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Abstract—A non-malleable encoding scheme is a keyless encod-
ing scheme which is resilient to tampering attacks. Such a scheme
is said to be continuously secure if the scheme is resilient to attacks
containing more than one tampering procedure. Also, such a
scheme is said to have tamper-detection property if any kind of
tampering attack is detected. In [S. Faust, et al., Continuous non-
malleable codes, TCC Proc., LNCS Vol. 8349, 2014.] a general
continuous non-malleable encoding scheme based on NIZK is
introduced which is secure in a strong model for which the
adversary receives a no-tamper as a response to its tampering
query if the decoding of the tampered codeword is identical to
the original message.

In this article we introduce a new strongly secure continuous
non-malleable encoding scheme with tamper-detection property
whose security is based on the existence of secure MAC’s. More-
over, we introduce and justify the importance of an intermediate
security model called semi-strong continuous non-malleability,
while we provide a secure semi-strong continuous non-malleable
encoding scheme whose security is based on the existence of
CCA-secure public-key encryption.

Considering the area of applications of encoding schemes in
tamper-proof devices, it is instructive to note that our proposed
schemes can be used to implement an algorithmic tamper-
detection level as well as maintaining the security conditions.

Index Terms—encoding schemes, tamper resilient cryptogra-
phy, tamper-detection, continuous non-malleability.

I. MOTIVATIONS AND BACKGROUND

NON-MALLEABLE codes have been introduced by
S. Dziembowski et al. in [1] to propose an encoding

scheme resilient against an active adversary that may modify
the codeword. They studied such schemes for a bit-wise family
of functions in [1] (see [2], [3] for more on bit-wise schemes)
while non-malleable codes for block-wise tampering have been
introduced and studied in [4].

Non-malleable codes have also been studied from an
information theoretic point of view [5]–[7]. There are several
other variants of non-malleable schemes in the literature (e.g.
see [8]–[10]). Also, Non-malleable codes have been used to
construct a CCA secure public-key cryptosystem [11]. Note that
other tamper-resilient models for cryptographic schemes exist

∗A. S. Mortazavi is with the Department of Electrical Engineering, Sharif
university of Technology, Tehran, Iran.
E-mail: sa mortazavi@ee.sharif.edu
†M. Salmasizadeh is with the Electronics Research Institute and is with

the Department of EE as adjunct member, Sharif University of Technology,
Tehran, Iran.
‡A. Daneshgar is with the Department of Mathematical Sciences, Sharif

university of Technology, Tehran, Iran.

which are in different context than non-malleable encoding
(e.g. [12]–[14]).

Security models for non-malleable codes have been improved
from one-shot split-state model for arbitrary PPT algorithms
introduced in [15] to continuous non-malleability introduced
in [16] (also see Definitions I.1 and I.3).

In this article we consider continuous non-malleable coding
schemes and we propose some secure variants of them. In
order to explain our main results, in the rest of this section,
we first go through the basic definitions needed and then we
will state our main contributions. To start let us recall the basic
definitions of the scheme and the security model.

The split-state model is among the most important variants
of non-malleable encoding schemes which explicitly is defined
as follows.

Definition I.1. A 2-split-state encoding scheme
A 2-split-state encoding scheme which is denoted by

Π = (Init,Enc,Dec, κ, `0 , `1) consists of
• A nonuniform probabilistic polynomial time Turing ma-

chine Init generates necessary public information and sets
the initial values of variables.

• A nonuniform probabilistic polynomial time Turing ma-
chine Enc such that given s ∈ {0, 1}κ outputs a pair
(x

0
, x

1
) ∈ {0, 1}`0 × {0, 1}`1 .

• A nonuniform deterministic polynomial time Turing ma-
chine Dec such that given (x

0
, x

1
) ∈ {0, 1}`0 × {0, 1}`1

returns either an s ∈ {0, 1}κ or ⊥ in a way that

∀ s ∈ {0, 1}κ, P r[Dec(Enc(s)) = s] = 1,

the probability being over the randomness of Enc. In the
above definition the special symbol ⊥ denotes a failure
in the decoding algorithm.

Intuitively, an encoding scheme is said to be non-malleable,
if decoding of any tampered codeword (manipulated by an
adversary) gives rise to either the original message or to a totally
unrelated message. Clearly, as some important applications
of non-malleable coding one may refer to tamper-resilient
cryptography and memory protection against tampering attacks.

Historically, non-malleability was first defined in the setting
of one-shot tampering attacks where the adversary is allowed
to apply only one tampering algorithm on a codeword [1]. A
generalization of the one-shot setup to the continuous non-
malleability by S. Faust et al. considers the case when the
adversary is allowed to apply different tampering algorithms
more than once [16].
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One could also consider the leakage of shares of a codeword
and define a leakage-resilient coding scheme (e.g. see [15],
[17]).

The next definitions not only present a unification of the
above security models but also will give rise to some new
security concepts that will be discussed in the rest of this
article. To begin, let us define the oracles we need.

Definition I.2. A (Enc,Dec, T ,L, b, c, tm, lm, θ)-oracle
In this type of oracle T and L are subclasses of polynomial

time Turing machines indexed by a canonical (and pre-fixed)
coding. The oracle operates as follows:

• On receiving a pair (s
0
, s

1
) the oracle computes

Enc(s
b
) = (xb

0
, xb

1
).

• On receiving a leakage query (l, 〈T0〉, 〈T1〉), where Ti ∈ L
for i ∈ {0, 1} and 〈Ti〉 stands for the canonical coding
of the Turing machine Ti , returns (T0(xb

0
), T1(xb

1
)).

