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Abstract. Security with respect to the operator as an adversary is con-
sidered for processors supporting unbounded general purpose homomor-
phic encrypted computation. An efficient machine code architecture is
defined for those platforms and it is proved that user programs expressed
in it are cryptographically obfuscated, guaranteeing privacy though they,
their traces and (encrypted) data are visible to the operator. It is proved
that encrypted user data cannot be deciphered by the operator, nor may
programs be altered to give an intended result. A compiler is defined and
it is proved that any recompilation produces uniformly distributed ran-
dom variations in runtime data, supporting cryptographic obfuscation.

1 Introduction

Fully homomorphic encryption (FHE) as proposed by Gentry in 2009 [18]
and subsequent improvements [14, 45, 5] and even new directions [20] is ap-

proaching a point where it might begin to find practical applications, though it
remains for the moment an extremely slow technology even when implemented in
hardware [19] (of the order of 1 bit-op per second on vector mainframes). Slow or
not at present, the forthcoming applications encompass ‘multiparty’ calculations,
in which several parties jointly work on common but heterogeneously encrypted
data in the Cloud, thanks to protocols such as those developed by Lopez-Alt et
al. [35], under which users and operator cannot snoop on one another.

But a conflicting view is asserted in van Dijk et al. [15], where it is shown
that a cryptographic solution cannot ensure the requisite multiparty privacy in
the Cloud for arbitrary computations on the server, whatever the protocol. This
paper will disagree, asserting that new processing contexts have fundamentally
changed the landscape, enabling just that. It will be shown that van Dijk et al.’s
argument in fact establishes privacy, with the right hardware underneath.

In support of that view, some prototype processor architectures such as As-
cend [17] by Fletcher et al. (van Dijk is a coauthor), which obscure instructions
and data from the operator’s view by a variety of means, cryptographic and
physical, have been shown by their authors to be secure platforms for private
computations in the Cloud. The arguments parallel those in this paper. The
argument of van Dijk et al. in [15] shows that privacy of arbitrary computations
on a server in the multiparty setting is equivalent to generic program obfuscation



[23], and defers to a result of Barak et al. [3] that the latter is impossible. But
Barak et al.’s result is based on assumptions of what code looks like and what
can be told from it that are invalid for the codes and processors considered here,
or the formal results in this paper could not be.

Ascend, for example, makes looking at running code impossible by means of
hardware protections and protects it on the way to the processor via encryption.
If the code and I/O is encrypted, and the processor executes it in controlled
isolation to match defined statistics on observables, as is the case with Ascend,
then it is obfuscated from the operator. The idea has surfaced many times over
the years (e.g., [25, 26]) and success means doing it as well as Ascend does.

If not entirely encrypted, code may still be encrypted in part such that it
is impossible to tell anything significant by what is readable. That is the case
in the HEROIC architecture [46], which has just one non-control instruction
type [47] and the unencrypted part is the same between instructions. A proof in
this paper (Section 5, Theorem 1) shows that HEROIC traces, though visible,
do not give away information about what the data means (the data circulates
in encrypted form in the HEROIC processor), nor may a malfeasant operator
change the data to their own choice (Section 5, Theorem 2).

The generalisation of HEROIC’s approach is embodied in the KPU (Krypto
Processor Unit; in which a modified arithmetic has been substituted in an almost
conventional CPU design) [9]. Code is visible to all and data is encrypted, as in
HEROIC, but there are potentially as many instructions as in any conventional
processor. This paper proposes a machine code instruction set architecture for
KPUs that leaves their traces formally uninformative too (Section 6, Theorem 3).
In summary, Barak et al.’s result seems overtaken by technology. The platforms

1) Ascend: encrypted code, I/O and memory, physical protections;
2) HEROIC: indistinguishable code, encrypted data, I/O and memory;
3) KPU: distinguishable code, encrypted data, I/O and memory

will here be taken as paradigms for general purpose ‘homomorphic encrypted
computation’ (HEC), which term will be refined shortly as security is discussed
in Section 2 below, where vulnerabilities associated with computational com-
pleteness will be disclosed that are later in this paper closed first for HEROIC,
then the KPU, culminating with the definition of an ‘obfuscating’ compiler for
the target, and proof of the obfuscation property (Section 7, Theorem 4).

