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Abstract. Group signatures are an important privacy-enhancing tool
that allow to anonymously sign messages on behalf of a group. A recent
feature for group signatures is controllable linkability, where a dedicated
linking authority (LA) can determine whether two given signatures stem
from the same signer without being able to identify the signer(s). Cur-
rently the linking authority is fully trusted, which is often not desirable.

In this paper, we firstly introduce a generic technique for non-interactive
zero-knowledge plaintext equality and inequality proofs. In our setting,
the prover is given two ciphertexts and some trapdoor information, but
neither has access to the decryption key nor the randomness used to pro-
duce the respective ciphertexts. Thus, the prover performs these proofs
on unknown plaintexts. Besides a generic technique, we also propose an
efficient instantiation that adapts recent results from Blazy et al. (CT-
RSA’15), and in particular a combination of Groth-Sahai (GS) proofs
(or sigma proofs) and smooth projective hash functions (SPHFs).

While this result may be of independent interest, we use it to realize
verifiable controllable linkability for group signatures. Here, the LA is
required to non-interactively prove whether or not two signatures link
(while it is not able to identify the signers). This significantly reduces the
required trust in the linking authority. Moreover, we extend the model of
group signatures to cover the feature of verifiable controllable linkability.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [CvH91], allow users to
anonymously sign messages on behalf of a group. In case of dispute, a so-called
opening authority is able to reveal the identity of the actual signer. While many
popular group signature schemes (GSSs) (such as [ACJT00,BBS04]) simply trust
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the output of the opening authority, Camenisch and Stadler [CS97] proposed to
require a proof of the correctness of the opening mechanism. Later, Bellare et
al. [BSZ05] introduced a model for dynamic group signatures (BSZ model) that
incorporates this issue by requiring publicly verifiable proofs of opening, i.e., the
opening authority provides a proof that the claimed signer indeed produced a
given signature. Recently, Sakai et al. [SSE+12] identified an issue with this
opening mechanism in the BSZ model and introduced an additional property
called opening soundness. This property prevents signature hijacking, i.e., it
prevents malicious group members (who cooperate with the opening authority)
from claiming ownership of a signature produced by an honest group member.
Over the years many other additional features for GSSs have been introduced
(cf. Section 1.2).

One rather recent feature is called controllable linkability [HLhC+11,HLC+13,
HCCN15,SSU14]. Here, a dedicated entity called linking authority (LA) can de-
termine whether two given group signatures stem from the same signer, but the
LA is not able to identify the signer(s). Consequently, the LA is strictly less
powerful than the opening authority which can identify all signers by opening
their signatures. Like early group signatures did not consider untrusted opening
authorities, existing group signatures with controllable linkability [HLhC+11,
HLC+13,HCCN15,SSU14] do not consider untrusted LAs. In particular, the LA
simply provides a binary linking decision and thus has to be fully trusted. It is,
however, desirable to reduce this trust. Ideally, in a way that the LA needs to pro-
vide verifiable evidence, i.e., a proof, of a correct decision. In this paper, we solve
this open problem and introduce the novel concept of verifiable controllable link-
ability (VCL). Applications of VCL include different types of privacy-preserving
data-mining scenarios in various fields such as online shopping, public transport,
park- and road pricing. Essentially, whenever one requires to analyse customers’
behavioural patterns in a privacy-respecting way and these computations are
outsourced to a potentially untrusted party, e.g., a cloud provider, that needs to
prove honest behaviour and must not be able to identify individuals. Moreover,
their application to revocation mechanisms seems interesting to study.

1.1 Background and Motivation

Naive approaches to solve this problem, like abusing the opening authority
or requiring the LA to sign its decision, are rather privacy intrusive and/or
not satisfactory. To give an idea of how we approach this problem, we have
to look at the existing approaches to achieve controllable linkability without
verifiability. This concept has been proposed for several GSSs by Hwang et
al. [HLhC+11, HLC+13, HCCN15]. As their approach to controllable linkabil-
ity, however, is ad-hoc and always tailored to a specific GSS, Slamanig et al.
[SSU14] proposed a generic approach to add controllable linkability to pairing-
based group signature schemes following the sign-and-encrypt-and-prove (SEP)
paradigm (cf. Section 2.3), which covers a large class of practical group signa-
tures in the ROM. We recall that a group signature in the SEP paradigm is an
encryption of a per-user unique value (certificate) under the public key of the
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opening authority and a non-interactive zero-knowledge proof of a signature (on
this certificate) from the group manager. This generic approach allows the LA to
perform the linking operation on the encrypted membership certificates (which
are used for opening group signatures) by means of a variant of the all-or-nothing
public key encryption with equality tests (AoN-PKeet∗) primitive. Basically,
the LA obtains a single linking key (trapdoor) that allows plaintext equality
tests on the membership certificates without being able to decrypt. Now, our
idea is to require the LA to provide a proof that either two encrypted member-
ship certificates contain the same or different unknown certificates (plaintexts).
The particular challenge, however, is that the LA must not be able to identify
the signers and thus needs to perform such proofs without knowing the plain-
texts, the decryption key or the randomness used to produce the ciphertexts.
Moreover, in contrast to opening proofs, we do not only need to provide a proof
in case of a positive linking decision but also in case of a negative decision, i.e.,
when two ciphertexts contain different unknown plaintexts (certificates). This
makes proving the correctness of a linking decision a much more challenging
task.

1.2 Related Work

Group signatures. In traceable signatures [KTY04, Cho09], the opening au-
thority can compute a tracing trapdoor for a user, which allows the identification
of all signatures generated by a particular user without violating the privacy of
other users. In group signatures with message dependent opening [SEH+12],
the opening authority cannot open any signature unless an additional authority
(the admitter) admits to open signatures for specified messages and thus restricts
the power of the opening authority. In deniable group signatures [IEH+15], the
opener can, in addition to opening proofs, prove that a particular signature has
not been generated by a particular signer. Apart from these opening capabilities,
also linking capabilities have been investigated. For instance, the possibility to
publicly link group signatures of users without identifying them [NFW99] or to
allow public tracing of signers who have produced a number of signatures above
a certain threshold [Wei05]. But also the linkability of signatures for a specified
time frame (by fixing the randomness for a certain time [MCVH12] or by in-
troducing specific time tokens [EH14]) have been considered. Another direction
is to put the user in charge of controlling which signatures can be linked, as
it is used in DAA [BCC04] and related schemes [BFG+13]. These concepts are
related to our work but do not help to realize our goals.

Plaintext equality/inequality proofs. Zero-knowledge proofs of plaintext
equality (under distinct public keys) are well known from the twin-encryption
paradigm [NY90]. However, we require equality as well as inequality proofs and
in our setting the prover neither has access to the decryption key nor the ran-
domness used to produce the respective ciphertexts. Jakobsson and Juels [JJ00]
introduced the concept of distributed plaintext equality tests (PETs) within
their approach to general secure multiparty computation. Basically, it allows
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n > 1 entities to determine whether two ElGamal ciphertexts encrypt the same
or a different message without learning the message. However, this requires ac-
cess to the decryption key. Choi et al. [CEJ+07] provide zero-knowledge equal-
ity/inequality proofs for boolean ElGamal ciphertexts. Their approach requires
the knowledge of the decryption key and the randomness used to produce the two
ciphertexts. Parkes et al. [PRST08] provide zero-knowledge equality/inequality
proofs of plaintexts within Paillier ciphertexts, which however require either
access to the randomness used to produce the ciphertexts or access to the plain-
texts. Recently, Blazy et al. [BCV15] introduced a generic approach to prove non-
membership with respect to some language in non-interactive zero-knowledge.
Among others, they show how to prove plaintext inequality of two ElGamal ci-
phertexts, where the verifier knows the plaintext and the randomness used to
produce one of the ciphertexts. Therefore, none of these approaches directly fits
our requirements.

1.3 Contribution

The contributions of this paper are as follows: (1) Based upon the idea of pub-
lic key encryption with equality tests, we define a generic non-interactive proof
system that allows to perform zero-knowledge proofs about plaintext equality
and inequality with respect to any two ciphertexts under the same public key.
Thereby, the prover is neither required to have access to the decryption key
nor to the randomness used to produce the respective ciphertexts. (2) We show
how Groth-Sahai (GS) proofs [GS08] and an adaptation of non-interactive zero-
knowledge proofs of non-membership [BCV15] can be combined to obtain an
instantiation of our proof system. While an instantiation of such a proof system
is of independent interest, it allows us to construct group signatures with veri-
fiable controllable linkability (VCL-GS). (3) We adopt the model of GSSs with
controllable linkability [HLhC+11, HLC+13, HCCN15] to a model for VCL-GS.
In the vein of Sakai et al. [SSE+12], we introduce a property called linking sound-
ness, which requires that even corrupted LAs (colluding with malicious users)
cannot produce false linking proofs. (4) We show how to transform GSSs with
controllable linkability following the SEP paradigm into GSSs with verifiable
controllable linkability by using the proposed non-interactive zero-knowledge
proof system.