• On receiving a tampering query (t, 〈T
0
〉, 〈T

1
〉), where

T
i
∈ T for i ∈ {0, 1} and 〈T

i
〉 stands for the canonical

coding of the Turing machine T
i
, the oracle computes

Dec(T0(xb
0
), T1(xb

1
)) = s′. If s′ = sb the oracle returns

the special (and pre-fixed) character s∗, if s′ = ⊥ the
oracle returns ⊥, and returns s′ otherwise.

• tm ∈ {0, 1} is a flag indicating the mode of answering
to tampering queries. If tm = 1 (normal mode), the
oracle answers tampering queries normally (described
before). However, if tm = 0 (self-destruction mode), on
the occasion of returning the first ⊥ as the answer to a
tampering query the oracle always returns ⊥ to any other
tampering query after that.

• The sum of the length of oracle answers to the leakage
queries (in bits) must not exceed the bound c. The oracle
returns l∗ on the occasion of a leakage query whose length
will increase the sum strictly greater than c onwards.

• lm ∈ {0, 1} is a flag that indicating the behavior of oracle
after finishing leakage queries. If lm = 0, after finishing
leakage queries, the oracle returns the xbθ for θ ∈ {0, 1}.
However, if lm = 1 the oracle does not return any part
of the codeword.

Our indistinguishability adversarial model defined below
tries to formulate and unify the existing security models. We
will discuss different aspects of this definition and some new
consequences after the definition.

Definition I.3. A (T ,L, c, qt, ql, τ)-adversary
A (T ,L, c, qt, ql, τ)-adversary is a nonuniform probabilis-

tic polynomial time oracle Turing machine that uses a
(Enc,Dec, T ,L, b, c, tm, lm, θ)-oracle. The adversary operates
subject to the following goal and limitations.

• The adversary starts by sending a query (s0 , s1) to its
(Enc,Dec, T ,L, b, c, tm, lm, θ)-oracle and its objective
is to guess b, using its further queries, by generating
b′ ∈ {0, 1,t},

• The adversary is limited to ask up to ql leakage queries
and up to qt tamper queries.

• The running time of the adversary is limited to be bounded
by τ(κ) for each input (s

0
, s

1
) of size κ.

Such adversaries are classified into the following types based
on the number of queries and the tampering mode.

• The term one-shot tampering is used to refer to the case
qt = 1 and the term continuous tampering is used for the
case qt ≥ 1.

• If ql 6= 0 and lm = 1 the adversary is said to be of
leakage type.

• If ql 6= 0 and lm = 0 the adversary is said to be of strong
leakage type.

• The adversary is said to be a semi-strong adversary if by
receiving the first answer ⊥ as a response to a query, the
adversary halts and outputs the special symbol t.

• The adversary is said to be a strong adversary if it is
connected to an oracle operating in the self-destruction
mode (i.e. tm = 0) and also lm = 1.

• The adversary is said to be a super-strong adversary if it
is connected to an oracle operating in the normal mode
(i.e. tm = 1) and lm = 1.

The random variable standing for the result of the above
experiment for a (T ,L, c, qt, ql, τ)-adversary, A, attached to
a (Enc,Dec, T ,L, b, c, tm, lm, θ)-oracle, O, is denoted by
Exp

Type,O(b)
A (1n) ∈ {0, 1,t}, and n is the security parameter.

Based on the type of security we replace Type by the
name of the model such as Exp

lr,O(b)
A (1n) for the leakage

resilient security, Exp
semi,O(b)
A (1n) for the semi-strong non-

malleability, Exp
strong,O(b)
A (1n) for the strong non-malleability

and Exp
SS,O(b)
A (1n) for the super strong non-malleability. An

encoding scheme Π = (Init,Enc,Dec, κ, `
0
, `

1
) is said to

be (qt, ql, tm, lm)-non-malleable if for all adversaries A the
probability

∣∣∣Pr[Exp
Type,O(b)
A (1n) = b]− 1/2

∣∣∣ is a negligible
function of n (for definition of the negligible function you may
refer to [18]).

Note that the special cases of leakage resistant non-malleable,
semi-strong, strong and supper strong non-malleable codes are
defined based on Definition I.3.

On the other hand, one may find some other related security
models in the literature among which in particular, we mention
the following model for a tamper-detection scheme.

Definition I.4. A tamper-detection encoding scheme
An encoding scheme Π = (Init,Enc,Dec, κ, `

0
, `

1
) has T -

tamper-detection property where T is a family of nonuniform
probabilistic polynomial time Turing machines, if for any
pair of machines T

0
∈ T and T

1
∈ T and any mes-

sage s ∈ {0, 1}κ with Enc(s) = (x0 , x1), the probability
Pr[Dec(T0(x0), T1(x1)) /∈ {⊥, s∗}] is negligible [19].

It is worthwhile to say that a scheme secure against an
adversary of leakage type is said to be a leakage-resilient
encoding scheme which is also referred to as a leakage-resilient
storage (LRS) [17]. Similarly, a scheme secure against a strong
adversary of leakage type is said to be a strong leakage-resilient
encoding scheme also referred to as a strong leakage-resilient
storage (S-LRS) scheme. The notations Π = (LRS,LRS−1)
and Π = (Init,Enc,Dec) are interchangeable in this paper for
a leakage resilient encoding scheme.
Since there are a number of different definitions in the literature
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then different variants of non-malleability studied in our setting.
The super-strong non-malleability is defined in [19] and has
not been studied in detail so far.

