompChain(C, i, 1), we have: right after the random as-
signment (line 13 or 16) inside the call to Pin which led to C being detected,
it holds sval−2 (C) /∈ P−

2 . By construction, from this point till the adaptation
of C, all the assignments in P2 are random backward ones (line 16); hence
right after P−

2 (sval−2 (C)) is defined (it may be defined before the execution
CompChain(C, i, 1)), it holds Pr[sval−1 (C) ∈ P−

1 ] = Pr[P.P(2,−, sval−2 (C))⊕
k2 ∈ P−

1 ] ≤ |P1|
2n−|P2| ≤

2q3

2n−2q3 .

If sval−1 (C) /∈ P−
1 holds right after P−

2 (sval−2 (C)) is defined, then consider
any execution CompChain(x′

3, x
′
4, x

′
5, i, 1) during the period between this point

and the adaptation of C, and let D = (x′
3, x

′
4, x

′
5): if sval

−
1 (C) = sval−1 (D) ̸=

⊥ before the adaptation of D, then sval−1 (C) will be added to P−
1 . But the

probability is negligible:

– if sval−2 (C) = sval−2 (D), then sval−1 (C) ̸= sval−1 (D) otherwise C = D
(when i = 3, then by construction, D has to be of the form (x3, x

′
4, x

′
5), and

sval−j (C) = sval−j (D) for j = 1, 2, 3 and clearly C = D; when i = 4, then it

can be deduced that sval−j (C) = sval−j (D) for j = 1, 2, 3, 4);

– if sval−2 (C) ̸= sval−2 (D), then among P−
2 (sval−2 (C)) and P−

2 (sval−2 (D)),
the probability that the one defined later leads to sval−1 (C) = sval−1 (D) is
at most 1

2n−|P2| (since T did not abort during CheckFreeBuffer, right

after the random assignment inside the call to Pin which led to C and
D being detected, both sval−2 (C) /∈ P−

2 and sval−2 (D) /∈ P−
2 , and both

P−
2 (sval−2 (C)) and P−

2 (sval−2 (D)) must be defined after this point. Wlog as-
sume P−

2 (sval−2 (C)) is defined later, then right after sval−2 (C) ∈ P−
2 holds,

Pr[sval−1 (C) = sval−1 (D)] = Pr[P.P(2,−, sval−2 (C)) ⊕ k2 = sval−1 (D)] ≤
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1
2n−|P2| ). Since the number of such chain D is at most q3, the overall prob-

ability is q3

2n−2q3 .

Case 2: i = 5. Similarly to Case 1, right after the random assignment in P5 (line
16), it holds sval−2 (C) /∈ P−

2 since T did not abort; and right after P−
2 (sval−2 (C))

is defined, it holds Pr[sval−1 (C) ∈ P−
1 ] ≤ 2q3

2n−2q3 .

If sval−1 (C) /∈ P−
1 holds right after P−

2 (sval−2 (C)) is defined, then during the
period between this point and the adaptation of C, the overall probability that

sval−1 (C) is added to P−
1 is at most q3

2n−2q3 . For this, consider any execution

CompChain(x′
3, x

′
4, x5, 5, 1) during this period and let D = (x′

3, x
′
4, x5). First,

if sval−2 (C) = sval−2 (D), then sval−1 (C) ̸= sval−1 (D) otherwise y3 ⊕ x4 = y′3 ⊕
x′
4 ∧ x3 ⊕ y4 = x′

3 ⊕ y′4, which would have led T to abortion during a previous
execution of CheckLock. Second, if sval−2 (C) ̸= sval−2 (D), then the case is
similar to Case 1 : among P−

2 (sval−2 (C)) and P−
2 (sval−2 (D)), the probability

that the one defined later leads to sval−1 (C) = sval−1 (D) is at most 1
2n−|P2| , and

the overall probability is q3

2n−2q3 .

