
Cryptographic Randomness on a CC2538: a Case

Study

Yan Yan
y.yan@bristol.ac.uk

Elisabeth Oswald
Elisabeth.Oswald@bristol.ac.uk

Theo Tryfonas
Theo.Tryfonas@bristol.ac.uk

University of Bristol,
UK

October 26, 2016

Abstract

Smart metering, smart parking, health, environment monitoring, and
other applications drive the deployment of the so-called Internet of Things
(IoT). Whilst cost and energy efficiency are the main factors that con-
tribute to the popularity of commercial devices in the IoT domain, secu-
rity features are increasingly desired. Security features typically guarantee
authenticity of devices and/or data, as well as confidentiality of data in
transit. Our study finds that whilst cryptographic algorithms for confi-
dentiality and authenticity are supported in hardware on a popular class
of devices, there is no adequate support for random number generation
available. We show how to passively manipulate the on-board source for
randomness, and thereby we can completely undermine the security pro-
vided by (otherwise) strong cryptographic algorithms, with devastating
results.

1 Introduction

Applications for IoT flourish, leaving a great desire for not only energy efficient,
cheap devices, but also for devices that support basic cryptographic functionality
such as confidentiality and/or authenticity. Popular algorithms are e.g. the
Advanced Encryption Standard[1] (AES) for confidentiality, and the Elliptic
Curve Digital Signature Algorithm[2] (ECDSA) for authenticity, which, when
used in conjunction, enable applications to establish secure end-to-end channels
via e.g. Datagram TLS[3] (DTLS).

However whilst AES is a secure block cipher, one might require random-
ness to turn it into a secure encryption scheme for arbitrary length messages.

1

Somewhat similarly, ECDSA relies on a known-to-be-secure mathematical prob-
lem. However, it also requires large and securely generated random numbers.
Consequently, when supporting cryptography the secure generation of random
numbers is crucial.

In 2013, Texas Instruments (TI) launched a new System-on-chip (SoC), the
CC2538[4], featuring secure channels over 802.15.4 via multiple cryptographic
hardware accelerators. Partially because of these cryptographic accelerators,
projects such as Contiki[5] and OpenWSN[6] began to support the CC2538
with enthusiasm. As of writing this paper, the chip features in the suggested
list for Zigbee and 6LoWPAN solutions on TI’s website[7].

However, despite all the cryptographic hardware support, the CC2538 does
not have a Random Number Generator (RNG) dedicated for cryptographic ap-
plications; instead, the user’s guide suggests to use a 16 bit Linear Feedback
Shift Register (LFSR) as a Pseudo RNG (PRNG) where the seed is generated
by the Radio Frequency (RF) module sampling from the radio noise. Whilst the
user guide at no point suggested that this method should be used in conjunction
with cryptographic algorithms, developers have little choice in the absence of
alternatives. Also, in the absence of published attacks, there is often a temp-
tation to ignore warnings towards insecure RNG implementations such as in
[8].

1.1 Our Contribution

We show in this study that this choice proves catastrophic for cryptographic
applications, not only because the in-built PRNG has only 16 bit entropy which
can be easily predicted, but also because we are able to practically demonstrate
how to bias the seed obtained from the RF module through the RF interface.
Consequently, even if the weak in-built PRNG was replaced by a stronger com-
ponent, the source for the seed could still be tampered with and thus render the
system insecure. All the experimental work in this paper are performed on the
latest Contiki release version 3.0.

Our paper is structured as follows. We begin in Section 1.3 with some Contiki
RNG driver issues for CC2538. Section 2 revises why using a 16 bit LFSR as
PRNG is a bad practice and we show how this design flaw can be exploited
to break DTLS in Section 2.1, before reviewing the problem in Section 2.2. In
Section 3 we explain how CC2538 samples the radio noise into random seed and
then we demonstrate a bias attack in Section 4 which could be achieved given
physical access to the device. Finally we conclude the paper in Section 5.