The definition of semi-strong non-malleability is an outcome
of our new setting. To justify the importance of this case,
consider a computer virus that may tamper with the memory
and transmits data to an outsider after gathering all data needed.
Note that in this case the virus must send its data to the
outside before any safeguarding software on the computer
detects the presence of the virus and shuts down (kind of self-
destruction) the whole system. Also, it is clear by definition
that the semi-strong non-malleability is weaker than strong
non-malleability in the sense of security, however, based on the
above justification the whole model still deserves consideration.
As one of the objectives of this article, we will propose a new
semi-strong non-malleable encoding scheme and we will prove
its security in our proposed setup.

The one-shot strong non-malleability is defined in [15] and
the continuous strong non-malleability is defined in [16] in
which the authors use robust non-interactive zero knowledge
with supporting label, hash functions, a strong leakage-resilient
storage scheme and public untamperable strings to construct
their secure scheme.

As our second and main objective in this article, in what
follows, we also introduce a strong non-malleable encoding
scheme that can be compared to that of S. Faust et al. in the
following sense.
• In our scheme we use MAC’s instead of NIZK proofs,

where the implementing MAC is known to be usually
simpler and more efficient.

• In our scheme we use standard leakage-resilient storage
instead of strong leakage-resilient storage indicating that
we use weaker assumptions.

• Our scheme is proved to be continuous non-malleable with
tamper-detection property, while the scheme introduced
in [16] is just continuous non-malleable.

• Our scheme requires lesser LRS leakage bound than
S. Faust’s scheme [16]. More precisely, in our scheme
the leakage bound is llrs ≥ 2l + log(qt) while in Faust’s
scheme we have llrs ≥ 2l + (k + 1) log(qt) where k is
the number of the output bits of the hash function.

The organization of the paper is as follows. In Section II
we introduce the concept of semi-strong non-malleability and
we provide an encoding scheme with continuous semi-strong
non-malleability where we prove its security in the proposed
model. In Section III we present a leakage-resilient continuous
strong non-malleable scheme with tamper-detection and prove
its security in the standard model.

II. A SECURE SEMI-STRONG NON-MALLEABLE SCHEME

We define continuous semi-strong non-malleability formally
in previous section and now describe a construction in this
model. We present an encoding scheme in the split-state model
with continuous semi-strong non-malleability. Our proposed
scheme is based on an l-leakage CCA indistinguishable public
key encryption cryptosystem and also we assume the existence
of untamperable public strings. We can imagine this public

strings hardwired to the encoding function. We first define the
l-leakage CCA indistinguishable encryption cryptosystem and
then present the construction.
The encryption scheme Π = (Gen,Enc,Dec) is an l-leakage
CCA, if it has standard CCA indistinguishability and also
sustainable against l bits leakage of the secret key. We define
formally the l-leakage CCA in Definition II.1 .

Definition II.1. A l-leakage CCA public key encryption
Let Π = (Gen,Enc,Dec) be a public key encryption scheme,
n ∈ N be the security parameter, L be a family of nonuniform
probabilistic polynomial time Turing machines and also let A
be a nonuniform probabilistic polynomial time Turing machine
as the adversary. The encryption of message m is shown
with Encpk(m) and decryption of ciphertext c is shown with
Decsk(c). The adversary A has access to a leakage oracle
O(L, sk) and may send a Turing machine T ∈ L as a query
to the leakage oracle where it receives T (sk) in response as
the answer. Note that the leakage oracle is allowed to return
at most l bits as the whole number of bits of its answers
during the process of adversary A. The adversary A also has
access to the decryption oracle that may return the plaintexts
corresponding to the ciphertexts queried by A. Let the random
variable ExpCCAA (b, 1n), for any bit b ∈ {0, 1}, denote the
result of following experiment for an adversary A.

Experiment 1: ExpCCAA (b, 1n)

1 Run (pk, sk)← Gen(1n) and let A have pk while sk is
kept secret.

2 A may query the leakage oracle.
3 A may query the decryption oracle.
4 A selects two arbitrary messages m

0
and m

1
.

5 A is given c = Encpk(mb).
6 A may query the leakage oracle again.
7 A may query the decryption oracle except for the

challenge ciphertext c.
8 A outputs b′ ∈ {0, 1} (as a guess for the value of b).

The scheme Π is said to have the l-leakage CCA security if

ExpCCA
A (0, 1n) ≈c ExpCCA

A (1, 1n).

The security definition and proposed schemes for the leakage-
resilient CCA indistinguishability can be found for example
in [20].
Now we define the construction for a continuous semi-strong
non-malleable scheme as the following.

Construction II.1. Let Π′ = {Gen′,Enc′,Dec′} be an l-
leakage CCA indistinguishable public key encryption scheme,
and let ΠH = (GenH ,H, lH) be a collision resistant family of
hash functions [18] with output length lH bits. Our construction
for a semi-strong encoding scheme

Π = (Init,Enc,Dec, κ, `0 , `1)

is as follows:
• Init(1n): Set (sk, pk) ← Gen(1n) and s ← GenH(1n).

Note that sk is the secret key where h = Hs(sk), s and
pk are public values.
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• Enc(x): set x
0
← sk and x

1
← Enc′pk(x).

• Dec(x0 , x1): If h 6= Hs(x0) then return ⊥, otherwise
return c′ = Dec′x0

(x1).