By the above, the probability that T aborts duringCompChain(x3, x4, x5, i, 1)

is at most 2q3

2n−2q3+
3q3

2n−2q3 ≤ 5q3

2n−2q3 . The discussions forCompChain(x3, x4, x5, i, 7)
are similar by symmetry. These terminate the proof. ⊓⊔

Non-Abortion Implies Indistinguishability of Answers. This subsection
proves the indistinguishability of Σ′

1 and Σ′
3 based on the non-abortion argument

for T , and is similar to Section 3.7. A tuple of primitives α = (E,P) is a good
Σ′

2-tuple if T α does not abort during the Σ′
2 execution DΣ′

2(α). Denote by R′

the set of all possible set-tuples {P} = {P1, . . . , P7} that can be generated by T
when running with good Σ′

2-tuples. Also, if the sets of T α standing at the end of
DΣ′

2(α) are exactly the same with {P} ∈ R′, then denote by DΣ′
2(α) → {P}; if

the tuple P agrees with all the values defined by {P}, say P coincides with {P}
and denote P ∼= {P}. With these notations, we have the following arguments.
First, in a good Σ′

2 execution DΣ′
2(E,P), the answers given by IDEM7 are the

same as those given by E.

Lemma 29. For any good Σ′
2-tuple α = (E,P), D obtains the same answer for

any query to E.E/IDEMT α

7 .E in the two executions DΣ′
1(α) and DΣ′

2(α).

Proof. In DΣ′
2(α), each time D issues a query (+, (k1, k2), y0) to IDEM7, IDEM7

will queries T α.P(3,+, x3), T α.P(4,+, x4), and T α.P(5,+, x5) for the corre-
sponding values, so that after IDEM7 answers this query, it holds (x3, y3) ∈ P3,
(x4, y4) ∈ P4, and (x5, y5) ∈ P5. By this, during DΣ′

2(α), there was necessarily a
call to T α.CompChain(x3, x4, x5, ·, ·), after which the answer of IDEM7 (com-
puted from T ’s sets {P}) will be the same as E. The queries (−, (k1, k2), x8) are
similar by symmetry. These establish the claim, since the answers in DΣ′

1(α) are
directly given by E. ⊓⊔
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The Σ′
1, Σ

′
2, and Σ′

3 executions that are “linked” by the sets of T behave
the same in the view of D.

Lemma 30. Let α = (Eα,Pα) be a good Σ′
2-tuple, and let DΣ′

2(α) → {P}. Then
for any tuple P′ such that P′ ∼= {P}, the transcripts of queries and answers of D
in DΣ′

1(α), DΣ′
2(α), and DΣ′

3(P
′) are the same; and DΣ′

1(α) = DΣ′
2(α) = DΣ′

3(P
′).

Proof. By an induction similar to Lemma 18, consider each query of D:

(i) the query is to P: then inDΣ′
1(α) andDΣ′

2(α), the query must be made during
the first phase (in which D only queries P). It can be easily seen that in this
phase, if T α does not abort in DΣ′

2(α), then Sα does not abort inDΣ′
1(α); and

the operation sequence of T α (excluding the calls to CheckFreeBuffer
and CheckLock) is the same as that of Sα. Hence D obtains the same an-
swer for the P-query in DΣ′

1(α) and DΣ′
2(α). On the other hand, the answers

obtained in DΣ′
2(α) and DΣ′

3(P
′) are also the same since P′ ∼= {P};

(ii) the query is to E: then by Lemma 29, the answers obtained in DΣ′
1(α) and

DΣ′
2(α) are the same. Also, the answers obtained in DΣ′

2(α) and DΣ′
3(P

′)

are the same, since the permutation values used by IDEM7 to compute the
answers are the same.

Therefore, the three transcripts of D are the same. Since D is deterministic, the
three outputs of D are also the same. ⊓⊔

For any {P} ∈ R′, the probabilities of the following two events are close:

(i) a Σ′
2 execution with a random tuple (E,P) generates {P};

(ii) a random permutation tuple P coincides with {P}.

Lemma 31. With respect to a fixed distinguisher D of total oracle query cost
at most q, for any {P} ∈ R′, it holds

PrP[P ∼= {P}]
PrE,P[DΣ′

2(E,P) → {P}]
≥ 1− q6

2n
.

