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Abstract. Cogliati et al. introduced the tweakable Even-Mansour
cipher constructed from a single permutation and an almost-XOR-
universal (AXU) family of hash functions with tweak and key schedule.
Most of previous papers considered the security of the (iterated)
tweakable Even-Mansour cipher in the single-key setting. In this paper,
we focus on the security of the tweakable Even-Mansour cipher in
the multi-key and related-key settings. We prove that the tweakable
Even-Mansour cipher with related-key-AXU hash functions is secure
against multi-key and related-key attacks, and derive a tight bound
using H-coefficients technique, respectively. Our work is of high practical
relevance because of rekey requirements and the inevitability of related
keys in real-world implementations.
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1 Introduction

A tweakable blockcipher (TBC) is a generalization of a traditional block cipher,
which adds a tweak as an extra public input on the basis of the usual inputs
(a plaintext and a key). Tweakable blockciphers (TBCs) with distinct tweaks
refer to distinct block ciphers, which makes that the cost of tweaks’ update is
lower than that of rekeys. The original application scenarios of TBCs focus on
storage encryptions, especially the disk sector encryption [17] (Each disk consists
of fixed-length sectors. The size of a sector is usually 512 bytes. In the disk sector
encryption, we need to encrypt a plaintext x under the sector location t ∈ T
and obtain the corresponding ciphertext y = EK(t, x), where K is a key and EK
is an encryption algorithm with a tweak space T . Moreover, the encryption with
distinct sectors is mutual independent). Now TBCs have been extended to all the
modes of operation, such as encryption modes [18,1,28], message authentication
codes (MACs) [22,21], and authenticated encryption (AE) modes [22,29,30,16,7].

There exists three approaches to realize a tweakable blockcipher. The first
approach is based on a block cipher [22]. The second approach is based on
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a permutation [13]. The third approach is based on a keyed-function (hash
function) [27]. The tweakable Even-Mansour cipher [11] is a permutation-
based tweakable blockcipher, which is constructed from an n-bit public random
permutation P and an almost XOR-universal (AXU) family of hash functions
H = (HK)K∈K from some set T to {0, 1}n, and defined as

y = TEMP
K(t, x) = P (x⊕HK(t))⊕HK(t),

where K ∈ K is a key, t ∈ T is a tweak, x ∈ {0, 1}n is a plaintext, and y ∈ {0, 1}n
is a ciphertext.

According to the different key settings in the applications, Mouha and
Luykx [24] described three attack settings: single-key, multi-key, and related-
key settings. In the single-key setting, an adversary has access to the encryption
and decryption oracles under a fixed key K chosen uniformly and randomly from
the key space. Most of previous papers considered the security in the single-key
setting. The tweakable Even-Mansour cipher is no exception. The security of
the tweakable Even-Mansour cipher in the single-key setting was studied by
Cogliati, Lampe, and Seurin [11], and was proved secure up to the birthday
bound (this construction ensures security up to 2n/2 adversarial queries, in the
random permutation model (RPM) for P : {0, 1}n → {0, 1}n).

In the multi-key setting, an adversary has access to the encryption and de-
cryption oracles under many keysKi (i ≥ 2) chosen independently and randomly
from the key space. Multi-key setting has many applications in the real-world
implementations. The multi-key setting can be seen as a generalization of the
multi-user [8] and broadcast [23] settings. There exists many related researches
in the multi-key, multi-user, and broadcast settings, such as [23,8,15,24]. In the
related-key attack setting, the key Ki satisfies the relationship Ki = ϕi(K),
where K is a key, and the related-key deriving (RKD) functions ϕi are chosen
by the adversary. Related-key attack (RKA) was firstly presented by Biham et al.
[4,5] for block ciphers [6,31] and then extended to other cryptographic algorithms
such as stream ciphers [9], permutation-based ciphers [12], hash functions [32],
MACs [26,3], AE schemes [14], etc. Multi-key security and related-key security
have become the important criterion in cipher designs. The security of the
tweakable Even-Mansour cipher in the multi-key and related-key settings are
still an open problem.

Our Contributions. This paper focuses on the security of the tweakable Even-
Mansour cipher in the multi-key and related-key settings. Due to the weakness
of almost-XOR-universal (AXU) hash functions in the related-key setting, the
tweakable Even-Mansour cipher in here is reconstructed by related-key-almost-
XOR-universal (RKA-AXU) hash functions presented by Wang et al. [32]. We
prove that the tweakable Even-Mansour cipher is secure against multi-key and
related-key attacks.

In the multi-key setting, a small number of plaintexts are encrypted under
multiple independent keys. The tweakable Even-Mansour cipher with (ϵ, δ)-
AXU-hash functions is secure up to 2D(T +D(1− 1/l))δ + (D − l + 1)(D − l)ϵ
queries against multi-key attack, where D is the complexity of construction
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queries (data complexity), T is the complexity of internal permutation queries
(time complexity), and l is the number of keys.

In the related-key setting, a small number of plaintexts are encrypted under
multiple related keys. The tweakable Even-Mansour cipher with (ϵ, δ)-RKA-
AXU-hash functions is secure up toD(D−1)ϵ+2DTδ queries against related-key
attack, where D is the complexity of construction queries (data complexity) and
T is the complexity of internal permutation queries (time complexity).

The tweakable Even-Mansour cipher is a secure cryptosystem with a
lighter key schedule and higher key agility in the multi-key and related-
key attack settings. It is very useful, not only because of the simplicity of
its design and proof (Patarin’s H-coefficients technique), but also because of
fast and secure implementations. If the underlying block cipher is replaced
with the tweakable Even-Mansour cipher, then encryption, authentication, and
authenticated encryption modes may be designed more efficiently.