The semi-strong non-malleability experi-
ment for a (T ,L, c, qt, ql, τ)-adversary, A and
(Enc,Dec, T ,L, b, c, tm, lm, θ)-oracle, O, with ql = 0

is referred to as Exp
semi,O(b)
A (1n) and an encoding scheme

Π = (Init,Enc,Dec, κ, `
0
`
1
) is said to be (qt, ql, tm, lm)-

non-malleable, if for all adversaries A the success probability
of the adversary A in the above experiment, i.e.∣∣∣Pr[Exp

semi,O(b)
A (1n) = b]− 1/2

∣∣∣
is negligible.

Lemma II.1. For the encoding scheme Π as defined in
Construction II.1, let Coll be the event that there exists an
adversary tampering query for which we have a collision for
the hash of the first encoding share x0 . Then

Pr[Exp
semi,O(b)
A (1n) = b]−Pr[(Exp

semi,O(b)
A (1n) = b) | Coll]

is a negligible function of n.

Proof.

Pr[Exp
semi,O(b)
A (1n) = b]

= Pr[(Exp
semi,O(b)
A (1n) = b) ∩ Coll]

+ Pr[(Exp
semi,O(b)
A (1n) = b) ∩ Coll]

≤ Pr[Coll] + Pr[(Exp
semi,O(b)
A (1n) = b) ∩ Coll]

≤ Pr[Coll] + Pr[(Exp
semi,O(b)
A (1n) = b) | Coll]× Pr[Coll]

≤ Pr[Coll] + Pr[(Exp
semi,O(b)
A (1n) = b) | Coll]

≤ negl(n) + Pr[(Exp
semi,O(b)
A (1n) = b) | Coll]

Where in the last inequality we have used the collision resistant
of the hash function. �

Note that restricted to the event Coll, a change in first share
of the encoding scheme causes ⊥ as a response of the oracle
to the corresponding tampering query which gives rise to an
immediate halt and t in the output.

Theorem II.1. Let Π′ = {Gen′,Enc′,Dec′} be an l-leakage
CCA indistinguishable public key encryption scheme, ΠH =
(GenH ,H, lH) a family of collision resistant hash functions
and Π = (Init,Enc,Dec, κ, `0 , `1) be the scheme described in
Construction II.1. Then the encoding scheme Π has semi-strong
non-malleability for l ≥ lH .

Proof. Assume that there exists a semi-strong
(T ,L, c, qt, ql, τ)-adversary A for the scheme Π having
access to an (Enc,Dec, T ,L, b, c, tm, lm, θ)-oracle with
ql = 0.

In what follows we construct an adversary A′ for an
encryption scheme Π′ that initializes and runs A just once and
answers its queries appropriately to gain enough information.
Our proof is based on proving that the success probability of
A′ is at least equal to that of A. The adversary A′ operates as
follows:

• Initialization of A′: The adversary A′ is given pk and
access to its leakage oracle for at most l bits. Then by
receiving m0 and m1 as the oracle initialization step for
A, the adversary A′ choses the same plaintexts m

0
and

m
1

and is given c = Encpk(mb) within its experiment
for b ∈ {0, 1}.

• Initialization of A: The adversary A′ computes
s

A′←− GenH(1n) and then queries Hs to its leakage
oracle and gets h A′←− Hs(sk)(it is possible because

the leakage bound l ≥ lH). Then A′ sends s, pk and h
to A.

• Answering a typical tampering query (T
0
, T

1
) of A: By

receiving (T
0
, T

1
) (through A), the adversary A′ computes

c′ = T
1
(c). If c′ = c, it returns s∗, otherwise queries c′

to its decryption oracle and returns the result to A.
• Output: A outputs a bit b′ and A′ outputs the same bit.
First, note that for the above experiment the probability

space generated by the randomness of both adversaries A and
A′ are the same. Also, by Lemma II.1, we may assume that
the event Coll does not occur, since this assumption can affect
the success probability at most by a negligible function of the
security parameter.

On the other hand, we have

Pr[ExpCCA
A′ (b, 1n) = b] ≥ Pr[(Exp

O(b)
A (1n) = b) | Coll],

since the event of success in the experiment related to the
adversary A is a subset of the event of success for the adversary
A′. This is clear since the event of success for A conditioned
to Coll can be described as follows,

1) There is no change in the first share x
0

(because of Coll
event, any changes in first share resulted to the ⊥ ).

2) There is no ⊥ as the response of a tampering query for
the second share.

3) b = b′.
While the event of success for A′ can be described as,

1) A succeeds.
2) b = b′.
Note that because of the definition of semi-strong non-

malleability if ⊥ is returned to the adversary as the response
to a tampering query then the experiment is terminated with t
and the adversary cannot apply the distinguishability test. �

III. A STRONGLY SECURE NON-MALLEABLE SCHEME

The experiment Exp
strong,O(b)
A (1n) for a (T ,L, c, qt, ql, τ)-

adversary, A, attached to a (Enc,Dec, T ,L, b, c, tm, lm, θ)-
oracle, O, with tm = 0 defines strong non-malleability in
which the self-destruction may occur, i.e. if the oracle returns
⊥ in response to a tampering query then the other tampering
queries also will be answered with a ⊥ onwards (independent
of the queries themselves). Recall that if tm = 0 and qt ≤ 1
we have one-shot strong non-malleability and if tm = 0, qt ≥ 1
we have continuous strong non-malleability in this model. The
leakage-resilient strong non-malleability is also defined for
ql 6= 0.