1.2 Related Work

The design flaw of using a 16 bit LFSR as PRNG has been reported by [8][9] on
CC2430[10] and CC2530[11] respectively. These chips are the predecessors of
CC2538 in the SimpleLinkTMseries and they all adopted the same RNG design.
The blogs reported the flaw and warned that it could easily be exploited to
compromise the Z-Stack library[12] and Smart Energy Profile ECC in many

2

Smart Meter applications. We essentially ‘rediscovered’ that this poor design
choice still features in the CC2538 product. However, whilst in previous work
the possibility of injecting a jamming signal was contemplated, we are the first to
actually examine the technical feasibility of this and to demonstrate a working
attack.

1.3 Contiki Driver Issues

We made extensive use of Contiki in our research and fixed (and reported)
some coding issues in the CC2538 RNG driver (Contiki release-3.0). These
were, the reading out of the LFSR without ready check, a lack of validity check
when reading random seed bits from the RF module, and a bug that drops the
Most Significant Bit (MSB) and leaves the Least Significant Bit (LSB) to be
constantly zero in the seed. We modified the code and fixed these issues in our
experiments.

Another issue in the driver is that the CC2538 User’s Guide[13] suggests
only to use the lower byte (8 bits) as a random number but the driver actually
used 16 bits in the LFSR. However, this coding mistake does not affect our
result, as will be explained in later sections.

2 High Level PRNG Design and its Implication
on DTLS Security

We begin this section by reviewing how the ’default’ PRNG (as provided by
the CC2538) turns a seed into a stream of pseudo random numbers using a
16-bit LFSR (see CC2538 User’s Guide[13] Section 16.1). The polynomial that
defines the feedback function is given as x16 +x15 +x2 +1 which corresponds to
the well known CRC16 scheme[14]. When used as a PRNG (after it has been
seeded), the input bit is simply set to zero. The CC2538 User’s Guide[13] gives
clear instructions on how to use the LFSR: by setting specific control bits to 01,
the LFSR performs 13 CRC16 operations and its content can be read out as a
random number.

Formally, because there are only 16 bits in the LFSR, we can denote the
universal set of its possible values (or called states) S as:

S = {Si|Si ∈ {2}16} (1)

Equation (1) implies that the LFSR can have no more than |S| = 216 = 65536
states.

We denote the LFSR update operation as:

F : S→ S (2)

where F is 13 times of CRC16 operation on the current state according to the
manual.

3

Denote the 16 bits random seed sampled from the radio noise as S∗. The
PRNG output can be formalised as:

S0 = S∗

Si+1 = F (Si)
(3)

Since S is finite and F is deterministic, the random number stream is cyclic.
The longest non-repetitive PRNG output sequence under seed S∗ can be repre-
sented as:

RS∗ = (F 0(S∗), F 1(S∗), ..., Fn−2(S∗), Fn−1(S∗)) (4)

where S∗ = F 0(S∗) = Fn(S∗). Each call to the PRNG effectively returns the
first element in the sequence and updates it by one cyclic left rotation. Since
the elements within RS∗ are non-repetitive, we have n ≤ |S| for any RS∗ , i.e.
the cycle of PRNG output is at most 65536 calls.

For a re-sampled seed S∗
′

inside RS∗ , i.e. S∗
′

= F k(S∗) where k ∈ Zn, the
corresponding sequence RS∗′ is:

RS∗′ =(F k(S∗), F k+1(S∗), ..., Fn−1(S∗), F 0(S∗), F 1(S∗), ...,

F k−2(S∗), F k−1(S∗))
(5)

Observing Equation (4) and Equation (5), we can see RS∗ is indeed RS∗′ left
rotated by (n − k) times. This is equivalent to say that S∗ generates identical
output as S∗

′
with (n − k) preceding calls. As a result, assume consecutive

PRNG calls on RS∗ returns a sequence of:

(Si, Si+1, ..., Sj)

Then the same sequence will eventually be replicated by calls on RS∗′ . This
directly leads to the complete break of DTLS given the small space of S, as we
will explain in Section 2.1.

This property also indicates that any seed not in RS∗ generates a completely
different sequence. By enumerating S, we found there exists only four non-
overlapping sequence for this CRC16 constructed PRNG, which are:

• R0x0001 with n = 32767.