Proof. Following the same line as Lemma 19, the deviation of the ratio (from 1) is
due to the distance between the distribution of E’s answers and the distribution
of P’s answers. The number of queries to E is at most |ES| ≤ q3, so that

PrP[P ∼= {P}]
PrE,P[DΣ′

2(E,P) → {P}]
≥ 1− |ES|2

2n
≥ 1− q6

2n
.

as claimed. ⊓⊔

Let Θ′
1 be a subset of R′ such that for any tuple (E,P) such that DΣ′

2(E,P) →
{P} ∈ Θ′

1 it holds DΣ′
2(E,P) = 1. Then the analogue of Lemma 17 and Lemma

20 also hold in this context. These yield the final transition lemma.
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Lemma 32. For any seq-distinguisher D of total oracle query cost at most q, it
holds ∣∣∣PrP[D

Σ′
3(IDEMP

7 ,P) = 1]− PrE,P[D
Σ′

1(E,SE,P) = 1]
∣∣∣ ≤ 27q6

2n
.

Proof. Let α = (E,P), and wlog assume Prα[D
Σ′

1(α) = 1] ≥ PrP[D
Σ′

3(P) = 1],
then ∣∣∣PrP[D

Σ′
3(P) = 1]− Prα[D

Σ′
1(α) = 1]

∣∣∣
≤26q6

2n
+ Prα[α is a good Σ′

2-tuple ∧DΣ′
1(α) = 1]− PrP[D

Σ′
3(P) = 1]

(since by Lemma 24, Pr[T α aborts during DΣ′
2(α)] ≤ 26q6

2n
)

≤26q6

2n
+ Prα[α is a good Σ′

2-tuple ∧DΣ′
2(α) = 1]− PrP[D

Σ′
3(P) = 1]

(since by Lemma 30, if α is good then DΣ′
1(α) = DΣ′

2(α))

≤26q6

2n
+

∑
{P}∈Θ′

1

(Prα[D
Σ′

2(α) → {P}]− PrP[P ∼= {P}])

≤26q6

2n
+

∑
{P}∈Θ′

1

q6

2n
· Prα[D

Σ′
2(α) → {P}] (by Lemma 31) ≤ 27q6

2n

as claimed. ⊓⊔

6 Conclusion

As a first step towards understanding the security of iterated Even-Mansour with
key-length larger than the block-size, this work analyzes (seq-)indifferentiability
of Even-Mansour with two independent round-keys alternatively xored, and
proves that 7 rounds is necessary and sufficient to achieve sequential indiffer-
entiability while 15 rounds is sufficient to achieve full indifferentiability.
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A Independent Keys and Its Consequence: Generalizing
to Cases With More General Key Schedules.

As mentioned in Introduction, in IDEM, the two n-bit keys are independent. In
this section, we briefly discuss the consequences.

Generalizing-and-Keeping-Independence. First, it is not hard to see that
the analysis on IDEM can be generalized to IEM with key schedules with the
following two properties:

(i) the 2n key bits can be divided into two non-intersect n-bit halves k1 and k2;
(ii) when i is odd, the round-key involved in the i-th round-key xor is derived

by an efficiently invertible n-bit permutation γi from k1; when i is even,
the round-key involved in the i-th round-key xor is derived by an efficiently
invertible n-bit permutation γi from k2.

But such key schedules are quite contrived. Besides directly interleaving k1 and
k2 with out any additional transformation (the key schedule of IDEM, and an
instance is LED-128), we did not find any real instance with such generalized
key schedules.

Further Generalization. We now consider the key schedules used in real
BC[2n, n] designs. A variety of them – including AES-256, Serpent, – use FSR-
based key schedules. A possible approach is to model such key schedules as an
array of efficiently invertible 2n-bit permutations (γ0, γ1, . . . , γr−1) such that:

(i) each γi gives two consecutive round-keys, i.e. it holds (ki, ki+1) = γi(K) and
ki and ki+1 are the two round-keys used before and after the permutation
Pi;

(ii) any two consecutive permutations γi and γi+1 agree on the (i+ 1)th round-
key, i.e. for (ki, ki+1) = γi(K) and (k′i+1, ki+2) = γi+1(K) it holds ki+1 =
k′i+1.