The first secure strong continuous non-malleable encoding
scheme has been introduced in [16] that uses robust non-
interactive zero knowledge proofs. In this section we introduce
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a new secure strong continuous non-malleable encoding scheme
with tamper-detection having the following properties:
• Our scheme uses MAC functions instead of NIZK proofs.
• Our scheme uses standard leakage-resilient storage instead

of strong leakage-resilient.
• Our scheme also has the extra advantage of having tamper-

detection.
• As will be shown later our scheme has a better leakage-

resilient bound.
For the security analysis of our proposed scheme we will

need the definition for the l-leakage-resilient strong existentially
unforgeable MAC.

Definition III.1. Let Π = (Gen,Mac,Vrfy) be a message
authentication code (MAC) scheme, n ∈ N be the security
parameter, L be a family of nonuniform probabilistic polyno-
mial time Turing machines and also let A be a nonuniform
probabilistic polynomial time Turing machine as the adversary.
If t = Mack(m) where k is the secret key and m is the
message then t is referred to as the tag of the message m. For
the predicate Vrfyk(t,m) a pair (t,m) is said to be a valid
pair if Vrfyk(t,m) = 1.

The adversary A has access to leakage and MAC oracles.
The adversary can send the coding of a Turing machine T ∈ L
as a query to the leakage oracle O(L, k) for the secret key k,
where it receives T (k) in response as the answer. Note that
the leakage oracle is allowed to return at most l bits as the
whole number of bits of its answers during the process of A.
The adversary A also has access to a MACk(.) oracle that
may return the tags corresponding to the messages queried by
A.

Let the random variable ExpMAC
A (1n) denotes the result of

the following experiment for an adversary A.

Experiment 2: ExpMAC
A (1n)

1 Run k ← Gen(1n) where k is kept secret.
2 A may query the leakage oracle (O(L, k)).
3 A may query the MACk(.) oracle. (The set of queried

messages by the adversary is denoted by M and the set of
corresponding answers is denoted by R).

4 A outputs (m′, t′).
5 If [(m′ /∈M or (m′ ∈M and t′ /∈ R)) and
t′ = Vrfyk(m′)] the output of the experiment is 1 and
otherwise is 0.

Then the scheme Π is said to be a secure l-leakage-resilient
strong existentially unforgeable scheme under an adaptive
chosen message attack if

Pr[ExpMAC
A (1n) = 1] ≤ negl(n).

The details of the security model and some examples for
leakage-resilient MAC schemes can be found for example
in [21]. Now we define our scheme for leakage-resilient
continuous strong non-malleability as follows.

Construction III.1. Let ΠH = (GenH ,H, lH) be a
family of collision resistant hash functions with output

length lH bits. Also, let ΠL = (LRS,LRS−1) be an
llrs-leakage-resilient storage, Π′ = (Gen,Mac,Vrfy) be a
secure lmac-leakage-resilient strong existentially unforgeable
MAC algorithm under an adaptive chosen message attack. Our
coding scheme is a tuple Π = (Init,Enc,Dec, κ, `

0
, `

1
), which

is defined as follows.
• Init(1n): Set s ← GenH(1n), k0 ← Gen(1n) and
k

1
← Gen(1n). Then compute h

0
= Hs(k0

),
h

1
= Hs(k1

) and publish h
0
, h

1
and s as untamperable

public strings.
• Enc(x): Compute (c0 , c1) ← LRS(x), then

compute the two split encoding shares as
x0 = (c0 , t0 , k1) and x1 = (c1 , t1 , k0) where
t
0

= Mack
0
(c

0
) and t

1
= Mack

1
(c

1
).

• Dec(x
0
, x

1
): Pars xb for the format of (cb, tb, k1−b) for

b ∈ {0, 1}, and then check the correctness of h0

?
= Hs(k0)

and h
1

?
= Hs(k1

), t
0

?
= Mack

0
(c

0
) and t

1

?
= Mack

1
(c

1
).

If any one of the verifications fails, output ⊥; otherwise,
output x′ = LRS−1(c

0
, c

1
).

The strong non-malleability experiment for an adversary
A is referred to as Expstrong,O

A (1n) and an encoding scheme
Π = (Init,Enc,Dec, k, `0`1) is said to be (qt, ql, tm, lm)-non-
malleable for tm = 0 if for all adversaries A, the probability∣∣∣Pr[Exp

strong,O(b)
A (1n) = b]− 1/2

∣∣∣ ,
is negligible.

Theorem III.1. Let ΠL = (LRS,LRS−1) be an llrs-leakage-
resilient storage scheme, ΠH = (GenH ,H, lH) a family of
collision resistant hash functions and Π′ = (Gen,Mac,Vrfy)
be a secure lmac-leakage-resilient strong existentially unforge-
able MAC and Π = (Init,Enc,Dec, κ, `

0
, `1) be the scheme

described in Construction III.1. If lmac ≥ log(qt) + lH+l and
llrs ≥ log(qt) + 2l, then Π is an l-leakage-resilient continuous
strong non-malleable encoding scheme with tamper-detection
property.

Proof. The intuition behind the proof is as follows. Intuitively,
no adversary can tamper with the values of keys k

0
, k1 as far

as the verification for the hash of keys hold, since existence
of a modification that passes the verifications, contradicts the
collision resistance of the family H. Hence, assuming that the
keys k

0
, k

1
are not changed by the adversary, if the adversary

changes the value of cb to c′b, then the adversary must also be
able to compute a new tag for cb which is verifiable. This also
contradicts the strong security of the MAC function.