• R0x0003 with n = 32767.

• R0x0000 with n = 1. (F (0x0000) = 0x0000)

• R0x8003 with n = 1. (F (0x8003) = 0x8003)

Notice that R0x0000 and R0x8003 are excluded in the driver due to their monadic
output according to the manual[13]. The enumeration can be done on a CC2538
in less than a minute for such a small space of 65536.

4

2.1 Breaking DTLS

Contiki supports DTLS via an implementation called tinydtls[15]. Two cipher
suites, namely Pre-Shared Key[16] (PSK) and ECDHE ECDSA[17] are imple-
mented by the latest available version (0.8.2) and the only supported curve is
secp256r1[18]. In this paper we only discuss ECDHE ECDSA.

Unfortunately, tinydtls does not implement its own RNG; instead it loops
the Contiki API (random rand()) which is then implemented by the CC2538
built-in PRNG (see tinydlts/dtls prng.h) as we described in Section 2. As a
result, the generated random numbers are from a very restricted set that is
too small for any cryptographic use. This renders already any key generation
vulnerable. A public Elliptic Curve (EC) key Q is the scalar multiple d of public
base point G, i.e. Q = [d]G. Because d can only take 216 values, it is trivial to
build a table for a specific curve and public base point that contains all pairs of
(d,Q). Consequently, upon observing a public EC key Q, one can use a simple
table-lookup to deduce d. Due to the small entropy of CC2538 PRNG, such
table contains only 65536 entries of (d,Q) pairs which can be computed and
stored on a laptop within a few minutes.

Besides rendering key generation trivially insecure, one can further apply
two trivial attacks during a DTLS handshake. As before, these attacks work
easily because of the poor randomness and the fact that popular EC schemes
use public, standardised base points.

ECDSA ECDSA[2] is an authentication scheme that allows a party to au-
thenticate a message. In DTLS, it is used to sign the server parameters (details
in [19]) during the handshake to provide server side authenticity. ECDSA re-
quires a secret random number k to generate a point on the curve R via scalar
multiplication of a base point. The x-coordinate r of this point becomes part of
the signature. Hence it can be observed by the adversary, who can recover k by
searching r in the look up table of pre-computed points. He can then recover
the secret signing key d by computing:

e = SHA− 1(m)

d = r−1(sk − e) mod n
(6)

ECDHE ECDHE[17] is a key exchange protocol that allows two party to
derive a shared secret. In DTLS, ECDHE is performed at the end of DTLS
handshake to derive a shared secret, which is then used to derive the symmetric
session key for application data encryption. ECDHE essentially performs a
Diffie-Hellman key agreement, i.e. one party computes QA = [rA]G, the other
party independently computes QB = [rB]G; both parties exchange points, and
so are able to derive QAB = [rA][rB]G = [rA]QB = [rB]QA. Because G is
public, it is again possible to derive rA and rB by looking up QA and QB in the
pre-computed table. Once these quantities are known to the adversaries, they
can also compute QAB and hence the session key.

5

s t a t i c unsigned long seed = 1 ;

i n t
rand (void)
{

re turn do rand (&rand) ;
}

Figure 1: rand() implementations in stdlib

We have tested the attacks by sniffing two CC2538 nodes performing hand-
shake using the example code provided in tinydtls. The secret keys have been
successfully recovered using the look up table we generated.

2.2 (P)RNG implementations in Contiki

Investigating (P)RNG implementations in other platforms supported by Con-
tiki, we realised that most of them do not have dedicated PRNG implemen-
tations and by default wrap rand() in stdlib as their PRNG. We traced some
of the open sourced stdlib implementations. For the majority of the libraries,
i.e. stdlib for ARM[20], AVR[21] and MSP430[22], the rand() implementation
can be abstracted as Figure 1. The type of variable seed may vary on different
platforms. The do rand() function outputs a congruent of linear transformation
of seed and updates seed by the output.