We leave it as an interesting open problem to settle the security of two-
round iterated tweakable Even-Mansour cipher in the multi-key and related-key
settings. Does further extend it for any r-round iterated tweakable Even-Mansour
cipher?

Organizations of This Paper. Notations and H-coefficients technique are
presented in Section 2. The multi-key security of the tweakable Even-Mansour
cipher is derived in Section 3. The related-key security of the tweakable Even-
Mansour cipher is derived in Section 4. Finally, this paper ends up with a
conclusion in Section 5.

2 Preliminaries

2.1 Notations

Let n be an integrity and {0, 1}n denote the set of all strings whose lengths are

n-bit. If X is a finite set, then x
$← X is a value randomly chosen from X, and

|X| stands for the number of elements in X.
A tweakable blockcipher with key space K, tweak space T , and plaintext

space {0, 1}n is a function Ẽ : K × T × {0, 1}n → {0, 1}n such that for any key

K ∈ K and a tweak t ∈ T , ẼK(t, ·) = Ẽ(K, t, ·) is a permutation of {0, 1}n.
Similarity, its inverse is denoted by D̃K = Ẽ−1

K . Let Perm(n) be the set of all

permutations on {0, 1}n. Let P̃ erm(T , n) be the set of tweakable permutations,
i.e., the set of Perm(n) indexed with t ∈ T . In this work, we focus on a tweakable

blockcipher ẼP
K based on a public random permutation P

$← Perm(n).
An adversary is a probabilistic algorithm with access to certain oracles. Let

AO = 1 be the event that an adversary A outputs 1 after interacting with the
oracle O. Without loss of generality, we assume that the adversary doesn’t make
redundant queries, that is, i) it doesn’t repeat prior queries for each oracle, ii)

the adversary does not ask the decryption oracle D̃K after receiving a value in
response to an encryption query ẼK , and iii) the adversary does not ask the
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encryption oracle ẼK after receiving a value in response to a decryption query
D̃K .

A related-key deriving (RKD) function is a map that takes a key K ∈ K as
an input and returns a related key ϕ(K) ∈ K. A RKD set Φ is a set of RKD
functions, which is formalized as Φ = {ϕ : K → K}. Two typical RKD sets are
enumerated as follows:

Φid = {ϕ : K → K};
Φ⊕ = {ϕ : K → K⊕ △ | △∈ K},

where K ∈ K. Throughout the paper we assume that membership in RKD sets
can be efficiently decided.

2.2 The H-Coefficients Technique

Patarin’s H-coefficients technique [25] is a vital tool widely used in the field of
provable security. We briefly summarize this technique as follows.

Consider an information-theoretic adversary A whose goal is to distinguish
a real world X and a ideal world Y , then the advantage of A is denoted as

Adv(A) = |Pr[AX = 1]− Pr[AY = 1]|.

Without loss of generality, we can assume A is a deterministic adversary.
The interaction with X or Y is summarized in a transcript τ , which is a list of
queries and answers. Denote by DX the probability distribution of transcripts
when interacting with X, and by DY the probability distribution of transcripts
when interacting with Y .

A transcript τ is attainable if Pr[DY = τ ] > 0, meaning that it can occur
during interaction with Y . Let Γ be the set of attainable transcripts. The H-
coefficients lemma is presented as follows.

Lemma 1 (H-Coefficients Lemma). Fix a deterministic adversary A. Let
Γ = Γgood

∪
Γbad be a partition of the set of attainable transcripts. Assume that

there exists ε such that for any τ ∈ Γgood, one has

Pr[DX = τ ]

Pr[DY = τ ]
≥ 1− ε.

Then

Adv(A) ≤ ε+ Pr[DY ∈ Γbad].

3 Multi-Key-Security of the Tweakable Even-Mansour
Cipher

3.1 (ϵ, δ)-Almost XOR Universal (AXU) Hash Functions [20]

Definition 1 ((ϵ, δ)-AXU Hash Function Family [20]). Let H = {H : K×
D → R} be a family of hash functions. H is called an (ϵ, δ)-almost XOR universal
((ϵ, δ)-AXU) hash function, if the following two conditions hold:
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1) For any element X ∈ D and any element Y ∈ R,

Pr[K
$← K : HK(X) = Y ] ≤ δ;

2) For any two distinct elements X,X ′ ∈ D and any element Y ∈ R,

Pr[K
$← K : HK(X)⊕HK(X ′) = Y ] ≤ ϵ.

Examples of AXU hash function families are presented as follows.

1) Let H1 = {HK(x) = K · x | K,x ∈ GF (2n)∗}. Then H1 is a (2−n, 2−n)-
AXU hash function family from {0, 1}n \ {0n} to {0, 1}n.

2) Let H2 = {HK(x1, x2, · · · , xt) = K · x1 + K2 · x2 + · · · + Kt · xt | K ∈
GF (2n)∗, xi ∈ GF (2n), 1 ≤ i ≤ t, (x1, x2, · · · , xt) ̸= (0, 0, · · · , 0)}. Then H2 is a
(t/2n, t/2n)-AXU hash function family from {0, 1}tn \ {0tn} to {0, 1}n.

3) Let H3 = {Hk1,k2,··· ,kt(x1, x2, · · · , xt) = k1 · x1 + k2 · x2 + · · · + kt ·
xt | ki ∈ GF (2n), xi ∈ GF (2n), 1 ≤ i ≤ t, (k1, k2, · · · , kt) ̸= (0, 0, · · · , 0), (x1, x2,
· · · , xt) ̸= (0, 0, · · · , 0)}. Then H3 is a (1/2n, 1/2n)-AXU hash function family
from {0, 1}tn \ {0tn} to {0, 1}n.