At current time, we are not sure about whether the analysis on IDEM can be
easily generalized to IEM with such general key schedules. The reason is that
many arguments in this work rely on the independence between the two n-bit
keys (for instance, the proof of Lemma 2 in the supporting doc; the details
in the detection zone of the simulator for IDEM7; the proof of Lemma 26).
Moreover, there is another subtle problem when we are trying to generalize
the full indifferentiability proof to such IEM with 15 rounds: when detecting
“external” chains, it seems like that the modified simulator has no choice but
to exhaustively search for the correct 2n-bit master keys (after it recovers the
two round-keys k1 and k14), i.e. tests all possible 2n-bit master keys K to find
the one for which γ0(K) gives k1 and γ14(K) gives k14. (note that the simulator
S in subsection 3.1 takes advantage of the fact that in IDEM, k1 and k14 are
derived from two independent halves of the master key). This brings in a soar in
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the time complexity of the simulator, i.e. from O(q8) (in this work) to O(22n).
These discussions show that how to concretely model the key schedule(s) might
affect the security of Even-Mansour with key-length twice the block-size.

Although there exist such difficulties, the following conclusion is not ques-
tionable, that is, the indifferentiability proof(s) for IDEM is already capable of
showing that it is possible to build BC[2n, n] from key-alternating ciphers without
using very complex key schedules – or even with “no” key schedule. The interest
on designing blockciphers (key-alternating ciphers) with no key schedule was
(probably) woken up by LED [GPPR11].

B Possibility of Further Reducing Rounds (For the
Indifferentiability Proof)

B.1 Reduce the Number of Rounds in Chain Detection Zone.

In the current framework, arranging less rounds in the chain detection zones is
not possible. First, arranging as few as three rounds in the middle detection zone
is not possible:

– if we do not arrange detection condition on P7 (as depicted in the blue arrows
in Fig. 4), then the “pureness” property (analogue of Lemma 8) still exists,
but D can easily fill the middle zone without waking S and break S as a
consequence. A possible query sequence is depicted in red lines and words in
Fig. 4.

– if we arrange detection conditions on P7, then it further includes two pos-
sibilities. Before we see the details, we remark that in both of two cases,
increasing the number of rounds in the detection zones at two sides does
not resolve problems. Hence we have the conclusion: the previous conjec-
tured proof strategy of LS (Fig. 7) is “not easy to be carried out” albeit not
totally ruled out.
• We use the detection conditions similar to the proof for IDEM7 (please

see Fig. 5), such that for each detected middle chain, the endpoint in
the buffer round has not been defined. Then the values valδl (C) does
not necessarily remain constant during the adaptations of other chains
(note that in this case, the “pureness” property does not exist). This
can be shown by adapting the operation sequence in the appendix of
the full version of [LS13]. Consider a distinguisher D with the following
operation sequence:
(1) D chooses four arbitrary values x4, k1, k2, k

′
2 ∈ {0, 1}n (k2 ̸= k′2);

(2) D takes x4, k1, k2 as a partial chain and evaluates forward: D com-
putes x5 := P4(x4) ⊕ k1, x6 := P5(x5) ⊕ k2, x7 := P6(x6) ⊕ k1,
x8 := P7(x7)⊕ k2, and x9 := P8(x8)⊕ k1; (at this point the simula-
tor starts completing (y7, k1, k2, 7, 10))