It is clear that such design would also yield into a predictable random number
stream with cycle no longer than the range of seed, as the same seed returns the
same output. On the above platforms, the cycles are no longer than 232, 216

and 216 calls respectively.
As a straightforward improvement, we suggest using more sophisticated

PRNG implementation for cryptographic applications. [23] has recommended
several PRNG constructions based on approved hash functions and block ci-
phers. Specifically for CC2538, SHA-256 and AES have hardware coprocessor
support and therefore can be considered candidates for implementing crypto-
graphically secure PRNG according to [23].

3 Using RF Noise as True Random Number Gen-
erator

PRNGs require an unpredictable seed, i.e. a true random number as a starting
point. Higher end devices, such as security ICs hence come with a dedicated
true random number generator. The CC2538 manual does not claim that using
RF noise is a suitable source for random numbers in a cryptographic context,
however, in the absence of another source, developers are bound to use what is
available. The CC2538 User’s Guide[13] explains to fill the SOC ADC RNDL
register with random bits from the Intermediate Frequency Analogue-to-Digital

6

Figure 2: CC2430 RF Design, from CC2430 user manual[10]

Converter (IF ADC) in the RF receive I/Q channels to seed the PRNG (Section
16.2.2). The user guide[13] also reports on the good quality of the randomness
(Section 23.12).

To verify the claims in the manual, we applied the NIST Statistical Test
Suite[24] on 13263600 bits sampled by this seeding method. Since one bit is re-
turned upon each read to the RNG register, we concatenated all bits into one bit
stream. The bits passed all tests in the NIST test suite, with P (0) = 0.49995001
and P (1) = 0.50004999, which shows that the RF noise (when not tampered
with) is indeed a good source for random numbers. However, it remains unclear
whether such source can practically be influenced by crafted RF signals.

3.1 Reverse Engineering the TRNG Design

The documents supplied by TI do not explain further details of how IF ADC in
the receive I/Q channels are translated to random bits. We have neither been
able to find any open document describing the RF design of CC2538. However,
we noticed that the same design has been applied to several products in TI’s
SimpleLinkTMseries, some of which provided a better explanation of their RF
core and RNG designs.

In the CC2430 user manual[10], we found a description of its RF core as in
Figure 2 which explains that the input analogue signal to IF ADC goes through
the following components:

• Low Noise Amplifier (LNA) which amplifies the signal.

• Mixer which down converts the signal frequency. The Frequency Synthe-
siser is used as the local oscillator.

• Band pass filter which removes the out of band signals.

7

Figure 3: CC2520 RNG Design, from CC2520 user manual[25]

• The Automatic Gain Control (AGC) circuit further adjusts the signal
strength to the input level of ADC.

The CC2520 Data Sheet[25] explains the random bit is actually the LSB
from ADC output: (Section 24 in CC2520 Data Sheet[25])

Single random bits from either the I or Q channel (configurable) can
be output on GPIO pins at a rate of 8MHz. One can also select to
xor the I and Q bits before they are output on a GPIO pin. These
bits are taken from the least significant bit in the I and/or Q channel
after the decimation filter in the demodulator.

A block diagram is also provided, as shown in Figure 3.
Interestingly, we noticed that CC2538, CC2520, CC253X and CC2540/41

reported exactly the identical randomness test result in their user manuals ([13]
[25] [11]). We suspect the above evidence showed that CC2538 is very likely to
have adopted the same designs.

The designs above explained the nice randomness of the seeding method.
Denote Vs as the analogue RF signal and N as the noise, the analogue input to
the ADC, denote as Vin, can be represented as:

Vin = Vs + N (7)

The noise N can be induced by multiple sources in practice, including noise
produced by the signal source, environmental noise, and noise induced by the
components in the device itself, etc.

The random bit b can therefore be represented as:

b = LSB(Vin) = LSB(Vs + N) (8)

where LSB() ∈ {0, 1} represents the operation of taking the LSB of A/D con-
version output.