3.2 Multi-Key-Security Model

Let ẼP
K : T × {0, 1}n → {0, 1}n be a tweakable blockcipher based on a random

permutation P
$← Perm(n), where K ∈ K. Let π̃

$← P̃ erm(T , n) be a random
tweakable permutation. Let l denote the number of keys Ki under which the
adversary performs queries, that is, there is at least one query for every key Ki

for 1 ≤ i ≤ l. The multi-key-security of Ẽ is formalized with a distinguisher that

has adaptive oracle access to either (ẼP
K1

, ẼP
K2

, · · · , ẼP
Kl

;P ) with Ki
$← K for

i = 1, · · · , l, (Real World X), or (π̃1, π̃2, · · · , π̃l;P ) with π̃i
$← P̃ erm(T , n), i =

1, · · · , l (Ideal World Y ). In this paper, we consider the adversary that has access
to the encryption and decryption queries for X or Y . The definition of multi-key
security is presented as follows.

Definition 2 (Multi-Key Security). Let K
$← K and ẼP

K be the tweakable

block cipher based on a random permutation P
$← Perm(n). Given an adversary

A, the multi-key advantage of A with respect to l keys is

Advmk
ẼP

K

(A) = |Pr[AẼP
K1

,ẼP
K2

,··· ,ẼP
Kl

;P = 1]− Pr[Aπ̃1,π̃2,··· ,π̃l;P = 1]|,

where the keys K1, · · · ,Kl are independently and uniformly drawn from K, and
π̃1, π̃2, · · · , π̃l are independently and uniformly drawn from P̃ erm(T , n). The
adversary A has access to the encryption and decryption oracles.
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3.3 Security Proofs of the Tweakable Even-Mansour Cipher in the
Multi-Key Setting

Let H be an (ϵ, δ)-AXU hash function family defined in Definition 1, then the
tweakable Even-Mansour cipher with key space K and tweak space T is written

TEMP
K(t, x) = P (x⊕HK(t))⊕HK(t),

where P is an n-bit public random permutation, HK
$← H, K ∈ K is the key,

t ∈ T is the tweak, and x ∈ {0, 1}n is the plaintext.
The multi-key security of the tweakable Even-Mansour cipher is presented as

follows.

Theorem 1 (Multi-Key Security of the Tweakable Even-Mansour
Cipher). Let TEMP

K be the tweakable Even-Mansour cipher with (ϵ, δ)-AXU
hash function family, then for all adversaries A making at most D queries
to TEMP

K1
, TEMP

K2
, · · · , TEMP

Kl
(resp. π̃1, π̃2, · · · , π̃l) or their inverses and at

most T queries to P or P−1, we have

Advmk
TEM (A) ≤ 2D(T +D(1− 1

l
))δ + (D − l + 1)(D − l)ϵ.

Our proof is similar to that of the Even-Mansour cipher in the multi-key
setting [24], except that we need to consider the tweak of TEM and the properties
of hash functions in the multi-key setting. The result of Theorem 1 is in fact a
generalization of [24]. The proof uses Patarin’s H-coefficients technique [25]. For
a detailed explanation of this technique, you can refer to [10].

As shown in Fig. 1, we consider an adversary A that has bidirection-
al access to l + 1 oracles (O1, · · · , Ol+1). In the real world X, these are

(TEMP
K1

, TEMP
K2

, · · · , TEMP
Kl

;P ) with Ki
$← K for i = 1, · · · , l, P $←

Perm(n), and in the ideal world Y , these are (π̃1, π̃2, · · · , π̃l;P ) with π̃i
$←

P̃ erm(T , n), i = 1, · · · , l and P
$← Perm(n). Without loss of generality, we

assume that A is a deterministic adversary. It makes Di queries to oracle Oi for
i = 1, · · · , l, and T queries to Ol+1. Let D =

∑l
i=1 Di. (Let m be the number of

distinct tweaks, Dt be the number of queries for the t-th tweak, 1 ≤ t ≤ m, using
an arbitrary ordering of the tweaks. Note that m may depend on the answers
received from the oracles, yet one always has D =

∑m
t=1 Dt.)

The interaction of A with the oracles can be described by a transcript
τ = (K1, · · · ,Kl, τ1, · · · , τl+1). We assume that the list of queries to Oi for i =
1, · · · , l is defined by τi = {(t1i , x1

i , y
1
i ), · · · , (t

Di
i , xDi

i , yDi
i )}, where t1i , · · · , t

Di
i ∈

T , and to Ol+1 by τl+1 = {(u1, v1), · · · , (uT , vT )}. We assume that A never

makes duplicate queries, so that (tji , x
j
i ) ̸= (tj

′

i , x
j′

i ), (t
j
i , y

j
i ) ̸= (tj

′

i , y
j′

i ), uj ̸= uj′ ,

and vj ̸= vj
′
for all i, j, j′ where j ̸= j′.

Let DX denote the probability distribution of transcripts in the real world
X, and DY denote the probability distribution of transcripts in the ideal world
Y . We say that a transcript τ is attainable if it can be obtained from interacting
with (π̃1, π̃2, · · · , π̃l, P ), that is to say Pr(DY = τ) > 0.