2 Completeness and Security in HEC

A fully homomorphic encryption [ · ]E is such that adding up or multiplying
two encryptions respectively adds or multiplies the unencrypted numbers ‘un-
derneath’: [x+y]E=[x]E+[y]E , [x y]E=[x]E [y]E . Sometimes applications require
a fixed small number of multiplications and then a somewhat homomorphic en-
cryption (SHE) may do. A SHE is without the periodic renormalisations that are
a hallmark of known FHEs, resulting in faster and smaller encryptions. Without
renormalisation, arithmetic eventually takes numbers out of range, for example
nearing 2m in a calculation mod m. But before that happens the calculation will



have finished. Lauter et al. [32] quote a scheme with block-size about 43.5KB and
encrypted 1-bit addition in 1ms, multiplication in 43ms, achieved on a 2.1GHz
Intel Core 2 Duo in 1GB of RAM. That roughly equates to a 30Hz (sic) Pentium.

More speed comes with substituting a partially homomorphic encryption
(PHE), if feasible. That is homomorphic with respect to one of addition and
multiplication, not both. El Gamal [16] and Paillier [40] are well-known addi-
tively homomorphic schemes. Paillier converts addition on unencrypted numbers
to multiplication mod m=n2 on encrypted numbers, where n=pq is the product
of two primes. The value n is public, but factoring is infeasible when it is 1024
bits long or more, when the difficulty of factoring n via best-known sieves (min-

imal running time e
√
1024 log 1024 ∼ 2121.5 operations [33]) is about the same as

brute-forcing a 128-bit key. An encrypted number mod m=n2 is 2048 bits long
and encrypted add takes 10us (20K cycles) on the 2.1GHz Intel Duo.

A further change is to not only embed the encrypted arithmetic as hardware,
as IBM did in [19], but to base all of the processor around it, using it as its
arithmetic logic unit (ALU). The HEROIC processor is built like that. Its core
does Paillier 2048-bit encrypted addition in about 4K cycles on a 200MHz pro-
grammable hardware platform, for about 20us per encrypted (16-bit) addition,
1.25us per bit, roughly equating to a 25KHz Pentium. HEROIC is an example
of a processor that does all its arithmetic encrypted.

Such processors (‘KPUs’) are characterised in [7], which shows that changing
the ALU in a processor design to ‘encrypted working’ is enough to support
arbitrary unbounded computation with encrypted data. That works even if the
encryption has no homomorphic properties [10], because the system as a whole
is homomorphic. Designs have been tested in which AES [13] (the US ‘Advanced
Encryption Standard’) serves as encryption, and computation speeds equal to
a 600MHz Pentium are reported in [9]. The difference from a security point of
view in AES as against Paillier is that a key must be embedded in the processor
in order to configure the arithmetic. That may be done at manufacture, using
Smart Card fabrication techniques [29] for protection, or a Diffie-Hellman circuit
[11] may safely load the key to the processor in public view, with authentication.

Unbounded homomorphic encrypted computation is supported by HEROIC
and the KPU. That is distinct from the special-purpose calculations proposed
for FHEs and PHEs. While those include web-based voting [1], public-key en-
cryption schemes [42], and private information retrieval (PIR) schemes [30] (en-
crypted databases and queries) and machine learning [21], as well as image eigen-
face analysis [31], a generic HEC platform should be capable of computational
tasks individually of unbounded complexity, not defined beforehand.

