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Abstract. We present a methodology to achieve low latency homomor-
phic operations on approximations to complex numbers, by encoding a
complex number as an evaluation of a polynomial at a root of unity. We
then use this encoding to evaluate a Discrete Fourier Transform (DFT)
on data which has been encrypted using a Somewhat Homomorphic En-
cryption (SHE) scheme, with up to three orders of magnitude improve-
ment in latency over previous methods. We are also able to deal with
much larger input sizes than previous methods. Due to the fact that
the entire DF'T algorithm is an algebraic operation over the underlying
ring of the SHE scheme (for a suitably chosen ring), our method for the
DFT utilizes exact arithmetic over the complex numbers, as opposed to
approximations.

1 Introduction

Since its introduction by Gentry in 2009 [8] most work on Fully (resp. Some-
what) Homomorphic Encryption (FHE/SHE) has focused on evaluating binary
or arithmetic circuits. However, for many applications one needs to evaluate
functions over more complex data types. In many areas of scientific processing
one requires operations on real or complex number, and many applications con-
sist of evaluation of functions of relatively low multiplicative depth. For example,
basic statistical calculations are often linear (such as means) or quadratic (such
as standard deviations).

This need to process real and complex arithmetic homomorphically has led
some authors to propose encoding methods for such numbers [4-6] in the context
of encryption schemes based on Ring-LWE. Such schemes are typified by the
BGYV scheme [3]. The BGV scheme and its extensions [7] are based on a ring

R =Z[X]/®u(X),

where @ (X) is some cyclotomic polynomial. The ring is considered with respect
to two moduli, the plaintext modulus p and the ciphertext modulus g. Writing
R, and R, for the ring reduced modulo p and g respectively, we have that R,
represents the space of all possible plaintexts and Rg is the ciphertext space.
The first methodology [5, 6] to perform homomorphic operations on real num-
bers (and hence complex numbers) used a fixed point representation based on
the polynomial expansion of the real number with respect to some “base”. This



polynomial is then embedded into the plaintext space, and homomorphic oper-
ations on the polynomials map into homomorphic operations on the underlying
fixed point number. During a homomorphic operation the degree of the rep-
resenting polynomial increases, as does the size of the coefficients. These two
increases imply lower bounds on the degree of the ring R and on the plaintext
modulus p. It should be noted that we therefore need to track both noise growth
(as in all SHE operations) as well as plaintext growth in such an encoding.
See [5] where this growth in coefficient sizes of the representing polynomials is
considered in depth. This method uses (in most cases) a single ciphertext to
represent a single real number, thus no ciphertext “packing”, i.e. amortization,
is generally supported. On the other hand, once a given approximation is used
for an input plaintext, future homomorphic operations are computed exactly;
i.e. floating point precision does not decrease.

A second methodology to perform operations on approximations to complex
numbers was presented in [4]. In this methodology a set of deg(R) approxima-
tions to complex numbers are encrypted via a single polynomial. In more detail,
for each element in the plaintext space a € IR, we consider the associated poly-
nomial a(X) and then associate this with the deg(R) complex numbers a(6;),
where 6; are the roots of the polynomial defining R. In other words, the asso-
ciated complex numbers are precisely the canonical embedding of the plaintext
polynomial. This methodology allows one to produce amortized homomorphic
operations via packing. A drawback is however that the associated plaintext
polynomial, for a given set of input complex numbers, can have relatively large
height.

In both [4] and [5] this ability to homomorphically evaluate on real and
complex numbers is demonstrated via a toy example of evaluating a simple
image processing pipeline consisting of a DFT, followed by the multiplication
of a secret Hadamard transform, followed by an inverse DFT. The results in [4]
is particularly interesting, especially when throughput is considered. However,
in many applications the main impediment to using homomorphic encryption
techniques is low latency; i.e. we are more interested in the time to wait for a
single answer than the amortized time over multiple executions.

In this paper, we take this motivating algorithm and show that one can
evaluate it over two orders of magnitude faster, by utilizing a completely different
representation of the complex numbers. Our method is particularly tailored for
DFT operations, however we also show that it can be applied to other more
general operations on complex numbers. Note that there are potentially many
applications for evaluating DFTs on homomorphic data, as it is widely used in a
variety of applications such as signal processing of sound waves and radio signals,
or processing of other recurrent data in which determining periodic properties
is of interest.