2 Preliminaries

Subsequently, we discuss preliminaries and recall assumptions and required tools.

Notation. Let x←R X denote the operation that picks an element x uniformly
at random from a set X. A function ε : N → R+ is called negligible if for all
c > 0 there is a k0 such that ε(k) < 1/kc for all k > k0. In the remainder of this
paper, we use ε to denote such a negligible function. We use boldface letters to
denote vectors, e.g., X = (X1, . . . Xn).
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Let G1 = 〈g〉, G2 = 〈ĝ〉, and GT be groups of prime order p. We write

elements in G2 as ĝ, ĥ, etc. A bilinear map e : G1×G2 → GT is a map, where it
holds for all (u, v̂, a, b) ∈ G1×G2×Z2

p that e(ua, v̂b) = e(u, v̂)ab, and e(g, ĝ) 6= 1,
and e is efficiently computable. We assume the asymmetric setting where G1 6=
G2. The required hardness assumptions are provided in Appendix A.

2.1 Groth-Sahai (GS) Non-Interactive Zero-Knowledge Proofs

Groth and Sahai [GS08] provide a framework for efficient non-interactive witness-
indistinguishable (NIWI) and non-interactive zero-knowledge (NIZK) proofs for
languages defined over bilinear groups. It allows, among others, to prove state-
ments about the satisfiability of so-called pairing product equations (PPEs).
While the framework is quite independent of the underlying hardness assump-
tion, we will use the instantiation based on the SXDH setting, and, thus, our
further explanations are tailored to this setting. A PPE is of the form

n∏
i=1

e(Ai, Ŷi) ·
m∏
i=1

e(Xi, B̂i) ·
m∏
i=1

n∏
j=1

e(Xi, Ŷj)
γij = tT ,

where X ∈ Gm1 , Ŷ ∈ Gn2 are the secret vectors (to prove knowledge of) and
A ∈ Gn1 , B̂ ∈ Gm2 , Γ = (γij)i∈[m],j∈[n] ∈ Zn·mp , and tT ∈ GT are public constants.
Informally, GS proofs use the following strategy. One commits to the vectors X
and Ŷ, and uses the commitments instead of the actual values in the PPE. The
proof π is used to cancel out the randomness used in the commitments. As this
does not directly work when using the groups G1,G2, and GT , one projects
the involved elements to the vector spaces G2

1,G2
2, and G4

T by using the defined
projection maps and proves the satisfiability of the PPE using the projected
elements and corresponding bilinear map F : G2

1 ×G2
2 → G4

T .
More formally, a GS proof for a PPE allows to prove knowledge of a wit-

ness w = (X, Ŷ) such that the PPE, uniquely defined by the statement x =
(A, B̂, Γ, tT ), is satisfied. Henceforth, let BG denote the description of the used
bilinear group and let R be the relation such that (BG, x, w) ∈ R iff w is a sat-
isfying witness for x with respect to BG. Further, let LR be the corresponding
language.

Formally, a non-interactive proof system in a bilinear group setting is defined
as follows:

Definition 1. A non-interactive proof system Π is a tuple of PPT algorithms
(BGGen, CRSGen, Proof, Verify), which are defined as follows:

BGGen(1κ) : Takes a security parameter κ as input, and outputs a bilinear group
description BG.

CRSGen(BG) : Takes a bilinear group description BG as input, and outputs a
common reference string crs.

Proof(BG, crs, x, w) : Takes a bilinear group description BG, a common reference
string crs, a statement x, and a witness w as input, and outputs a proof π.
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Verify(BG, crs, x, π) : Takes a bilinear group description BG, a common reference
string crs, a statement x, and a proof π as input, and outputs 1 if π is valid
and 0 otherwise.

The security definitions for non-interactive proof systems are provided in Ap-
pendix B. GS proofs are perfectly complete, perfectly sound, and witness indis-
tinguishable. Furthermore, they are composably zero-knowledge if tT = 1GT and
the PPE does not involve a pairing of two public constants.

Throughout this paper we use the GS-based commit-and-prove approach
from [EG14], which allows to reuse the commitments in proofs for different
statements. This allows us to prove statements with respect to commitments
that are included in the common reference string (CRS) to obtain more efficient
proofs. Moreover, the fact that the commitments are already contained in the
CRS allows us to exclude the usage of trivial witnesses, i.e., 1G1

or 1G2
.

2.2 Smooth Projective Hash Functions

Smooth projective hash functions (SPHF) [CS02] are families of pairs of func-
tions (Hash,ProjHash) defined on a language L. They are indexed by a pair of
associated keys (hk, hp), where the hashing key hk may be viewed as the private
key and the projection key hp as the public key. On a word W ∈ L, both func-
tions need to yield the same result, i.e., Hash(hk, L,W ) = ProjHash(hp, L,W,w),
where the latter evaluation additionally requires a witness w that W ∈ L. Thus,
they can be seen as a tool for implicit designated-verifier proofs of member-
ship [ACP09]. Formally SPHFs are defined as follows (cf. [BBC+13b]).

Definition 2. A SPHF for a language L is a tuple of PPT algorithms (Setup,Ha-
shKG,ProjKG,Hash,ProjHash), which are defined as follows:

Setup(1κ) : Takes a security parameter κ and generates the global parameters
pp (we assume that all algorithms have access to pp).

HashKG(L) : Takes a language L and outputs a hashing key hk for L.
ProjKG(hk, L,W ) : Takes a hashing key hk, a language L, and a word W and

outputs a projection key hp, possibly depending on W .
Hash(hk, L,W ) : Takes a hashing key hk, a language L, and a word W and

outputs a hash H ′.
ProjHash(hp, L,W,w) : Takes a projection key hp, a language L, a word W , and

a witness w for W ∈ L and outputs a hash H.

The security properties as well as the concrete ElGamal-based instantiation
from [GL03] used in this paper are provided in Appendix C.

2.3 Sign-and-Encrypt-and-Prove Paradigm

Group signature schemes following the sign-and-encrypt-and-prove (SEP) para-
digm are popular and there are various efficient constructions (in the ROM)
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following this paradigm. Such a scheme consists of the following three building
blocks: (1) A secure signature scheme DS = (KeyGens,Sign,Vrfy), (2) an at least
IND-CPA secure public key encryption scheme AE = (KeyGene,Enc,Dec) and
(3) a non-interactive zero-knowledge proof of knowledge (NIZKPK) system, e.g.,
non-interactive versions of Σ-protocols obtained via the Fiat-Shamir transform
in the ROM (denoted as signatures of knowledge (SoK) subsequently).

The group public key gpk consists of the public encryption key pke, and the
signature verification key pks. The master opening key mok is the decryption
key ske, and the master issuing key mik is the signing key sks. During the joining
procedure a user i sends f(xi) to the issuer, where f(·) is a one-way function
applied to a secret xi. The issuer returns a signature cert ← Sign(sks, f(xi))
which represents the user’s certificate.

A group signature σ = (T, π) for a message M consists of a ciphertext T ←
Enc(pke, cert) and the following SoK π:

π ← SoK{(xi, cert) : cert = Sign(sks, f(xi)) ∧ T = Enc(pke, cert)}(M).

We note that there are slight deviations in instantiations of this paradigm
(cf. [NFHF09, SSU14]), e.g., sometimes cert is computed for xi instead of f(xi)
(which, however, does not yield constructions providing non-frameability), or T
may represent an encryption of f(xi) or g(xi) for some one-way function g(·).
We, however, stress that for our approach in this paper it does not matter how T
is exactly constructed (beyond being the encryption of a per-user unique value).

2.4 All-or-Nothing Public Key Encryption With Equality Tests

Following the work of Tang [Tan12a,Tan12b], Slamanig et al. [SSU14] modified
the concept of all-or-nothing public key encryption with equality tests (AoN-
PKeet∗). The idea of AoN-PKeet [Tan12a,Tan12b] is to allow specific entities
in possession of a trapdoor to perform equality tests on ciphertexts without learn-
ing the underlying plaintexts. Slamanig et al. additionally require this primitive
to be compatible with efficient zero-knowledge proofs regarding the plaintexts,
to ensure compatibility with GSSs following the SEP paradigm.

