
Threshold-optimal DSA/ECDSA signatures and
an application to Bitcoin wallet security

Rosario Gennaro1, Steven Goldfeder2, and Arvind Narayanan2

1 City College, City University of New York
rosario@cs.ccny.cuny.edu

2 Princeton University
{stevenag,arvindn}@cs.princeton.edu

Abstract. While threshold signature schemes have been presented be-
fore, there has never been an optimal threshold signature algorithm for
DSA. Due to the properties of DSA, it is far more difficult to create a
threshold scheme for it than for other signature algorithms. In this pa-
per, we present a breakthrough scheme that provides a threshold DSA
algorithm that is efficient and optimal. We also present a compelling ap-
plication to use our scheme: securing Bitcoin wallets. Bitcoin thefts are
on the rise, and threshold DSA is necessary to secure Bitcoin wallets. Our
scheme is the first general threshold DSA scheme that does not require
an honest majority and is useful for securing Bitcoin wallets.

1 Introduction

Threshold signature schemes enable sharing signing power amongst n parties
such that any subset of t + 1 can jointly sign, but any smaller subset cannot.
This problem has received much attention in the cryptographic literature, and
many such schemes have been designed. Some of these schemes produce signa-
tures that are compatible with standard digital signature schemes. They replace
only the signing algorithm and key generation algorithm, but the verification is
compatible with the centralized signature schemes.

The Digital Signature Algorithm (DSA) is a very popular signature scheme,
and a considerable amount of work has been done to build a threshold signing
algorithm to produce a standard DSA signature. However, for reasons that we
will elaborate in Section 3.2, building a threshold variant of DSA proved to be
significantly difficult. While such schemes have been presented (e.g. [22, 23, 31]),
they have serious drawbacks that make them unusable in practice: in particular
no general scheme with an optimal number of servers is known. For the past 15
years, the problem has been mostly abandoned. The reason is twofold: there was
neither a pressing problem nor a clear solution:

– As we discuss in Section 3.2 the technical difficulties in building a threshold-
optimal variant of distributed DSA made this a challenging problem and it
was not clear how to proceed from the solutions in [22, 23, 31].

– There was never a great motivation to devise a solution for threshold DSA,
in particular one that is optimal in the number of servers. Since there are
plenty of optimized threshold signature schemes for other algorithms, one
who wanted to use a threshold scheme would generally just choose a different
signature scheme that was well suited for the problem at hand. To the best
of our knowledge, there has never previously been an application for which
DSA was the only option.

In recent years, as it turns out, a major application for threshold DSA signa-
tures has arisen in the world of Bitcoin. Without an ECDSA threshold scheme,
bitcoins are subject to a single point of failure and the risks of holding bitcoins
are catastrophic. 3 Motivated by this application, we tackle the technical chal-
lenges of threshold DSA, and present an efficient and optimal scheme realizing
it.

The motivation: Bitcoin’s security conundrum

Bitcoin is a cryptographic e-cash system, by far the most widely used today.
Unlike traditional banking transactions, Bitcoin transactions of any size can be
fully automated – authorized only with a ECDSA signature. One’s bitcoins are
only as secure as the ECDSA key that can authorize their transfer; if this key
is compromised, the Bitcoins will be stolen. Unlike traditional banking transac-
tions, once a Bitcoin transaction is enacted it is irreversible. Even if the coins
are known to have been stolen, there is simply no way to reverse the offending
transaction.

Indeed, the Bitcoin ecosystem is plagued by constant thefts. The statistics on
Bitcoin hacks, thefts, and losses are extraordinary — there have been ten thefts
of over 10,000 BTC each since mid-2011, and at least another thirty-four of over
1,000 BTC4 5 [4]. Kaspersky labs report detecting about a million infections per
month of malware designed to search for and steal bitcoins from machines they
infect [30].

The pervasiveness and regularity of these vulnerabilities highlight how Bit-
coin is inherently theft-prone. For Bitcoin and cryptocurrencies to gain main-
stream adoption, a breakthrough in security is needed — the current situation
where a single rogue employee or a piece of malware can empty an organiza-
tion’s funds in hot storage instantly, irreversibly, and anonymously is simply
untenable. Securing Bitcoin is equivalent to securing the keys that can authorize
transactions. Instead of storing keys in a single location, keys should be split
and signing should be authorized by a threshold set of computers. A breach of
any one of these machines – or any number of machines less than the threshold

3 Bitcoin actually uses ECDSA, the elliptic curve variant of DSA, but all of our results
in this paper as well as the previous literature on the subject are equally applicable to
DSA and ECDSA. When we present the scheme, we explicitly state how to implement
it for both DSA and ECDSA.

4 As of this writing, a bitcoin trades for around USD 250.
5 The majority, but not all, of these losses have been due to theft of keys.

will not allow the attacker to steal any money or glean any information about
the key.

Since Bitcoin transactions use ECDSA keys, the only way to achieve this joint
control is with an ECDSA threshold signature algorithm. While Bitcoin does
have a built in “multi-signature” function for splitting control, using this severely
compromises the confidentiality and anonymity of the participants, and thus it is
not advisable to use as we explain fully in Section 6.3. Only an ECDSA threshold
signature algorithm can provide the security we need without compromising on
privacy.

Our contributions

With a strong motivation for threshold DSA, we still lacked a scheme that was
usable to secure Bitcoin keys. The best threshold signature scheme presented was
that by Gennaro et al. [22]. Their scheme, however, has a considerable setback.
The key is distributed amongst n players such that a group of t + 1 players
can jointly reconstruct the key. Yet, in order to produce a signature using their
algorithm (without reconstructing the key), the participation of 2t+ 1 players is
required.

This property of the scheme in [22] has various implications. First, requiring
n ≥ 2t+1 is very limiting in practice: for example it rules out an n-of-n sharing.
Furthermore, the implications for a Bitcoin company that wants to distribute
its signing power are severe. If the company chooses a threshold of t, then an
attacker who compromises t + 1 servers can steal all of the company’s money.
Yet, in order for the company to sign a transaction, they must set up 2t + 1
servers. In effect, they must double the number of servers, which makes the job
of the attacker easier (as there are more servers for them to target).

In an attempt to get to an optimal number of servers, Mackenzie and Reiter
built a specialized scheme for the 2-of-2 signature case [31], a case that was
unrealizable using Gennaro et al.’s scheme. Yet no general DSA threshold scheme
existed that did not suffer from these setbacks. In Appendix A, we sketch how to
extend Mackenzie and Reiter to the multiparty case. While the extension does
allow t+ 1 players to sign, it is quite inefficient. In particular, it requires 3t− 1
rounds of interaction, and the computation time as well as the storage grows
exponentially with the number of players.

In this paper, we present a scheme that is both threshold optimal and effi-
cient. In particular:

1. It requires only n ≥ t+ 1 servers to protect against an adversary who com-
promises up to t servers.

2. The protocol requires only a constant number of rounds
3. The computation time for each player is constant6

4. Players require only a constant amount of storage

6 That is to compute the players share, the computation time does not grow with the
number of players. Players do however need to verify proofs from all players.

Our scheme is practical and efficient. We have implemented it and evaluated
it, and it is the only scheme that is fully compatible with Bitcoin as well as
efficient enough to now be a true candidate for any use case where a threshold
signature scheme is desired. We have also spoken with various Bitcoin companies
who confirmed that they are eager to incorporate our protocol to secure their
systems.

Malicious Faults. If we consider an honest-but-curious adversary, i.e. an ad-
versary that learns all the secret data of the compromised server but does not
change their code, then our protocol produces signatures with n = t+ 1 players
in the network (since all players will behave honestly, even the corrupted ones).
But in the presence of a malicious adversary, who can force corrupted players to
shut down or to send incorrect messages, one needs at least n = 2t + 1 players
in total to guarantee robustness, i.e. the ability to generate signatures even in
the presence of malicious faults. In that sense our protocol improves over [22,
23] where n = 3t+ 1 players are required to guarantee robustness.

But as we already discussed above, we want to minimize the number of
servers, and keep it at n = t+ 1 even in the presence of malicious faults. In this
case we give up on robustness, meaning that we cannot guarantee anymore that
signatures will be provided. But we can still prove that our scheme is unforgeable.
In other words, the adversary can only create a denial of service attack, but not
learn any information that would allow him to forge even if there is a single
honest player left in the network. This is another contribution of our paper,
since it is not clear how to provide such “dishonest majority” analysis in the
case of [22, 23].

2 Model, Definitions and Tools

In this section we introduce our communication model and provide definitions
of secure threshold signature schemes.

Communication Model. We assume that our computation model is composed
of a set of n players P1, . . . , Pn connected by a complete network of point-to-point
channels and a broadcast channel.

The Adversary. We assume that an adversary, A, can corrupt up to t of the
n players in the network. A learns all the information stored at the corrupted
nodes, and hears all the broadcasted messages. We consider two type of adver-
saries:

– honest-but-curious: the corrupted players follow the protocol but try to learn
information about secret values;

– malicious: corrupted players to divert from the specified protocol in any
(possibly malicious) way.

We assume that the network is “partially synchronous”, meaning that the
adversary speaks last in every communication round (also known as a rushing

adversary.) The adversary is modeled by a probabilistic polynomial time Turing
machine.

Adversaries can also be categorized as static or adaptive. A static adversary
chooses the corrupted players at the beginning of the protocol, while an adaptive
one chooses them during the computation. In the following, for simplicity, we
assume the adversary to be static, though the techniques from [13, 28] can be
used to extend our result to the adaptive adversary case.

Given a protocol P the view of the adversary, denoted by VIEWA(P), is de-
fined as the probability distribution (induced by the random coins of the players)
on the knowledge of the adversary, namely, the computational and memory his-
tory of all the corrupted players, and the public communications and output of
the protocol.

Signature Scheme. A signature scheme S is a triple of efficient randomized
algorithms (Key-Gen, Sig, Ver). Key-Gen is the key generator algorithm: on input
the security parameter 1λ, it outputs a pair (y, x), such that y is the public key
and x is the secret key of the signature scheme. Sig is the signing algorithm:
on input a message m and the secret key x, it outputs sig, a signature of the
message m. Since Sig can be a randomized algorithm there might be several valid
signatures sig of a message m under the key x; with Sig(m,x) we will denote
the set of such signatures. Ver is the verification algorithm. On input a message
m, the public key y, and a string sig, it checks whether sig is a proper signature
of m, i.e. if sig ∈ Sig(m,x).

The notion of security for signature schemes was formally defined in [25] in
various flavors. The following definition captures the strongest of these notions:
existential unforgeability against adaptively chosen message attack.

Definition 1. We say that a signature scheme S =(Key-Gen,Sig,Ver) is unforge-
able if no adversary who is given the public key y generated by Key-Gen, and the
signatures of k messages m1, . . . ,mk adaptively chosen, can produce the signa-
ture on a new message m (i.e., m /∈ {m1, . . . ,mk}) with non-negligible (in λ)
probability.

Threshold secret sharing. Given a secret value x we say that the values
(x1, . . . , xn) constitute a (t, n)-threshold secret sharing of x if t (or less) of these
values reveal no information about x, and if there is an efficient algorithm that
outputs x having t+ 1 of the values xi as inputs.

Threshold signature schemes. Let S=(Key-Gen, Sig, Ver) be a signature
scheme. A (t, n)-threshold signature scheme T S for S is a pair of protocols
(Thresh-Key-Gen, Thresh-Sig) for the set of players P1, . . . , Pn.

Thresh-Key-Gen is a distributed key generation protocol used by the players to
jointly generate a pair (y, x) of public/private keys on input a security parameter
1λ. At the end of the protocol, the private output of player Pi is a value xi such
that the values (x1, . . . , xn) form a (t, n)-threshold secret sharing of x. The public
output of the protocol contains the public key y. Public/private key pairs (y, x)
are produced by Thresh-Key-Gen with the same probability distribution as if

they were generated by the Key-Gen protocol of the regular signature scheme S.
In some cases it is acceptable to have a centralized key generation protocol, in
which a trusted dealer runs Key-Gen to obtain (x, y) and the shares x among the
n players.

Thresh-Sig is the distributed signature protocol. The private input of Pi is
the value xi. The public inputs consist of a message m and the public key y.
The output of the protocol is a value sig ∈ Sig(m,x).