Our techniques make use of the special cyclotomic ring

R=17Z[X]/(XM +1)

where M = 2™ is a power of two. We note that in the ring R the value X
corresponds to a formal primitive 2 - M-th root of unity. Thus by selecting a



mapping X — (2. we can interpret a polynomial in R as being an integer
linear combination of the powers of the complex number ¢ = (2.ps. Thus our
method can be seen as associating a polynomial with a single complex number
corresponding to a single component of the canonical embedding, as opposed
to the set of complex numbers used in [4]. This means our associated input
plaintext polynomials can have smaller height; but we will not be able to deal
with ciphertext packing. The effect of this is to improve latency, at the expense
of throughput.

For example, if we take a complex number « and then approximate it via

the sum
N-1

o~ Z a; - C2MIN,

i=0

then we can use this polynomial to encode the complex number. If the coefficients
a; are selected to be relatively small then the methodology in [5] can be applied
to estimate the associated coefficient growth of the encoding polynomials as
homomorphic operations are performed. Finding suitably small a; values can
be obtained for an arbitrary complex number via the use of the LLL algorithm
[11], in a relatively standard way. See Section 2 for more details on this general
methodology.

For the evaluation of the DFT pipeline our method can also dispense with the
associated approximations of complex numbers, and we find we can evaluate the
DFT pipeline using exact operations on encodings of exact complex numbers. If
N is a power of two which divides M then

Y= XM (esp. (v = Gy (1)

is a primitive N-root of unity lying in R (resp. C). Recall that the DFT operation
takes an input vector and applies a linear operation (defined over R) to the input
vector. Thus, as long as we encode our input in R, we can perform the DFT using
only algebraic operations in R. Thus we can homomorphically evaluate the DFT,
as long as the coefficient growth of the underlying polynomials can be supported
by our plaintext modulus p. When applying DFT in many applications the input
can be scaled to be an integer (e.g. in image processing), therefore the input can
easily be encoded in an exact manner as well.

This methodology enables us to achieve a considerable improvement in the
ability to homomorphically evaluate a DFT. Notice that despite the DFT being
linear, the large number of additions and scalar multiplications means that the
often heard mantra of “only multiplications matter” does not apply. We need to
be careful not only of the growth of the coefficients of the ring elements which
encode our values, but also of the homomorphic noise.

We are able to evaluate a DFT-Hadamard-iDFT pipeline of input size 8192
elements, as opposed to 1024 elements for [4] and [5]. In terms of latency we
were able to evaluate a pipeline for 256 elements in 9.43 seconds, compared to
a latency of 581 minutes for [5] and 87 minutes for [4]. Our amortized times are
however much worse; since our method does not allow packing our amortized



time for the same calculation is still 9.43 seconds, compared to 89.4 seconds
for [5] and 0.31 seconds for [4]. So whilst we obtain faster latency (and exact
computations), for high throughput calculations the method of [4] is still to be
preferred.

2 Encoding Approximations to Arbitrary Complex
Numbers

As discussed in the introduction, there are two prior methods used to encode
complex numbers. The first encodes the complex number as a pair of real num-
bers and therefore holds the encrypted complex number as the encryption of
two real numbers. The real numbers would then be encrypted using the meth-
ods suggested in [5, 6] to encode fixed-point numbers. A major downside of this
methodology is that to add two encrypted complex numbers requires two ho-
momorphic additions, and to multiply two encrypted complex numbers requires
four homomorphic multiplications. The second method suggested in [4] encodes
a set of approximations to complex numbers. It looks at these in the canonical
embedding of the ring R and then pulls the element back in the canonical em-
bedding to a polynomial. This second method allows multiple complex numbers
to be encoded, but the height of the pulled back ring element can be high if only
a single complex number is required to be approximated (as would be the case
in applications focused on latency).

In this section we present an analogue of the second method where one only
wishes to approximate a single complex number. We do this by presenting the
folklore method of finding a good approximation to an arbitrary complex number
by an element in R. We then can encode the complex number by the associated
element in R. As long as we can bound the coefficients of the associated element
(in terms of the power basis of R), we can use the method in [5] to bound
the growth of the plaintext coefficients as we perform homomorphic operations.
Thus we use the method in [5] to bound coefficients of polynomials representing
complex numbers, as opposed to polynomials representing fixed-point numbers.
The only difference is how we interpret the underlying polynomial/element of R.
In comparison to [4] we pull back a single coordinate in the canonical embedding,
which allows us a greater degree of freedom in selecting a “small” polynomial
to perform the approximation; hence our use of LLL [11] below to find this
approximation.