An AoN-PKeet∗ scheme (KeyGen, Enc, Dec, Aut, Com) is a conventional (at
least IND-CPA secure) public key encryption scheme (compatible with efficient
zero-knowledge proofs) augmented by two additional algorithms Aut and Com
(cf. [SSU14] for a formal treatment).

Aut(ske) : Takes the private decryption key ske of the public key encryption
scheme and returns a trapdoor tk that allows for equality tests.

Com(T, T ′, tk) : Takes two ciphertexts (T , T ′) and a trapdoor tk and returns 1 if
both ciphertexts encrypt the same (unknown) message and 0 otherwise.

Definition 3 ([SSU14]). An AoN-PKeet∗ scheme is called secure if it is
sound, provides OW-CPA security against Type-I adversaries (trapdoor holders)
and if the underlying encryption scheme provides IND-CPA/IND-CCA security
against Type-II adversaries (outsiders).
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Construction from ElGamal. In a bilinear group setting where the (S)XDH
assumption is assumed to hold, one can rely on ElGamal encryption in G1.
Let the private key be a random element ξ←R Zp and the corresponding public
key be h ← gξ ∈ G1, then the encryption of a message m is computed as
T = (T1, T2) = (gα,mhα) for a randomly chosen element α←R Zp. The trapdoor
generation and comparison algorithms are as follows:

Aut(ξ) : Return the trapdoor tk← (r̂, t̂ = r̂ξ) ∈ G2
2 for a random r̂←R G2.

Com(T, T ′, tk) : Given two ciphertexts T = (T1, T2) = (gα,mhα) and T ′ =
(T ′1, T

′
2) = (gα

′
,m′hα

′
) and a trapdoor tk = (r̂, t̂ = r̂ξ), return 1 if e(T2, r̂) ·

e(T1, t̂)
−1 = e(T ′2, r̂) · e(T ′1, t̂)−1 holds and 0 otherwise.

Lemma 1 ([SSU14]). Under the co-CDH assumption AoN-PKeet∗ based on
ElGamal in G1 in an (S)XDH setting is secure.

3 Non-Interactive Plaintext (In-)Equality Proofs

We are interested in plaintext equality and inequality proofs where the prover
neither knows the randomness used for encryption, nor the decryption key and
consequently also does not know the plaintexts. By employing the idea of AoN-
PKeet∗ [SSU14], the prover can use a trapdoor to determine whether two ci-
phertexts encrypt the same unknown plaintext, while not being able to decrypt.
This, in turn, allows the prover to select which type of proof to conduct. More-
over, for AoN-PKeet∗ schemes in the pairing setting, we can use the pairing
product equation that is used by the Com algorithm and a suitable proof frame-
work to prove (1) knowledge of a trapdoor that is consistent with the respective
public key and (2) the satisfiability of the pairing product equation correspond-
ing to Com when used with the non-revealed trapdoor on two ciphertexts in
question. As we will see later, this allows us to prove plaintext equality in a
straightforward way, while plaintext inequality requires a slightly more sophis-
ticated approach.

3.1 A Generic Construction

Let PKEQ = (KeyGen,Enc,Dec,Aut,Com) be a secure AoN-PKeet∗ scheme.
Building upon PKEQ, we define a generic non-interactive proof system Π that—
for two ciphertexts T and T ′ under some public key pk—allows to prove knowl-
edge of a trapdoor tk that either attests membership of (T, T ′, pk) in a language
LR∈ or in a language LR/∈ . The corresponding NP-relations are defined as follows:

((T, T ′, pk), tk) ∈ R∈ ⇐⇒ Com(T, T ′, tk) = 1 ∧ tk ≡ pk,
((T, T ′, pk), tk) ∈ R/∈ ⇐⇒ Com(T, T ′, tk) = 0 ∧ tk ≡ pk,

where tk ≡ pk denotes that tk corresponds to pk and we omit BG for simplicity.
To obtain a non-interactive proof system Π with the desired expressiveness,
we compose two non-interactive proof systems, namely Π∈ and Π/∈. Here, Π∈
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covers statements in LR∈ , whereas Π/∈ covers statements in LR/∈ . It is easy to
see that—by the soundness of PKEQ—each tuple ((T, T ′, pk), tk) is either in R∈
or in R/∈. Membership can be efficiently checked using the Com algorithm. The
non-interactive proof system Π is presented in Scheme 1, where we assume that
one can efficiently decide for which language a given proof π has been computed.1

BGGen(1κ) : Takes a security parameter κ as input, runs BG← Π∈,/∈.BGGen(1κ) and
returns BG.a

CRSGen(BG) : Takes a bilinear group description BG as input, runs crs∈ ←
Π∈.CRSGen(BG), and crs/∈ ← Π/∈.CRSGen(BG), and outputs a common reference
string crs← (crs∈, crs/∈).

Proof(BG, crs, (T, T ′, pk), tk) : Takes a bilinear group description BG, a common ref-
erence string crs, a statement (T, T ′, pk), and a witness tk. If ((T, T ′, pk), tk) ∈
R∈, return π∈ ← Π∈.Proof(BG, crs∈, (T, T

′, pk), tk). Otherwise, return π/∈ ←
Π/∈.Proof(BG, crs/∈, (T, T

′, pk), tk).
Verify(BG, crs, (T, T ′, pk), π) : Takes a bilinear group description BG, a common ref-

erence string crs, a statement (T, T ′, pk) and a proof π. If π is for language
LR∈ return Π∈.Verify(BG, crs∈, (T, T

′, pk), π) and if π is for language LR/∈ return
Π/∈.Verify(BG, crs/∈, (T, T

′, pk), π).

a With Π∈,/∈ we denote that both proof systems are with respect to the same bilinear
group description.

Scheme 1: NIPEI Proof System

We call a non-interactive plaintext equality and inequality (NIPEI) proof system
secure if it is perfectly complete, perfectly sound, and at least computationally
zero-knowledge. The subsequent lemma trivially follows from the fact that LR∈
and LR 6∈ are disjoint.

Lemma 2. If Π∈ and Π/∈ are secure NIZK proof systems, then the resulting
NIPEI proof system Π is also secure. Thereby, for every security property p∈ of
Π∈ and corresponding security property p/∈ of Π/∈, Π inherits p∈ if p∈ is implied
by p/∈ and p/∈ otherwise. That is, Π inherits the weaker security notion of both.

3.2 Instantiation with PKEQ From ElGamal Encryption

We will now present a concrete instantiation of a NIPEI proof system in the
SXDH setting where the PKEQ scheme is based on ElGamal encryption in
G1. Recall that the public key is pk = gξ ∈ G1, the trapdoor is tk = (r̂, t̂ =
r̂ξ) ∈ G2

2 and for two ciphertexts T and T ′, Com(T, T ′, tk) checks whether
e(T2, r̂) · e(T1, t̂)−1 = e(T ′2, r̂) · e(T ′1, t̂)−1 holds. If so, the ciphertexts encrypt
the same plaintexts and different plaintexts otherwise. Subsequently, we present
the relations R∈ and R/∈ for this PKEQ scheme. For membership in R∈, the

1 As LR∈ and LR/∈ are disjoint, one can otherwise just run Verify for both languages.
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following PPEs need to be satisfied:

(((T1, T2), (T ′1, T
′
2)), (r̂, t̂)) ∈ R∈ ⇐⇒ e(gξ, r̂) · e(g−1, t̂) = 1GT ∧

r̂ 6= 1G2
∧ t̂ 6= 1G2

∧ e(T2 · T ′−12 , r̂) · e(T−11 · T ′1, t̂) = 1GT . (1)

By the soundness of the underlying PKEQ scheme, the PPEs above deliver the
desired soundness properties for membership in R∈. For membership in R/∈,
we have to exchange the last literal in the conjunction of the PPEs above by
e(T2 · T ′−12 , r̂) · e(T−11 · T ′1, t̂) 6= 1GT . It is important to note that an inequality
(as in the second part of the conjunction) cannot be proven using GS.