The verification algorithm for a threshold signature scheme is, therefore, the
same as in the regular centralized signature scheme S.

Secure Threshold Signature Schemes.

Definition 2. We say that a (t, n)-threshold signature scheme T S =(Thresh-
Key-Gen,Thresh-Sig) is unforgeable, if no malicious adversary who corrupts at
most t players can produce, with non-negligible (in λ) probability, the signature
on any new (i.e., previously unsigned) message m, given the view of the protocol
Thresh-Key-Gen and of the protocol Thresh-Sig on input messages m1, . . . ,mk

which the adversary adaptively chose.

This is analogous to the notion of existential unforgeability under chosen message
attack as defined by Goldwasser, Micali, and Rivest [25]. Notice that now the
adversary does not just see the signatures of k messages adaptively chosen, but
also the internal state of the corrupted players and the public communication of
the protocols. Following [25] one can also define weaker notions of unforgeability.

In order to prove unforgeability, we use the concept of simulatable adversary
view [12, 26]. Intuitively, this means that the adversary who sees all the informa-
tion of the corrupted players and the signature of m, could generate by itself all
the other public information produced by the protocol Thresh-Sig. This ensures
that the run of the protocol provides no useful information to the adversary
other than the final signature on m.

Definition 3. A threshold signature scheme T S =(Thresh-Key-Gen,Thresh-Sig)
is simulatable if the following properties hold:

1. The protocol Thresh-Key-Gen is simulatable. That is, there exists a simulator
SIM1 that, on input a public key y, can simulate the view of the adversary
on an execution of Thresh-Key-Gen that results in y as the public output.

2. The protocol Thresh-Sig is simulatable. That is, there exists a simulator
SIM2 that, on input the public input of Thresh-Sig (in particular the public
key y and the message m), t shares xi1 , . . . , xit , and a signature sig of m,
can simulate the view of the adversary on an execution of Thresh-Sig that
generates sig as an output.

Threshold Optimality. Given a (t, n)-threshold signature scheme, obviously
t+ 1 honest players are necessary to generate signatures. We say that a scheme
is threshold-optimal if t+ 1 honest players also suffice.

The main contribution of our work is to present a threshold-optimal DSA
scheme for general t. The only known optimal scheme was in [31] for the case

of (1, 2)-threshold (i.e. 2-out-of-2) threshold DSA. The protocol in [22, 23] is not
threshold-optimal as it requires 2t+ 1 honest players to compute a signature.

We point out that if we consider an honest-but-curious adversary, then it will
suffice to have n = t+ 1 players in the network to generate signatures (since all
players will behave honestly, even the corrupted ones). But in the presence of a
malicious adversary one needs at least n = 2t + 1 players in total to guarantee
robustness, i.e. the ability to generate signatures even in the presence of malicious
faults. In that sense our protocol improves over [22, 23] where n = 3t+ 1 players
are required to guarantee robustness.

But as we already discussed in the introduction, we want to minimize the
number of servers, and keep it at n = t + 1 even in the presence of malicious
faults. In this case we give up on robustness, meaning that we cannot guarantee
anymore that signatures will be provided. But we can still prove that our scheme
is unforgeable. In other words an adversary that corrupts almost all the players
in the network can only create a denial of service attack, but not learn any
information that would allow him to forge. This is another contribution of our
paper, since it is not clear how to provide such “dishonest majority” analysis in
the case of [22, 23]7.

2.1 Additively Homomorphic Encryption

We assume the existence of an encryption scheme E which is additively homo-
morphic modulo a large integer N : i.e. given α = E(a) and β = E(b), where
a, b ∈ ZN , there is an efficiently computable operation +E over the ciphertext
space such that

α+E β = E(a+ b mod N)

Note that if x is an integer, given α = E(a) we can also compute E(xa mod N)
efficiently. We refer to this operation as x ×E α. We denote the message space
of E by ME and the ciphertext space by CE .

With
⊕t+1

i=1 αi we denote the summation over the addition operation +E of

the encryption scheme: i.e.
⊕t+1

i=1 αi = α1 +E . . .+E αt+1.
One instantiation of a scheme with these properties is Paillier’s encryption

scheme [35]. We recall the details of the scheme here.

– Key Generation: generate two large primes P,Q of equal length. and set N =
PQ. Let λ(N) = lcm(P −1, Q−1) be the Carmichael function of N . Finally
choose Γ ∈ Z∗N2 such that its order is a multiple of N . The public key is
(N,Γ) and the secret key is λ(N).

– Encryption: to encrypt a message m ∈ ZN , select x ∈R Z∗N and return
c = ΓmxN mod N2.

– Decryption: to decrypt a ciphertext c ∈ ZN2 , let L be a function defined over
the set {u ∈ ZN2 : u = 1 mod N} computed as L(u) = (u− 1)/N . Then the
decryption of c is computed as L(cλ(N))/L(Γλ(N)) mod N .

7 The protocols of [22, 23] include multiplications of Shamir secret shares, so the 2t+1
minimum is inherent.

– Homomorphic Properties: Given two ciphertexts c1, c2 ∈ ZN2 define c1+Ec2 =
c1c2 mod N2. If ci = E(mi) then c1 +E c2 = E(m1 +m2 mod N). Similarly,
given a ciphertext c = E(m) ∈ ZN2 and a number a ∈ Zn we have that
a×E c = ca mod N2 = E(am mod N).

2.2 Threshold Cryptosystems

In a (t, n)-threshold cryptosystem, there is a public key pk with a matching
secret key sk which is shared among n players with a (t, n)-secret sharing. When a
messagem is encrypted under pk, t+1 players can decrypt it via a communication
protocol that does not expose the secret key.

More formally, a public key cryptosystem E is defined by three efficient al-
gorithms:

– key generation Enc-Key-Gen that takes as input a security parameter λ, and
outputs a public key pk and a secret key sk.

– An encryption algorithm Enc that takes as input the public key pk and a
message m, and outputs a ciphertext c. Since Enc is a randomized algorithm,
there will be several valid encryptions of a message m under the key pk; with
Enc(m, pk) we will denote the set of such ciphertexts.

– and a decryption algorithm Dec which is run on input c, sk and outputs m,
such that c ∈ Enc(m, pk).

We say that E is semantically secure if for any two messages m0,m1 we have
that the probability distributions Enc(m0) and Enc(m1) are computationally
indistinguishable.

A (t, n) threshold cryptosystem T E , consists of the following protocols for n
players P1, . . . , Pn.

– A key generation protocol TEnc-Key-Gen that takes as input a security pa-
rameter λ, and the parameter t, n, and it outputs a public key pk and a
vector of secret keys (sk1, . . . , skn) where ski is private to player Pi. This
protocol could be obtained by having a trusted party run Enc-Key-Gen and
sharing sk among the players.

– A threshold decryption protocol TDec, which is run on public input a ci-
phertext c and private input the share ski. The output is m, such that
c ∈ Enc(m, pk).

We point out that threshold variations of Paillier’s scheme have been pre-
sented in the literature [2, 15, 16, 27]. In order to instantiate our dealerless pro-
tocol, we use the scheme from [27] as it includes a dealerless key generation
protocol that does not require n ≥ 2t+ 1.

2.3 Independent Trapdoor Commitments

A trapdoor commitment scheme allows a sender to commit to a message with
information-theoretic privacy. i.e., given the transcript of the commitment phase

the receiver, even with infinite computing power, cannot guess the committed
message better than at random. On the other hand when it comes to opening
the message, the sender is only computationally bound to the committed mes-
sage. Indeed the scheme admits a trapdoor whose knowledge allows to open a
commitment in any possible way (we will refer to this also as equivocate the
commitment). This trapdoor should be hard to compute efficiently.

Formally a (non-interactive) trapdoor commitment scheme consists of four
algorithms KG, Com, Ver, Equiv with the following properties:

– KG is the key generation algorithm, on input the security parameter it out-
puts a pair pk, tk where pk is the public key associated with the commitment
scheme, and tk is called the trapdoor.

– Com is the commitment algorithm. On input pk and a message M it outputs
[C(M), D(M)] = Com(pk,M,R) where r are the coin tosses. C(M) is the
commitment string, while D(M) is the decommitment string which is kept
secret until opening time.

– Ver is the verification algorithm. On input C,D and pk it either outputs a
message M or ⊥.

– Equiv is the algorithm that opens a commitment in any possible way given the
trapdoor information. It takes as input pk, stringsM,R with [C(M), D(M)] =
Com(pk,M,R), a message M ′ 6= M and a string T . If T = tk then Equiv
outputs D′ such that Ver(pk, C(M), D′) = M ′.

We note that if the sender refuses to open a commitment we can set D = ⊥ and
Ver(pk, C,⊥) = ⊥. Trapdoor commitments must satisfy the following properties

Correctness If [C(M), D(M)] = Com(pk,M,R) then Ver(pk, C(M), D(M)) =
M .

Information Theoretic Security For every message pair M,M ′ the distribu-
tions C(M) and C(M ′) are statistically close.

Secure Binding We say that an adversary A wins if it outputs C,D,D′ such
that Ver(pk, C,D) = M , Ver(pk, C,D′) = M ′ and M 6= M ′. We require that
for all efficient algorithms A, the probability that A wins is negligible in the
security parameter.

Such a commitment is non-malleable [19] if no adversary A, given a com-
mitment C to a messages m, is able to produce another commitment C ′ such
that after seeing the opening of C to m, A can successfully decommit to a re-
lated message m′ (this is actually the notion of non-malleability with respect
to opening introduced in [17]). We are going to use a related property called
independence and introduced in [24].

Consider the following scenario: an honest party produces a commitment C
and the adversary, after seeing C, will produce another commitment C ′ (which
we to require to be different from C in order to prevent the adversary from simply
copying the behavior of the honest party and outputing an identical committed
value). At this point the value committed by the adversary should be fixed, i.e.
no matter how the honest party open his commitment the adversary will always
open in a unique way.

The following definition takes into account that the adversary may see and
output many commitments ([14]).

Independence For any adversary A = (A1,A2) the following probability is
negligible in k:

Prob



pk, tk← KG(1k) ; m1, . . . ,mt ←M
r1, . . . , rt ← {0, 1}k ; [ci, di]← Com(pk,mi, ri)

(ω, ĉ1, . . . , ĉu)← A1(pk, c1, . . . , ct) with ĉj 6= ci∀i, j
m′1, . . . ,m

′
t ←M ; d′i ← Equiv(pk, tk,mi, ri,m

′
i)

(d̂1, . . . , hatdu)← A2(pk, ω, d1, . . . , dt)

(d̂′1, . . . , d̂
′
u)← A2(pk, ω, d′1, . . . , d

′
t)

∃i : ⊥ 6= m̂i = Ver(pk,m̂i, ĉi, d̂i) 6= Ver(pk,m̂′i, ĉi, d̂
′
i) = m̂′i 6= ⊥


In other words even if the honest parties open their commitments in different
ways using the trapdoor, the adversary cannot change the way he opens his
commitments Ĉj based on the honest parties’ opening.

It is possible to prove

Candidate Independent Trapdoor Commitments As shown in [24] inde-
pendence implies non-malleability. We point out that all non-malleable commit-
ments in the literature are also independent one.

The non-malleable commitment schemes in [17, 18] are not suitable for our
purpose because they are not ”concurrently” secure, in the sense that the security
definition holds only for t = 1 (i.e. the adversary sees only 1 commitment).

The stronger concurrent security notion of non-malleability for t > 1 is
achieved by the schemes presented in [14, 21, 32]), and all these schemes can
also be proven independent according to the definition presented above. There-
fore for the purpose of our threshold DSA scheme, we can use any of the schemes
in [14, 21, 32]).

3 The Digital Signature Standard

We define a generic G-DSA signature algorithm as follows. The public parame-
ters include a cyclic group G of prime order q generated by an element g, a hash
function H defined from arbitrary strings into Zq, and another hash function H ′

defined from G to Zq.

– Secret Key x chosen uniformly at random in Zq.
– Public Key y = gx computed in G.
– Signing Algorithm on input an arbitrary message M , we compute m =
H(M) ∈ Zq. Then the signer chooses k uniformly at random in Zq and
computes R = gk in G and r = H ′(R) ∈ Zq. Then she computes s =
k−1(m+ xr) mod q. The signature on M is the pair (r, s).