Completeness: Even to multiply two encrypted numbers, the Paillier encrypted
addition in HEROIC does not suffice. A comparison operation between encrypted
numbers is required, then it may be implemented as a subroutine. HEROIC
provides a table of signs 3 for 16-bit encrypted numbers, saying whether the

3 Paillier incorporates a random ‘blinding factor’ into encrypted numbers [x]E : an arbi-
trary multiplier rn mod m, where n=pq and m=n2 is the public modulus. Decryption
involves raising to the power of the order of the multiplicative group mod n, so the



number under the encryption is positive (high bit unset) or negative (high bit
set), allowing x<y to be determined from the sign for [x−y]E .

With encrypted addition, comparison, one nonzero encrypted constant, plus
iteration or recursion, any computable function can be programmed [41], forming
a generic platform for homomorphic encrypted computation. HEROIC is very
nearly minimal for what is required for computational completeness and both
Ascend and KPU are more comfortable for the programmer because they offer
the panoply of conventional machine code instructions as programming interface.

Is HEC secure? Being able to run any computable function is more than was
envisaged when calculations with encrypted addition and multiplication were
proposed as applications for homomorphic encryptions. To an extent even those
are not secure because an attacker can take an encrypted value [x]E and calculate

[x− x]E = [0]E

using subtraction to obtain an encrypted zero (subtraction may be available ei-
ther as a machine instruction, or as a subroutine). They might go on to recognise
that code for zero in some encrypted data. Repetition should produce as many
different encryptions of zero as may be wished for the purposes of comparison.

Even in the absence of an explicit subtraction operation, because FHEs gen-
erally implement 1-bit arithmetic, zero can be obtained via encrypted addition:

[x + x mod 2]E = [0]E

while in HEROIC’s 16-bit 2s complement arithmetic under Paillier:

[216x mod 216]E = [0]E

where the scalar multiplication represents repeated addition. Moreover, HEROIC
does division in a subroutine, and an attacker may use that subroutine to get an
encrypted 1 from any observed [x]E that happens not to be an encrypted zero:

[x/x]E = [1]E

Statistically, many such [x]E will be observed at runtime. The code for the divi-
sion subroutine is a weakness in itself, because one of the constants in it should
be an encrypted 1. Guess which it is and, by repeated addition, an attacker may
efficiently build an encryption of any number K from its binary representation:

[2k11 + · · ·+ 2kj1]E = [K]E

Conversely, given an encrypted 1 and HEROIC’s comparison operation, any
encrypted number [x]E can be decrypted by comparing it with each constructed
integer [K]E in turn, or, more efficiently, by deducing its binary digits one by
one, comparing with and subtracting [2k]E when 2k ≤ x < 2k+1.

So homomorphic encrypted computation has security questions to answer.

rn becomes 1 mod n2 and does not affect anything. The rn may be removed using
the additional secret that the r have been chosen with multiplicative order k mod
n, where k is a certain divisor of the order of the multiplicative group mod n. Then
[x]kE mod m is an unblinded encryption of kx. If the latter is 1, then, as unblinded
Paillier encrypts zero to 1, this is a runtime test for x=0, which theoretically, but
impractically, can substitute for HEROIC’s static table of signs.



3 Functions Computed with a FHE

The common claim that ‘any’ function can be implemented with a FHE needs
clarification. Both addition and multiplication have the property that if all inputs
are set to zero, the output is zero, therefore any combination has that property:

Proposition 1. Any function f(x) implemented by an FHE or PHE takes en-
crypted zero inputs x=0 to an encrypted zero output f(0) = 0.

The proof is the sentence above the statement. Conditionals are admissible too:
choice f(x)=t?f1(x):f2(x) between functions that produce zero when all inputs
are zero still produces zero when all inputs are zero, no matter which way t goes.