Instantiation of Π∈. We use the GS-based commit-and-prove scheme from
[EG14]. Thereby, the advantage is that it is possible to reach composable zero-
knowledge even when reusing commitments in proofs for different statements.
Consequently, we can include commitments to r̂ and t̂ in the CRS and we can
reuse these commitments to prove the satisfiability of the following PPE

2∏
i=1

e(Ai, Ŷi) = e(T2 · T ′−12 , r̂) · e(T−11 · T ′1, t̂) = 1GT ,

where the prover is given access to the openings of the commitments and the
underlined values are not revealed to the verifier. The fact that the commitments
are already contained in the CRS forces the prover to use commitments to the
actual values which are consistent with the public key (instead of plugging in r̂ =
1G2

, t̂ = 1G2
as the trivial solution).2 The corresponding proof is very simple and

can be communicated with two group elements in G1.3 Since our instantiation
is a straightforward application of the GS-based commit-and-prove scheme, we
obtain the following lemma:

Lemma 3. Π∈ provides perfect completeness, perfect soundness and—because
of the form of the PPE—composable zero-knowledge.4

Instantiation of Π/∈. To construct a proof for plaintext inequality statements,
we build upon a recent technique by Blazy et al. [BCV15]. They proposed a
generic way to (non-interactively) prove non-membership claims with respect
to a language in zero-knowledge and provide multiple instantiations of their
framework based on combinations of SPHFs and GS proofs. Informally, their

2 For the simulation we may still use r̂ = 1G2 , t̂ = 1G2 .
3 This is due to the fact that—for equations of this type—one can omit the π part of

a GS proof π = (π,θ) and only needs to send θ. In addition, due to the nature of
the used projection map, the first components of the G2

1 elements in θ ∈ G2
1 × G2

1

are 1G1 , meaning that the proof only consists of two elements in G1.
4 We note that, due to using the commit-and-prove approach from [EG14], we also use

their composable zero-knowledge notion for commit-and-prove schemes. This notion
can be seen as a generalization of standard composable zero-knowledge.
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generic technique for proving non-membership works as follows. They use a
non-interactive proof system Π1 that allows to prove possession of a witness
demonstrating the membership of some statement in some language, where the
respective proof fails. Then, they use a non-interactive proof system Π2 that al-
lows to prove that Π1.Proof has been computed honestly. This way, it is possible
to express non-membership statements by producing a proof such that Π1.Verify
returns 0 and proving that the proof itself was honestly computed (since other-
wise such a faulty proof would be trivially computable).

We will build our instantiation upon a SPHF for Π1 (where we can use the
SPHF framework from [BBC+13a], which allows to prove the required state-
ments) and GS proofs for Π2. However, in contrast to how this technique is
used in [BCV15], in our setting the verifier does not know the randomness of
the commitments. This imposes an additional technicality to be discussed be-
low. In particular, we additionally compute the hash value H using ProjHash on
the prover side and prove that H was honestly computed using an additional
non-interactive zero-knowledge proof system Π3 (which we instantiate with GS
proofs). In Scheme 2, we present our non-interactive proof system for mem-
bership in a language LR/∈ that contains all tuples (T, T ′, pk,Ctk), where the
trapdoor committed to in Ctk allows to demonstrate plaintext inequality. For
simplicity, crs is for Π1 and Π3.

P : LR 6∈ , (T, T
′, pk,Ctk) ∈ LR 6∈ ,Rtk, crs V : LR 6∈ , (T, T

′, pk,Ctk), crs

hk ← HashKG(LR)
hp← ProjKG(hk, LR, (T, T

′, pk,Ctk))
H ′ ← Hash(hk, LR, (T, T

′, pk,Ctk))
φ← Π2.Proof((H

′ ∧ hp), hk)
H ← ProjHash(hp, LR, (T, T

′, pk,Ctk),Rtk)

ψ ← Π3.Proof((hp,H,Ctk), (Rtk))
hp,φ,ψ,H,H′−−−−−−−−→ Π2.Verify(φ) ∧

Π3.Verify(ψ)
?
= 1 ∧ H

?

6= H ′

Scheme 2: NIPEI Proof System. P . . .Prover, V . . .Verifier.

A nice thing to note (which will allow us to improve the efficiency of Π/∈) is
that we do not need to simulate the proof φ. We will only require the proof to
completely hide hk, i.e., to be witness indistinguishable.

Likewise to Π∈, we can include the commitments Ctk to tk in the CRS and
use these commitments in the SPHF. Accordingly, the corresponding PPE sim-
plifies to e(T2 · T ′−12 , r̂) · e(T−11 · T ′1, t̂) 6= 1GT . We additionally include commit-
ments CR to the randomness Rtk used to compute Ctk in the CRS. Then we can
use these commitments together with the GS-based commit-and-prove scheme
from [EG14] to prove the honest computation of the projective hash value more
efficiently. Likewise to the other commitments in the CRS, this ensures that the
prover uses the correct values (while also ensuring the simulatability).
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Since the instantiation of Π1, Π2, and Π3 with the required properties is
quite involved, we provide a detailed description in Appendix C and Appendix D,
respectively. Finally, for Scheme 2 we can show the following:

Theorem 1. If Π1 is correct and the verifier cannot distinguish a failing proof
(i.e., H) from random, Π2 is complete, sound and witness indistinguishable, Π3

is complete, sound and zero-knowledge, then Π/∈ is also complete, sound and
zero-knowledge.

We prove Theorem 1 in Appendix D.3. By combining Lemma 2, Lemma 3, and
Theorem 1 we straightforwardly derive the following corollary for our instantia-
tion of the proof system Π = (Π∈, Π/∈).

Corollary 1. The NIPEI proof system Π obtained by combining the above in-
stantiations of Π∈ and Π/∈ is secure, i.e., complete, sound, and zero-knowledge.

Instantiations with Other Encryption Schemes. For simplicity, we have
presented an instantiation in the SXDH setting using ElGamal, but it is straight-
forward to adapt to Cramer-Shoup [CS98] or twin-ElGamal [DP06]. Further-
more, it is easy to adapt it to the DLIN setting and the corresponding linear
encryption schemes.

4 GSSs with Verifiable Controllable Linkability

Subsequently, we propose a model for group signatures that considers verifiable
controllable linkability and builds upon the model of Hwang et al. [HLhC+11,
HLC+13, HCCN15] who formalized controllable linkability. Moreover, we con-
sider the extension to the BSZ [BSZ05] model of Sakai et al. [SSE+12], i.e.,
opening soundness. The model involves three authorities: an issuing authority
possessing the master issuing key (mik), an opening authority possessing the
master opening key (mok), and a linking authority possessing the master linking
key (mlk).

4.1 Model for GSSs with Verifiable Controllable Linkability

We now define GSSs with verifiable controllable linkability (VCL-GS).

Definition 4. A VCL-GS is a tuple of efficient algorithms GS = (GkGen, UkGen,
Join, Issue, GSig, GVf, Open, Judge, Link, JudgeLink), which are defined as fol-
lows.

GkGen(1κ) : On input a security parameter κ, this algorithm generates and out-
puts a tuple (gpk, mok, mik, mlk), representing the group public key, the
master opening key, the master issuing key, and the master linking key.

UkGen(1κ) : On input a security parameter κ, this algorithm generates a user
key pair (uski, upki).

Join(uski, upki) : On input the user’s key pair (uski, upki), this algorithm inter-
acts with Issue and outputs the group signing key gski of user i.

12



Issue(gpk,mik, reg) : On input of the group public key gpk, and the master is-
suing key mik and the registration table reg, this algorithm interacts with
Join to add user i to the group.

GSig(gpk,M, gski) : On input of the group public key gpk, a message M , and a
user’s secret key gski, this algorithm outputs a group signature σ.

GVf(gpk,M, σ) : On input of the group public key gpk, a message M , and a
signature σ, this algorithm verifies whether σ is valid with respect to M and
gpk. If so, it outputs 1 and 0 otherwise.

Open(gpk, reg,M, σ,mok) : On input of the group public key gpk, the registra-
tion table reg, a message M , a valid signature σ, and the master opening key
mok, this algorithm returns the signer i together with a publicly verifiable
proof τ attesting the validity of the claim. If no group member produced σ,
⊥ is returned.

Judge(gpk,M, σ, i, upki, τ) : On input of the group public key gpk, a message
M , a valid signature σ, the claimed signer i, the public key upki as well as a
proof τ , this algorithm returns 1 if τ is a valid proof that i produced σ and
0 otherwise.

Link(gpk,M, σ,M ′, σ′,mlk) : On input of the group public key gpk, a message M ,
a corresponding valid signature σ, a message M ′, a corresponding valid sig-
nature σ′ and the master linking key mlk, this algorithm determines whether
σ and σ′ have been produced by the same or different signers and returns the
linking decision b ∈ {1, 0} as well as a publicly verifiable proof ρ attesting
the validity of this decision.