Now we go through the details of the proof. Note that,
hereafter, we assume that a probabilistic Turing machine T is
a machine with a random tape such that for any input x and a
random string r on its random tape computes A(r, x) using a
deterministic procedure.

Considering the existence of an adversary A operating within
the procedure of the experiment Exp

strong,O(b)
A (1n), let us

define two events Coll and Tamper, where Coll is the event
that the adversary A, using the tampering oracle, can change the
values of k0 and k1 within the framework of Construction III.1
such that the hash verifications hold, and also Tamper is
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defined as the event that A can tamper with codewords and
receive a value other than s∗ or ⊥.

Claim III.1. Pr[Tamper | Coll] ≤ negl(n).

Proof. We show that if A receives x′ 6∈ {s∗,⊥} in tampering
queries, then there exists an adversary A′ attacking the leakage-
resilient MAC, Π′ = (Gen,Mac,Vrfy), who is able to forge
a valid tag on some messages for the MAC function.

The adversary A′ operates as follows.

• Generate the key k using Gen(1n).
• From this stage onwards, A′ may access the oracles
MACk(.) and O(L, k).

• A′ computes k1

A′←− Gen(1n), s
A′←− GenH(1n),

h
1

A′←− Hs(k1
) and also receives h

0

A′←− Hs(k)
using queries from its leakage oracle (note that

this is possible since by the hypothesis we have

lmac > lH).
• A′ chooses the bits b, b′ and b′′ as well as the binary

string r uniformly at random.
• A′ send the coding of Fm(h

0
, h

1
, s, k

1
, b, b′, b′′, r)

to the leakage oracle and receives j as the re-
sult of executing Fm within the oracle environ-
ment (see Algorithm 1 and the comments proceeding

this algorithm description) and halts if j = 0. (j is

the index of tampering query resulting to ⊥.)
• A′ runs A(r, h

0
, h

1
, s) and receives m

0
and m

1
.

• A′ computes (c0 , c1)
A′←− LRS(m

b′′ ) and requests
t
b

= Mack(c
b
) from its MAC oracle.

• A′ set xb′ = (cb, tb, k1
).

• Whenever A queries its leakage oracle, A′ an-
swers this query using its own leakage oracle
O(L, k) (note that this is also possible because

of the inequality lmac > l).
• When A requests its ith tampering query, then if i < j,
A′ sends s∗ to A as the answer.

• For the jth tampering query by (T
0
, T

1
), A′ computes

x′ = Tb′(xb′) = (c′b, t
′
b, k
′
1
) for xb′ = (cb, tb, k1

) and
halts where c′b is a valid forged message for the MAC
function with the valid tag t′

b
.

Note that we have used a method described in [16] to handle
the using of the key k which is only available to the leakage
oracle O(L, k). In this sense recall that the function (here the
function Fm) is passed to the oracle as its coding where the
code is run within the oracle and the answer is passes to the
main program. The description of the function Fm is as follows
(see Algorithm 1).

Note that the behavior of adversary A in the above algorithm
is identical to a real continuous strong non-malleable adversary
until the jth tampering query. If j 6= 0 then the event Tamper

occurs within the experiment Exp
strong,O(b)
A (1n). Let Forge

be the event that in Exp
strong,O(b)
A (1n) at least one part of x

0

changes in the tampering query, resulting to x′ 6∈ {s∗,⊥}. We
claim that

Pr[Forge | Coll] ≥ 1

2
× Pr[Tamper | Coll].

Algorithm 1: j ←− Fm(h
0
, h

1
, s, k

1
, b, b′, b′′, r)

1 Set k
0

def
= k using the oracle database (note that inside

of the leakage oracle, we know the secret key k).
2 Invoke the adversary A(r, h

0
, h

1
, s) to obtain two

messages m
0

and m
1
.

3 Set xb′ = (cb, tb, k1) and x1−b′ = (c1−b, t1−b, k0), where
(c0 , c1)← LRS(mb′′), tb = Mack

0
(cb) and

t1−b = Mack
1
(c1−b).

4 This algorithm (Fm) can answer the leakage and
tampering queries of A using x0 and x1 .

5 In the ith tampering query,
• If A is given x′ 6∈ {s∗,⊥} as the answer to a

tampering query then
j ← i and halt.

• If A is given ⊥ as the answer to a tampering query,
then j ← 0 and halt.

• If A halts, output j ← 0 and halt.
• Otherwise answer the i+ 1th tampering query.

(Note that this is possible because of the

leakage bound lmac > log(qt).)

We know that in Coll the values of k0 and k1 may not change,
and also c0 , c1 , k0 and k1 are located uniformly at random in
shares of x

0
and x

1
in algorithm Fm (because the bits b, b′

as input of the algorithm Fm is chosen uniformly at random).
Consequently, since Tamper depends uniformly on changes in
x

0
and x

1
the claim is proved.

On the other hand, if the event (Forge | Coll) occurs in
the experiment Exp

strong,O(b)
A (1n), the security of the MAC

function may be broken. Hence,

1

2
× Pr[Tamper | Coll]

≤ Pr[Forge | Coll]

= Pr[ExpMAC
A′ (1n) = 1]

≤ negl
0
(n)

⇒ Pr[Tamper | Coll] ≤ 2× negl
0
(n) = negl(n).