Therefore ‘logical negation’, taking 0 to 1, 1 to 0, cannot be implemented via a
FHE. Of the 16 boolean operators f(x, y), 8 can and 8 cannot be done using addi-
tion and multiplication alone. But the ‘cannot’ are of the form f(x, y)=1+p(x, y),
where p ‘can’. So any boolean operator f(x, y) may be implemented by putting
z=1 in q(x, y, z)=z+p(x, y), and addition, multiplication and 1 suffice together.

In conclusion, encrypted calculations generally require a fixed nonzero con-
stant, usually 1, comprising an extra secret that needs to be guarded well.

4 Functions in HEC

When k-bit binary arithmetic with k>1 is implemented under a FHE or PHE,
as in HEROIC, or is implemented in a more general system for homomorphic
encrypted computation such as a KPU, then there are relatively fewer functions
that can be implemented using additions and multiplications alone. Those which
‘can’ are characterised by Proposition 1 taken also mod 2, 4, . . . , 2k−1. Of the
standard computer arithmetic functions, aside from logical negation and ‘bitwise
complement’ which are already ruled out by the proposition, right shift (4>>2=1
is not 0 mod 2) and division (4/4=1 is not 0 mod 4) are ruled out by this.

So a system for general purpose HEC, even using a FHE or PHE, must embed
an encrypted nonzero constant for future use, or demand it as input each time.

5 Secure HEC

Nevertheless, there are ways of running HEC securely. The ‘OI’ in ‘HEROIC’
stands for ‘one instruction’: the machine code has only one significant instruction,
an add-and-branch, which sets a value in one memory location and branches if
the value in another is low enough. Instructions may be considered compounds of
addition of a constant y←x+k and branches based on comparison with a constant
x<K. Those two, together with control instructions, are sufficient to perform
any computation, as evidenced by Conway’s well-known ‘Fractran’ programming
language [12], where those are the only high-level instructions.

Consider a program C written using only those two instructions. Ensure no
collisions between encrypted constants (a) [k]E and (b) [K]E in the code nor of
those with (c) runtime encrypted values, by padding or blinding appropriately:



Theorem 1. No method of observation exists by which the operator who does
not possess the key may decrypt the output [y]E of the program C.

Proof. Suppose for contradiction that the operator has a method f(T,C) = y of
knowing that the output [y]E of C encrypts y, having observed the trace T . Now
imagine that every number has h6=0 added to it under the encryption. The ad-
ditions [y←x+k]E in C still make sense, adding k under the encryption to a
number that is h more than it used to be to get a number that is h more than
it used to be. Comparisons [x<K]E in C need changing, however, because the
x, which are h more than they used to be, now need to be compared with K ′

equal to K+h for the program to make sense. So the branch instructions in the
program must be modified to contain [K ′]E instead of [K]E . To the operator, the
new program code C ′ ‘looks the same’, C ′ ∼ C, because one encrypted number
is as meaningful as another without the key (by the ‘no collisions’ hypothesis,
the operator cannot tell either by a new collision or lack of an old one that the
K have changed), and the program trace T ′ looks the same up to the encrypted
numbers in it, which the operator cannot read, so it looks the same, T ′ ∼ T , and
the method f must declare the output of C to be f(T ′, C ′)=f(T,C)=y. But it is
not [y]E but [y+h]E , so the method fails.

The heart of the proof is that to the operator one program code and trace
can look the same as another that does something different. In the Ascend ar-
chitecture that is justified because access to the code and the trace is restricted,
respectively via encryption and access control. In the HEROIC design that works
because enough machine code instructions look alike, up to the encrypted (hence
unreadable by the operator) data they contain, to mask the issue. But KPUs
run more instruction types and some might comprise a readable program. If the
program is just ‘sub[tract] r,r,r’ (replace [x]E in register r with [x − x]E), for
example, then the (encrypted) zero result is certain. The operator might also
copy and rearrange other instructions to decipher what is going on, so there is a
question over what instructions a KPU should offer, which Section 6 will settle.