Title Suppressed Due to Excessive Length 7

P

Å

Å

P

Å

Å

P

Å

Å

... P ... P

 

 

 

 

 

 

   

A

Fig. 1. Multi-Key Security of the Tweakable Even-Mansour Cipher. Left of dashed

line: Real world X = (TEMP
K1

, TEMP
K2

, · · · , TEMP
Kl

;P ) with Ki
$← K for i =

1, · · · , l, P $← Perm(n). Right of dashed line: Ideal world Y = (π̃1, π̃2, · · · , π̃l;P )

with π̃i
$← P̃ erm(T , n), i = 1, · · · , l and P

$← Perm(n). The goal of A is to distinguish
the real world X from the ideal world Y . If the distinguishable advantage of A is
negligible, the scheme is multi-key-secure. Although only one direction is shown, inverse
oracles can be accessed as well. The number of queries by the adversary A to any of
the first l oracles is denoted by D, the number of queries to the last oracle by T .

Definition 3. We say that a transcript τ is bad if two different queries would
result in the same input or output to P , when A interacting with the real world.
Put formally, τ is bad if one of the following conditions is set:

Bad1: ∃(tji , x
j
i , y

j
i ) ∈ τi, t

j
i ∈ T , and (uj′ , vj

′
) ∈ τl+1, such that xj

i ⊕ uj′ =

HKi(t
j
i ), where 1 ≤ i ≤ l, 1 ≤ j ≤ Di, 1 ≤ j′ ≤ T ;

Bad2: ∃(tji , x
j
i , y

j
i ) ∈ τi, t

j
i ∈ T , and (uj′ , vj

′
) ∈ τl+1, such that yji ⊕ vj

′
=

HKi(t
j
i ), where 1 ≤ i ≤ l, 1 ≤ j ≤ Di, 1 ≤ j′ ≤ T ;

Bad3: ∃(tji , x
j
i , y

j
i ) ̸= (tj

′

i , x
j′

i , y
j′

i ) ∈ τi, and tji , t
j′

i ∈ T , such that xj
i ⊕ xj′

i =

HKi(t
j
i )⊕HKi(t

j′

i ), where 1 ≤ i ≤ l, 1 ≤ j ̸= j′ ≤ Di;

Bad4: ∃(tji , x
j
i , y

j
i ) ̸= (tj

′

i , x
j′

i , y
j′

i ) ∈ τi, and tji , t
j′

i ∈ T , such that yji ⊕ yj
′

i =

HKi(t
j
i )⊕HKi(t

j′

i ), where 1 ≤ i ≤ l, 1 ≤ j ̸= j′ ≤ Di;

Bad5: ∃(tji , x
j
i , y

j
i ) ∈ τi, (t

j′

i′ , x
j′

i′ , y
j′

i′ ) ∈ τi′ , (t
j
i , x

j
i , y

j
i ) ̸= (tj

′

i′ , x
j′

i′ , y
j′

i′ ), and

tji , t
j′

i′ ∈ T , such that xj
i ⊕ xj′

i′ = HKi(t
j
i ) ⊕HKi′ (t

j′

i′ ), where 1 ≤ i ̸= i′ ≤ l, 1 ≤
j ≤ Di, 1 ≤ j′ ≤ Di′ ;

Bad6: ∃(tji , x
j
i , y

j
i ) ∈ τi, (t

j′

i′ , x
j′

i′ , y
j′

i′ ) ∈ τi′ , (t
j
i , x

j
i , y

j
i ) ̸= (tj

′

i′ , x
j′

i′ , y
j′

i′ ), and

tji , t
j′

i′ ∈ T , such that yji ⊕ yj
′

i′ = HKi(t
j
i ) ⊕HKi′ (t

j′

i′ ), where 1 ≤ i ̸= i′ ≤ l, 1 ≤
j ≤ Di, 1 ≤ j′ ≤ Di′ .

Otherwise we say that τ is good. We denote Γgood (resp. Γbad) the set of good
(resp. bad) transcripts. Let Γ = Γgood ∪ Γbad be the set of attainable transcripts.

We firstly upper bound the probability of bad transcripts in the ideal world
Y by the following lemma.
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Lemma 2. Let H be an (ϵ, δ)-AXU hash function, l be the number of keys Ki,
and TEMP

K be the tweakable Even-Mansour construction, then

Pr(DY ∈ Γbad) ≤ 2D(T +D(1− 1

l
))δ + (D − l + 1)(D − l)ϵ.

Proof. In the ideal world Y , τ is an attainable transcript generated indepen-
dently of the dummy key Ki ∈ K for i = 1, · · · , l. Assume an adversary A
makes at most D construction queries and at most T primitive queries. For
(tji , x

j
i , y

j
i ) ∈ τi, t

j
i ∈ T , (uj′ , vj

′
) ∈ τl+1, where 1 ≤ i ≤ l, 1 ≤ j ≤ Di, 1 ≤ j′ ≤ T ,

and D =
∑l

i=1 Di, by the properties of the (ϵ, δ)-AXU hash function H, we have

Pr[Bad1] = Pr[Bad2]

= Pr[Ki
$← K : HKi(t

j
i ) = C]

≤
l∑

i=1

DiTδ = DTδ,

where C = xj
i ⊕ uj′ in Bad1 or C = yji ⊕ vj

′
in Bad2.

Fix any distinct queries (tji , x
j
i , y

j
i ) ̸= (tj

′

i , x
j′

i , y
j′

i ) ∈ τi, t
j
i , t

j′

i ∈ T , where
1 ≤ i ≤ l, 1 ≤ j ̸= j′ ≤ Di. By the properties of the (ϵ, δ)-AXU hash function
H, we have

Pr[Bad3] = Pr[Bad4]

= Pr[Ki
$← K : HKi(t

j
i )⊕HKi(t

j′

i ) = C]

≤
l∑

i=1

(
Di

2

)
ϵ,

where C = xj
i ⊕ xj′

i in Bad3 or C = yji ⊕ yj
′

i in Bad4.