(3) D takes x4, k1, k
′
2 as a partial chain and evaluates backward: D com-

putes x1 := P−1
4 (x4 ⊕ k′2), . . ., x14 := E.E(−, (k1, k

′
2), x1 ⊕ k1), . . .,

and x12 := P−1
12 (x13 ⊕ k1); (at this point the simulator starts com-

pleting (y′0, k1, k
′
2, 0, 10))
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It is not hard to check that during the completion of (y′0, k1, k
′
2, 0), the

simulator evaluates forward, computes x′
6 := P5(x5)⊕ k′2, y

′
6 := P6(x

′
6),

x′
7 := y′6 ⊕ k1, y

′
7 := P7(x

′
7), x

′
8 := y′7 ⊕ k′2, y

′
8 := P8(x

′
8), and enqueues

two tuples C = (y′7, k1, k2, 7, 4) and D = (y7, k1, k
′
2, 7, 10) which will

satisfy val−5 (C) = y5⊕k2⊕k′2 = val−5 (D) and val−4 (C) = val−5 (C)⊕k1 =
val−4 (D). Then val−3 (D) will clearly change from ⊥ to non-empty during
the adaptation of C. This is disastrous, since the endpoints of D may
not be random – at least, at current time, a proof in this case is out of
range.

• We use a modified strategy such that the “pureness” property is kept
(Fig. 6). This seemingly delicate simulator is trivially insecure. Consider
a distinguisher D:
(1) D chooses four arbitrary values x7, x8, x

′
8, y9 ∈ {0, 1}n, and computes

y′9 := x8 ⊕ x8 ⊕ y9;
(2) D queries y8 := P8(x8), y

′
8 := P8(x

′
8), x9 := P−1

9 (y9), and x′
9 :=

P−1
9 (y′9);

(3) D computes y6 := x7 ⊕ y8 ⊕ x9 and y′6 := x7 ⊕ y′8 ⊕ x′
9 and queries

x6 := P−1
6 (y6) and x′

6 := P−1
6 (y′6);

(4) D queries y7 := P7(x7).
It is not hard to check that the simulator finally enqueues two chains
corresponding to (x6, x7, x8, x9) and (x′

6, x7, x
′
8, x

′
9) and will adapt them

at P10, whereas they collide on P10 since y9 ⊕ x8 ⊕ y7 = y′9 ⊕ x′
8 ⊕ y7.

P1x/y0 P2

k1k2k1

P6

k1k2

P7 P8

k1k2

P12 y/x14P13

k2k1k2

...... ...

step 1

step 2

step 3: link the two entries added in the previous two steps
Then it can evaluate to the two sides and check whether the values match E.

Strategy of the imagined simulator.

Fig. 4. 13 rounds with no detection condition on the middle round seems to be a bad
solution. The entire 13 rounds is too long to be placed, hence we only present the core
modified part; similarly for the figures below.

Second, arranging four rounds in the middle detection zone is not possible.
The most problematic point is: in this case, the number of rounds in total is
14, an even number; as a consequence, the detection zone at the two sides does
not work (Fig. 8). If we increase the number of rounds in the side-detection-
zone, then it turns to IDEM15 again. Discussions above ruin out the hopes on
compressing detection zones.

B.2 Remove the Buffer Rounds.

As mentioned in Introduction, the additional n-bit key allows the adversary to
be more free to choose values. As a consequence, once removing even a single pair
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P1x/y0 P2

k1k2k1

P6

k1k2

P7 P8

k1k2

P12 y/x14P13

k2k1k2

...... ...

Fig. 5. 13 rounds with detection conditions on the middle round similar to the proof
for IDEM7 seems to be hard to handle.

P1x/y0 P2

k1k2k1

P6

k1k2

P7 P8

k1k2

P12 y/x14P13

k2k1k2

...... ...

Fig. 6. 13 rounds: keeps the pureness property but still fails.

P1 P2

k1k2k1

P7

k2k1

P8 P9

k2k1

P14 P15

k2k1k2

P3

k2

P13

k1

detect

P4 P5

k2k1

P6

buffer bufferadapt

P11 P12

k2k1

P10

detect detect
(the very details were not considered by LS)

buffer adapt buffer

Fig. 7. The conjectured strategy of LS (for 15-round case).

P1x/y0 P2

k1k2k1

...

k1

x15/yP13

k1

P14

k2

recovers k2 also recovers k2? k1 can not be determined.