We pick a value n such that n divides M = 2™. This is purely to reduce the
size of the associated lattice below from M to the smaller value n, in order to
make lattice reduction more manageable. However, a larger value of n will result
in an approximation polynomial with smaller coefficients (heuristically, although
not provably). We let ¢ denote a primitive n-th root of unity, so that ( is a fixed
primitive root of the polynomial Z" — 1, where Z = XM/"_Qur basic idea for



encoding (an approximation to) the complex number « is to write

=

n—

Zz"Ci

axa=

(]

=0

for some “small” integer values z;, thus we can approximate « by @ € R.
We first fix a “large” integer C, say C' = 10'%, which encodes how close we
want the approximation to be. We then set, for i =0,...,n —1,

a; = [Re(C - Y] and b; = [Im(C - Y],

and
a=[Re(C-a)| and b= [Im(C-a)].

We form the rank n+1 lattice £ in R"*2 generated by the columns of the matrix

1
A= 1 :
T
ap Ap—1 —a
bp ... bp—1 —0D

for some non-zero constant T. The determinant of this lattice A(L) is given by

det(AT - A) =~ n-T-C?/2, assuming |al, |b| < T - C. We then apply the LLL
[11] algorithm to the lattice generated by the columns of A. We let j denote the
index of the shortest LLL basis vector which is non-zero in the n-th position
(when the basis is ordered in increasing order of size). For a suitably large (but
not too large) choice of T, we expect that the j-th basis vector will have £7" in
its m + 1-st position, and hence will be of the form

n—1 n—1
y_<ZOa sy An—1; :l:Ta Zzi'ai:':av Zzlbz:!:b>

i=0 i=0

We then have, by the usual bounds on LLL basis vectors, that the z; values for
1=0,...,n—1, to be of size bounded by

)

(2n.(n+1)/471 n.T. 02)1/("+2_j)

resulting in an approximation @ such that

n—1
‘3mC «) Z Im(C - z; - )

i=

C- ‘a—a‘<‘%ec «) Zi)%eC 2 -

z‘Zzi-ai— )—I—‘nz:lzz b; —b‘
i=0

2 (2n<(n+1)/471 nT. 02)1/(n+2—j) |



In other words, for large enough C, we get a good approximation @ of «. In
addition, since LLL usually behaves much better than the theoretical bounds
predict, we expect the actual bound on the approximation and the z; values to
grow roughly as C?/™. Thus for fixed C, increasing the rank of the lattice - i.e.
increasing n - will result in an approximately linear decrease in the coefficient
sizes.

Our estimates of the accuracy of the method above depended on the fact that
a and b are not too big. In particular we assumed that |a|, |[b] < T - C, so that
they produce a negligible effect on the determinant of the lattice we are reducing.
Thus in practice it helps to scale o down so that |« is close to one, assuming this
is enabled by the application in hand. This may require the appropriate scaling
to be tracked through the homomorphic operation; much like was proposed in
the method from [5]. A similar scaling is needed in the method from [4].

2.1 Numerical Example

Suppose we are given the complex number
a = 0.655981733221013 + 0.923883055400882 - v—1=a+b-v—1,

and we want to produce an approximation which is correct up to ten decimal
digits of accuracy using a lattice of dimension n = 16. We apply the above
method with C' = 10'° and T = 10, and find that the LLL reduced basis of the
above rank n + 1 lattice in R"*3 has its first basis vector given by

(0,-5,0,1,—-4,12,8, —-6,—1,—-2,—1,-8,—-2,8,0,1,10, -5, —1).
Thus if we form the polynomial

P(Z)=2%+8.-23 2.2 8.7 710 _2.7% 78
—6-Z"4+8-25412-2°—4-2*+23-5.2,

then

a= (exp(ﬂ' . \/—1/16))
~ 0.65598173270304 + 0.923883055555970 - v/ —1.