JudgeLink(gpk,M, σ,M ′, σ′, b, ρ) : On input of the group public key gpk, a mes-
sage M , a corresponding valid signature σ, a message M ′, a corresponding
valid signature σ′, a linking decision b as well as the corresponding linking
proof ρ, this algorithm returns 1 if ρ is a valid proof for b with respect to σ
and σ′ and 0 otherwise.

Now we present the security properties for group signature schemes with ver-
ifiable controllable linkability. They are adopted from the model of Hwang et
al. [HLhC+11, HLC+13, HCCN15] for GSSs with controllable linkability, which
builds upon the BSZ [BSZ05] model.5 In addition to the properties correctness,
anonymity, non-frameability, and traceability defined in the BSZ model, Hwang
et al. [HLhC+11, HLC+13, HCCN15] introduced properties to cover control-
lable linkability, namely LO-linkability (link-only linkability), JP-unforgeability
(judge-proof unforgeability), and E-linkability (enforced linkability). Addition-
ally, we integrate the proposal of Sakai et al. [SSE+12] who introduced the
additional property of (weak) opening soundness as an optional property.6 We
briefly sketch them below and present formal definitions in Appendix E.

– Anonymity: Signers remain anonymous for all entities except for the open-
ing authority.

5 Actually, it uses a weaker anonymity notion similar to CPA-full anonymity [BBS04],
where the challenge oracle can only be called once.

6 We emphasize that this property is optional as there are no known GSSs with con-
trollable linkability that have been shown to provide this property.
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– Traceability: All valid signatures open correctly and allow to compute a
valid opening proof.

– Non-Frameability: No entity is able to produce a valid opening proof that
falsely accuses an honest user as the signer.

– JP-Unforgeability: The linking key is not useful to generate valid opening
proofs.

– LO-Linkability: The linking key is only useful to link signatures, but not
to open signatures.

– E-Linkability: Colluding users, linkers, and openers are not able to gener-
ate two message-signature pairs yielding contradicting opening and linking
decisions.

– Opening Soundness: Colluding issuers, users, linkers, and openers are
not able to produce two different (contradicting) opening proofs, even when
allowed to corrupt users and/or the opener.7

In addition to the above, in the vein of Sakai et al., we introduce the additional
notion of linking soundness. We only consider a strong variant, where the adver-
sary has access to all keys. Informally, linking soundness targets contradicting
linking proofs, where the signatures as well as the proofs may be maliciously gen-
erated, yet accepted by GVf and JudgeLink, respectively. In contrast, E-linkability
targets contradicting results of Open and Link for maliciously generated signa-
tures, where Open, Judge, and Link are honestly computed. Subsequently, we
present a definition of linking soundness.

Definition 5 (Linking Soundness). A group signature scheme GS with ver-
ifiable controllable linkability is said to provide linking soundness if for any ad-
versary A and any κ ∈ N, Pr[ExplsGS,A(κ) = 1] ≤ ε(κ).

The experiment ExplsGS,A is formally defined in Figure 1 of Appendix E.

4.2 Verifiable Controllable Linkability

Recall that in group signatures with controllable linkability the LA runs the
Com algorithm of a PKEQ scheme to decide whether two ciphertexts contain
the same unknown plaintext. Publishing the required trapdoor key tk would
allow any party to link any two group signatures, which is clearly not desired.
However, by means of our proposed NIPEI proof system we are able to allow
the LA to prove whether or not any two signatures stem from the same signer
without being able to identify the signer(s) and still only requiring tk.

Subsequently, we show how our generic construction for NIPEI proofs can be
used to realize verifiable controllable linkability for group signatures following
the SEP paradigm. Thereby, we assume that the used PKEQ is defined for
bilinear groups, such that it is possible to set up the PKEQ and the proof
systems in a compatible way. To this end, we assume that the group public
key gpk contains a bilinear group description BG. Then, the modified group key
generation algorithm GkGen′ looks as follows:

7 Note that Sakai et al. [SSE+12] also introduced a weaker version of this property
denoted as weak opening soundness.

14



GkGen′(1κ) : Run (gpk,mok,mik,mlk) ← GkGen(1κ) and obtain BG from gpk.
Then, run crs ← Π.CRSGen(BG), set gpk′ ← (gpk, crs) and return (gpk′,
mok, mik, mlk).

Furthermore, the algorithms Link and LinkJudge operate as follows:

Link(gpk,M, σ,M ′, σ′,mlk) : Extract the ciphertexts T and T ′ from σ and σ′,
respectively. Obtain BG, pke from gpk and tk from mlk. Compute ρ ←
Π.Prove(BG, crs, (T, T ′, pke), tk) and return the linking decision b and the
corresponding proof ρ.

LinkJudge(gpk,M, σ,M ′, σ′, b, ρ) : Extract the ciphertexts T and T ′ from σ and σ′.
Obtain BG, crs and pke from gpk. If b = 1 and ρ is a proof for language LR/∈
or vice versa, return ⊥. Otherwise, return Π.Verify(BG, crs, (T, T ′, pke), ρ).

Security Analysis. We investigate to which extent the extension of a group sig-
nature scheme with controllable linkability (i.e., the constructions in [HLhC+11,
HLC+13,HCCN15] and the generic conversion from [SSU14]) to one with verifi-
able controllable linkability requires to re-evaluate the original security proper-
ties. Note that the proof of the subsequent theorem is quite independent of the
concrete definition of anonymity and works for group signature schemes provid-
ing the weaker anonymity notion by Hwang et al., but also with stronger notions
such as CPA-full or CCA2-full anonymity (cf. the discussion in Appendix E).

Theorem 2. Let GS = (GkGen,UkGen, Join, Issue,GSig,GVf,Open, Judge, Link)
be a secure group signature scheme with controllable linkability with or with-
out (weak) opening soundness, let Π be a secure NIPEI proof system, and let
PKEQ = (KeyGen,Enc,Dec,Aut,Com) be the used AoN-PKeet∗ scheme, where
PKEQ is compatible with Π. Then, GS ′ = (GkGen,UkGen, Join, Issue,GSig,GVf,
Open, Judge, Link, JudgeLink) is a secure group signature scheme with verifiable
controllable linkability with or without (weak) opening soundness.

We prove Theorem 2 in Appendix E.1.

Instantiating Π/∈ for Group Signatures with Σ-Proofs. Many existing
GSSs following the SEP paradigm are instantiated using the RO heuristic. Now,
if one already relies on the ROM for the GSS, it might be an alternative to
instantiate parts of Π/∈ (i.e., Π2 and Π3) using a non-interactive Σ protocol
obtained via the Fiat-Shamir transform, which is specifically crafted for the ap-
plication with verifiable controllable linkability and the used SPHF instantiation.
In Appendix D.4, we illustrate such an instantiation of Π/∈.
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A Computational Hardness Assumptions

Decisional Diffie-Hellman Assumption (DDH). Let G = 〈g〉 be a group
of prime order p, such that log2 p = κ. Then, for all PPT adversaries A there
exists a negligible function ε(·) such that:

Pr

[
b←R {0, 1}, r, s, t←R Z∗p,
b∗ ← A(g, gr, gs, gb·(rs)+(1−b)·t)

: b = b∗)

]
≤ 1

2
+ ε(κ).
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Decision Linear Assumption (DLIN). Let G = 〈u〉 = 〈v〉 = 〈h〉 be a group
of prime order p, such that log2 p = κ. Then, for all PPT adversaries A there
exists a negligible function ε(·) such that:

Pr

[
b←R {0, 1}, r, s, t←R Zp,
b∗ ← A(u, v, h, ur, vs, hb·(r+s)+(1−b)·t)

: b = b∗
]
≤ 1

2
+ ε(κ).

Computational co-Diffie-Hellman Assumption (co-CDH). Let G1 = 〈g〉,
and G2 = 〈ĝ〉 be two distinct groups of prime order p, such that log2 p = κ.
Then, for all PPT adversaries A there exists a negligible function ε(·) such
that:

Pr
[
r←R Zp, ĥ← A(g, gr, ĝ) : ĥ = ĝr

]
≤ ε(κ).

External Diffie-Hellman Assumption (XDH). Let G1, G2, and GT be three
cyclic groups of prime order p and let e : G1×G2 → GT be a pairing. Then,
the XDH assumption states that the DDH assumption holds in G1.

Symmetric External Diffie-Hellman Assumption (SXDH). Let G1, G2,
and GT be three cyclic groups of prime order p and e : G1 × G2 → GT a
pairing. Then, the SXDH assumption states that the DDH assumption holds
in G1 and G2.