Note that this proves the tamper-detection property of our
scheme. �

Claim III.2. For the encoding scheme Π as defined in
Construction III.1

Pr[Exp
strong,O(b)
A (1n) = b]

− Pr[(Exp
strong,O(b)
A (1n) = b) | (Coll ∩ Tamper)

is a negligible function of n.
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Proof.

Pr[Exp
strong,O(b)
A (1n) = b]

= Pr[(Exp
strong,O(b)
A (1n) = b) ∩ (Coll ∪ Tamper)]

+ Pr[(Exp
strong,O(b)
A (1n) = b) ∩ Coll ∪ Tamper]

≤ Pr[Coll ∪ Tamper]

+ Pr[(Exp
strong,O(b)
A (1n) = b) ∩ (Coll ∩ Tamper)]

≤ Pr[Coll] + Pr[Tamper ∩ Coll]

+ Pr[(Exp
strong,O(b)
A (1n) = b) ∩ (Coll ∩ Tamper)]

≤ Pr[Coll] + Pr[Tamper | Coll]

+ Pr[(Exp
strong,O(b)
A (1n) = b) | (Coll ∩ Tamper)]

≤ negl
0
(n) + negl

1
(n)

+ Pr[(Exp
strong,O(b)
A (1n) = b) | (Coll ∩ Tamper)].

Where in the last inequality we have used the collision
resistance of the hash function and Claim III.1. �

Claim III.3. Pr[(Exp
strong,O(b)
A (1n) = b) | Coll∩Tamper] ≤

1
2 + negl(n).

Proof. We show that if the adversary A
distinguishes m0 from m1 in the experiment
(Exp

strong,O(b)
A (1n) = b | Coll ∩ Tamper) with non-

negligible probability, then there exists another adversary A′

that distinguishes the same massages in the leakage-resilient
storage experiment. The reduction is as follows.

• A′ computes k
0

A′←− Gen(1n), k
1

A′←− Gen(1n),
s

A′←− Gen
H

(1n), h0 = Hs(k0) and h1 = Hs(k1).
• A′ generates a random string r.
• A′ runs A(r, h

0
, h

1
, s) and then A outputs m

0
and m

1
.

• A′ chooses m
0

and m
1

as its own messages. (Note that
A′ has access to its leakage oracle.)

• A′ sends the coding of F (k
0
, k

1
, llrs, h0

, h
1
, s, r) to the

leakage oracle and receives j and two arrays γ0 and
γ1 as the result of executing F within the oracle (see
Algorithm 2) and halts if j = 0. (Here j is the index

of tampering query resulting to ⊥.)
• When A requests its ith leakage query (T

0
, T

1
), then A′

answers this query using γ
0
[i] and γ

1
[i].

• When A requests its ith tampering query (T0 , T1), then
A′ answers i < j tampering queries with s∗ and answers
⊥ to the tampering queries when i ≥ j.

• A′ outputs whatever is output by A.

The algorithm F (k0 , k1 , llrs, h0 , h1 , s, r) is a Turing machine
that is queried to the leakage oracle of adversary A. This
algorithm runs the adversary A(r, h

0
, h

1
, s) with randomness

r inside of the leakage oracle. This method is similar to the
one used in [16].

The algorithm F (k
0
, k

1
, llrs, h0

, h
1
, s, r) outputs j, γ

0
and

γ
1
. The number j is the index of tampering query resulting to
⊥ where γ

0
and γ

1
are two arrays containing the responses of

leakage oracle to the adversary A. Note that γ0 and γ1 are arrays
of size at most q

l
. The algorithm F (k0 , k1 , llrs, h0 , h1 , s, r)

contains two sub-algorithms Ft and F` where Ft handles

Algorithm 2: [j, γ
0
, γ

1
]←− F (k

0
, k

1
, llrs, h0

, h
1
, s, r)

1 Set j0 ← 0, j1 ← 0, e0 ← 0, e1 ← 0.
2 for i← 0 to q

l
do

3 γ
0
[i] = −1

4 γ
1
[i] = −1

5 end
/* Note that γ0 and γ1 are global

vectors */
6 Loop
7 Form x

0
= (c

0
,Mack

0
(c

0
), k

1
) and

x
1

= (c
1
,Mack1(c

1
), k

0
)

8 (This is possible since inside of the

leakage oracle c0 and c1 are known)
9 if j0 = 0 then

10 Run [y, α
0
, α

1
]← F`(h0

, h
1
, s, x

0
, 0, llrs, r)

11 if α
0
6= −1 then

12 e
0
← (e

0
+ 1)

13 Set γ
0
[e

0
]← α

0

14 end
15 if y 6= 0 then
16 j

0
← y

17 end
18 end
19 if j

1
= 0 then

20 Run [y, α0 , α1 ]← F`(h0 , h1 , s, x1 , 1, llrs, r)
21 if α1 6= −1 then
22 e

1
← (e

1
+ 1)

23 Set γ
1
[e

1
]← α

1

24 end
25 if y 6= 0 then
26 j1 ← y
27 end
28 end
29 if j

0
> 0 and j

1
> 0 then

30 Halt the algorithm and return
j ← min(j

0
, j

1
), γ

0
, γ

1

31 end
32 if j0 = 0 and j1 > 0 then
33 Halt the algorithm and return j ← j

1
,γ

0
, γ

1

34 end
35 if j

1
= 0 and j

0
> 0 then

36 Halt the algorithm and return j ← j0 , γ0 , γ1

37 end
38 if e

0
≥ q

t
or e

1
≥ q

t
then

39 Halt the algorithm F and return j ← 0 ,
γ

0
, γ

1

40 end
41 EndLoop
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Algorithm 3: [y, α
0
, α