An elaboration of the proof of Theorem 1 establishes the result for plural
outputs y too. Consider program C again, with the ‘no collisions’ arrangement:

Theorem 2. There is no method by which the operator can alter program C
using just add and compare with constant instructions to get intended outputs [y]E .

Proof. Suppose for contradiction that the operator builds a new program C ′=f(C)
that returns [y]E . Then its constants [k]E are found in C and its constants [K]E
likewise, because f has no way of arithmetically combining them (the disjoint
subspaces condition means they cannot be combined arithmetically in the proces-
sor and the operator does not have the encryption key). Theorem 1 (plural y)
says the operator cannot read outputs [y]E of C ′, yet knows what they are.

This partially answers whether an attacker can turn the instructions of general
HEC to decrypting program data. The answer is ‘no’, if instructions available
are confined to just add a constant/branch on compare with a constant, as in



HEROIC. The answer is also ‘no’ if the attacker is prevented from running their
own programs on user data, as in Ascend. The result will be extended below to
apply to generic KPU machines, which may have more and different instructions.

6 FxA Instruction Set

The argument above may be extended to cover two parameter additions, one and
two parameter subtractions, multiplications, left shifts, provided each instruction
is followed by addition of some constant k (which may be zero). That can be
enforced in the processor architecture and supported by the compiler, but there
is also an opportunity there to co-opt a single fused multiply and add (FMA)
machine code instruction to cover for all the instructions just mentioned.

That is convenient because FMA is nowadays seen as the ideal unit of parallel
computation, having been introduced for that purpose by AMD and Intel in
2011/12/13, with the FMA3/4 instruction sets. Denote by a fused anything and
add (FxA) instruction set one in which no arithmetic instruction appears except
as the fused compound with a trailing (or preceding) constant addend. Then:

Theorem 3. There is no method by which the privileged operator can read a
program C constructed using FxA instructions, nor deliberately alter it using
those instructions to give an intended encrypted output.

Proof. The idea to consider with respect to multiplication by a constant k is:

(x + h)k = (xk + h) + h(k − 1)

So an arbitrary ‘+h’ may be applied both to the data x going in and the data xk
coming out of a ‘multiply by k’ instruction if an instruction to add h(k−1) is
appended. I.e., replacing the fused instruction [y←x∗k1+k2]E by [y←x∗k1+k′2]E
where k′2=h(k1−1)+k2, supports a ‘+h’ change in the circulating data but the
change is inscrutable to the operator, who is not privy to the value of the en-
crypted constants [k2]E vs. [k′2]E . Then the operator cannot differentiate between
‘+0’ and ‘+h’, so cannot know what is circulating.

A hypothetical ‘divide by 2’ instruction is covered like this too. It should be
both preceded by and followed by ‘add a constant’ instructions. The ‘preceded by’
part can be merged with a prior FxA instruction. E.g., for h=7, the idea is

b(2n+8)/2c+k+3 = n+k+7 = b(2n)/2c+k+7

b((2n−1)+8)/2c+k+3 = n+k+6 = b(2n−1)/2c+k+7

so for both x = 2n and x = 2n− 1

b(x+7+1)/2c+k+3 = bx/2c+k+7

showing that replacing the fused instruction [y←x/2+k]E by [y←(x+1)/2+k′]E ,
where k′=k+3, supports the underlying ‘+7’ change. The code change is in-
scrutable to the operator, who cannot then differentiate between ‘+0’ and ‘+7’.

Variants of that calculation cover arbitrary constant arithmetic right shifts,
and division by a constant divisor. Two-parameter addition is covered by

x+h + y+h + k = x+y + k+h + h



showing that replacing fused instruction [y←x+y+k]E by [y←x+y+k′]E , where
k′=k+h, supports a ‘+h’ change in the circulating data. The code change is be
inscrutable to the operator, who must allow that it may be so.

Two-parameter subtraction is similar. Two-parameter multiplication and di-
vision may draw off a ‘+h’ displacement into preceding instructions. That reestab-
lishes in this larger context the argument of Theorem 1 and Theorem 2.