Fig. 8. 14 rounds: the side-detection-zone does not work.
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of “buffer” rounds (in the current framework), there exist quite trivial attacks.22

We first see what if we remove the two buffer rounds surrounding the “first”
adaptation round. Then there is a distinguisher D:

(1) D chooses four arbitrary values x2, k1, k2, k
′
2 ∈ {0, 1}n;

(2) D takes x2, k1, k2 as a partial chain and evaluates backward: D computes
y1 := x2 ⊕ k2, y0 := P−1

1 (y1) ⊕ k1, x14 := E.E(+, (k1, k2), y0), x13 :=
P−1

13 (x14 ⊕ k2), and x12 := P−1
12 (x13 ⊕ k1);

(3) D takes x2, k1, k
′
2 as a partial chain and evaluates backward: D computes

y′1 := x2 ⊕ k′2, y′0 := P−1
1 (y′1) ⊕ k1, x′

14 := E.E(+, (k1, k
′
2), y

′
0), x′

13 :=
P−1

13 (x
′
14 ⊕ k′2), and x′

12 := P−1
12 (x

′
13 ⊕ k1);

(4) D queries P2(x2).

It is easy to see that S will adapt two chains C = (y0, k1, k2, 0) and C ′ =
(y0, k1, k

′
2, 0) at P3 and val+3 (C) = val+3 (C

′) and S will abort.

P1x/y0 P2 P3

k1k2k1

P4

k1k2

...

k2

x14/yP10

k2

P11

k1

P12

k2

P13

k1

Fig. 9. Removing the buffer for the first adaptation zone is not possible.

Similarly by symmetry, we cannot remove the two buffer rounds surround-
ing the “second” adaptation round. A somehow surprising implication of these
discussions is the failure of another plausible strategy for building simulator for
the seq-indifferentiability proof of IDEM7 (please see Fig. 10). This strategy is
closer to the successful strategy for IDEM15. But there is a (seq-)distinguisher
D:

(1) D chooses four arbitrary values y2, k2, k1, k
′
1 ∈ {0, 1}n;

(2) for (y2, k1, k2, 2), D evaluates forward: D computes y3 := P3(y2 ⊕ k1), y4 :=
P3(y3 ⊕ k2), y5 := P4(y4 ⊕ k1), and y6 := P5(y5 ⊕ k2);

(3) for (y2, k
′
1, k2, 2), D evaluates forward: D computes y′3 := P3(y2 ⊕ k′1), y

′
4 :=

P3(y
′
3 ⊕ k2), y

′
5 := P4(y

′
4 ⊕ k′1), and y′6 := P5(y

′
5 ⊕ k2);

(4) D queries P−1
2 (y2).

S will complete two chains characterized by C = (y2, k1, k2, 2) and C ′ = (y2, k
′
1, k2, 2)

and val−1 (C) = val−1 (C
′) = y2 ⊕ k2 and S will abort.

Always an Odd Number of Rounds? By the discussions above, it seems like that
we always focus on IDEM with an odd number of rounds, which deviates from
the fact that the number of rounds in AES-256 is 14. For this, we stress that the
model IDEM studied in this paper is mainly a theoretical model, and the number
of rounds studied in the proofs should not be directly related to those in practical

22 Note that to avoid the chain detection problem in 14-round case (already discussed),
we cannot remove a single buffer round.
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P1x/y0 P2 P3

k1k2k1

P4 P5

k1k2

P6

k2

P7

k2k1

x8/y

Fig. 10. A failed simulation strategy for IDEM7.

designs – they are mainly theoretical results. Somewhat similar deviations occur
in the other contexts, for instance, for SEM, 1 round already suffices to resist
known-key attacks [ABM14], while known-key attacks could penetrate at least
8 rounds on AES-128 [Gil14].

C Possibility of Further Reducing the Complexity of S

It is natural to wonder that in the indifferentiability proof for IDEM15, whether
the complexity of S can be further reduced. Actually, we highly suspect that
this further optimization is possible, and already made two attempts, but both
of them result in (partial) failures.