– Verification Algorithm On input M, (r, s) and y, the receiver checks that r, s ∈
Zq and computes

R′ = gms
−1 mod qyrs

−1 mod q in G

and accepts if H ′(r′) = r.

The traditional DSA algorithm is obtained by choosing large primes p, q such
that q|(p − 1) and setting G to be the subgroup of Z∗p of order q. In this case
the multiplication operation in G is multiplication modulo p. The function H ′ is
defined as H ′(R) = R mod q.

The EC-DSA scheme is obtained by choosing G as a group of points on an
elliptic curve of cardinality q. In this case the multiplication operation in G is the
group operation over the curve. The function H ′ is defined as H ′(R) = Rx mod q
where Rx is the x-coordinate of the point R.

3.1 Threshold DSA

As discussed in Section 2, in a (t, n)-threshold signature scheme the secret key
is shared among n servers, in such a way that any t of them has no information
about the secret key, while n players can sign a message using a communication
protocol that does not require the secret key to be reconstructed at a single
server. A scheme is threshold-optimal if exactly n = t + 1 honest players can
sign.

For the case of DSA, in [22, 23] Gennaro et al. present such a non-optimal
scheme that requires n = 2t + 1 honest players to participate in a signature.
In particular this prevents the classical “2-out-of-2” case where the key is split
among 2 servers so that both have to cooperate to sign, while 1 has no informa-
tion about the secret key (in [22, 23] if 1 server has no information about the key,
then one would need at least 3 servers to sign). The 2-out-of-2 case is handled
by [31] which is the basis of our protocol.

Both schemes are described for the specific case of the DSA scheme, but it is
not hard to see that they both work for the generic G-DSA scheme, and therefore
also for ECDSA. In the rest of the paper we will use the G-DSA notation.

3.2 The technical issues

The main technical issue in constructing threshold DSA signatures is dealing
with the fact that both the secret key x and the nonce k have to remain secret.
This means that in a threshold scheme, they must be shared in some way among
the servers. The protocol in [22] is based on Shamir’s secret sharing [39], which
means that both x and k are shared using polynomials of degree t. Due to the
fact that k and x are multiplied to compute s, the end result is that s will be
shared among the players using a polynomial of degree 2t, which requires 2t+ 1
honest players to be reconstructed.

The protocol in [31] gets around the above problem by using a multiplicative
sharing of the secret values in the protocol. This allows an efficient way to mul-
tiply k and x without incurring an increase of the number of players required to
reconstruct. However it only works for 2 players.

Our first approach was to first extend the techniques in [31] to the case of t-
out-of-t players, but that required O(t) round and the use of Paillier’s encryption
scheme with a modulus N = O(q3t−1). Moreover if one wanted to extend that
to a t-out-of-n scheme using a combinatorial structure, it would require O(nt)
storage, making it feasible only for small values of n and t. For the sake of
comparison, we have included this scheme in Appendix A.

The scheme we present in the next section requires only 6 rounds, constant
amount of storage from the players, and uses a Paillier modulus N > q8.

4 Our scheme

In this section, we describe our scheme in three parts. First we describe the
initialization phase, in which some common parameters are chosen. Then we
describe the key generation protocol, in which the parties jointly generate a
DSA key pair (x, y = gx) with y public and x shared among the players. Finally,
we describe the signature generation protocol.

In the following, we assume that if any player does not perform according to
the protocol (e.g. by failing a ZK proof, or refusing to open a committed value),
then the protocol aborts and stops.

4.1 Initialization phase

In this phase, a common reference string containing the public information pk
for an independent trapdoor commitment KG, Com, Ver, Equiv is selected and
published. This could be accomplished by a trusted third party, who can be
assumed to erase any secret information (i.e. the trapdoor of the commitment)
after selection8.

The common parameters G, g, q for the DSA scheme are assumed to be
known.

4.2 Key generation protocol

Here we describe how the players can jointly generate a DSA key pair (x, y =
gx) with y public and x shared among the players. The idea is to generate a
public key E for an additively (mod N) homomorphic encryption scheme E,
together with the secret key D in shared form among the players. The value N

8 Another option is to use a publicly verifiable method that generates the public
information, without the trapdoor being known. For example the public parameters
in [18] could be generated by using a “random oracle” over some public information
(e.g. the hash of the NY Times of a specific day) without anybody knowing the
trapdoor (i.e. the discrete log of some group element with respect to a generator).

is chosen to be larger than q8. Then a value x is generated, and encrypted with
E, with the value α = E(x) made public. Note that this is an implicit (t, n)
secret sharing of x, since the decryption key of E is shared among the players.
We use independent trapdoor commitments KG, Com, Ver, Equiv to enforce the
independence of the values contributed by each player to the selection of x (in the
following for simplicity we may drop the public key pk and the randomness input
when describing the computation of a commitment and write [C,D] = Com(m))

More specifically, the scheme is described below. We assume that if any com-
mitment opens to ⊥ or if any of the ZK proofs fails, the protocol terminates
without an output.

– The parties run the key generation protocol TEnc-Key-Gen for an additively
homomorphic encryption scheme E. If using Paillier’s encryption scheme, we
can use the threshold version from [27]. The parties run this protocol with
N > q8.

– Each player Pi selects a random value xi ∈ Zq, computes yi = gxi ∈ G and
[Ci, Di] = Com(yi);

– Each player Pi broadcasts Ci
• Di which allows everybody to compute yi = Ver(Ci, Di).
• αi = E(xi);
• a ZK argument Πi that states
∗ ∃ η ∈ [−q3, q3] such that
∗ gη = yi
∗ D(αi) = η

If any of the ZK arguments fails, the protocol terminates.
– The players compute α =

⊕t+1
i=1 αi and y =

∏t+1
i=1 yi.

The public key for the DSA is set to y. We note that y = gx and that α = E(x′)

with x′ = x mod q since x′ =
∑t+1
i=1 xi is computed modulo N , but since N > q8,

we have that x′ is computed actually over the integers.

4.3 Signature Generation

We now describe the signature generation protocol, which is run on input m
(the hash of the message M being signed) and the output of the key generation
protocol described above. Here too, we assume that if any commitment opens to
⊥ or if any of the ZK proofs fails, the protocol terminates without an output.

– Round 1
Each player Pi
• chooses ρi ∈R Zq
• computes ui = E(ρi) and vi = ρi ×E α = E(ρix)
• computes [C1,i, D1,i] = Com([ui, vi]) and broadcasts C1,i

– Round 2
Each player Pi broadcasts
• D1,i. This allows everybody to compute [ui, vi] = Ver(C1,i, D1,i)
• a zero-knowledge argument Π(1,i) which states

∗ ∃ η ∈ [−q3, q3] such that
∗ D(ui) = η
∗ D(vi) = ηD(E(x))

Players compute u =
⊕t+1

i=1 ui = E(ρ) and v =
⊕t+1

i=1 vi = E(ρx), where

ρ =
∑t+1
i=1 ρi (over the integers)

– Round 3
Each player Pi
• chooses ki ∈R Zq and ci ∈R [−q6, q6]
• computes ri = gki and wi = (ki ×E u) +E E(ciq) = E(kiρ+ ciq)
• computes [C2,i, D2,i] = Com(ri, wi) and broadcasts C2,i

– Round 4
Each player Pi broadcasts
• D2,i which allows everybody to compute [ri, wi] = Ver(C2,i, D2,i)
• a zero-knowledge argument Π(2,i) which states
∗ ∃ η ∈ [−q3, q3] such that
∗ gη = ri
∗ D(wi) = ηD(u) mod q

Players compute w =
⊕t+1

1 wi = E(kρ + cq) where k =
∑t+1
i=1 ki and c =∑t+1

i=1 ci(over the integers). Players also compute R = Πt+1
1 ri = gk and

r = H ′(R) ∈ Zq
– Round 5
• players jointly decrypt w using TDec to learn the value η ∈ [−q7, q7]

such that η = kρ mod q and ψ = η−1 mod q
• Each player computes

σ = ψ ×E [(m×E u) +E (r ×E v)]

= ψ ×E [E(mρ) +E E(rρx)]

= (k−1ρ−1)×E [E(ρ(m+ xr))]

= E(k−1(m+ xr))

= E(s)

– Round 6
The players invoke distributed decryption protocol TDec over the ciphertext
σ. Let s = D(σ) mod q. The players output (r, s) as the signature for m.

Remark: The size of the modulus N . We note that in order for the proto-
col to be correct, all the homomorphic operations over the ciphertexts (which
are modulo N), must not “conflict” with the operations modulo q of the DSA
algorithms. We note that the values encrypted under E are ∼ q7. Indeed the ZK
proofs guarantee that the values k, ρ < q3. Moreover the “masking” value cq in
the decryption of η is at most q7, so the encrypted values in wi are never larger
than q8. By choosing N > q8 we guarantee that when we manipulate ciphertexts,
all the operations on the plaintexts happen basically over the integers, without
taking any modular reduction mod N .

4.4 Zero-knowledge arguments

We now present instantiations for the zero knowledge arguments needed in our
protocol, when the underlying encryption scheme being used is Paillier’s scheme.
While there has been work done systemizing zero knowledge proofs based on the
Strong RSA assumption [10, ?], those works mostly focus on proofs of knowledge.
As we do not require our proofs to be proofs of knowledge, we present the design
of these proofs ourselves. These argument systems are basically identical to the
ones in [31] (more precisely we need to prove simpler statements than the proofs
used in [31]).

As in [31] we make use of an auxiliary RSA modulus Ñ which is the product
of two safe primes Ñ = P̃ Q̃ and two elements h1, h2 ∈ Z∗

Ñ
used to construct

range commitments via [20].
We refer the reader to [31] for a proof that the protocols described below are

(i) statistical zero-knowledge and (ii) sound under the strong RSA assumption
on the modulus Ñ , which we recall below.

As in [31], the proof that we give is non-interactive. It relies on using a hash
function to compute the challenge, e, and it is secure in the Random Oracle
Model.

The Proof Π1,i For public values c1, c2, c3, we construct a ZK proof Π1,i which
states

∃ η ∈ [−q3, q3] such that

– D(c1) = ηD(c2)
– D(c3) = η

The protocol is as follows. We assume the Prover knows the value r ∈ Z∗N
used to encrypt η such that c3 = (Γ)η(r)N mod N2.

The prover chooses uniformly at random:

α ∈ Zq3
ρ ∈ ZqÑ

β,∈ Z∗N
γ ∈ Zq3Ñ

The prover computes

u1 = (h1)η(h2)ρ mod Ñ
z = (Γ)α(β)N mod N2

u2 = (h1)α(h2)γ mod Ñ
v = (c2)α mod N2

e = hash(c1, c2, c3, z, u1, u2, v)

s1 = eη + α
s2 = (r)eβ mod N

s3 = eρ+ γ

The prover sends all of these values to the Verifier. The Verifier checks that
all the values are in the correct range and moreover that the following equations
hold

z = (Γ)s1(s2)N (c3)−e mod N2

u2 = (h1)s1(h2)s3(u1)−e mod Ñ
v = (c2)s1(c1)−e mod N2

e = hash(c1, c2, c3, z, u1, u2, v)

The Proof Π2,i For public values g, r, w, u we construct a ZK proof Π(2,i)

which states

∃ η1 ∈ [−q3, q3], η2 ∈ [−q8, q8] such that

– gη1 = r
– D(w) = η1D(u) + qη2

The protocol is as follows. We assume the Prover knows the randomness rc ∈ Z∗N
used to encrypt qη2 such that w = uη1Γ qη2rNc mod N2. The prover chooses
uniformly at random:

α ∈ Zq3
β ∈ Z∗N
γ ∈ Zq3Ñ
δ ∈ Zq3
µ ∈ Z∗N

ν ∈ Zq3Ñ
θ ∈ Zq8
τ ∈ Zq8Ñ
ρ1 ∈ ZqÑ
ρ2 ∈ Zq6Ñ

The prover computes

z1 = (h1)η1(h2)ρ1 mod Ñ
z2 = (h1)η2(h2)ρ2 mod Ñ
u1 = gα in G
u2 = (Γ)α(β)N mod N2

u3 = (h1)α(h2)γ mod Ñ
v1 = (u)α(Γ)qθ(µ)N mod N2

v2 = (h1)δ(h2)ν mod Ñ
v3 = (h1)θ(h2)τ mod Ñ

e = hash(g, w, u, z1, z2, u1, u2, u3, v1, v2, v3)

s1 = eη1 + α
s2 = eρ1 + γ

t1 = (rc)
eµ mod N

t2 = eη2 + θ
t3 = eρ2 + τ

The prover sends all of these values to the Verifier. The Verifier checks that
all the values are in the correct range and moreover that the following equations
hold

u1 = (c)s1(r)−e in G
u3 = (h1)s1(h2)s2(z1)−e mod Ñ
v1 = (u)s1(Γ)qt2(t1)N (w)−e mod N2

v3 = (h1)t2(h2)t3(z2)−e mod Ñ
e = hash(g, w, u, z1, z2, u1, u2, u3, v1, v2, v3)

The Proof Πi For public values g, y, w we construct a ZK proof Πi which
states

∃ η ∈ [−q3, q3] such that

– gη = y
– D(w) = η

The protocol is as follows. We assume the Prover knows the randomness r ∈ Z∗N
used to encrypt η such that w = (Γ)η(r)N mod N2.