1
]←− F`(h0

, h
1
, s, x, b, l, r)

1 Set y ← 0, α
0
← −1, α

1
← −1

2 Invoke the adversary A(r, h
0
, h

1
, s) with randomness r

3 Answer tampering queries of A (if there is any at this
stage) by receiving the ith tampering query (T

0
, T

1
)

(through A),
4 Run Ft and compute y ← Ft(Tb, i, x) for each

tampering query (T
0
, T

1
)

5 if y 6= 0 then
6 Return s∗ to the adversary A
7 Halt the algorithm and return y, α

0
, α

1

8 end
9 else

10 Return ⊥ to the adversary A
11 end
12 Answer leakage queries of A by receiving the ith

leakage query (T
0
, T

1
) (through A) as:

13 begin Answring leakage queries:
14 if γ0 [i] 6= −1 and γ1 [i] 6= −1 then
15 Return γ

0
[i] and γ

1
[i] to the adversary A

16 end
17 if γ

1−b
[i] = −1 then

18 Halt the algorithm F` and return y, α
0
, α

1

19 end
20 if γ

b
[i] = −1 then

21 Compute L← Tb(x)

22 if ((
∑i
j=0|γb[j]|) + |T

b
(x)|) ≤ l then

23 Set α
b
← L, halt and return y, α0 , α1

24 end
25 if ((

∑i
j=0|γb[j]|) + |T

b
(x)|) > l then

26 Set α
b
← l∗, halt and return y, α0 , α1

27 (l∗ is a special symbol)
28 end
29 end
30 if γ

b
[i] = l∗ then

31 Output the special symbol l∗ to the adversary
A as response of the leakage query

32 end
33 if γ

1−b
[i] = l∗ then

34 Output the special symbol l∗ to the adversary
A as response of the leakage query

35 end
36 end
37 If A halts then halt the algorithm F` and return
y, α

0
, α

1

Algorithm 4: j ←− Ft(T, i, x)

1 Compute x′ = T (x).
2 Parse the format of x as (c, t, k) and x′ as (c′, t′, k′)
3 if k′ 6= k or Vrfyk(c′, t′) = 0 then
4 Set j ← i
5 end
6 else
7 j ← 0
8 end
9 return j

tampering queries and F` handles leakage queries. Turing
machine F is described in Algorithm 2 and its sub-algorithms.

The output of F is (j, γ0 , γ1) while |j|= O(log(qt)),
|γ

0
|= l and |γ

1
|= l. Note that the maximum number of

queries for the algorithm F to compute the vectors γ
i

for
i ∈ {0, 1}, is 2l, showing that llrs ≥ log(q

t
) + 2l.

Now, we show that subject to the occurrence of the event
Coll ∩ Tamper, the algorithm F outputs the correct value of
j. To see this, note that when the events Tamper and Coll
do not occur, the possible answers of tampering oracle are
s∗ and ⊥. The output of tampering oracle is ⊥ when at least
one of the verifications of the encoding shares is false, when
j = min(j0 , j1) is the index of the query at which that oracle
outputs ⊥. Therefore, the view of algorithm F is similar to
the view of A in experiment Exp

strong,O(b)
A (1n) until the jth

tampering query.
Consequently,

Pr[(Exp
strong,O(b)
A (1n) = b) | Coll ∩ Tamper]

≤ Pr[Exp
lr,O(b)
A′ (1n) = b]

≤ 1

2
+ negl(n).

�

Finally, we compute the success probability of the adversary
A in the experiment Exp

strong,O(b)
A (1n) using Claims III.1,

III.2 and III.3 as follows.

Pr[Exp
strong,O(b)
A (1n) = b]

= Pr[Exp
strong,O(b)
A (1n) = b ∩ (Coll ∪ Tamper)]

+ Pr[Exp
strong,O(b)
A (1n) = b ∩ (Coll ∪ Tamper)]

≤ negl
0
(n) + Pr[Exp

strong,O(b)
A (1n) = b | Coll ∩ Tamper]

≤ negl
0
(n) +

1

2
+ negl

1
(n)

=
1

2
+ negl(n).

�

IV. CONCLUSION AND REMARKS

As one of our main contributions, we proposed a secure
scheme for leakage-resilient continuous strong non-malleability
with tamper-detection. We would like to emphasize that tamper-
detection is an important property of our scheme that makes
it possible to detect any tampering attacks to the system. We
believe that this type of encoding scheme with tamper-detection
may have applications in devices requiring the tamper proof
mechanisms in an algorithmic level. Note that most of current
tamping proof methods are hardware based while using our
approach one may obtain security by implementing an extra
independent security layer as defense in depth.

Our proposed scheme for strong non-malleable codes also
can be used to protect stateful and stateless cryptographic
functionalities against tampering and leakage attacks. With
some inspirations from [15], [16], our proposed encoding
scheme can combined with other cryptographic schemes to



9

achieve some aspects of tamper resilient cryptography. To
combining non-malleable codes with cryptographic functions,
the secret state of the system is encoded by a non-malleable
encoding scheme and the cryptographic function executes only
when the self-destruction does not occur.

We also define a new semi-strong security model for con-
tinuous tampering encoding. The semi-strong model assumes
that adversary is active until being detected by the system and
this makes it possible to realize some real world attackers as
viruses in this new model.

Note that the design of non-malleable encoding schemes
without any public information is a very attractive problem
that asks for further research.
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