As there is at least one query for every key Ki, we consider the maximum
case: the adversary makes (D − l + 1) queries for some key, one query per key
for another l − 1 keys. Therefore, we have

Pr[Bad3] = Pr[Bad4] ≤
l∑

i=1

(
Di

2

)
ϵ

≤
(
D − l + 1

2

)
ϵ

=
(D − l + 1)(D − l)ϵ

2
.

For any distinct queries (tji , x
j
i , y

j
i ) ∈ τi, (t

j′

i′ , x
j′

i′ , y
j′

i′ ) ∈ τi′ , (t
j
i , x

j
i , y

j
i ) ̸=

(tj
′

i′ , x
j′

i′ , y
j′

i′ ), t
j
i , t

j′

i′ ∈ T , where 1 ≤ i ̸= i′ ≤ l, 1 ≤ j ≤ Di, 1 ≤ j′ ≤ Di′ , and
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D =
∑l

i=1 Di =
∑l

i′=1 Di′ , by the properties of the (ϵ, δ)-AXU hash function
H, we have

Pr[Bad5] = Pr[Bad6]

=Pr[Ki,Ki′
$← K2 : HKi(t

j
i )⊕HKi′ (t

j′

i′ ) = C]

=
∑

ai,bi∈R2

Pr[ai ⊕ bi = C|HKi(t
j
i ) = ai,HKi′ (t

j′

i′ ) = bi]·

Pr[Ki,Ki′
$← K2 : HKi(t

j
i ) = ai,HKi′ (t

j′

i′ ) = bi]

≤
∑
ai∈R

Pr[Ki,Ki′
$← K2 : HKi(t

j
i ) = ai,HKi′ (t

j′

i′ ) = C − ai]

≤
∑
ai∈R

Pr[Ki
$← K : HKi(t

j
i ) = ai]·

Pr[Ki′
$← K : HKi′ (t

j′

i′ ) = C − ai] (Key Independence)

≤2n(
(
D

2

)
−

l∑
i=1

(
Di

2

)
)δ2 (Cauchy Inequality)

≤D2(1− 1/l)δ,

where C = xj
i ⊕ xj′

i′ in Bad5 or C = yji ⊕ yj
′

i′ in Bad6, δ ∈ [2−n, 2−(n−1)].
Therefore,

Pr[DY ∈ Γbad] = Pr[
6∪

i=1

Badi] ≤
6∑

i=1

Pr[Badi]

≤ 2D(T +D(1− 1

l
))δ + (D − l + 1)(D − l)ϵ.

This completes the proof.
We then analyze good transcripts. For a good transcript, in the real world

X, all tuples in (K1, · · · ,Kl, τ1, · · · , τl+1) uniquely define an input-output pair
of P , while in the ideal world it is not.

Lemma 3. For any good transcript τ , one has

Pr[DX = τ ]

Pr[DY = τ ]
≥ 1.

Proof. Consider a good transcript τ ∈ Γgood. Denote by ΩX the set of all possible
oracles in the real world X and by ΩY the set of all possible oracles in the
ideal world Y . Let compX(τ) ⊆ ΩX and compY (τ) ⊆ ΩY be the set of oracles
compatible with transcript τ . According to the H-coefficients technique, we have

Pr(DX = τ) = |compX(τ)|
|ΩX | , where |ΩX | = 2n!|K|l.

Pr(DY = τ) = |compY (τ)|
|ΩY | , where |ΩY | = (

∏
t 2

n!)l · 2n!|K|l and t ∈ T .
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Firstly, we calculate |compX(τ)|. As τ ∈ Γgood, there are no two queries in τ
with the same input or output of the underlying permutation. Any query tuple in
τ therefore fixes exactly one input-output pair of the underlying oracle. Because
τ consists of D+T query tuples, the number of possible oracles in the real world
X equals (2n −D − T )!.

For the analysis in the ideal world Y , we define

Dti = |{(ti, xi, yi) ∈ τi|ti ∈ T , xi, yi ∈ {0, 1}n, 1 ≤ i ≤ l}|.

By a similar reason, the number of possible oracles in the ideal world Y
equals

∏l
i=1

∏
t(2

n −Dti)!(2
n − T )!, where D =

∑l
i=1

∑
t Dti . It follows that,

Pr(DX = τ) =
(2n −D − T )!

2n!|K|l

Pr(DY = τ) =

∏l
i=1

∏
t(2

n −Dti)!(2
n − T )!

(
∏

t 2
n!)l · 2n!|K|l

≤ (2n −D − T )!

2n!|K|l
.

Therefore, we have Pr[DX=τ ]
Pr[DY =τ ] ≥ 1.

By Lemmas 1, 2, and 3, we have

Advmk
TEM (A) ≤ 2D(T +D(1− 1

l
))δ + (D − l + 1)(D − l)ϵ.

The tweakable Even-Mansour cipher in the single-key setting is a special
case of it in the multi-key setting where l = 1. We prove that the security bound
of the tweakable Even-Mansour cipher in multi-key setting is a straightforward
extension of the single-key setting. Therefore, the bound that we derived for
the tweakable Even-Mansour cipher in the multi-key setting is tight. If we
replace the public random permutation with an ideal block cipher with the same
characteristics (including block-size, AXU-hash functions, etc), we can obtain
the similar security.