The prover chooses uniformly at random:

α ∈ Zq3
β ∈ Z∗N

ρ ∈ ZqÑ
γ ∈ Zq3Ñ

The prover computes

z = hη1h
ρ
2 mod Ñ

u1 = gα in G
u2 = ΓαβN mod N2

u3 = hα1h
γ
2 mod Ñ

e = hash(g, y, w, z, u1, u2, u3)

s1 = eη + α
s2 = (r)eβ mod N

s3 = eρ+ γ

The prover sends all of these values to the Verifier. The Verifier checks that
all the values are in the correct range and moreover that the following equations
hold

u1 = (g)s1(y)−e in G
u2 = (Γ)s1(s2)N (w)−e mod N2

u3 = (h1)s1(h2)s3(z)−e mod Ñ
e = hash(g, y, w, z, u1, u2, u3)

The Strong RSA Assumption. Let N be the product of two safe primes,
N = pq, with p = 2p′ + 1 and q = 2q′ + 1 with p′, q′ primes. With φ(N) we
denote the Euler function of N , i.e. φ(N) = (p− 1)(q − 1) = p′q′. With Z∗N we
denote the set of integers between 0 and N − 1 and relatively prime to N .

Let e be an integer relatively prime to φ(N). The RSA Assumption [38] states
that it is infeasible to compute e-roots in Z∗N . That is, given a random element
s ∈R Z∗N it is hard to find x such that xe = s mod N .

The Strong RSA Assumption (introduced in [3]) states that given a random
element s in Z∗N it is hard to find x, e 6= 1 such that xe = s mod N . The
assumption differs from the traditional RSA assumption in that we allow the
adversary to freely choose the exponent e for which she will be able to compute
e-roots.

We now give formal definitions. Let SRSA(n) be the set of integers N , such
that N is the product of two n/2-bit safe primes.

Assumption 1 We say that the Strong RSA Assumption holds, if for all prob-
abilistic polynomial time adversaries A the following probability

Prob[N ← SRSA(n) ; s← Z∗N : A(N, s) = (x, e) s.t. xe = s mod N]

is negligible in n.

5 Security Proof

In this section we prove the following

Theorem 1. Assuming that

– The DSA signature scheme is unforgeable;
– E is a semantically secure, additively homomorphic encryption scheme;
– KG, Com, Ver, Equiv is a independent trapdoor commitment;
– the Strong RSA Assunption holds;

then our threshold DSA scheme in the previous section is unforgeable.

The proof of this theorem will proceed by a traditional simulation argument,
in which we show that if there is an adversary A that forges in the threshold
scheme with a significant probability, then we can build a forger F that forges
in the centralized DSA scheme also with a significant probability.

So let’s assume that there is an adversary A that forges in the threshold
scheme with probability larger than ε > 1

kc for some constant c.
We assume that the adversary controls players P2, . . . , Pt+1 and that P1 is

the honest player. We point out that because we use concurrently independent
commitments (where the adversary can see many commitments from the honest
players) the proof also holds if the adversary controls less than t players and
we have more than 1 honest player. So the above assumption is without loss of
generality.

Because we are assuming a rushing adversary, P1 always speak first at each
round. Our simulator will act on behalf of P1 and interact with the adversary
controlling P2, . . . , Pt+1. Recall how A works: it first participates in the key
generation protocol to generate a public key y for the threshold scheme. Then it
requests the group of players to sign several messages m1, . . . ,m`, and the group
engages in the signing protocol on those messages. At the end with probability
at least ε the adversary outputs a message m 6= mi and a valid signature (r, s)
for it under the DSA key y. This probability is taken over the random tape τA
of A and the random tape τ1 of P1. If we denote with A(τA)P1(τ1) the output of
A at the end of the experiment described above, we can write

Probτ1,τA [A(τA)P1(τ1) is a forgery] ≥ ε

We say that an adversary random tape τA is good if

Probτ1 [A(τA)P1(τ1) is a forgery] ≥ ε

2

By a standard application of Markov’s inequality we know that if τA is chosen
uniformly at random, the probability of choosing a good one is at least ε

2 .
We now turn to building the adversary F that forges in the centralized

scheme. This forger will use A as a subroutine in a “simulated” version of the
threshold scheme: F will play the role of P1 whileA will control the other players.

We assume that F runs the initialization phase in which the public param-
eters are set. In particular this means that F knows the trapdoor information
tk for the independent trapdoor scheme used in the protocol. This will allow
F to change the opening of its commitments in different ways if necessary. The
independence property will guarantee that the adversary A cannot do that. Also
F will choose a random tape τA for A: we know that with probability at least ε

2
it will be a good tape. From now on we assume that A runs on a good random
tape.
F runs on input a public key y for the centralized DSA scheme, which is

chosen according to the uniform distribution in G. The first task for F is set up
an indistinguishable simulation of the key generation protocol to result in the
same public key y.

Similarly every time A requests the signature of a message mi, the forger
F will receive the real signature (ri, si) from its signature oracle. It will then
simulate, in an indistinguishable fashion, an execution of the threshold signature
protocol that on input mi results in the signature (ri, si).

Because these simulations are indistinguishable from the real protocol for A,
the adversary will output a forgery with the same probability as in real life. Such
a forgery m, r, s is a signature on a message that was never queried by F to its
signature oracle and therefore a valid forgery for F as well. We now turn to the
details of the simulations.

5.1 Simulating the key generation protocol

Recall that in the key generation protocol P1 first sends C1, then A sends the
commitments Ci for i > 1. Then P1 decommits y1 together with the ZK proof
α1, Π1. Similarly A decommits yi together with the ZK proof αi, Πi. We de-
note with Key-Gen(Ci, yi, Πi) the output of the protocol (which can be ⊥ if the
protocol does not terminate successfully).

The simulation Sim-Key-Gen is described below. On input a public key y = gx

for DSA the forger F plays the role of P1 as follows

1. The parties run the key generation protocol TEnc-Key-Gen for an additively
homomorphic encryption scheme E.

2. Repeat the following steps (by rewinding A) until A sends valid messages
(i.e. a correct decommitment and a correct ZK proof) for P2, . . . , Pt+1

– F (as P1) selects a random value x1 ∈ Zq, computes y1 = gx1 ∈ G and
[C1, D1] = Com(y1) and broadcasts C1. A broadcast commitments Ci
for i > 1;

– Each player Pi broadcasts Di and αi, Πi (F will follow the protocol
instructions).

3. Let yi the revealed commitment values of each party. F rewinds the adversary
to the decommitment step and
– changes the opening of P1 to D̂1 so that the committed value revealed

is now ŷ1 = y ·
∏t+1
i=2 y

−1
i .

– broadcasts α̂1 = E(0) and simulates the ZK proof Π̂1

4. The adversary A will broadcasts D̂i, α̂i, Π̂i. Let ŷi be the committed value
revealed by A at this point (this could be ⊥ if the adversary refused to
decommit or the ZK proof fails).

5. The players compute α =
⊕t+1

i=1 α̂i and ŷ =
∏t+1
i=1 ŷi (these values are set to

⊥ if the any of the ŷi are set to ⊥ in the previous step).

We now prove a few lemmas about this simulation.

Lemma 1. The simulation terminates in expected polynomial time and is in-
distinguishable from the real protocol.

Proof (of Lemma 1). Since A is running on a good random tape, we know that
the probability over the random choices of F , that A will correctly decommit is
at least ε

2 >
1

2nc . Therefore we will need to repeat the loop in step (2) only a
polynomial number of times in expectation.

The only differences between the real and the simulated views are

– in the simulated one the ciphertext α1 does not decrypt to the discrete
logarithm of y1 (which in turn implies that α does not decrypt to the discrete
logarithm of y).

– P1 runs a simulated ZK proof instead of a real one.

Since the simulation of the ZK proofs is statistically indistinguishable from the
real proof, it is not hard to see that in order to distinguish between the two
views one must be able to break the semantic security of the Paillier encryption
scheme.

Lemma 2. For a polynomially large fraction of inputs y, the simulation termi-
nates with output y except with negligible probability.

Proof (of Lemma 2). First we prove that if the simulation terminates on an
output which is not ⊥, then it terminates with output y except with negligible
probability. This is a consequence of the independence property of the commit-
ment scheme. Indeed because the commitment is independent, if A correctly
decommits Ci twice it must do so with the same string, no matter what P1

decommits too (except with negligible probability). Therefore ŷi = yi for i > 1
and therefore ŷ = y.

Then we prove that this happens for a polynomially large fractions of input y.
Let yA =

∏t+1
i=2 yi, i.e.the contribution of the adversary to the output of the pro-

tocol. Note that because of the independence property this value is determined
and known to F by step (3). At that point F rewinds the adversary and chooses
ŷ1 = yy−1A . Since y is uniformly distributed, we have that ŷ1 is also uniformly
distributed. Because A is running on a good random tape we know that at this

point there is an ε
2 > 1

2nc fraction of ŷ1 for which A will correctly decommit.
Since there is a 1-to-1 correspondence between y and ŷ1 we can conclude that
for a ε

2 >
1

2nc of the input y the protocol will successfully terminate.

5.2 Signature generation simulation

After the key generation is over, F must handle the signature queries issued by
the adversary A. When A requests to sign a message m, our forger F will engage
in a simulation of the threshold signature protocol. During this simulation F will
have access to a signing oracle that produces DSA signatures under the public
key y issued earlier to F .

1. Repeat the following steps (by rewinding A) until A sends valid messages
(i.e. a correct decommitment and a correct ZK proof) for P2, . . . , Pt+1. Here
F simply follows the protocol instructions for P1.
– Round 1. Each Player Pi computes [C1,i, D1,i] = Com(ui, vi) and broad-

casts C1,i

– Round 2. Each Player Pi broadcasts D1,i (which allows to calculate ui, vi)
and Π1,i

2. Let ū =
⊕t+1

i=2[(−1)×E ui] and v̄ =
⊕t+1

i=2[(−1)×E vi]. Repeat the following
step until A sends valid messages (i.e. a correct decommitment and a correct
ZK proof) for P2, . . . , Pt+1.
– F chooses random values ρ, τ ∈ Zq. It rewinds the adversary and changes

the opening of P1 to û1 = E(ρ) +E ū and v̂1 = E(τ) +E v̄. Let ûi and v̂i
be the opening of A.

– F simulates the ZK proof Π1,i.

Let û =
⊕t+1

i=1 ûi and v̂ =
⊕t+1

i=1 v̂i.
3. Repeat the following steps (by rewinding A) until A sends valid messages

(i.e. a correct decommitment and a correct ZK proof) for P2, . . . , Pt+1. Here
F simply follows the protocol instructions for P1.

– Round 3. Each Player Pi computes [C2,i, D2,i] = Com(ri, wi) and broad-
casts C2,i

– Round 4. Each Player Pi broadcasts D2,i (which allows to calculate ri, wi)
and Π2,i

4. Let r̄ =
∏t+1
i=2 r

−1
i and w̄ =

⊕t+1
i=2[(−1) ×E wi]. Repeat the following step

until A sends valid messages (i.e. a correct decommitment and a correct ZK
proof) for P2, . . . , Pt+1.
– F queries its signature oracle and receives a signature (r, s) on m. It

computes R = gms
−1 mod qyrs

−1 mod q ∈ G (note that H ′(R) = r ∈ Zq).
It finally chooses η ∈R [−q7, q7] such that η−1(mρ+ rτ) = s mod q

– It rewinds the adversary to the previous decommitment step and changes
the opening of P1 to r̂1 = R · r̄ and ŵ1 = E(η) +E w̄. Let r̂i and ŵi be
the openings of A.