B Security of Non-Interactive Proof Systems

In the following, we state the security properties required for our construction
(adapted from [GS08]).

Definition 6 (Perfect Completeness). A non-interactive proof system is per-
fectly complete, if for all adversaries A it holds that

Pr


BG← BGGen(1κ),
crs← CRSGen(BG),
(x,w)← A(BG, crs),
π ← Proof(BG, crs, x, w)

:
Verify(BG, crs, x, π) = 1

∧ (BG, x, w) ∈ R

 = 1.

Definition 7 (Perfect Soundness). A non-interactive proof system is per-
fectly sound, if for all adversaries A it holds that

Pr

BG← BGGen(1κ),
crs← CRSGen(BG),
(x, π)← A(BG, crs)

:
Verify(BG, crs, x, π) = 1

∧ x /∈ LR

 = 0.

Definition 8 (Witness Indistinguishability). A non-interactive proof sys-
tem is composably witness indistinguishable, if there exists a simulator S such
that for all PPT adversaries A there exists a negligible function ε(·) such that:∣∣∣∣∣Pr

[
BG← BGGen(1κ), crs← CRSGen(BG) : A(BG, crs) = 1

]
−

Pr
[
BG← BGGen(1κ), crs← S(BG) : A(BG, crs) = 1

] ∣∣∣∣∣ ≤ ε(κ),
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and

Pr

 b←R {0, 1},BG← BGGen(1κ),
crs← S(BG), (x,w0, w1, st)← A(BG, crs),
π ← Proof(BG, crs, x, wb), b

∗ ← A(π, st)
:

b = b∗ ∧
(BG, x, w0) ∈ R ∧

(BG, x, w1) ∈ R

 =
1

2
.

Definition 9 (Zero-Knowledge). A non-interactive proof system is compos-
ably zero-knowledge, if there exist two simulators S1 and S2 such that for all
PPT adversaries A there exists a negligible function ε(·) such that:∣∣∣∣∣Pr

[
BG← BGGen(1κ), crs← CRSGen(BG) : A(BG, crs) = 1

]
−

Pr
[
BG← BGGen(1κ), (crs,T)← S1(BG) : A(BG, crs) = 1

] ∣∣∣∣∣ ≤ ε(κ),

and

Pr

BG← BGGen(1κ), (crs,T)← S1(BG),
(x,w, st)← A(BG, crs,T),
π ← Proof(BG, crs, x, w)

: A(π, st) = 1

 =

Pr

BG← BGGen(1κ), (crs,T)← S1(BG),
(x,w, st)← A(BG, crs,T),
π ← S2(BG, crs, x,T)

: A(π, st) = 1

 .
Here, T denotes a simulation trapdoor.

C Security and Instantiation of SPHFs

Security Properties. The correctness requires that Hash(hk, L,W ) = Proj-
Hash(hp, L,W,w) for all W ∈ L and their corresponding witnesses w. Smooth-
ness requires that if W 6∈ L, the following distributions are statistically indistin-
guishable:

{(L, pp,W, hp,H ′) | param← Setup(1κ), hk ← HashKG(L),

hp← ProjKG(hk, L,W ), H ′ ← Hash(hk, L,W )} ≈
{(L, pp,W, hp,H ′) | param← Setup(1κ), hk ← HashKG(L),

hp← ProjKG(hk, L,W ), H ′←R Dom(Hash)}

The pseudo-randomness requires that if W ∈ L, then without a witness of mem-
bership the distributions considered in smoothness remain computationally in-
distinguishable. We call a SPHF secure if it satisfies all the above properties.

Languages that can be used with SPHFs have recently been extended to every
kind of pairing product equations over graded rings [BBC+13a]. These construc-
tions build upon SPHFs on linear Cramer-Shoup ciphertexts [GL03,BBC+13a],
but can easily be adapted to the SXDH setting.

Instantiation of the SPHF. For efficiency reasons, we use ElGamal com-
mitments together with the SPHF on ElGamal ciphertexts as proposed by Gen-
naro and Lindell [GL03]. In Scheme 3, we recall the aforementioned SPHF for
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the group G2 in an SXDH setting, where the language L contains all triples
(pk, CM ,M) of ElGamal public keys pk, ciphertexts CM with respect to pk and
corresponding messages M , where membership in this language is witnessed
by the used randomness r. Applying the techniques presented in [BBC+13b,

Setup(1κ) : On input of κ, this algorithm generates a bilinear group description BG←
(p,G1,G2,GT , e, g, ĝ) such that G1,G2 and GT are groups of common prime order
p with log2 p = κ, e is a pairing, G1 = 〈g〉 and G2 = 〈ĝ〉. It returns pp← BG.

HashKG(L) : On input of pp and L, this algorithm returns hk ← (η, θ)←R Z2
p.

ProjKG(hk, L,W ) : On input of pp, hk, L and some word W = (pk, CM ,M), where
CM = (ĝr,M · pkr) this algorithm computes and returns hp← ĝηpkθ.

Hash(hk, L,W ) : On input of pp, hk, L and W = (pk, CM ,M) ∈ G2 ×G2
2 ×G2, where

CM = (û, ê), this algorithm computes and returns H ′ ← ûη(ê/M)θ.
ProjHash(hp, L,W,w) : On input of pp, hp, L, W , w = r, this algorithm computes and

returns H ← hpr.

Scheme 3: SPHF on ElGamal Ciphertexts [GL03]

BBC+13a] to the SPHF in Scheme 3, allows to prove satisfiability of pairing
product equations. In our setting, we have PPEs of the form

2∏
i=1

(Ai, Ŷi) = 1GT , (2)

where Ŷi are not revealed to the verifier and are thus encrypted using ElGamal
(further denoted as Ci = (ûi, êi) = (ĝri , Ŷi · pkri)). Let the setup be as follows:
θ←R Zp and for i ∈ {1, 2}, ηi←R Zp, hki = (ηi, θ) ∈ Z2

p as well as hpi = ĝηipkθ,
where hp = (hp1, hp2) is handed over to the prover. Then the SPHF is defined
as follows

H ′ =

2∏
i=1

e(Ai, û
ηi
i ê

θ
i ) =

2∏
i=1

(Ai, hp
ri
i ) = H.

Subsequently, we prove the following:

Lemma 4. The SPHF described above is a secure SPHF for a language defined
by Equation 2.

Subsequently, we show correctness, smoothness, and pseudo-randomness.

Proof (Correctness). Let r1 and r2 be the randomness used to compute the
encryptions of Ŷ1 and Ŷ2, respectively (which represents the witness). Then, the
projective hash value using the projection key hpi = ĝηipkθ for i ∈ {1, 2} is
computed as

H ←
2∏
i=1

(Ai, hp
ri
i ) =

2∏
i=1

e(Ai, (ĝ
ηipkθ)ri)
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Computing the hash value using the hashing key hki = (ηi, θ) ∈ Z2
p for i ∈ {1, 2}

yields:

H ′ ←
2∏
i=1

e(Ai, û
ηi
i ê

θ
i ) =

2∏
i=1

e(Ai, ĝ
ηiri · Ŷ θi · pk

riθ) =

2∏
i=1

e(Ai, (ĝ
ηipkθ)ri) · e(Ai, Ŷ θi )

(ii)
= H,

where for the last step (ii), we know that
∏2
i=1 e(Ai, Ŷi) = 1GT by definition. ut

While the PPE above is tailored to our specific setting, this approach also works
for arbitrary i ∈ N. Subsequently, we prove smoothness (for the general case) by
adapting the proof strategy from [BBC+13a,GL03]:

Proof (Smoothness). We can without loss of generality assume that one of the
n ElGamal commitments encrypts a value such that the overall PPE is not
fulfilled. In particular, this means that at least one commitment is of the form

(gri , Ŷi · pkr
′
i) ∈ G2

2, where ri 6= r′i. With hpi = ĝηipkθ, the hash value H ′ is
defined to be:

H ′ ←
n∏
i=1

e(Ai, ĥi), where ĥi = (ĝriηi(Ŷi · pkr
′
i)θ).

We can rewrite ĥi as ĥi = (ĝriηipkr
′
iθ) · Ŷ θi . Assuming that Ŷ θi cancels out when

plugging into the pairing product equation, it suffices to consider the following
discrete logarithms:

logĝ ĥi = riηi + r′ixpkθ, and logĝ hpi = ηi + xpkθ.