So running a complex FxA instruction set in a HEC processor is just as secure
as HEROIC’s one-instruction set is proved to be in Theorems 1 and 2.

The proof does not bear on bitwise operations, which should be composed as
subroutines using the other arithmetic operations. But the exclusive or identity

(x̂h)̂(y ̂h)̂k = x̂ y ̂(k ̂h)̂h
shows that replacing an instruction [y←x̂ŷk]E by [y←x̂ŷk′]E , where k′=k̂h,
supports arbitrary interpretations ‘̂h’ on the circulating data.

There is support in part here for the argument of van Dijk et al. commented
on in Section 1: security in the Cloud is reducible to the successful obfuscation
of code. But instead of concluding it is impossible, it seems that code may be
obfuscated. That can be done by encrypting the code, hiding the execution and
encrypting the I/O, but for FxA code it can be done by encrypting only the
data in the code and leaving the execution (on encrypted data) visible. It is not
necessary to make code inaccessible, as in Ascend, nor to have instructions all
look the same, as in HEROIC.

Practical problems are that every instruction carrying an encrypted datum
is longer. It also ought to be decrypted first-time and then cached unencrypted
within the processor for efficiency and security. A 128-bit encryption block-size
implies that 32-bit instructions expand to about 160 bits each, via four data-
carrying 32-bit prefixes per instruction, and the five-fold increase means that
instructions must be read from memory/cache five times as quickly in order
to maintain performance. Since memory accesses are the slowest thing about a
processor (approx. 15ns latency in a processor with an approx. 0.5ns cycle), that
is a bottleneck in practice.

The theorem establishes a cryptographic obfuscation result: knowing the code
does not enable even a single bit of data to be guessed with any statistical
certainty. All results are equally likely, as far as the operator may know. But
that does not take into account the truism that human beings only write certain
programs, so one may bet, for example, on finding an encrypted 1 as one of the
constants in the program. Practical obfuscation requires a compiler that uses
the alternatives that appear in the proof of Theorem 3, else all is bluff.

7 Obfuscating Compilation to FxA

To make compilation to FxA really use the instruction architecture for obfus-
cation, not just set the extra constant addend to (encrypted) zero every time,
the compiler may use a database D : DB = Loc→Z32 containing (32-bit) integer
offsets indexed per register or memory location. As the compiler works through



the source code, the offset represents by how much the data underneath the
encryption is to vary from nominal at runtime at that point in the program.

The compiler also maintains a database L : Var→Loc of the locations (reg-
isters, memory) for the source variable placements:

CL : DB× source code→ DB×machine code

The following three cases are representative of the compiler action:

Sequence: The compiler works left-to-right:

CL[D0 : s1; s2] = D2 : m1;m2

where D1 : m1 = CL[D0 : s1]

D2 : m2 = CL[D1 : s2]

Arithmetic: The opportunity for obfuscation arises at the compilation of non-
control instructions. To compile a source code addition, for example, a new
random offset dx′=D1Lx for the data in the target location Lx is invented:

CL[D0 : x=y+z] = D1 : [Lx←Ly+Lz+i]E

where i = D1Lx−D0Ly−D0Lz

and D1 varies from D0 only at Lx. At runtime, data flows in to the instruction
with offsets of dx=D0Lx, dy=D0Ly, dz=D0Lz respectively in Lx, Ly, Lz, and
flows out with offset dx′=D1Lx in Lx. The locations Lx, Ly, Lz appear in the
assembler code instead of the source code variables x, y, z. The [Lx←Ly+Lz+i]E
representation is assembled to a machine code instruction consisting of fields

[add], Lx, Ly, Lz, [i]E

where the ‘[add]’ is a readable opcode, and [i]E is encrypted.