3 New Homomorphic DFT Method

The prior method to approximate complex numbers allows us to homomorphi-
cally evaluate operations on complex numbers, as long as there is no wrap-around
in the plaintext modulus space, i.e. the plaintext modulus p is chosen appropri-
ately large. Suppose we want to evaluate DFT on an input vector

v = (UO;---UN—l) (2)



of N integers in the range (=B, ..., B). For most of this section, we will restrict
ourselves to the integer input case because it suffices for our application to
homomorphic image processing that we consider in Section 4. However, later in
this section, we deal with the case when the DFT inputs are integer polynomials
representing elements of the power-of-two cyclotomic rings, i.e. when we want to
apply the DFT to the general approximations obtained in the previous section.
When the inputs are integers, the nature of the DFT algorithm is such that (as
long as the plaintext modulus p is large enough) we obtain an exact computation
over the complex numbers. This is because the DFT is an algebraic (in fact linear)
operation over the ring R.

For simplicity, let us assume that N = 2™ for some n > 0. Recall that the
ith element (0 <14 < N) of the DFT output vector is computed as

DFT(v)[i] = z_: vj - CY, 3)

where ( is a primitive complex Nth root of unity. We require that {x can be
represented by an element in R, and so we must have N dividing 2 - M. This
ensures that the DFT is evaluated exactly.

3.1 Bounding Coefficients

To simulate complex arithmetic in R, the plaintext modulus p must be chosen
to be greater than the largest occurring intermediate coefficient in the DFT
computation. Hence it is necessary to choose p such that the magnitude of the
largest coefficient is less than p/2, when we represent the modulo p integers in
the interval (—p/2,...,p/2). If this is not done then decrypting the result of
a homomorphic operation will not result in the correct value; regardless as to
whether the homomorphic noise has swamped the computation.

Substituting {x in (3) by Y from (1), we obtain a vector of polynomials in

the indeterminate X,
(Do(X),...,Dn_1(X)),

where
N-1

Di(X) = Z’Ui'yij, (4)
§=0
for 0 < i < N. This corresponds to the set of polynomials that encodes DFT(v)
using our encoding scheme. It is this set of polynomials that we wish to homo-
morphically compute.

d
For a polynomial U(X) = > uy,- X* € Z[X] define |U(X)||, := max{|ux|}
k=0
d
and [|[U(X)|; := 3 |uk|. Recall that
k=0
la- X*, =llall (5)
la + 0]l < llallo + 10l - (6)



where a,b,k € Z and k > 0. The first of the above two properties is crucial
to ensure that our encoding scheme leads to much slower growth of coefficients
than previous analysis in [5].

From (4) and using the above properties we obtain

N—-1 N-1
IDA(X) e < D ol = D lwillo < N - B. (7)
j=0 7=0

Invariance. While (7) bounds only the size of the coefficients in the final output,
we need to bound the intermediate values as well. But this depends on the
method used to compute DFT. In the following, we argue that the bound in
(7) also holds for intermediate variables in most of the well-known methods to
compute DFT. Two popular methods to compute DFT are:

1. Naive Fourier Transform (NFT): the encoded input vector v is multiplied
with a matrix A of encoded powers of the primitive Nth root of unity Y,
where A[i,j] = Y% (mod p, X + 1). This matrix-vector multiplication is
usually carried out for small dimensions using either the row approach (scalar
product of a column vector and v) or the column approach (as a span of
column vectors).

2. Fast Fourier Transform (FFT): this is a recursive divide-and-conquer pro-
cedure, where the ith element DFT(v)[i] (0 < i < N) is computed as

DFT(v)[i] = DFT(v[0,...,N/2 — 1])[i] + Y* - DFT(v[N/2, ..., N — 1))[i]).

A hybrid of NFT and FFT is particularly interesting in the context of homomor-
phic evaluation. This is because it provides a trade-off between the number of
scalar multiplications and the depth of the circuit. Here, we count scaler multi-
plications as contributing to homomorphic depth. The resulting so-called Mixed
Fourier Transform (MFT) has been investigated in this context [5]. The divide-
and-conquer procedure is applied for instances of size greater than some B and
for instances of size lesser than or equal to 8, the naive matrix-vector multi-
plication method is applied. However, in our methodology there is no difference
between the homomorphic depth required of the naive or the fast Fourier trans-
form. Since all scalar multiplications are by roots of unity in our algorithms, the
noise associated to a ciphertext is never increased by a scalar multiplication. In
particular, the noise vector is simply rotated by the scalar multiplication. This
means that scalar multiplication in our DFT algorithms does not increase ho-
momorphic ciphertext noise, and so does not contribute to the number of levels
required of our underlying SHE scheme.