4 Related-Key-Security of the Tweakable Even-Mansour
Cipher

Wang et al. [32] pointed out: “If we consider the related-key attack (RKA)
against these universal-hash-function-based (UHF-based) schemes, some of them
may not be secure, especially those using the key of UHF as a part of the whole
key of scheme, due to the weakness of UHF in the RKA setting”. In order to
ensure the security of UHF-based schemes, Wang et al. provided a related-key
almost universal hash function which is a natural extension to almost universal
hash function in the RKA setting. In this paper, we introduce a concept of (ϵ, δ)-
related-key almost universal hash function to guarantee the related-key security
of the tweakable Even-Mansour cipher.
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4.1 (ϵ, δ)-Related-Key Almost XOR Universal Hash Functions

Definition 4 ((ϵ, δ)-RKA-AXU Hash Function Family). Let H = {H :
K × D → R} be a family of hash functions. H is an (ϵ, δ)-related-key-almost-
XOR-universal ((ϵ, δ)-RKA-AXU) hash function for the RKD set Φ, if the
following two conditions hold:

1) For any ϕ ∈ Φ,X ∈ D, and Y ∈ R,

Pr[K
$← K : Hϕ(K)(X) = Y ] ≤ δ;

2) For any ϕ, ϕ′ ∈ Φ,X,X ′ ∈ D, (ϕ,X) ̸= (ϕ′, X ′), and Y ∈ R,

Pr[K
$← K : Hϕ(K)(X)⊕Hϕ′(K)(X

′) = Y ] ≤ ϵ.

For any ϕ, ϕ′ ∈ Φ, ϕ ̸= ϕ′ means there exists a key K ∈ K such that ϕ(K) ̸=
ϕ′(K). If the RKD set Φid = {ϕ : K → K} is an identity transform, an (ϵ, δ)-
RKA-AXU hash function family is an (ϵ, δ)-AXU hash function family.

Restricting RKD Sets [32]. The RKA-AXU-hash function family depends
on the choice of RKD sets. For some RKD sets, the RKA-AXU-hash function
family may not exist. It is necessary that a RKD set is restricted to both
output unpredictable and collision resistant. The restrictions on the RKD set
are specifically presented as follows.

1) Output unpredictability. A ϕ ∈ Φ that has predictable outputs if there
exists a constant S such that the probability of ϕ(K) = S is high. Let OU(Φ) =
maxϕ∈Φ,SPr[K ← K : ϕ(K) = S] be the probability of output predictability. If
OU(Φ) is negligible, we say that Φ is output unpredictable.

2) Collision resistance. Two distinct ϕ, ϕ′ ∈ Φ have high collision probability
if the probability of ϕ(K) = ϕ′(K) is hight. Let CR(Φ) = maxϕ̸=ϕ′∈ΦPr[K ←
K : ϕ(K) = ϕ′(K)] be the probability of collision. If CR(ϕ) is negligible, we say
that ϕ is collision resistant. More strictly, if for any two distinct ϕ, ϕ′ ∈ Φ and
any key K, we have ϕ(K) ̸= ϕ′(K) or CR(Φ) = 0, we say that Φ is claw-free.

Instances. Wang et al. [32] constructed related-key almost universal hash
functions: one fixed-input-length (FIL) UHF named RH1 and two variable-input-
length (VIL) UHFs named RH2 and RH3. It is easy to obtain that RH1 and
RH2 are both (ϵ, δ)-RKA-AXU hash functions for the RKD set Φ⊕.

1) RH1: {0, 1}n×{0, 1}n → {0, 1}n, RH1K(M) = MK⊕K3 is (2/2n, 2/2n)-
RKA-AXU for the RKD set Φ⊕.

2) RH2: {0, 1}n × {0, 1}n → {0, 1}n, pad(M) = M ∥ 0i ∥ |M |

RH2K(M) =

{
Kl+2 ⊕ PolyK(pad(M)) l is odd

Kl+3 ⊕ PolyK(pad(M))K l is even

is ((lmax + 3)/2n, (lmax + 3)/2n)-RKA-AXU for the RKD set Φ⊕, where l =
⌈|M |/n⌉ + 1 is the number of blocks in pad(M), lmax is the maximum block
number of messages after padding, and Poly : {0, 1}n × {0, 1}nm → {0, 1}n is
defined as follows:

PolyK(X) = X1K
m ⊕ · · · ⊕XmK.
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4.2 Related-Key-Security Model

Let Φ be a set of RKD functions. For a tweakable block cipher Ẽ : K × T ×
{0, 1}n → {0, 1}n based on a public random permutation P

$← Perm(n), we

define a related-key oracle RK[Ẽ] : K × Φ× T × {0, 1}n → {0, 1}n as

RK[Ẽ]P (K,ϕ, t, x) = RK[Ẽ]PK(ϕ, t, x) = ẼP
ϕ(K)(t, x),

where K ∈ K is the key, ϕ ∈ Φ is a RKD function, t ∈ T is the tweak, and
x ∈ {0, 1}n is the plaintext.

Let ˜RKPerm(Φ, T , n) be the set of tweakable related-key permutations, i.e.,
the set of all families of permutations on {0, 1}n indexed with (ϕ, t) ∈ Φ× T .

The security of the tweakable block cipher in the related-key setting is
formalized with a distinguisher which has access to (ẼP

ϕ(K);P ) with K ∈

K, ϕ ∈ Φ, and P
$← Perm(n) (Real World X), or (RK[π̃];P ) with RK[π̃]

$←
˜RKPerm(Φ, T , n) and P

$← Perm(n) (Ideal World Y ). In this paper, we
consider that an adversary is adaptive and can make encryption and decryption
queries to each oracle. We present a definition of related-key security as follows.

Definition 5 (Related-Key Security). Let Φ be a RKD set, K
$← K be a

key, and ẼP
K be a tweakable block cipher based on a public random permutation

P
$← Perm(n). Given an adversary A, the related-key advantage of A with

respect to Φ is

Advrk
ẼP

K

(A) = |Pr[AẼP
ϕ(K);P = 1]− Pr[ARK[π̃];P = 1]|,

where RK[π̃]
$← ˜RKPerm(Φ, T , n), ϕ $← Φ, and P

$← Perm(n). The adversary
A has access to the encryption and decryption oracles.