From Equation (8) we observe that any difference in Vin that is larger than
the scale of ADC, i.e. the voltage represented by the LSB of ADC, could flip
b. According to the CC2538 Datasheet[26], the receiver can be sensitive to
signals down to −97dBm (typical value with TA = 25◦C, VDD = 3V and
fC = 2440MHz). On the other hand, the typical environmental noise in our

8

experimental environment is about −92dBm which is significantly higher than
the receiver sensitivity. We consider this reading as a generic office use case and
the result of randomness test as evidence to the sampling method.

4 Biasing the RF Signal in Practice

Equation (8) indicates that the random bit b is jointly determined by the signal
Vs and noise N . Although an adversary can generate arbitrary signals, i.e. Vs

is fully controlled by the adversary, it is clear that controlling N is difficult
in practice. For instance, noises accumulated by different amplification stages
are physically inevitable and intrinsic to the physical device. Hence it is not
straightforward to fully control Vin = Vs + N in practice.

An alternative attempt is to provide the RF with an ‘illegal’ input Vin.
We considered two methods in our experiments: saturation and decimation.
Saturation attempts to provide the RF with a strong signal that is above its
acceptance level, whereas decimation attempts to suppress any RF signal to
beneath the receiver sensitivity.

Ideally we expect these illegal inputs will trigger the ADC into a fault state
which could potentially results into a predictable ADC output and thus biased
b. But in practice, decimation does not seem practical for the same reason that
noise induced by the circuit itself is physically inevitable. This made saturation
the only viable option for us. We further note that the undisclosed circuit design
of the device also posed a difficulty in our experiments. Without knowledge of
the exact circuit design, we had to perform black box experiments.

4.1 Concrete experiments

We used OpenMote[27], a CC2538 powered SoC, for our experiments. We ex-
tended the length of each seed from RF to 128 bits in our experiments in coping
to a potential PRNG design based on AES-128, although we still consider the
bits are generated bitwise when applying the NIST test suite.

4.2 Strong sine wave signal

The first signal we attempted was a strong sine wave signal. According to
CC2538 data sheet[26], the saturation signal strength for the RF receiver is
10dBm. We have attempted to increase the input signal strength up to 13dBm,
which is roughly double of the saturation voltage, but no bias was observed.
The seed sampled under this signal has passed all tests in the NIST test suite.

The result implies that the AGC circuit could have tuned down the signal
which might have consequently prevented the seed from being biased. Although
the exact AGC design for CC2538 is unclear, Figure 4 demonstrates an example
of AGC design using 4 Voltage Controlled Amplifiers (VGAs). The output signal
is parallelly connected to a detector to estimate the signal strength. The output
of detector is compared to a reference voltage and their difference is provided as

9

Figure 4: Example of receiver AGC, from [29]

Table 1: GRC Signal Source Configuration
Sample Rate 8 MHz
Output Type Complex

Waveform Constant
Amplitude 0

Offset 1
IF Gain [0, 30] dB

Output Voltage Amplitude [0,176.0] mV

a feedback to adjust the control voltage of VGAs. To prevent signal distortion
caused by abrupt voltage change, such as during a lightning storm, many AGC
design adopts an attack time (or called settle time) before it adjusts the gain.
[28] provides a detailed description of different AGC designs.

4.3 Strong constant signal

We then attempted a strong constant signal. The idea is to treat the whole
circuit as a deterministic compression function that maps any Vin to {0, 1}.
Under this assumption, the same Vin should always generate the same b, either 0
or 1. In order to achieve constant Vin in Equation (7), Vs needs to be significantly
greater than N to suppress its impact in Equation (8), as any ADC would have
only a limited resolution.

For experimental purpose, we have configured three programmable LNAs
in the AGC to their maximum gain (6 + 21 + 9 = 36(dB)) and has disabled
the attenuator in Anti Aliasing Filter (AAF, up to 9dB). We consider these
modifications can be compensated by a strong signal amplifier in practice. The
signal source is implemented by Gnu Radio Companion (GRC)[30] with HackRF
One[31], connected to the target OpenMote through a SMA cable for the best
signal strength. Table 1 lists the configuration which effectively generates a
carrier wave on desired frequency.