In all the above methods, any intermediate intermediate plaintext polynomial
U(X) is of the form

N-1
UX) = Z w; vy - X (mod p, XM 4 1),
i=0



where u; = 0 or u; = 1, depending upon whether the corresponding summand
should be present or not. Assuming no wrap around the modulus p, then using
properties (5) and (6), we obtain the same bound as in (7). That is,

IU(X)[o < N-B. (®)

Note that our bounds on the plaintext are also invariant of the method used to
compute the DFT, this is not the case with the previous method found in [5],
since the output is exact no matter which method is used.

3.2 Extending the Analysis to the Ring of Algebraic Integers

Now suppose that the DET input vector v (cf. (2)) now contains integer polyno-
mials representing elements of R, instead of just elements from Z. Following an
analysis similar to that in Section 3.1, we obtain that any intermediate variable
U(X) in the DFT computation satisfies

N-1
U)o < D l0i(X)llo < N - max [|v; (X)]| - (9)
=0

Note that the above bound is independent of the number of non-zero terms in
the input polynomials. This approximation is useful when we discuss a DFT-
Hadamard-iDFT pipeline in the next section.

4 Homomorphic Image Processing

In this section, we apply the bounds obtained in Section 3 to the case of homo-
morphic image processing. Previously, homomorphic image processing has been
investigated in the works of [1,2, 4, 5]. The works [1, 2] investigate the problem of
performing radix-2 DFT in the encrypted domain using additively homomorphic
encryption schemes. Because DFT is a linear operation, the authors manage to
perform this homomorphically using Paillier encryption scheme [12].

In [5], the authors homomorphically implement a standard image process-
ing pipeline of DFT, followed by Hadamard component-wise multiplication by a
fixed but encrypted matrix/vector, and finally inverse DFT to move back from
the Fourier domain. The fact that the Hadamard vector is encrypted makes the
whole operation non-linear and hence prevents the use of additively homomor-
phic encryption schemes for this purpose. Yet much smaller parameters size is
achieved in [5] compared to [1,2], even for the operation of homomorphically
performing a single DFT only. See [5, Section A.2] for a detailed comparison of
their work with that of [1,2].

In [4] this application is considered again using the packed approximations
to complex numbers considered earlier. Here the authors were able to evaluate
a degree 256 DFT pipeline in 87 minutes latency (compared to 581) for the
method in [5]. In terms of throughput the authors of [4] obtained an amortized



time of 0.31 seconds, compared to 89.4 seconds for [5]. Our results below show
we can achieve a latency for the same calculation of 9.43 seconds, but with no
improvement possible due to amortization. The largest DFT pipeline reported
in previous works was that of a degree 1024 DFT pipeline in [4]. We achieve a
pipeline of degree 8192, which we executed with a latency of 1026 seconds.

4.1 DFT-Hadamard-iDFT Pipeline

Inputs to the (homomorphic evaluation of) a DFT-Hadamard-iDFT pipeline
are usually (encrypted) integers in some interval [0, ..., B := 21) representing,
for instance, the colour encoding of a pixel. Assume that there are N = 2"
integer DFT inputs and as many in the Hadamard vector for component-wise
multiplication. Using our encoding scheme from Section 3, we encode the input
integers as themselves in the ring R = Z[X]/(p, XM + 1), where as Y = X?M/N
encodes a complex primitive Nth root of unity. Because the powers of a primitive
root of unity are encoded as monic monomials in R, we do not need to bother
to specify the precision for the roots of unity.

From (8), we obtain that during the computation of DFT, the largest oc-
curing intermediate coefficient is bounded above by N - B. After the Hadamard
component-wise multiplication by a vector of (encrypted) integer entries, the
new upper bound is N - B2. Finally, using (9), we obtain the following bound
for any intermediate polynomial U (x)

IU(X)]lo < N*- B2,
Hence we need to choose a plaintext modulus p of the ring R such that

p>2-N?%.B2%

4.2 Comparison of Concrete Parameters

In [5, Section A.3], the authors use a computational procedure to compute con-
crete lower bounds for the sizes of p and deg(R) chosen to homomorphically
evaluate the above DFT-Hadamard-iDFT pipeline. As previously mentioned,
this is with the Hadamard vector also encrypted. This computational approach
was followed because obtaining sharp closed form bounds seems to be out of
reach for their encoding technique. Our technique by contrast enables us to
obtain tight bounds on the resulting coefficients relatively easily.