Return: The compiler at a ‘return x’ statement must change the prior offset
D0Lx=dx of Lx to a planned but randomly chosen offset dfret at return from
function f (function instances are subtyped by offsets in their formal parameters
and return value). So the compiler emits an extra add instruction [v0←Lx+i]E
with target the conventional 32-bit return value register v0 just prior to the
sequence for return via the return address register ra to adjust the final offset:

CL[D0 : return x] = D1 : [v0←Lx+i]E
. . . # restore stack
[jr],ra # jump return

where i = dfret−D0Lx

The [v0←Lx+i]E representation is assembled to machine instruction with fields

[add], [v0], Lx, [i]E

The [i]E is an encrypted field, ‘[add]’ is a readable opcode.
The remaining source code control constructs are treated like return. For an

if statement, for example, final branch offsets are adjusted to match at the join.



Theorem 4. The probability across different compilations that any particular
runtime 32-bit value x for [x]E is in location l at any given point in the program
is uniformly 1/232.

Proof. Suppose that before the atomic arithmetic instruction I is encountered
during program compilation it is known that for locations l the value x+dx with
[x+dx]E in l varies randomly across recompilations with respect to a ‘standard’
value x with probability p(x+dx=X)=1/232, and I writes value [y]E in one l in
particular. That y is composed of the intended functionality f(x+dx) plus an off-
set dy generated by the compilation. Then p(y=Y )=p(f(x+dx)+dy=Y ) and the
latter probability is p(y=Y )=

∑
Y ′

p(f(x+dx)=Y ′ ∧ dy=Y−Y ′). The probabilities

are independent (because I is only treated once by the compiler and dy is newly
introduced for it), so that sum is p(y=Y )=

∑
Y ′

p(f(x+dx)=Y ′)p(dy=Y−Y ′). That

is p(y=Y )= 1
232

∑
Y ′

p(f(x+dx)=Y ′). Since the sum is over all possible Y ′, the total

of the summed probabilities is 1, and p(y=Y )=1/232. The distribution of x+dx
in other locations is unchanged. That is the only difficult case for structural
induction. Loops and conditionals introduce offsets which work like dy above.

Another intuition is that dy has maximal entropy, so adding it at the end of
an instruction swamps any information the instruction might have introduced.

The theorem states that code is obfuscated. Having code in hand does not
tell the operator which of the many compilations it might be. The data under
the encryption at any point in the program can vary arbitrarily and uniformly.

Can less use be made of FxA constant addends, which are costly at runtime?
No, a single arithmetic instruction without the addend would introduce a weak-
ness: the operator has access – via a debugger, for example – to running code, so
every machine instruction can be observed and experimented with. The action
may be repeatedly observed to build up an encrypted arithmetic table. Then the
operator might come across, for example, two encrypted additions ‘a+b=c’ and
‘c+b=a’, from which it may be deduced that 2b=0 (mod 232), so b=0 or b=231.

Observing instead an FxA addition instruction only permits 2(b+k)=0 to be
deduced, where k is the unknown extra addend, which says nothing about b.

8 Codicil: Encrypted RAM

Two of the HEC platforms considered in this paper cause data to be stored to
memory in encrypted form (and expect to read encrypted data from memory) by
virtue of the fact that data circulates in encrypted form through the processor,
which is very different from a conventional CPU that has been equipped to work
with encrypted memory. The latter has been suggested as early as [26], which
claims it is clear ‘to those skilled in the art’ that an encryption/decryption unit
(‘codec’) may be placed on the memory path to cause memory contents to be
encrypted (the aim then was to defeat attacks on home media playback systems).

Vulnerabilities via the operating system aside, unencrypted memory is gener-
ally vulnerable to so-called ‘cold boot’ attacks [44, 22, 24] – essentially, premoved



hysically freezing the memory sticks in order to retain a snapshot of transitory
content – so there has historically been an incentive towards encrypted RAM.