– F simulates the ZK proof Π2,i.

Let ŵ =
⊕t+1

1 ŵi = E(η) and R̂ = Πt+1
1 r̂i ∈ G and r̂ = H ′(R̂) ∈ Zq.

5. Round 5.

– players jointly decrypt ŵ using TDec to learn the value η̂ and ψ̂ =
η̂−1 mod q

– Each player computes

σ̂ = ψ̂ ×E [(m×E û) +E (r̂ ×E v̂)]

6. Round 6. The players invoke distributed decryption protocol TDec over the
ciphertext σ̂ which will result in ŝ. The players output (r̂, ŝ) as the signature
for m.

Here too, we prove a few lemmas about the simulation.

Lemma 3. On input m the simulation terminates with output (r, s) a valid
signature for m, except with negligible probability.

Proof (of Lemma 3). Let (r, s) be the signature that F receives by its signature
racle in the last iteration of Step (3) (when the adversary decommits success-
fully). This is a valid signature for m. We prove that the protocol terminates
with output (r, s).

This is a consequence of the independence property of the commitment
scheme. Indeed because the commitment is independent, if A correctly decom-
mits in Step (2) (resp. in Step (4)), its opening must be the same as the opening
it presented in Step (1) (resp. in Step (3)) – except with negligible probability.
Therefore we have that

û = E(ρ) ŵ = E(τ) ŵ = E(η) ψ̂ = η−1 mod q r̂ = r

and

σ̂ = ψ̂ ×E [(m×E û) +E (r̂ ×E v̂)]

= (η−1 mod q)×E [E(mρ) +E E(rτ)]

= E(η−1(mρ+ rτ))

= E(s)

except with negligible probability.
Therefore when the players jointly decrypt σ̂ they will recover s.

Lemma 4. The simulation terminates in expected polynomial time and is in-
distinguishable from the real protocol.

Proof (of Lemma 4). Since A is running on a good random tape, we know that
the probability over the random choices of F , that A will correctly decommit is
at least ε

2 >
1

2kc . Therefore we will need to repeat the loop in steps (1), (2), (3)
and (4) only a polynomial number of times in expectation.

The only differences between the real and the simulated views are

– in the simulated view, the plaintexts encrypted in the ciphertexts published
by F do not satisfy the same properties that they would do in the protocol
when they were produced by a real player P1. It is not hard to see that in
order to distinguish between the two views one must be able to break the
semantic security of the encryption scheme.

– F runs simulated ZK proofs instead of real ones that would prove those
properties. But the simulations are statistically indistinguishable from the
real proofs.

– The output of the protocol. In our simulation the output is always a correct
signature (see Lemma 3) while in the real protocol it might happen that the
output is a pair (r, s) which is not a valid signature. This only happens if
the adversary is able to fool one of the ZK proofs, but due to the soundness
property of the ZK Proofs (which holds under the Strong RSA Assumption)
this event happens only with negligible probability, and therefore cannot
contribute significantly to distinguish between the two views.

– The distribution of the value η. In the real protocol, η is a fixed value kρ
(which we know is bounded by q6 at most because of the ZK proofs), masked
by a random value in the range of q7. In our protocol, η is a random value in
the range of q7. It is not hard to see that the two distributions are statistically
indistinguishable.

Before we conclude the proof let us point out a major difference in the sim-
ulation of the key generation, versus the simulation of the signature generation.
In the former we have to accept that it is not possible to generate some public
keys y. We can only prove that a sufficiently large fraction of the possible keys
can be generated. That’s because we have seen that the adversary can skew the
distribution of the public keys, but not to a sufficiently large extent.

When it comes to signatures, instead, we can always sign messages that the
adversary queries. Indeed here too it’s true that the adversary can skew the
distribution of the signatures (similarly to the way it can skew the distribution
of the public keys), but here we are not required to “hit” a specific public key
y. Here we are simply required to hit any valid signature for m. By querying
the signature oracle several times on the same message (and getting indepen-
dent signatures on it), the forger is able to hit the specific distribution that the
adversary induces on the signatures (that’s because there is a sufficiently large
fraction of signatures that will be generated by the protocol).

In other words, our simulator perfectly simulates the keys and the signatures
that the protocol generates. When it comes to use this simulator to prove un-
forgeability, the latter is not a problem. The former simply restricts the success
of the forger to the keys that are generated by the protocol (not a problem since
there is a large fraction of them).

5.3 Finishing up the proof

Proof (of Theorem 1). The forger F described above produces an indistinguish-
able view for the adversary A, and therefore, A will produce a forgery with the

same probability as in real life. The success probability of F is at least ε3

8 . That’s
because F has to succeed in choosing a good random tape for A (this happens
with probability larger than ε

2) and has to hit a good public key y (this also
happens with probability larger than ε

2) and finally under those conditions, the
adversary A will output a forgery with probability ε

2 .
Under the security of the DSA signature scheme, the probability of success of

F must be negligible, which implies that ε must also be negligible, contradicting
the assumption that A has a non-negligible probability of forging.

6 Threshold Security for Bitcoin wallets

In this section, we give an overview of Bitcoin, discuss the threat model, and
show that deploying our threshold signatures is the best solution to address these
threats.

6.1 Bitcoin

Bitcoin is a decentralized digital currency [34]. Bitcoins are owned by addresses;
an address is simply the hash of a public key. To transfer bitcoins from one
address to another, a transaction is constructed that specifies one or more input
addresses from which the funds are to be debited, and one or more output
addresses to which the funds are to be credited. For each input address, the
transaction contains a reference to a previous transaction which contained this
address as an output address. In order for the transaction to be valid, it must
be signed by the private key associated with each input address, and the funds
in the referenced transactions must not have already been spent [34, 6].

Each output of a transaction may only be referenced as the input to a single
subsequent transaction. It is thus necessary to spend the entire output at once.
It is often the case that one only wishes to spend a part of the output that was
received in a previous transaction. This is accomplished by means of a change
address where one lists their own address as an output of the transaction. So,
for example, if Alice received 5 bitcoins in a transaction and wants to transfer 3
of them to Bob, she constructs a transaction in which she transfers 3 to Bob’s
address and the remaining 2 to her own change address.

While it is possible for the sender to include their input address as the change
address in the output, the best and recommended practice is to send the change
to a newly generated addresses. The motivation for generating new addresses is
increased anonymity since it makes it harder to track which addresses are owned
by which individuals.

A Bitcoin wallet is a software abstraction which seamlessly manages multi-
ple addresses on behalf of a user. Users do not deal with the low level details of
their addresses. They just see their total balance, and when they want to trans-
fer bitcoins to another address, they specify the amount to be transferred. The
wallet software chooses the input addresses and change addresses and constructs
the transaction. New addresses can be generated at any point, and individual

Bitcoin users typically have many addresses. The standard Bitcoin wallet imple-
mentation generates a new change address for every transaction.

Separate from change addresses, businesses may wish to maintain multiple
addresses in their wallet for other reasons. A common practice is to provide
a fresh address every time someone wishes to send bitcoins. This serves two
purposes: it allows the business to easily disambiguate between multiple payers
(e.g. if Alice and Bob are each paying 1 BTC, by giving a different address to
each payer, the business can now track whom it received payment from) and it
also increases unlinkability between the business’s various transactions.

Signed transactions are broadcast to the Bitcoin peer-to-peer network. They
are validated by miners who group transactions together into blocks. Miners
participate in a distributed consensus protocol that collects these blocks into an
append-only global log called the block chain.

Our treatment of transactions thus far has described what a typical Bitcoin
transaction looks like. However, Bitcoin allows for far more complex transactions.
Every transaction contains a script that specifies how the transferred funds may
be redeemed. For a typical transaction, the script specifies that one who wants
to spend the bitcoins must present a public key that when hashed yields the
output address, and they must sign the new transaction with the corresponding
private key. A transaction can include a script that specifies complex series of
rules that need to be enforced in order for the bitcoins to be spent.

While the original Bitcoin paper does not specify the signature algorithm to
be used, the current implementation uses the Elliptic Curve Digital Signature
Algorithm (ECDSA) over the secp256k1 curve [6–8].

6.2 Threat model

To classify the problems, we distinguish between internal and external threats
as well as between hot and cold wallets. While the term wallet is generally used
loosely to refer to a software abstraction (as described in the previous section),
we will use the term in the rest of the paper in a more precise sense.

Definition 4 (wallet). A collection of addresses with the same security policy
together with a software program or protocol that allows spending from those
addresses in accordance with that policy.

“Security policy” encompasses the ownership or access-control list and the
conditions under which bitcoins in the wallet may be spent.

The terms hot wallet and cold wallet derive from the more general terms hot
storage, meaning online storage, and cold storage, meaning offline storage. A hot
wallet is a Bitcoin wallet for which the private keys are stored on a network-
connected machine (i.e. in hot storage). By contrast, for a cold wallet the private
keys are stored offline.

Definition 5 (Hot wallet/Cold wallet). A hot wallet is a wallet from which
bitcoins can be spent without accessing cold storage. Conversely, a cold wallet is
a wallet from which bitcoins cannot be spent without accessing cold storage.

Note that these new definitions refer to the desired effect, not the method of
achieving it. The desired effect of a business that maintains a hot wallet is the
ability to spend bitcoins online without having to access cold storage.

Adversary Hot wallet Cold wallet

Insider
Vulnerable by

default; our methods
are necessary

Reduces to physical
security by default;

our methods can help

External
(network)

Reduces to network
security by default;

our methods can help
Safe

Table 1. Taxonomy of threats

Table 1 shows four types of possible threats to Bitcoin wallets. Securing a
cold wallet is a physical security problem. While a network adversary is unable
to get to a cold wallet, traditional physical security measures can be used to
protect it from insiders — for example, private keys printed on paper and stored
in a locked safe with video surveillance.

In addition, our methods may be used to supplement physical security mea-
sures. Instead of storing the key in a single location, the business can store shares
of the key in different locations. The adversary will thus have to compromise se-
curity in multiple locations in order to recover the key. Indeed, this is one use
case where Bitcoin companies are eager to implement our threshold signature
scheme. In private discussions with one of the most prominent Bitcoin exchanges,
we were told that they use Shamir secret sharing to secure their cold storage. Of
course, this requires them to reconstruct their key in order to access their cold
wallet, and they expressed interest in moving over to our scheme instead.

Protecting hot wallets from external attackers is a network security problem;
if the network were completely secure, then this would not be an issue. We can
use threshold signatures to reduce our reliance on network security. Protecting
hot wallets from internal attackers is the most pressing problem. Our central
claim is that the level of insecurity of this threat category has no parallels in
traditional finance or network security, necessitating Bitcoin-specific solutions.

6.3 Comparison with multisignature approach

While most Bitcoin transactions are spent with a single signature, as we men-
tioned, Bitcoin in fact specifies a script written in a stack-based programming
language which defines the conditions under which a transaction may be re-
deemed. This scripting language includes support for multisignature scripts [1]
which require at least t of n specified ECDSA public keys to provide a signature
on the redeeming transaction. By default, multisignature transactions are cur-

rently only relayed with n ≤ 3 keys, but may specify up to an absolute limit of
n = 20.

Another feature of Bitcoin, pay-to-script-hash, enables payment to an address
that is the hash of a script. When this is used, senders specify a script hash,
and the exact script is provided by the recipient when funds are redeemed.
This enables multisignature transactions without the sender knowing the access
control policy at the time of sending. A quirk of pay-to-script hash is that the n ≤
3 restriction is removed from t-out-of-n multisignature transactions. However,
due to a hardcoded limit on the overall size of a hashed script, the recipients are
still limited to n ≤ 15.

Advantages of multisignatures. Multisignature transactions have one clear
benefit over using threshold signatures in that they can be signed independently
by each participant in a non-interactive manner, whereas the ECDSA thresh-
old signature protocol requires multiple rounds of interaction. Another potential
benefit is that the redeeming transaction provides a public record of exactly
which t of n keys were used to redeem the transaction, which can help the
company keep records for who authorized a given transaction (though this in-
formation is also leaked publicly).