4.3 Security Proofs of the Tweakable Even-Mansour Cipher in the
Related-Key Setting

Given a restricting RKD set Φ, letH be an (ϵ, δ)-RKA-AXU hash function family
defined in Definition 4, then the construction of tweakable Even-Mansour in the
related-key setting is written as

TEMP
ϕ(K)(t, x) = P (x⊕Hϕ(K)(t))⊕Hϕ(K)(t),

where P is a public random permutation, H
$← H, K ∈ K is the key, ϕ ∈ Φ is a

RKD function, t ∈ T is the tweak, and x ∈ {0, 1}n is the plaintext.
In this paper, we assume that an adversary makes two-directional queries to

each oracle and never makes redundant queries. The related-key security of the
tweakable Even-Mansour cipher is presented as follows.
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Fig. 2. Related-Key Security of the tweakable Even-Mansour Cipher. Left of dashed

line: Real world X = (TEMP
ϕ(K);P ) with K

$← K, ϕ $← Φ, and P
$← Perm(n). Right

of dashed line: Ideal world Y = (RK[π̃];P ) with RK[π̃]
$← ˜RKPerm(Φ, T , n) and

P
$← Perm(n). The goal of A is to distinguish the real world from the ideal world.

If the distinguishable advantage of A is negligible, the scheme is related-key-secure.
Although only one direction is shown, inverse oracles can be accessed as well. The
number of queries by the adversary A to the first oracle is denoted by D, the number
of queries to the last oracle by T .

Theorem 2 (Related-Key Security of the Tweakable Even-Mansour
Cipher). Let Φ be a restricting RKD set, ϕ ∈ Φ, t ∈ T , and TEMP

K(t, x) =
P (x⊕HK(t))⊕HK(t) be the tweakable Even-Mansour cipher with (ϵ, δ)-RKA-
AXU hash function family, then for all adversaries A making at most D queries
to TEMP

ϕ(K) (resp. RK[π̃]) or their inverses and at most T queries to P or P−1,
the related-key advantage of A with respect to Φ is

AdvrkTEM (A) ≤ D(D − 1)ϵ+ 2DTδ.

Our proof uses Patarin’s H-coefficients technique [25]. For a detailed expla-
nation of this technique, we refer to [10].

As shown in Fig. 2, we consider an adversary A that has bidirectional access

to two oracles (O1, O2). In the real world X, these are (TEMP
ϕ(K);P ) with K

$←

K, ϕ $← Φ, and P
$← Perm(n), and in the ideal world Y , these are (RK[π̃];P )

withRK[π̃]
$← ˜RKPerm(Φ, T , n) and P

$← Perm(n). Without loss of generality,
we assume that A is a deterministic adversary.

The interaction of A with the oracles can be described by a transcript
τ = (K, τ1, τ2). We assume that the list of queries to O1 is defined by τ1 =
{(ϕ1, t1, x1, y1), · · · , (ϕD, tD, xD, yD)}, where (ϕ1, t1), · · · , (ϕD, tD) ∈ (Φ, T ),
and to O2 by τ2 = {(u1, v1), · · · , (uT , vT ). We assume the adversary never makes
duplicate queries, so that (ϕi, ti, xi) ̸= (ϕj , tj , xj), (ϕi, ti, yi) ̸= (ϕj , tj , yj), ui ̸=
uj , vi ̸= vj for all i, j. Let DX be the probability distribution of transcripts in
the real world X and DY be the distribution of transcripts in the ideal world
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Y . A transcript τ is attainable if Pr[DY = τ ] > 0, meaning that it can occur
during interaction with Y .

Definition 6. We say that a transcript τ is bad if two different queries would
result in the same input or output to P , when A interacting with the real world.
Put formally, τ is bad if one of the following conditions is set:

Bad1: ∃(ϕ, t, x, y) ∈ τ1, ϕ ∈ Φ, t ∈ T , and (u, v) ∈ τ2, such that x ⊕ u =
Hϕ(K)(t);

Bad2: ∃(ϕ, t, x, y) ∈ τ1, ϕ ∈ Φ, t ∈ T , and (u, v) ∈ τ2, such that y ⊕ v =
Hϕ(K)(t);

Bad3: ∃(ϕ, t, x, y) ̸= (ϕ′, t′, x′, y′) ∈ τ1, ϕ, ϕ
′ ∈ Φ, t, t′ ∈ T , such that x⊕ x′ =

Hϕ(K)(t)⊕Hϕ′(K)(t
′);

Bad4: ∃(ϕ, t, x, y) ̸= (ϕ′, t′, x′, y′) ∈ τ1, ϕ, ϕ
′ ∈ Φ, t, t′ ∈ T , such that y ⊕ y′ =

Hϕ(K)(t)⊕Hϕ′(K)(t
′).

Otherwise we say that τ is good. We denote Γgood, resp. Γbad the set of good,
resp. bad transcripts, Γ = Γgood ∪ Γbad.

We firstly upper bound the probability of bad transcripts in the ideal world
Y by the following lemma.

Lemma 4. If H is (ϵ, δ)-RKA-AXU for the RKD set Φ and P is public random
permutation, then

Pr(DY ∈ Γbad) ≤ D(D − 1)ϵ+ 2DTδ.