Applying the signal, we observed abnormal 0-runs, i.e. consecutive 0 bits,
appeared in the seeds as we increase IF gain to values above 10dB. Figure 5a
shows how P (0) is biased and Figure 5b shows the average number of bits of
longest 0-runs in each seed. We can see that the bias has reached its peak at
IF Gain = 22dB in both figures. At such gain 27.709% of the 128 bit seeds have
longest 0-runs over 64 bits. It is not a surprise to see the sampled seeds have

10

(a) P (0) to IF Gain

(b) Average longest 0-runs in each seed to IF Gain

Figure 5: Biased Seed on OpenMote. Signal source amplitude from 19.5mV
(10dB), 76.0mV(22dB) to 176.0mV (30dB).

failed nearly all tests in the NIST test suite, indicating they have been strongly
biased by our signal. We cannot determine the exact cause of bias decrease for
IF Gain over 22dB due to lack of circuit design, but one potential caused might
be the distortion under strong signal strength.

We also re-applied the signal to the same OpenMote we previously used in
the strong sine wave signal experiments. A even stronger bias is observed as
shown in Figure 6, with 17.820% of the seeds ended in 128 consecutive 0 bits.
This may be caused by the strong sine wave signal in the previous experiments
which permanently biased the device. We therefore restored its AGC configu-
ration to default and re-ran the NIST test suite but the sampled seed passed all
tests as before. We also tested using example applications provided by Contiki
and found no malfunctioning on the device. The permanent bias does not seem
to affect the device under normal operational status and can only be triggered
by the constant signal. This leads to a very dangerous attack where devices
could be primed in such a way that they remain functional under normal oper-

11

(a) P (0) to IF Gain

(b) Average longest 0-runs in each seed to IF
Gain

Figure 6: Biased Seed on OpenMote used in previous experiments. Signal source
amplitude from 19.5mV (10dB), 76.0mV(22dB) to 176.0mV (30dB).

ating conditions, and eventually ‘activated’ via supplying the activation signal
upon which they are unable to produce random numbers and hence all DTLS
connections would be completely insecure. We were able to replicate this attack
on brand new devices with factory settings.

5 Conclusion

In this paper we reviewed the provision for cryptographic random numbers on
the CC2538 and related devices. First, we discussed the poor choice of using a
16 bit LFSR as PRNG and demonstrated how this design flaw can be exploited
to break DTLS running on these devices. We also found that the provision
for randomness within the popular Contiki software and DTLS implementation
tinydtls is inadequate. Any open source efforts, or indeed also any products, that
built on them should review their instantiation of random numbers carefully.

12

Secondly we investigated how to tamper with the RF source and showed in
practice how to configure signals to that end. We reverse engineered the design
of the path that produces random bits from the RF module, and developed
some attacks that can bias the random bits in practice. This shows that even if
the poor PRNG was replaced with a sound one, the source for the seed of any
PRNG on the CC2538 is vulnerable to practical attacks. However, the signal
strength required for the attack might not be achievable unless the adversary
have direct physical access to the device.

We believe that the same design choices have also been adopted by many
other products in the CC series including CC2420[32], CC2430[10], CC2520[25]
and CC253X, CC2540/41 series[11]. To the best of our knowledge all these
products suffer from the same problems. Only the latest CC26XX/CC13XX[33]
series has abandoned this design and implemented a dedicated RNG suitable
for cryptographic purposes. We recommend to update the legacy devices for
security sensitive application.

6 Acknowledgement

We have many thanks to (alphabetically) George Oikonomou for providing us
much help in Contiki OS and the OpenMote devices, Geoff Hilton who helped
us on RF designs and Jake Longo Galea who offered many signal processing
advises.

7 Related Source Code

Source code related to this paper can be found at [34]. The repository contains
all source file to reproduce the experiments done in this paper, including:

• prngtest: Contiki application that iterates the CC2538 PRNG.

• genr.py and secp256r1mult: Tools to generate the EC key pair lookup
table for CC2538 PRNG.

• cc2538seed: Contiki application that samples the RF seed for CC2538.

• biasseed.py: Implementation of the strong constant signal for HackRF
One.