Advantages of threshold signatures. We argue that threshold signatures
offer fundamental advantages stemming from the fact that in the multisignature
approach, the access-control policy is encoded in the transaction and eventually
publicly revealed:
Flexibility. Threshold signatures are more flexible than multisignatures in the
access policies that they permit as well as in the ability to modify the access
policies.

The policies realizable with multisignatures are very limited in practice since
only transactions with n ≤ 3 are relayed by default. With threshold signatures,
you can use t and n that are effectively unbounded.

Threshold signatures also allow more flexibility for making changes to the
access control policy. If a business using multisignature transactions wants to
make any modification to its access control policy, such as adding or removing
an employee from those with transaction approval power, this requires a new
script and thus a new address. This prevents businesses wishing to transact in
Bitcoin from using a long-term static address as it requires moving funds to a
new address with each policy update. For some business practices, the ability to
have a static address is fundamental. As an example, consider an organization
that prints promotional materials with a donation address on it. Multisignatures
would not allow them to change the access control policy while keeping that
address.

With threshold signatures, the policy is encoded not in the address but in
the shares. In our scheme, the share is the encrypted DSA key together with
the key share of the underlying homomorphic encryption scheme. To change the
policy, the business would just need to re-deal the shares according to the new

policy. Businesses can still use a static address for a receivable account and can
maintain the address even if the access control policy changes.

More generally, it is impossible to add multisignature security to an existing
address since the two types of addresses are syntactically distinct. The only way
to attain multi-factor security is to create a new multisignature address, and
transfer the bitcoins to this new address. Threshold signatures, on the other
hand, allow one to split up the key of an existing address.

Anonymity. While Bitcoin allows users to be pseudonymous, it does not provide
any anonymity guarantees. Indeed, it has been shown that it is not difficult to
link various addresses belonging to a single user [33]. Moreover, because the
entire transaction log is public, once an address has been associated with a real
world identity, one can immediately view every other transaction associated with
that address.

Because of Bitcoin’s inherent lack of anonymity, various techniques have been
developed to provide additional anonymity for Bitcoin users. Three of the most
prominent techniques are Mixcoin [9], CoinJoin [5], and the use of change ad-
dresses. We show now that none of these techniques are compatible with mul-
tisignatures, while they all work as intended with threshold signatures.

As we mentioned in Section 6.1, for purposes of increasing anonymity, the
general practice is to use newly generated change addresses which cannot eas-
ily be linked to the input addresses [33]. With multisignature transactions,
unlinkable change addresses are much harder to achieve. Suppose Alice uses
multisignature-based security and makes a purchase. Then the spending ad-
dress(es) and change address will all have the same t-of-n access control struc-
ture, whereas the destination address most likely will not. This allows easily
linking Alice’s input and output addresses. With threshold signatures, on the
other hand, change addresses will be unlinkable when sending funds to any reg-
ular (single-key) address or other threshold address (though not when interact-
ing with multisignature addresses or other script hash addresses). In particular,
change addresses will provide the exact same benefits with threshold signatures
as they do with a single-key address.

Mixcoin and CoinJoin are both based on the technique of mixing, or shuf-
fling the inputs amongst multiple users. Both protocols proceed in independent
rounds. During a single Mixcoin round, each user sends a fixed amount of coins
to a mixing party which sends the same amount of coins back to a fresh address
provided by that user. CoinJoin is also based on the mixing idea but instead of
having a centralized mixing party, users combine their inputs and outputs into
a single joint transaction that they all sign. Once coins have been mixed with
either protocol, it becomes nearly impossible to identify the mapping between
input and output addresses.

Consider what happens, however, when one tries to use either Mixcoin or
CoinJoin with multisignature addresses. Both of these protocols rely on the fact
that all of the input and output addresses are structurally identical and that
there is an abundance of such addresses. In order to maintain multisignature
security, both the input and output addresses will have to be multisignature

addresses. Moreover, they will have to have the same access structure (i.e. the
same t and n). Multisignature addresses cannot be mixed together with regular
addresses as it is trivial to link an input address with an output address by just
examining the access structure. Moreover, it is highly unlikely that there will be
a sufficient number of addresses with a given access structure that are interested
in mixing to facilitate mixing each type of address on its own.9

Multisignatures also cause a loss of anonymity since the access structure is
published on the block chain. When a business presents its script to spend a
transaction, its internal access control policy is exposed to the world. Many
companies will want confidentiality as to the internal controls that they en-
force. Threshold-signed transactions are completely indistinguishable from reg-
ular transactions. Not only do they not leak the details of the access-control
policy, they do not reveal that access control is being used at all.

Scalability. With multisignature transactions, the size of transactions grows
linearly with the access policy as all of the valid signing keys are included in
the redeeming script (as well as the sending script, for non-script hash transac-
tions). In addition to the hard limits which Bitcoin enforces (n ≤ 15 for script
hash transactions and n ≤ 20 in general), this means that more complex ac-
cess control policies will lead to larger transactions. The implications of this are
twofold: firstly these transactions will be subject to increased transaction fees,
and secondly they will lead to additional bloat on the block chain.

As threshold signature transactions are indistinguishable from ordinary trans-
actions, they will be no larger than ordinary transactions no matter how complex
the underlying access policy is. Thus, they will not require increased fees or gen-
erate additional data which must be globally broadcast.

7 Implementation and evaluation

In this section, we describe the design, creation, and evaluation of our imple-
mentaton. We describe two different parts of our implementation. Firstly, we
implemented our threshold DSA protocol, and we have included the code with
this submission. Secondly, we also implemented a 2-factor wallet that can be
used by individuals to store their Bitcoins. For the two factor wallet, our scheme
was not necessary as Mackenzie and Reiter’s scheme already covered the 2-of-2
case. Nevertheless, the system design of our app was non trivial and we describe
it here.

9 One might be tempted to suggest that funds be temporarily transferred to a single
signature address for mixing. This is problematic for two reasons, however. Firstly,
transferring to a single signature address introduces a single point of failure as the
bitcoins can be stolen during this period if the key is compromised. Moreover, one can
do second-order analysis and still link the input and output addresses by examining
the access structure of the multisignature addresses that transferred bitcoins to the
input address and received bitcoins from the output address.

7.1 Our Protocol

We implemented and included the code for a prototype implementation of our
protocol. We implemented it in Java, and began with the Java implementation of
threshold Paillier in [36]. This implementation is based on the threshold Paillier
scheme in [15], and does not support dealerless Paillier.

Our implementations was straightforward; we didn’t include any user inter-
face as the idea for the implementation is to be included in Bitcoin companies
server code.

Out implementation was extremely efficient. Without verifying other player’s
zero knowledge proofs, the protocol took under 2 milliseconds to complete. The
zero knowledge proofs added an additional 10 seconds per player to verify. The
result is that the protocol is extremely efficient.

7.2 Two Factor Wallet

We can extend the principles of dual control to the security of an individual’s
wallet — here we split control between different the user’s personal devices. The
private key is not stored on any machine nor is it ever reconstructed during
signature generation.

To protect against theft, Alice distributes 2-out-of-2 shares of her private
key among two devices that she owns, say her computer and smartphone. When
Alice initiates a Bitcoin transaction from her computer, a prompt containing
the transaction details will appear on her smartphone via her wallet app. If she
confirms, the two devices will sign the transaction using the threshold scheme
and broadcast it. We stress that at no point was the key reconstructed on ei-
ther device; on its own, neither device contains enough information to create
a signature. An attacker will have to compromise both her computer and her
smartphone to steal her bitcoins.

A Bitcoin wallet with two-factor security is arguably more secure than cash,
especially with appropriate backup and recovery options. We can further im-
prove security by generalizing to multi-factor security, but given the usability
drawbacks it is not clear if this will be useful in practice.

7.3 Design decisions

Our goal was to create pair of applications, one for a desktop computer and one
for a smartphone, which would together form a easy to use wallet. We chose
Java because of its cross-platform nature and the availability of many useful
libraries. We wanted our code to be easily incorporated into other wallets, so
we decided to make our code part of BitcoinJ, the most commonly used Java
Bitcoin Library. As a result, we used BouncyCastle, the crypto library used by
BitcoinJ, to implement our crypto code.

On the desktop, we created a modified version of the MultiBit wallet software
since it is Java based and open source. On the phone (Android) we wrote a simple
application from scratch since we required very little user interface.

The options for communication between the two devices are Bluetooth, WiFi,
or a centralized server. We ruled out the latter since direct communication is
faster, simpler, and more privacy-preserving. Our experience with Bluetooth on
Android taught us that it it fairly unreliable, so we settled on WiFi communica-
tion. For device discovery (to initiate the communication) we used DNS Service
Discovery, (DNS-SD), a system that uses DNS messaging to advertise services
on a network. Once the phone and desktop had discovered each other, they used
TLS in order to establish secure communication.

To initiate a secure connection we need an out-of-band exchange of key mate-
rial (since there is no PKI); the method with the best usability-security trade-off
seems to be using the phone’s camera to capture a 2D-barcode on the desktop.
We used the ZXIng barcode library. It can both create and read bar codes so we
were able to use it on both devices.

7.4 Security Model

The desktop acts as a trusted dealer when distributing the phone’s key share.
Although there is some risk in using a trusted dealer, it can be alleviated by
booting off a live disk image. Since the initialization phase requires no internet
connection, this eliminates the danger of malware as long as the disk is trusted.
The desktop transfers the key share and public key to the phone which completes
the initialization. The desktop then deletes all record of the phone’s key share.

After this point all future communication occurs over TLS (with self-signed
client and server certificates) ensuring a completely secure and trusted connec-
tion. Although only authenticated messages are required by the threshold sig-
nature protocol (since it leaks no confidential information), using TLS prevents
any denial of service attacks against the desktop.

7.5 Two-factor application protocol

– Initialization
• Desktop: Create wallet and display QR code with Public Certificate and

one-time-password
• Phone: Scan QR code and initiate TLS connection using Public Certifi-

cate.
• Phone: Authenticate using one-time-password
• Phone: Send over public certificate and receive key share

– Transaction
• Desktop: Create transaction
• Desktop: Create TLS server socket and wait for phone to connect
• Phone: Connect to desktop using TLS with client side authentication
• Phone: Give user choice to approve transaction. Continue if the user

approves
• Desktop: Initiate threshold protocol
• Phone: Participate in threshold protocol
• Desktop: Complete transaction with produced signature and add to

blockchain

Fig. 1. Initialization Protocol

Fig. 2. Transaction Protocol

Time (Seconds)

Round 1 (Computer) 0.26
Round 2 (Phone) 0.36
Round 3 (Computer) 0.58
Round 4 (Phone) 11.04

Total 13.26
Table 2. This table demonstrates the per round running time of the threshold wallet
app as recorded directly on the devices. The majority of time is spent in round 4. During
this round 89% is spent creating and verifying zero knowledge proofs. The discrepancy
between total time and the sum of the rounds is due to the computer verifying the
phones final zero knowledge proof.

7.6 Usage

When a new wallet is created in MultiBit, a QR code is displayed. The Android
application scans the QR code which contains a self-signed certificate for the
desktop and a one-time-password. The phone then initiates a TLS connection
with the desktop using the certificate. The phone authenticates itself using the
one-time-password and then sends its own self-signed certificate so that TLS
client authentication can be enabled on future connections. The desktop then
sends the phone’s keyshare and deletes it from memory.

When MultiBit tries to sign a transaction, a server is started and a DNS-SD
service is registered to advertise the server. While the phone application runs,
it looks for this service and tries to initiate a TLS connection with the server.
If it succeeds, the desktop sends the transaction information along with the
wallet public key to the phone. If the phone has a keyshare for the public key, it
presents the user with the transaction information along with the ability to allow
or cancel the transaction. If the user chooses to allow it, the threshold scheme is
run to produce a signature on the desktop. Finally the desktop broadcasts the
signed transaction to the Bitcoin peer-to-peer network.