Proof. In the ideal world Y , τ is an attainable transcript generated indepen-
dently of the dummy key K ∈ K. Assume an adversary A makes at most D
construction queries and at most T primitive queries. For (ϕ, t, x, y) ∈ τ1, ϕ ∈
Φ, t ∈ T , and (u, v) ∈ τ2, by the properties of the (ϵ, δ)-RKA-AXU hash function
H, we have

Pr[Bad1] = Pr[Bad2]

= Pr[K
$← K : Hϕ(K)(t) = C] ≤ DTδ,

where C = x⊕ u in Bad1 or C = y ⊕ v in Bad2.

Fix any distinct queries (ϕ, t, x, y) ̸= (ϕ′, t′, x′, y′) ∈ τ1, ϕ, ϕ
′ ∈ Φ, t, t′ ∈ T .

By the properties of the (ϵ, δ)-RKA-AXU hash function H, we have

Pr[Bad3] = Pr[Bad4]

= Pr[K
$← K : Hϕ(K)(t)⊕Hϕ′(K)(t

′) = C]

≤
(
D

2

)
ϵ,

where C = x⊕ x′ in Bad3 or C = y ⊕ y′ in Bad4.
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Therefore,

Pr[DY ∈ Γbad] = Pr[
4∪

i=1

Badi] ≤
4∑

i=1

Pr[Badi]

≤ D(D − 1)ϵ+ 2DTδ.

We then analyze good transcripts.

Lemma 5. For any good transcript τ , one has

Pr[DX = τ ]

Pr[DY = τ ]
≥ 1.

Proof. Consider a good transcript τ ∈ Γgood. Denote by ΩX the set of all possible
oracles in the real world X and by ΩY the set of all possible oracles in the
ideal world Y . Let compX(τ) ⊆ ΩX and compY (τ) ⊆ ΩY be the set of oracles
compatible with transcript τ . According to the H-coefficients technique, we have

Pr(DX = τ) = |compX(τ)|
|ΩX | , where |ΩX | = 2n!|K|.

Pr(DY = τ) = |compY (τ)|
|ΩY | , where |ΩY | =

∏
ϕ,t(2

n!)·2n!|K| and (ϕ, t) ∈ (Φ, T ).
Firstly, we calculate |compX(τ)|. As τ ∈ Γgood, there are no two queries in τ

with the same input or output of the underlying permutation. Any query tuple in
τ therefore fixes exactly one input-output pair of the underlying oracle. Because
τ consists of D+T query tuples, the number of possible oracles in the real world
X equals (2n −D − T )!.

For the analysis in the ideal world Y , we define

Dϕ,t = |{(ϕ, t, x, y) ∈ τ1|(ϕ, t) ∈ (Φ, T ), x, y ∈ {0, 1}n}|.

By a similar reason, the number of possible oracles in Y equals
∏

ϕ,t(2
n −

Dϕ,t)!(2
n − T )!, where

∑
ϕ,t Dϕ,t = D. It follows that,

Pr(DX = τ) =
(2n −D − T )!

2n!|K|

Pr(DY = τ) =

∏
ϕ,t(2

n −Dϕ,t)!(2
n − T )!∏

ϕ,t(2
n!) · 2n!|K|

≤ (2n −D − T )!

2n!|K|
.

Therefore, we have Pr[DX=τ ]
Pr[DY =τ ] ≥ 1.

By H-coefficients technique, we have

AdvrkaTEM (A) ≤ D(D − 1)ϵ+ 2DTδ.

The tweakable Even-Mansour cipher in the single-key setting is a special case
of it in the related-key setting if a RKD set Φid = {ϕ : K → K} is an identity
transform. Therefore, the bound that we derived for the tweakable Even-Mansour
cipher in the related-key setting is also tight. If we replace the public random
permutation with an ideal block cipher with the same characteristics (including
block-size, RKA-AXU-hash functions, etc), we can obtain the similar security.
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5 Conclusion

This paper focuses on the tweakable Even-Mansour cipher in the multi-key
and related-key settings. Multi-key and related-key settings occur frequently
in real-world implementations, that is to say, a plaintext may be encrypted
under different keys. The adversary can perform chosen-plaintext and chosen-
ciphertext attacks under a set of unknown keys.

In the multi-key setting, these keys are independently and randomly chosen
from the key space. We prove that the tweakable Even-Mansour cipher with
(ϵ, δ)-AXU-hash functions is multi-key-secure up to 2D(T + D(1 − 1/l))δ +
(D − l + 1)(D − l)ϵ queries, where D is the complexity of construction queries
(data complexity), T is the complexity of internal permutation queries (time
complexity), and l is the number of keys.

In the related-key setting, the adversary can observe the operation of a
cipher under several different keys whose values are initially unknown, but where
some mathematical relationship connecting the keys is known to the adversary.
We prove that the tweakable Even-Mansour cipher with (ϵ, δ)-RKA-AXU-hash
functions is related-key-secure up to D(D− 1)ϵ+2DTδ queries, where D is the
complexity of construction queries (data complexity) and T is the complexity of
internal permutation queries (time complexity).

The tweakable Even-Mansour cipher with RKA-AXU-hash function is secure
in the single-key, multi-key, and related-key settings. The tweakable Even-
Mansour cipher not only has a simple structure, but also it is based on a
permutation, which makes it easier to generate fast and secure implementations.
If we use the tweakable Even-Mansour cipher instead of the underlying block
cipher, encryption modes, authentication modes, and authenticated encryption
modes may be implemented more efficiently and may be more secure.

We leave it as an interesting open problem to settle the security of two-
round iterated tweakable Even-Mansour cipher in the multi-key and related-key
settings. Does further extend it for any r-round iterated tweakable Even-Mansour
cipher?

Acknowledgments. The heading should be treated as a subsubsection heading
and should not be assigned a number.
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