Detail usage documented in readme.txt.

References

[1] P. FIPS, “197, advanced encryption standard (aes), national institute of
standards and technology, us department of commerce (november 2001),”
Link in: http://csrc. nist. gov/publications/fips/fips197/fips-197. pdf.

13

[2] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-
nature algorithm (ecdsa),” International Journal of Information Security,
vol. 1, no. 1, pp. 36–63, 2001.

[3] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security,”
RFC 4347 (Proposed Standard), Internet Engineering Task Force, Apr.
2006, obsoleted by RFC 6347, updated by RFC 5746. [Online]. Available:
http://www.ietf.org/rfc/rfc4347.txt

[4] [Online]. Available: http://www.ti.com/product/CC2538/description

[5] [Online]. Available: http://http://www.contiki-os.org/

[6] [Online]. Available: https://openwsn.atlassian.net/wiki/pages/viewpage.
action?pageId=688187

[7] [Online]. Available: http://www.ti.com/lsds/ti/wireless connectivity/
zigbee/products.page#

[8] [Online]. Available: https://rdist.root.org/2010/01/11/
smart-meter-crypto-flaw-worse-than-thought/

[9] [Online]. Available: http://travisgoodspeed.blogspot.co.uk/2009/12/
prng-vulnerability-of-z-stack-zigbee.html

[10] [Online]. Available: http://www.ti.com/lit/ds/symlink/cc2430.pdf

[11] [Online]. Available: http://www.ti.com/lit/ug/swru191f/swru191f.pdf

[12] [Online]. Available: http://www.ti.com/tool/z-stack

[13] [Online]. Available: http://www.ti.com/lit/ug/swru319c/swru319c.pdf

[14] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,” Pro-
ceedings of the IRE, vol. 49, no. 1, pp. 228–235, 1961.

[15] [Online]. Available: https://sourceforge.net/projects/tinydtls/

[16] P. Eronen and H. Tschofenig, “Pre-Shared Key Ciphersuites for
Transport Layer Security (TLS),” RFC 4279 (Proposed Standard),
Internet Engineering Task Force, Dec. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4279.txt

[17] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller,
“Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
Security (TLS),” RFC 4492 (Informational), Internet Engineering Task
Force, May 2006, updated by RFCs 5246, 7027. [Online]. Available:
http://www.ietf.org/rfc/rfc4492.txt

[18] S. SEC, “2: Recommended elliptic curve domain parameters,” Standards
for Efficient Cryptography Group, Certicom Corp, 2000.

14

http://www.ietf.org/rfc/rfc4347.txt
http://www.ti.com/product/CC2538/description
http://http://www.contiki-os.org/
https://openwsn.atlassian.net/wiki/pages/viewpage.action?pageId=688187
https://openwsn.atlassian.net/wiki/pages/viewpage.action?pageId=688187
http://www.ti.com/lsds/ti/wireless_connectivity/zigbee/products.page#
http://www.ti.com/lsds/ti/wireless_connectivity/zigbee/products.page#
https://rdist.root.org/2010/01/11/smart-meter-crypto-flaw-worse-than-thought/
https://rdist.root.org/2010/01/11/smart-meter-crypto-flaw-worse-than-thought/
http://travisgoodspeed.blogspot.co.uk/2009/12/prng-vulnerability-of-z-stack-zigbee.html
http://travisgoodspeed.blogspot.co.uk/2009/12/prng-vulnerability-of-z-stack-zigbee.html
http://www.ti.com/lit/ds/symlink/cc2430.pdf
http://www.ti.com/lit/ug/swru191f/swru191f.pdf
http://www.ti.com/tool/z-stack
http://www.ti.com/lit/ug/swru319c/swru319c.pdf
https://sourceforge.net/projects/tinydtls/
http://www.ietf.org/rfc/rfc4279.txt
http://www.ietf.org/rfc/rfc4492.txt

[19] L. Bassham, W. Polk, and R. Housley, “Algorithms and Identifiers for
the Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 3279 (Proposed Standard), Internet
Engineering Task Force, Apr. 2002, updated by RFCs 4055, 4491, 5480,
5758. [Online]. Available: http://www.ietf.org/rfc/rfc3279.txt