We transferred a small amount of bitcoin to our specially created wallet and
then spent it by threshold-signing a transaction. Our threshold-signed transac-
tion can be viewed in the block chain.10

8 Conclusion

In this paper, we presented the first threshold-optimal signature scheme for DSA.
We proved its security, implemented it, and evaluated it. Our scheme is quite
efficient, and our implementation confirm that this scheme is ready to be used.
Indeed, many Bitcoin companies have expressed great interest in our scheme as

10 Full details of this transaction can be viewed online at

https://blockchain.info/tx/cf5344b625fe87efa351aadf0
bd542ec437c327b7c29e52245d3b41cea3e205b

it provides a much needed solution to Bitcoin’s security problem. We have open
sourced our two-factor app, and are open-sourcing our general (t, n) signature
code as well in order that companies can actually benefit from our results and
begin to use them immediately.

References

1. G. Andresen, “Github: Shared Wallets Design,”
https://gist.github.com/gavinandresen/4039433, accessed: 2014-03-20.

2. O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard and J. Stern. Practical
Multi-Candidate Election System. PODC’01

3. N. Barić, and B. Pfitzmann. Collision-free accumulators and Fail-stop signa-
ture schemes without trees. Proc. of EUROCRYPT’97 (LNCS 1233), pp.480–494,
Springer 1997.

4. Bitcoin Forum member dree12, “List of Bitcoin Heists,”
https://bitcointalk.org/index.php?topic=83794.0, 2013.

5. Bitcoin Forum member gmaxwell, “List of Bitcoin Heists,”
https://bitcointalk.org/index.php?topic=279249.0, 2013.

6. “Bitcoin wiki: Transactions,” https://en.bitcoin.it/wiki/Transactions, accessed:
2014-02-11.

7. “Bitcoin wiki: Elliptic Curve Digital Signature Algorithm,”
https://en.bitcoin.it/wiki/Elliptic Curve Digital Signature Algorithm, accessed:
2014-02-11.

8. “Bitcoin wiki: Elliptic Curve Digital Signature Algorithm,”
https://en.bitcoin.it/w/index.php?title=Secp256k1&oldid=51490, accessed:
2014-02-11.

9. J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Felten :Mix-
coin: Anonymity for bitcoin with accountable mixes,’ in Financial Cryptography
and Data Security. Springer, 2014, pp. 486–504.

10. J. Camenisch, A. Kiayias, and M. Yung: On the portability of generalized schnorr
proofs. In: Advances in Cryptology-EUROCRYPT 2009, pp. 425–442. Springer
(2009)

11. J. Camenisch, S. Krenn, and V. Shoup: A framework for practical universally
composable zero-knowledge protocols. In: Advances in Cryptology–ASIACRYPT
2011, pp. 449–467. Springer (2011)

12. R. Canetti. Universally Composable Security: A new paradigm for cryptographic
protocols. Proc. of 42nd IEEE Symp. on Foundations of Computer Science
(FOCS’01), pp.136–145, 2001.

13. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin: Adaptive Security
for Threshold Cryptosystems. CRYPTO 1999, LNCS Vol.1666, pp 98-115

14. I. Damg̊ard, J. Groth. Non-interactive and reusable non-malleable commitment
schemes. Proc. of 35th ACM Symp. on Theory of Computing (STOC’03), pp.426-
437, 2003.

15. I. Damg̊ard and M. Jurik. A Generalisation, a Simplification and Some Appli-
cations of Paillier’s Probabilistic Public-Key System. PKC’01, LNCS Vol.1992,
pp.119–136

16. I. Damg̊ard, M. Koprowski: Practical Threshold RSA Signatures without a Trusted
Dealer. EUROCRYPT 2001: LNCS Vol.2045, pp. 152-165

17. G. Di Crescenzo, Y. Ishai, R. Ostrovsky. Non-Interactive and Non-Malleable Com-
mitment. Proc. of 30th ACM Symp. on Theory of Computing (STOC’98), pp.141–
150, 1998.

18. G.Di Crescenzo, J. Katz, R. Ostrovsky, A. Smith. Efficient and Non-interactive
Non-malleable Commitment. Proc. of EUROCRYPT 2001, Springer LNCS 2045,
pp.40-59.

19. D. Dolev, C. Dwork and M. Naor. Non-malleable Cryptography. SIAM J. Comp.
30(2):391–437, 200.

20. E. Fujisaki, T. Okamoto: Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations. CRYPTO 1997: LNCS Vol.1294, pp.16-30

21. R. Gennaro. Multi-trapdoor Commitments and Their Applications to Proofs
of Knowledge Secure Under Concurrent Man-in-the-Middle Attacks. Proc. of
CRYPTO’04, Springer LNCS 3152, pp.220–236.

22. R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Threshold DSS Signatures.
EUROCRYPT’96, LNCS Vol.1070, pp. 354–371.

23. R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Secure Distributed Key Gen-
eration For Discrete Log Based Cryptosystems. EUROCRYPT’99, LNCS Vol.1592,
pp. 295–310.

24. R. Gennaro and S. Micali. Independent Zero-Knowledge Sets. ICALP 2006, LNCS
vol.4052, pp. 34–45.

25. S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, April 1988.

26. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. SIAM. J. Computing, 18(1):186–208, February 1989.

27. C. Hazay, G.L. Mikkelsen, T. Rabin, T. Toft. and A.A. Nicolosi: Efficient RSA key
generation and threshold Paillier in the two-party setting.

28. S. Jarecki, A. Lysyanskaya. Adaptively Secure Threshold Cryptography: Intro-
ducing Concurrency, Removing Erasures. EUROCRYPT 2000: LNCS Vol.1807,
pp.221-242

29. D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature
algorithm (ecdsa),” International Journal of Information Security, vol. 1, no. 1,
pp. 36–63, 2001.

30. Kaspersky Labs, “Financial cyber threats in 2013. Part 2: malware,”
http://securelist.com/analysis/kaspersky-security-bulletin/59414/financial-cyber-
threats-in-2013-part-2-malware/, 2013.

31. P. MacKenzie and M. Reiter. Two-party Generation of DSA Signatures. Int. J. Inf.
Secur. (2004)

32. P. MacKenzie and K. Yang. On Simulation-Sound Commitments. Proc. of EU-
ROCRYPT’04, Springer LNCS 3027, pp.382-400.

33. S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage, “A fistful of bitcoins: characterizing payments among men with no
names,” in Proceedings of the 2013 conference on Internet measurement conference.
ACM, 2013, pp. 127–140.

34. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Consulted, vol. 1,
p. 2012, 2008.

35. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. EUROCRYPT’99, LNCS Vol.1592, pp. 223-238

36. Paillier Threshold Encryption Toolbox http://cs.utdallas.edu/dspl/cgi-
bin/pailliertoolbox/manual.pdf

37. T. Pedersen. Distributed provers with applications to undeniable signatures. In
D. Davies, editor, Advances in Cryptology–EUROCRYPT’91, Lecture Notes in
Computer Science Vol. 547, Springer-Verlag, 1991.

38. R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature
and Public Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120–126

39. A. Shamir. How to Share a Secret. Communications of the ACM, 22:612–613,
1979.

A Naive extention of [31]

We began this work by looking at the two party scheme of Mackenzie and Reiter
[31] and seeing if it could be extended to the multiparty case. We extended their
scheme, and even implemented it, but the results were quite inefficient. Both
the computation required as well as the storage required for this (t, n) threshold
signature scheme grew exponentially with the number of players. We present the
scheme here for reference and comparison.

A.1 Our naive scheme

Mackenzie and Reiter use multiplicative secret sharing which makes multipli-
cation and inversion of secrets easy. Addition of secrets is now more difficult,
and to get around this, they use an additively homomorphic encryption scheme.
Their scheme is specifically for the two party case, and one of the two parties
has a decryption key for the additively homomorphic scheme. This party uses
its secret share to compute a partial signature, encrypts the partial signature,
and sends the resulting encrypted values to the second party. The second party
cannot learn the value of the encrypted partial signature, but it uses its share of
the key to contribute its portion of the signature to the ciphertext (as the scheme
is additively homomorphic), and then sends the resulting ciphertext back to the
first party. The first party then decrypts the ciphertext to reveal the signature.
The scheme also incorporates zero knowledge proofs to prove that each party
is following the protocol and that the encrypted values that they produce are
consistent with well-formed shares (i.e. it is secure against malicious parties).

We generalize Mackenzie and Reiter’s scheme to the t-of-t case. The intuitive
idea is that t parties pass around the ciphertext and do computations on it
with their share, and also construct zero knowledge proofs that their values are
consistent. As in Mackenzie and Reiter’s scheme, the end result is a ciphertext
which is an encryption of the signature. However, whereas in the two party
case, one of the parties held the decryption key and can single-handedly decrypt
the final signature, in the t party case, the homomorphic decryption key is itself
distributed among the parties such that all of them have to cooperate to decrypt
the key.

Our protocol proceeds in 3t − 2 rounds, after which the parties have an
encrypted signature which they can then jointly decrypt.

Our protocol works for t-out-of-t case, and we use standard combinatorial
structures we show how to use the t-out-of-t scheme to build a t-out-of-n scheme.

Assumptions and Setup. We assume that there are t participants P1, . . . , Pt
initialized as follows:

– Participant Pi holds a value xi ∈ Zq chosen uniformly at random. The secret
key is x = Πixi mod q and the public key is y = Gx in G. We assume the
values yi = Gxi are public.

– There is a separate public key additively homomorphic encryption scheme E,
whose secret key D is shared in a t-out-of-t fashion among the participants.
The encryption scheme is homomorphic modulo a large integer N : i.e. given
α = E(a) and β = E(b), where a, b ∈ ZN , there is an efficiently computable
operation +E over the ciphertext space such that

α+E β = E(a+ b mod N)

Note that if x is an integer, given α = E(a) we can also compute E(xa mod
N) efficiently. We refer to this operation as x×E α.
We denote the message space of E by ME and the ciphertext space by CE .
We will choose N large enough so that operations modulo N will not “wrap
around” and will be consistent to doing them over the integers (that’s be-
cause we are interested in really doing the operations modulo q, the order of
the group). This requires N > q3t+3. 11

– The participants are associated to signature public keys. We assume that
they sign every message. In the following the signature is implicitly contained
in the messages and verified by each participant upon receipt of a signed
message.12

Mackenzie Reiter extension Threshold signature protocol. The pro-
tocol proceeds in rounds, where each player receives some input, performs some
computation, and then passes along the output of this computation. There are n
players, P1, . . . , Pn. In our protocol, players P2, . . . , Pn−1 have completely sym-
metric roles. That is, they all receive inputs of identical form from the previous
player, run the same algorithm, and pass along the message to the next player.
However, the computation done by P1 and Pn is not identical.

We stress, however, that while from a computational perspective not all play-
ers have the same role, from a security perspective, all players are identically se-
cure in the same threat model. No player is privileged or trusted in any manner.
Consequently, from a security perspective it makes absolutely no difference how
the players are numbered and which players are given the roles of P1 and Pn.

– Round 1
On input the message M , participant P1

• chooses k1 ∈R Zq and computes z1 = k−11 mod q

11 Contrast this with our main scheme in which N is O(q8) regardless of the number
of players.

12 In our protocol participant Pi will forward to Pj something he received from P`. By
verifying P`’s signature on the forwarded message, Pj is guaranteed of its authen-
ticity.