C.1 The First Failed Attempt: Leading to Another Tradeoff

The first attempt seems to be able to bound the number of middle chains to O(q);
but it works with a high expense of probability. Consider an undirected bipartite
graph BM based on the sets P7, P8, and P9, which conveniently encodes the
information of chains and their endpoints in these sets. The two shores of the
graph BM is {0, 1}n. Edges of BM are constructed as follows: for every 3-tuple
((x7, y7), (x8, y8), (x9, y9)) ∈ P7×P8×P9, we construct an edge (x7⊕y8⊕x9, y7⊕
x8 ⊕ y9). This constitutes all edges of BM .

Now, if conditioned on the absence of some bad events, all the connected
components of BM are acyclic (i.e. they are trees), then the sub-graph composed
by the 4q endpoints in P6 and P10 has at most 2q−1 < 2q edges, i.e. the number
of middle chains is at most 2q.

At the first glance, it is not hard to avoid cycles; however, this is not the
case. Consider the simplest example, which is a 4-cycle (say, a complete bi-
partite graph with 4 vertices). Assume that the four edges in this graph are
(xi

7, y
i
7, x

i
8, y

i
8, x

i
9, y

i
9) (i = 1, 2, 3, 4). Then the following holds after all the entries

are in P7, P8, and P9:

(1) y19 ⊕ x1
8 ⊕ y17 = y29 ⊕ x2

8 ⊕ y27 ;
(2) x2

7 ⊕ y28 ⊕ x2
9 = x3

7 ⊕ y38 ⊕ x3
9;

(3) y39 ⊕ x3
8 ⊕ y37 = y49 ⊕ x4

8 ⊕ y47 ;
(4) x4

7 ⊕ y48 ⊕ x4
9 = x1

7 ⊕ y18 ⊕ x1
9.

But the four constraints can be fulfilled with probability O(q9/2n). The reason
is that when x4

7 = x1
7, the constraints turn to the following three:

(1) y19 ⊕ x1
8 ⊕ y29 ⊕ x2

8 ⊕ y27 = y39 ⊕ x3
8 ⊕ y37 ⊕ y49 ⊕ x4

8(= y17);
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(2) x2
7 ⊕ y28 ⊕ x2

9 = x3
7 ⊕ y38 ⊕ x3

9;
(3) y48 ⊕ x4

9 = y18 ⊕ x1
9;

and it is not hard to check that the three can be fulfilled with probability
O(q9/2n). Hence the overall security bound increases to at least O(q9/2n) if
we use this idea, and the probability of cycles constitutes the new bottleneck.

We then briefly argue that O(q9/2n) is sufficient. Borrowing a methodology
from [LS13], consider a bad event BadMidRnd around the five middle sets:

– consider the history of n-bit values in middle sets MH, which contains all
the n-bit values in the five middle sets P6, P7, P8, P9, and P10: for each
(xi, yi) ∈ Pi, MH includes both xi and yi;

– the bad event BadMidRnd occurs, if during a random assignment in these 5
sets, the random value due to P equals the xor of 9 or less values in MH.

After a preliminary analysis, we think that conditioned on ¬BadMidRnd, all
the connected components of BM are acyclic. By a quick check, one can see
that in this setting, |Pi| ≤ O(q), so that the complexity of the simulator is
O(q4). Since the complexity of the simulator may actually affect the exact
security of the construction [KPS13,CS15], this result (q,O(q4), O(q4), O(q9))
can be seen as another meaningful security tradeoff besides the main result
(q,O(q8), O(q8), O(q8)) given in the main body (however, we stress that this is
only a preliminary analysis).

C.2 The Second Failed Attempt

The second idea is to carefully consider each query P.P(i, ·, ·) (i ∈ {6, 7, 8, 9, 10})
and check its influence on the structure of the entries in P6, P7, P8, P9, and P10,
and obtain an upper bound from these statistics. However, such influences not
only depend on the number of entries in the five sets, but also depend on the
direction of the queries which led to these entries being added; they even depend
on the order of previous queries! The direction information is involved; but this
is not unexpected, and can be tackled. The most problematic point is that the
same previous queries in different orders may lead to different structures and
different results. This is totally out of control, and does not lead to a success (at
current time).
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