Table 1 compares concrete lower bounds for our method and those from [5].
As in [5], we chose by = 8 bits of precision for the magnitude of each input, in-
cluding the entries of the Hadamard matrix. Unlike our case, in [5], the precision
by of the roots of unity had to be adjusted so that the final result has a precision
of 32 bits. Since our computation is exact this is not a concern.

Note that, as remarked before, the lower bounds on p are independent of the
method used to compute DFT. The parameter B corresponds to the depth of
the MFT method used (cf. Section 3.1). We remark that the size of the plaintext
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modulus in our method is close to that required in the case of NFT for [5]. Recall
that we also need to lower bound the degree of R by deg(R) = M > N/2, which
is a much higher bound than that required in [5] for large values of N. However,
in practice the degree will need to be much larger than this lower bound to ensure
security of the underlying homomorphic encryption scheme. So this increase in
the lower bound on the degree is unlikely to be a problem in practice.

FFTB=1| B=+vN [[NFTB=N
log, p|deg(R)||log, p|deg(R)||log, p|deg(R)
Method N |b2|| > > > > > >
[5] 16 [29| 54 190 37 118 25 46
This paper|| 16 |- || 26 8 26 8 26 8
[5] 64 (27| T4 248 49 146 29 44
This paper|| 64 |- | 30 32 30 32 30 32
[5] 256 25| 93 298 61 170 33 42
This paper|| 256 | - || 34 128 34 128 34 128
[5] 1024|23|| 112 | 340 72 190 37 40
This paper|[1024| - || 38 512 38 512 38 512

Table 1. Comparison of the parameters for the DFT-Hadamard-iDFT pipeline.

4.3 Comparison of Implementation Timings

As [5], we implemented the full pipeline using the HElib library [10] that im-
plements the BGV Somewhat Homomorphic Encryption scheme [3,9]. Table 2
compares the performance of our method with that of [5]. The experiments were
run on a machine with six Intel Xeon E5 2.7GHz processors with 64 GB RAM.
The time, measured in seconds, is that required to evaluate the DFT-Hadamard-
iDFT pipeline in the encrypted domain. The parameter log,(q) corresponds to
the size of the fresh ciphertexts, and “HElib Levels” report the actual number
of levels consumed by HElib due to its internal choice of ciphertext moduli. In
particular, HElib was allowed to choose by default half-sized primes for the ci-
phertext modulus chain. Unlike [5] and [4] we are unable to obtain any form of
amortization via SIMD packing.

Since HEIib has a restriction of at most 60 bits for the plaintext modulus
p, not all instances of the MFT could be run with the method from [5] for our
comparison. Thus we compare only against the best possible values for 9 for
the method from [5] in the table below. Note that this restriction of HElib does
not affect our method at all. We are thus able to cope with a much larger range
of parameter choices, as described in Table 3. In this table we report the timing
results for our method for select instances of the MFT for the chosen values of
N. Indeed the fastest run time for our method always occurred when utilizing
the full DFT, i.e. for setting B8 = 1 in the MFT algorithm. For N = 1024, 4096

11



HElib| CPU
Method | N || B |deg(R)|[log,(q)]|Levels| Time (sec)

[5] 16 || 16 | 16384 | 192 9 106
This paper| 16 || 1 | 8192 150 7 0.46
[5] 64|l 8 | 32768 | 622 30 1500
This paper| 64 || 1 | 8192 150 7 2.08
[5] 2561|256| 16384 | 278 11 34876
This paper|256| 1 | 8192 150 7 9.43

Table 2. Comparison of the best timing results, for a given N, for homomorphically
evaluating a full image processing pipeline.

and 8192, we do not report timings for large values of 8 since we did not run
the computations until completion as the time taken was too long.

HElib| CPU
N | B |[log, p]|deg(R)|[log, q]|Levels|Time (sec)
16 | 1 26 8192 150 7 0.46
16 | 4 26 8192 150 7 0.51
16 | 16 26 8192 150 7 0.90
64 | 1 30 8192 150 7 2.08
64 | 8 30 8192 150 7 2.75
64 | 64 30 8192 150 7 11.05
256 | 1 34 8192 150 7 9.43
256 | 16 34 8192 150 7 16.48
256 (256 34 8192 150 7 165.85
1024| 1 38 16384 | 192 9 104.12
4096| 1 42 16384 | 192 10 464.44
8192| 1 44 16384 | 192 10 1026.1

Table 3. Timing results for select instances of MFT for homomorphically evaluating
a full image processing pipeline.
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