[20] [Online]. Available: https://chromium.googlesource.com/native client/
nacl-newlib/+/master/newlib/libc/stdlib/rand r.c

[21] [Online]. Available: https://github.com/vancegroup-mirrors/avr-libc/
blob/master/avr-libc/libc/stdlib/rand.c

[22] [Online]. Available: https://sourceforge.net/p/mspgcc/gcc/ci/master/
tree/libiberty/random.c

[23] E. B. Barker and J. M. Kelsey, Recommendation for random number gener-
ation using deterministic random bit generators (revised). US Department
of Commerce, Technology Administration, National Institute of Standards
and Technology, Computer Security Division, Information Technology Lab-
oratory, 2007.

[24] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical
test suite for random and pseudorandom number generators for crypto-
graphic applications,” DTIC Document, Tech. Rep., 2001.

[25] [Online]. Available: http://www.ti.com/lit/ds/symlink/cc2520.pdf

[26] [Online]. Available: http://www.ti.com/lit/ds/symlink/cc2538.pdf

[27] [Online]. Available: http://www.openmote.com/

[28] J. P. A. Pérez, S. C. Pueyo, and B. C. López, Automatic Gain Control.
Springer, 2011.

[29] I. Rosu, “Automatic gain control(agc) in receivers.” [Online]. Available:
http://www.qsl.net/va3iul/Files/Automatic Gain Control.pdf

[30] [Online]. Available: http://gnuradio.org/redmine/projects/gnuradio/wiki/
GNURadioCompanion

[31] [Online]. Available: https://greatscottgadgets.com/hackrf/

[32] [Online]. Available: http://www.ti.com/lit/ds/symlink/cc2420.pdf

[33] [Online]. Available: http://www.ti.com.cn/cn/lit/ug/swcu117d/swcu117d.
pdf

[34] [Online]. Available: https://github.com/Salties/MyRepository/tree/
master/experiments/cc2538rng

15

http://www.ietf.org/rfc/rfc3279.txt
https://chromium.googlesource.com/native_client/nacl-newlib/+/master/newlib/libc/stdlib/rand_r.c
https://chromium.googlesource.com/native_client/nacl-newlib/+/master/newlib/libc/stdlib/rand_r.c
https://github.com/vancegroup-mirrors/avr-libc/blob/master/avr-libc/libc/stdlib/rand.c
https://github.com/vancegroup-mirrors/avr-libc/blob/master/avr-libc/libc/stdlib/rand.c
https://sourceforge.net/p/mspgcc/gcc/ci/master/tree/libiberty/random.c
https://sourceforge.net/p/mspgcc/gcc/ci/master/tree/libiberty/random.c
http://www.ti.com/lit/ds/symlink/cc2520.pdf
http://www.ti.com/lit/ds/symlink/cc2538.pdf
http://www.openmote.com/
http://www.qsl.net/va3iul/Files/Automatic_Gain_Control.pdf
http://gnuradio.org/redmine/projects/gnuradio/wiki/GNURadioCompanion
http://gnuradio.org/redmine/projects/gnuradio/wiki/GNURadioCompanion
https://greatscottgadgets.com/hackrf/
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ti.com.cn/cn/lit/ug/swcu117d/swcu117d.pdf
http://www.ti.com.cn/cn/lit/ug/swcu117d/swcu117d.pdf
https://github.com/Salties/MyRepository/tree/master/experiments/cc2538rng
https://github.com/Salties/MyRepository/tree/master/experiments/cc2538rng

	Introduction
	Our Contribution
	Related Work
	Contiki Driver Issues

	High Level PRNG Design and its Implication on DTLS Security
	Breaking DTLS
	(P)RNG implementations in Contiki

	Using RF Noise as True Random Number Generator
	Reverse Engineering the TRNG Design

	Biasing the RF Signal in Practice
	Concrete experiments
	Strong sine wave signal
	Strong constant signal

	Conclusion
	Acknowledgement
	Related Source Code