As we know that ri 6= r′i we have that these two values are linearly independent,
which shows that H ′ looks perfectly random. ut

Proof (Pseudo-Randomness). We know that smoothness holds. We prove pseudo-
randomness by showing that a distinguisher between the distributions considered
in smoothness and pseudo-randomness is a distinguisher for DDH. For simplicity
we assume that i = 1. We obtain a DDH instance (ĝr, ĝs, ĝt) ∈ G3

2 and compute
the ciphertext to Ŷ1 as (ĝr, Ŷ1 · ĝt), set pk ← ĝs, choose hk1 = (η, θ)←R Z2

p and

set hp1 ← ĝηpkθ. Consequently, if we have a valid DDH instance, we have a
distribution as in the pseudo-randomness game, whereas we have a distribution
as in the smoothness game if the DDH instance is random. ut

By a standard hybrid argument, this proof can be extended to arbitrary i ∈ N .

D Instantiation of Non-Interactive Proof Systems for Π/∈

For our instantiations of Π2 and Π3 we use the following observation to obtain
the zero-knowledge property for Π/∈: The value H ′ (computed using Hash) looks
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perfectly random to the verifier, whereas the value H (computed using ProjHash)
looks computationally random to the verifier. Furthermore, the values H and H ′

are not fixed prior to the proof, meaning that the prover can choose them at the
time when computing the proof to ensure simulatability.

Let us briefly recall the setup with i ∈ {1, 2}: hki = (ηi, θ) ∈R Z2
p, hpi =

ĝηipkθ ∈ G2, H
′ =

∏i
e(Ai, û

ηi
i ê

θ
i ) = e(A1, û

η1
1 ê

θ
1) · e(A2, û

η2
2 ê

θ
2) = e(A1, ĥ1) ·

e(A2, ĥ2) ∈ GT , Ci = (ûi, êi) = (ĝri , Ŷi · pkri) ∈ G2
2, where Ŷ1 = r̂ and Ŷ2 = t̂,

H =
∏i

e(Ai, hp
ri
i ).

Here, A1, A2, hp = (hp1, hp2),Ctk = (C1, C2) are available to the prover and
the verifier and the verifier also learns H ′ and H during the proof. The values
ri, hki and ĥ = (ĥ1, ĥ2) are only known to the prover.

D.1 Instantiation of Π2

To prove the consistency of H ′ and hp with respect to hk using the GS commit-
and-prove approach, we prove the validity of the following conjunction of PPEs,
where the underlined values are not revealed to the verifier:

e(g, hpi) = e(gηi , ĝ) · e(gθ, pk) ∧ e(g, ĥi) = e(gηi , ûi) · e(gθ, êi)

∧ H ′ =

i∏
e(Ai, ĥi).

As we only require witness indistinguishability for Π2, the GS framework allows
to straightforwardly prove equations of the form above. We require the commit-
ment to g for the first and the second literal to be included in the CRS to ensure
that the prover uses the correct values while ensuring enough freedom for the
simulator of our overall proof system Π/∈.

D.2 Instantiation of Π3

When proving the consistency of H and hp with respect to ri using the GS
commit-and-prove approach, one can observe that—as long as hk is unknown—
the values hpi constitute random values in G2 and the values hprii look random
under DDH in G2. Thus, one only has to prove the satisfiability of

e(gri , hpi) = e(g, hprii ), (3)

and the verifier can compute H ←
∏i

e(Ai, hp
ri
i ) on its own. The commitments

to g and gri are included in the CRS to ensure that the prover uses the correct
values while the simulator can use commitments to 1G1

.
Using standard Groth-Sahai techniques, this PPE admits efficient non-int-

eractive zero-knowledge proofs.
We note that although the Groth-Sahai framework allows us to prove a state-

ment like Equation (3) in a zero-knowledge way, we still need to argue that re-
vealing the hprii does not reveal too much information in the global scheme (as
we do subsequently in the proof of Theorem 1).
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D.3 Proof of Theorem 1

Proof. While completeness follows from inspection, we subsequently prove sound-
ness and zero-knowledge.

Soundness: We setup the CRSs of the GS proof systemsΠ2 andΠ3 so that they
provide perfect soundness. Under the CRS indistinguishability of GS proofs,
the prover will only be able to distinguish this setup from the perfect witness
indistinguishability/zero knowledge setup with negligible probability. Then
the perfect soundness of Π2 and Π3 guarantees the honest computation of
the hash values H and H ′, whereas the perfect correctness of the SPHF
guarantees that H 6= H ′ only holds if the proven statement is actually true.
Thus, the overall proof system provides perfect soundness as long as the CRS
indistinguishability holds. ut

Zero-knowledge: We setup the CRSs of the GS proof systems Π2 and Π3 so
that they provide perfect witness indistinguishability/zero knowledge. Under
the CRS indistinguishability of GS proofs, the prover will only be able to
distinguish this setup from the perfect soundness setup with negligible prob-
ability. Subsequently, we prove zero-knowledge using a sequence of games.

Game 0: The original zero-knowledge game.

Game 1: We pick hpi←R G2. Furthermore, we use random values ĥi←R G2

inside ĥi, defining a random H ′. Finally, instead of the actual commitments
to g, gηi , and gθ we use commitments to 1G1

.

Transition Game 0 → Game 1: Since the witness indistinguishability of Π2

is perfect, the adversary will not be able to detect this game change (H ′

already looks perfectly random under the smoothness of the SPHF; H = H ′

will only occur with negligible probability).

Game 2: We simulate the GS proof ψ and, thereby, use commitments to
1G1

instead of the actual values g and gri .

Transition Game 1 → Game 2: Since the zero-knowledge property of Π3 is
perfect, the adversary will not be able to detect this game change.

Game 3: We pick hprii ←
R G2.

Transition Game 2 → Game 3: Besides hprii ←
R G2, the only components

depending on the values ri are contained in Ctk = (C1, C2) = ((ĝr1 , Ŷ1 ·
pkr1), (ĝr2 , Ŷ2 · pkr2)). To see that Game 2 and Game 3 are indistinguish-
able, assume that the simulator obtains a DDH instance (ĝ, ĝs1 , ĝt1 , ĝr1),
and—by the random self reducibility of DDH—generates a second instance
(ĝ, ĝs2 , ĝt2 , ĝr2). For i ∈ {1, 2}, it sets (ĝ, ĝri , hpi, hp

ri
i )← (ĝ, ĝsi , ĝti , ĝri) and

computes Ŷi · pkri by using the secret key sk corresponding to pk, i.e., as
Ŷi · (ĝri)sk. Then, if the DDH instance is valid we have a distribution as in
Game 2, whereas we have a distribution as in Game 3 if the DDH instance
is random. Again H = H ′ only occurs with negligible probability.

Game 4: We replace the commitments to tk, i.e., Ctk, in the CRS by com-
mitments to random values.

Transition Game 3 → Game 4: By the hiding property of the commitments,
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this game change will remain indistinguishable for the adversary (again,
H = H ′ only occurs with negligible probability).

The last game represents a game that is simulated without knowledge of the
trapdoor tk, whereas the first game represents the real game. Both games
are indistinguishable, which proves the zero-knowledge property. ut

D.4 Instantiation of Π2 and Π3 with Σ-Protocols

Let us recall where we require WI or NIZK proofs in Π/∈: Namely, a WI proof φ
to prove the consistency of the hash value, the projection key and the hash key as
well as a NIZK proof ψ to prove the consistency of the hash value, the projection
key and the commitments in the CRS. Furthermore, recall that the crs contains
two commitments C1 = (û1, ê1) = (ĝr1 , r̂ · pkr1), C2 = (û2, ê2) = (ĝr2 , t̂ · pkr2),
where the hashing/projection keys are chosen as hki = (ηi, θ) and hpi = ĝηipkθ,
i ∈ {1, 2}. Since we can as well instantiate φ as a NIZK proof, we combine the
predicates for φ and ψ straightforwardly using an AND composition and obtain
the following relation, where v̂i = hprii :

PoK
{

(η1, η2, θ, ρ1, ρ2) : H ′ =

2∏
i=1

e(Ai, û
ηi
i ê

θ
i ) ∧ hp1 = ĝη1pkθ ∧

hp2 = ĝη2pkθ ∧ v̂1 = hpρ11 ∧ v̂2 = hpρ22 ∧ û1 = ĝρ1 ∧ û2 = ĝρ2
}
,

and the verifier additionally checks whether
∏i

e(Ai, v̂i) 6= H ′. The proof above
can be instantiated by only revealing H ′, Ai,Ctk, hpi, hp

ri
i to the verifier.