SGX: Intel’s current SGXTM (‘Software Guard eXtensions’) processor technol-
ogy [2] is the modern inheritor to the tradition. It is often cited in relation to
secure computation in the Cloud, because of the separation between users that
it enforces. However, the underlying security mechanism is key management to
restrict users to different memory ‘enclaves’, which may also contain encrypted
data via codecs on the memory path. In consequence, SGX machines are often
used [43] by cloud service providers where the assurance of safety is a selling
point. Nevertheless, the assurance is founded in the customer’s trust in electron-
ics designers ‘getting it right’ rather than mathematical analysis and proof.

Oblivious RAM: At the component level, ‘oblivious RAM’ [39, 38, 36] and its
evolutions [37, 34]) is often cited as a defence against dynamic memory snooping.
An oblivious RAM remaps locations dynamically, remembering the aliases, so
access patterns are statistically impossible to spot. It also masks the programmed
accesses in a sea of independently generated random accesses. But it is no defence
against an operator with a debugger, who does not care where the data is stored.

Memory in HEC platforms: Memory addressing in the clear potentially leaks
information via patterns of memory accesses. Encrypted addressing defends
against that and is a natural outcome of the encrypted form in which all data
(addresses too) exists in a HEC platform, but it is problematic in that nonde-
terministic many-valued encryption leads to programs experiencing one address
accessing many different locations, and in some the data has been written and
in some it has not (yet) been written. The effect is called hardware aliasing [4].

HEROIC, in order to avoid that, uses deterministic (i.e., one-valued) encryp-
tion. That could leave the encryption vulnerable – an observer might recognise a
coincidence x+x=x, for example, and deduce x is 0. Statistically, only about 216

16-bit arithmetic operations could be run before seeing algebraic relations like
that. But in HEROIC it would be x+k=x, and Section 5’s condition on avoiding
cipherspace collisions between program constants k and runtime data x is vital
for Theorem 1’s guarantee that such ‘give-away’ observations may never occur.

But a generic KPU platform uses nondeterministic encryption, and does ex-
hibit hardware aliasing. To work, software has to be compiled so that addresses
are copied for later reuse, rather than recalculated on need [8] (it is possible to
type-check existing machine code to see if it satisfies that requirement [6], and
correct it). So a hierarchy of addressing characteristics may be noted here:

1) address obfuscation (Ascend; oblivious RAM);
2) deterministic address encryption (HEROIC);
3) nondeterministic address encryption (KPU).

Individually scattered encrypted addresses in both HEROIC and the KPU are
remapped to a physically contiguous RAM address space, which requires unit
granularity of the processor translation lookaside buffer (TLB) hardware. That
does linear remapping on a first-come, first-served basis. Unit granularity is 103

times finer than conventional, which carries considerable performance penalty,
but the remapping recovers data locality, rehabilitating cache performance.



Some ‘oblivious RAM’ behaviour is generated by this arrangement. Multi-
valued address encryption in a KPU means that each plaintext address varies its
physical location sporadically. Indeed, in both HEROIC and the KPU, the TLB
may be designed to remap each address randomly before every write. In conclu-
sion, HEC platforms are different from ‘encrypted RAM’ but share features.

Oblivious RAM, ‘moat’ electronics [27] (to mask information leaks via power
consumption) and other physical protections for conventional processors [28] may
also be applied on top of any HEC processor design, Ascend being an instance.

Conclusion

This paper has considered the security of homomorphic encrypted computation
(HEC) against the operator as an adversary in several working HEC processor
platforms. Computational completeness in conjunction with HEC creates vulner-
abilities. An efficient instruction set architecture has been defined that allows
code and program traces and (encrypted) data circulating in the processor to
be accessible to and modifiable by the operator, while privacy for the user is
formally guaranteed. Then encrypted data cannot be read by the operator, nor
programs altered to give an intended result. An obfuscating compiler provably
provides uniformly distributed hidden random variation for practical support.
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