• computes α1 = E(z1) and β1 = E(x1z1 mod q)

• sets α̂1 = β̂1 = ⊥
• sends M,α1, β1, α̂1, β̂1 to P2

– Rounds 2 to t− 1
At round i = 2, . . . , t−1, on input the message M,α1, . . . , αi−1,β1, . . . , βi−1,
α̂1, . . . , ˆαi−1, β̂1, . . . , ˆβi−1, participant Pi
• abort if α1, . . . , αi−1, β1, . . . , βi−1, α̂1, . . . , ˆαi−1, β̂1, . . . , ˆβi−1 /∈ CE
• chooses ki ∈R Zq and computes zi = k−1i mod q
• computes αi = zi ×E αi−1 and βi = (xizi mod q)×E βi−1
• computes α̂i = E(zi) and β̂i = E(xizi mod q)

• sends M,α1, . . . , αi, β1, . . . , βi, α̂1, . . . , α̂i, β̂1, . . . , β̂i to Pi+1

– Round t
On input the messageM,α1, . . . , αt−1, β1, . . . , βt−1, α̂1, . . . , ˆαt−1, β̂1, . . . , ˆβt−1,
participant Pt
• abort if α1, . . . , αt−1, β1, . . . , βt−1, α̂1, . . . , ˆαt−1, β̂1, . . . , ˆβt−1 /∈ CE
• chooses kt ∈R Zq and computes zt = k−1t mod q
• computes Rt = Gkt in G
• sends Rt to Pt−1

– Rounds t+ 1 to 2t− 2
At round t + i for i = 1, . . . , t − 2, on input the message Rt, . . . , Rt−i+1,
participant Pt−i
• computes Rt−i = R

kt−i

t−i+1 in G
• sends Rt, . . . , Rt−i to Pt−i−1

– Round 2t− 1
On input the message Rt, . . . , R2, participant P1

• computes R1 = Rk12 in G.
• computes the ZK proof Π1 which states
∗ ∃ η1, η2 ∈ [−q3, q3] such that
∗ Rη11 = R2 and Gη2/η1 = y1
∗ D(α1) = η1 and D(β1) = η2

• sends R1, Π1 to P2

– Round 2t+ i− 2 for i = 2, . . . , t− 1
On input R1, . . . , Ri−1, Π1, . . . ,Πi−1, participant Pi
• computes the ZK proof Πi which states
∗ ∃ η1, η2 ∈ [−q3, q3] such that
∗ Rη1i = Ri+1 and Gη2/η1 = yi
∗ D(αi) = η1D(αi−1) and D(βi) = η2D(βi−1)

∗ D(α̂i) = η1 and D(β̂i) = η2
• sends R1, . . . , Ri, Π1, . . . ,Πi to Pi+1

– Round 3t− 2
On input R1, . . . , Rt−1, Π1, . . . ,Πt−1, participant Pt
• choose c ∈R Zq3t−1

• computes m = H(M) and r = H ′(R1) ∈ Zq
• computes µ̂ = E(zt)
• computes µ = [(mz3 mod q)×E αt−1] +E [(rx3z3 ×E βt−1] +E E(cq)
• computes the ZK proof Πt which states

∗ ∃ η1, η2 ∈ [−q3, q3] such that
∗ Rη1t = G and Gη2/η1 = yt
∗ D(µ) = mη1D(αt−1) + rη2D(βt−1)
∗ D(µ̂) = η1

• sends µ, µ̂,Πi, . . . ,Πt to all the other participants

– Final Decryption Rounds
At the end of the protocol, each player should have a proof from every other
player. They must verify these proofs and abort if the verification fails13.
The participants invoke the distributed decryption protocol for D over the
ciphertext µ. Let s = D(µ) mod q. The participants output (r, s) as the
signature for M .

Encryption Scheme As in [31] and in our scheme above, we instantiate E
with Paillier’s encryption scheme [35]. We recall the scheme here.

– Key Generation: generate two large primes P,Q of equal length. and set N =
PQ. Let λ(N) = lcm(P −1, Q−1) be the Carmichael function of N . Finally
choose g ∈ Z∗N2 such that its order is a multiple of N . The public key is
(N, g) and the secret key is λ(N).

– Encryption: to encrypt a message m ∈ ZN , select x ∈R Z∗N and return
c = gmxN mod N2.

– Decryption: to decrypt a ciphertext c ∈ ZN2 , let L be a function defined over
the set {u ∈ ZN2 : u = 1 mod N} computed as L(u) = (u− 1)/N . Then the
decryption of c is computed as L(cλ(N))/L(gλ(N)) mod N .

– Homomorphic Properties: Given two ciphertexts c1, c2 ∈ ZN2 it is easy to
see that c1 +E c2 = c1c2 mod N2 (If ci = E(mi) then c1 +E c2 = E(m1 +
m2 mod N). Similarly, given a ciphertext c = E(m) ∈ ZN2 and a number
a ∈ Zn we have that a×E c = ca mod N2 = E(am mod N).

We point out that threshold variations of Paillier’s scheme have been pre-
sented in the literature [2, 15, 16, 27]. In order to instantiate our dealerless pro-
tocol, we use the scheme from [27] as it includes a dealerless key generation
protocol that does not require n ≥ 2t+ 1.

Zero-knowledge proofs. The ZK proof Π1 is already described in [31] (as
ZK proof Π in their paper). Similarly the ZK proof Πt is described as Π ′ in [31].

We now describe the ZK proof Πi used by the intermediate participants. This
is always the same proof Π̂ called on different inputs. As in [31] we make use of
an auxiliary RSA modulus Ñ which is the product of two safe primes Ñ = P̃ Q̃
and two elements h1, h2 ∈ Z∗Ñ used to construct range commitments.

For public values c, d, w1, w2,m1,m2,m3,m4,m5,m6 we construct a ZK proof
Π̂ that proves

13 We aimed to simplify the communication channel, but if there is a broadcast channel,
each player can directly broadcast its proof to all other players.

– ∃ x1, x2 ∈ [−q3, q3] such that
– cx1 = w1 and dx2/x1 = w2

– D(m1) = x1D(m3) and D(m2) = x2D(m4)
– D(m5) = x1 and D(m6) = x2

The protocol is as follows. We assume the Prover knows the values r5, r6 ∈ Z∗N
such that m5 = gx1rN5 mod N2 and m6 = gx2rN6 mod N2. Moreover, the proof
that we give is non-interactive. It relies on using a hash function to compute the
challenge, e, and it is secure in the Random Oracle Model.

The prover chooses uniformly at random:

α, δ ∈ Zq3
ρ1, ρ2 ∈ ZqÑ

β1, β2 ∈ Z∗N
γ, ν ∈ Zq3Ñ

ρ3, ε ∈ Zq

The prover computes

z1 = hx1
1 h

ρ1
2 mod Ñ

u1 = cα in G
u2 = gαβN1 mod N2

u3 = hα1h
γ
2 mod Ñ

z2 = hx2
1 h

ρ2
2 mod Ñ

y = dx2+ρ3 in G

v1 = dδ+ε in G
v2 = wα2 d

ε in G
v3 = mα

3 mod N2

v4 = mδ
4 mod N2

v5 = gδβN2 mod N2

v6 = hδ1h
ν
2 mod Ñ

e = hash(c, d, w1, w2,m1,m2,m3,m4,m5,m6, z1, u1, u2, u3, z2, y, v1, v2, v3, v4, v5, v6)14

s1 = ex1 + α
s2 = (r5)eβ1 mod N
s3 = eρ1 + γ
t1 = ex2 + δ

t2 = eρ3 + ε
t3 = (r6)eβ2 mod N
t4 = eρ2 + ν

The prover sends all of these values to the Verifier.
The Verifier checks that all the values are in the correct range and moreover

that the following equations hold

u1 = cs1w−e1 in G
u2 = gs1sN2 m

−e
5 mod N2

u3 = hs11 h
s3
2 z
−e
1 mod Ñ

v1 = dt1+t2y−e in G
v2 = ws12 d

t2y−e in G
v3 = ms1

3 m
−e
1 mod N2

v4 = mt1
4 m

−e
2 mod N2

v5 = gt1tN3 m
−e
6 mod N2

v6 = ht11 h
t4
2 z
−e
2 mod Ñ

e = hash(c, d, w1, w2, m1,m2,m3,m4,m5,m6,
z1, u1, u2, u3, z2, y, v1, v2, v3, v4, v5, v6)

t-out-of-n threshold signature scheme. A t-out-of-n scheme can be ob-
tained by considering all possible subsets of t participants and instantiating the

14 This is the step of the proof that relies on the Random Oracle Model. We can con-
struct the proof without random oracles using an interactive proof. In the interactive
version of the proof, the Prover sends all of the values computed until this point.
The Verifier then issues a challenge e, and the proof proceeds exactly as in the
non-interactive version.

above protocol for each subset. We stress that the performance of the t-of-n
protocol depends on t and not on n. The only performance overhead of t-of-n
over t-of-t is identifying the proper t-of-t share to use.

One possible optimization is that the n participants can use a single encryp-
tion key E (rather than one for each subset), where the secret key D is shared
in a t-out-of-n fashion among the participants.

A.2 Size of shares

The combinatorial structure to go from t-out-of-t to t-out-of-n requires O(nt)
storage, making it feasible only for small values of n and t. It is an interesting
open question to construct threshold DSA signature scheme that does not require
storage that is exponential in t.

Interestingly, every application of threshold security to Bitcoin appears to be
easily capable of handling the combinatorial structure, for one of two reasons.

1. Many applications require (t, t) sharing and not (t, n) for t < n. The (t, t)
case does not use the combinatorial structure and thus only requires a single
key share stored by each party. Indeed, ours is the first work to propose a
(t, t) threshold DSA signature scheme for t > 2.

2. Even for our applications that do require a (t, n) signature, the values of t
and n are inherently very small due to the nature of security policies used
in practice (Section ??).

A.3 Security Analysis

As we present this protocol for comparison only, we do not provide a full security
proof. It is not hard to see, however, that the security proof follows the same
lines of the proof in [31], and therefore the security of the entire distributed DSA
signature scheme can be reduced to (i) the unforgeability of the DSA signature
scheme; (ii) the semantic security of the Paillier encryption scheme (which we
recall is equivalent to the N -residuosity assumption modulo N2) and (iii) to the
Strong-RSA Assumption (modulo Ñ).

More specifically we prove existential unforgeability against chosen message
attack, the strongest security notion for signatures. In the distributed case con-
sider an adversary A controlling t − 1 players. Even after the entire set of t
parties signs ` messages M (1), . . . ,M (`) chosen by A, it should be computation-
ally infeasible for A to compute a valid signature on a message M 6= Mi. We
prove that this is the case by a simulation argument which shows that if such
an adversary A exists then there exists a forger F that can forge a signatures in
the underlying ”centralized” DSA signature scheme. Since we assume the latter
to be unforgeable, then the former cannot happen. We assume a static corrup-
tion model, in which A assumes control of t− 1 players at the beginning of the
protocol.

So let us assume by contradiction that A exists and show how to construct
F . This forger F also works in the chosen message attack model, i.e. on input

a DSA public key y, it has access to a ”signature oracle” which on input M̂
returns the signature r̂, ŝ under the public key y.
F runs on input y, the public key of the underlying DSA scheme. It will

initiate A and assume the role of Pi the only honest player not corrupted by A.

Key Generation. Assuming a trusted party initialization of the system, F will
create the public key for the pk for the encryption scheme E and share sk
among the players. Note that F knows sk. Then it will generate random values
xj ∈ Zq as the secret share of player Pj ; it will compute λ = (Πj 6=ixj)

−1 mod q
and will set yi = yλ.

Signature Generation. When A requests the signature of a message M , the forger
F will query its signature oracle and get r, s. Let R = GH(M)s−1

yrs
−1

. We now
show how to simulate a signature protocol so that it results in this signature
being output.

Simulating r. The players run the protocol up to Round 2t−1 with the difference
that at Round i the Forger encrypts arbitrary values (e.g. 0) in the αi, α̂i, βi, β̂i
ciphertexts. Note that at the end of Round t, the Forger knows all the values kj
chosen by A (since he knows the sk). At round 2t− i when F has to announce
Ri it will it will compute λ′ = (Πj 6=ikj)

−1 mod q and will set Ri = Rλ
′
.

Simulating s. The players run the protocol from Round 2t − 1 to the end. The
forger F will simulate the ZK proof Πi, since it is now proving an incorrect state-
ment. Over the final ciphertext µ, the forger will now simulate the distributed
decryption protocol for E so that it results in a value s′ ∈ Zq3t s.t. s′ = s mod q

In order to conclude the proof we must argue that the above simulation is in-
distinguishable from a real execution of the protocol. Indeed only under this
condition we can claim that A will output a forgery, and therefore F will suc-
ceed.

We note that the above simulation differs from the real execution in three
main points

– The final decryption protocol is simulated to “hit” a specific value, instead
of the correct decryption of the ciphertext µ. But if the threshold encryp-
tion scheme used to do distributed decryption is secure, then this step is
indistinguishable from the real-life protocol.

– the ZK proof Πi is simulated. Due to the zero-knowledge properties, a sim-
ulated proof is indistinguishable from the real one.

– The simulated ciphertexts αi, α̂i, βi, β̂i sent by F encrypt values with a dif-
ferent distribution that in the real protocol. But if E is semantically secure
then these simulated ciphertexts are computationally indistinguishable from
the real ones. Note that this requires another reduction, where we use A to
break the encryption scheme E (in this case the simulation knows the secret
key x of the DSA scheme, but does not know sk).