E Security for VCL Group Signatures

In the following, CU, HU, GSet represent the set of corrupted users, hon-
est users, and message-signature pairs corresponding to queries to the chal-
lenge oracle, respectively. Furthermore, REG is the list of transcripts gener-
ated by the join process. The oracles SndToU, AddU, WReg, RReg, GSig, USK, and
CrptU represent a send to user oracle (by a corrupted issuer), an add user ora-
cle, a write registration table oracle, a read registration table oracle, a group
signing oracle, a user secret key oracle, and a corrupt user oracle. Further-
more, Chb represents the challenge oracle. We note that the model of Hwang et
al. [HLhC+11, HLC+13, HCCN15] does only consider a weaker version of CPA-
full-anonymity [BBS04], i.e., the adversary has no access to the Open oracle and
the challenge oracle can only be called once. Without those restrictions, one can
achieve the stronger notions of CPA-full and CCA2-full-anonymity (as defined
in the BSZ model [BSZ05]) for this model.
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Experiment Expanon-b
GS,A (κ):

– (gpk,mok,mik,mlk) ← GkGen(1κ), CU ← ∅, HU ← ∅,
GSet ← ∅;

– (i0, i1,M) ← ASndToU,Link,WReg,USK,CrptU(gpk,mik);
– σib

← Chb(i0, i1,M);

– b′ ← ASndToU,Link,WReg,USK,CrptU(gpk,mik, σib
),

where A queried neither Link(σib
,M, ·, ·) nor Link(·, ·,

σib
,M);

– return b′;

Experiment ExptraceGS,A(κ):

– (gpk,mok,mik,mlk) ← GkGen(1κ), CU ← ∅, HU ←
∅;

– (M,σ) ← ASndToI,AddU,RReg,USK,CrptU(gpk,mok,mlk);
– If GVf(gpk,M, σ) = 0 then return 0;
– (i, τ) ← Open(gpk,REG,M, σ,mok);
– If i = 0 or Judge(gpk,M, σ, i,upk[i], τ) = 0 then

return 1 else return 0;

Experiment Expnf
GS,A(κ):

– (gpk,mok,mik,mlk) ← GkGen(1κ), CU ← ∅, HU ← ∅;
– (M,σ, i) ← ASndToU,AddU,RReg,USK,CrptU(gpk,mik,mok,mlk);
– If GVf(gpk,M, σ) = 0 then return 0;
– If all of the following conditions hold, then return 1

and 0 otherwise
• i ∈ HU and usk[i] 6= ∅;
• (i, τ) ← Open(gpk,REG,M, σ,mok);
• Judge(gpk,M, σ, i,upk[i], τ) = 1;
• A did not query USK(i) or GSig(i,M).

Experiment Explo-linkGS,A (κ):

– (gpk,mok,mik,mlk) ← GkGen(1κ), CU ← ∅, HU ←
∅, GSet ← ∅;

– (i0, i1,M) ← ASndToU,AddU,GSig,Open,USK,CrptU(gpk,
mik,mlk);

– σib
← Chb(i0, i1,M);

– b′ ← ASndToU,AddU,GSig,Open,USK,CrptU(gpk,mik,M,
σib

);

– If all of the following conditions hold, then re-
turn 1 and 0 otherwise
• i0, i1 ∈ HU;
• GSig(i0, ·) and GSig(i1, ·) and Open(M,σ)

have not been queried;
• b′ = b

Experiment Exp
jp-uf
GS,A(κ):

– (gpk,mok,mik,mlk) ← GkGen(1κ), CU ← ∅, HU ← ∅,
GSet ← ∅;

– (i,M) ← ASndToU,AddU,WReg,GSig,Open,USK,CrptU(gpk,mik,mlk);
– σ ← GSig(gpk, i,M);

– τ ← ASndToU,WReg,GSig,Open,USK,CrptU(gpk,mik,mlk, i,M, σ);
– If all of the following conditions hold, then return 1

and 0 otherwise
• i ∈ HU and gsk[i] 6= ∅;
• Open(M,σ) has not been queried;
• Judge(gpk,M, σ, i,upk[i], τ) = 1

Experiment ExposGS,A(κ):

– (gpk,mok,mik,mlk) ← GkGen(1κ), CU ← ∅, HU ←
∅;

– (i0, τ0, i1, τ1,M, σ) ←
AWReg,CrptU(gpk,mik,mok,mlk);

– If GVf(gpk,M, σ) = 0 then return 0;
– If all of the following conditions hold, then re-

turn 1 and 0 otherwise
• i0 6= i1;
• Judge(gpk,M, σ, i0,upk[i0], τ0) = 1;
• Judge(gpk,M, σ, i1,upk[i1], τ1) = 1;

Experiment Expe-link
GS,A(κ):

– (gpk,mok,mik,mlk) ← GkGen(1κ), CU ← ∅, HU ← ∅, GSet ← ∅;
– (M0, σ0,M1, σ1) ← ASndToU,AddU,RReg,GSig,USK,CrptU(gpk,mok,mlk);
– If GVf(gpk,M0, σ0) = 0 or GVf(gpk,M1, σ1) = 0 then return 0;
– (i0, τi0

) ← Open(gpk,REG,M0, σ0,mok)

– (i1, τi1
) ← Open(gpk,REG,M1, σ1,mok)

– If Judge(gpk, i0,upk[i0],M0, σ0, τi0
) = 0 or Judge(gpk, i1,upk[i1],M1, σ1, τi1

) = 0 then return 0;

– (b, ρ) ← Link(gpk,M0, σ0,M1, σ1,mlk)
– If JudgeLink(gpk,M0, σ0,M1, σ1, b, ρ) = 0 then return 0;
– If i0 6= i1 and b = 1 (i.e., the two signatures link) then return 1;
– elif i0 = i1 and b = 0 (i.e., the two signatures do not link) then return 1;
– else return 0;

Experiment ExplsGS,A(κ):

– (gpk,mok,mik,mlk) ← GkGen(1κ), CU ← ∅, HU ← ∅;
– (s,M0, σ0,M1, σ1, b, ρ, b

′, ρ′) ← AWReg,CrptU(gpk,mik,mok,mlk);
– If GVf(gpk,M0, σ0) = 0 or GVf(gpk,M1, σ1) = 0 then return 0;
– If JudgeLink(gpk,M0, σ0,M1, σ1, b, ρ) = 0 then return 0;

– If JudgeLink(gpk,M0, σ0,M1, σ1, b
′, ρ′) = 0 then return 0;

– If b 6= b′, then return 1;
– else return 0;

Fig. 1. Experiments to define anonymity, traceability, non-frameability, link-only link-
ability, judge-proof unforgeability, enforced linkability (cf. Hwang et al. [HLhC+11,
HLC+13,HCCN15]; enforced linkability is adapted to fit VCL-GS), opening soundness
(cf. Sakai et al. [SSE+12]), and linking soundness.
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E.1 Proof of Theorem 2

Proof. In all security games except the anonymity experiment, the adversary
is in possession of the master linking key mlk. Thus, it is easy to see that the
existing security notions with exception of anonymity are not influenced by the
modifications. Now, what remains is to show that anonymity and that the new
notion of linking soundness holds.

Anonymity. We show that anonymity holds using a sequence of games, where
the event that the adversary wins Game i is denoted by Si:
Game 0: The original anonymity game.
Game 1: As the original game, but the proofs obtained from the linking

oracle are simulated8 without using the trapdoor key tk.
Transition: Game 0 → Game 1: By the zero-knowledge property of Π, the
adversary will only be able to distinguish Game 0 and Game 1 with negligible
probability, i.e., |Pr[S0]− Pr[S1]| ≤ εzk(κ).

It is easy to see that the advantage of the adversary in Game 1 is the same
as in the anonymity game without extensions. Observe that the signatures
obtained from Chb cannot be submitted to the Link oracle. This means that
the (in-)equality decisions obtained from the simulated linking proofs are
independent of the challenge bit b, while the simulation ensures that the
proofs do not contain information about the trapdoor key tk. Taking all
together, we obtain an upper bound of the advantage of an adversary in the
anonymity game with extensions, i.e., Pr[S0] ≤ Advanon(κ) + εzk(κ), where
Advanon denotes the advantage of an adversary in the plain anonymity game
without extensions. ut

Linking soundness. It is immediate that the output of an adversary against
the linking soundness game contradicts the perfect soundness of the under-
lying proof system. ut

8 Observe that the zero-knowledge property of Π implies the existence of a simulator.
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