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Abstract

Side-channel attacks are a serious threat to security-
critical software. To mitigate remote timing and cache-
timing attacks, many ubiquitous cryptography software
libraries feature constant-time implementations of cryp-
tographic primitives. In this work, we disclose a vulner-
ability in OpenSSL 1.0.1u that recovers ECDSA private
keys for the standardized elliptic curve P-256 despite the
library featuring both constant-time curve operations and
modular inversion with microarchitecture attack mitiga-
tions. Exploiting this defect, we target the errant mod-
ular inversion code path with a cache-timing and im-
proved performance degradation attack, recovering the
inversion state sequence. We propose a new approach
of extracting a variable number of nonce bits from these
sequences, and improve upon the best theoretical result
to recover private keys in a lattice attack with as few as
50 signatures and corresponding traces. As far as we are
aware, this is the first timing attack against OpenSSL EC-
DSA that does not target scalar multiplication, the first
side-channel attack on cryptosystems leveraging P-256
constant-time scalar multiplication and furthermore, we
extend our attack to TLS and SSH protocols, both linked
to OpenSSL for P-256 ECDSA signing.

Keywords: applied cryptography; elliptic curve cryp-
tography; digital signatures; side-channel analysis; tim-
ing attacks; cache-timing attacks; performance degrada-
tion; ECDSA; modular inversion; binary extended Eu-
clidean algorithm; lattice attacks; constant-time soft-
ware; OpenSSL; NIST P-256; CVE-2016-7056

1 Introduction

Being a widely-deployed open-source cryptographic li-
brary, OpenSSL is a popular target for different cryptan-
alytic attacks, including side-channel attacks that target
cryptosystem implementation weaknesses that can leak

critical algorithm state. As a software library, Open-
SSL provides not only TLS functionality but also cryp-
tographic functionality for applications such as SSH,
IPSec, and VPNs.

Due to its ubiquitous usage, OpenSSL contains ar-
guably one of the most popular software implemen-
tations of the Elliptic Curve Digital Signature Algo-
rithm (ECDSA). OpenSSL’s scalar multiplication algo-
rithm was shown vulnerable to cache-timing attacks in
2009 [6], and attacks continue on the same code path to
this date [2, 4, 10, 27]. Recognizing and responding to
the threat cache-timing attacks pose to cryptosystem im-
plementations, OpenSSL mainlined constant-time scalar
multiplication for several popular standardized curves al-
ready in 2011 [16].

In this work, we disclose a software defect in the
OpenSSL (1.0.1 branch) ECDSA implementation that al-
lows us to design and implement a side-channel cache-
timing attack to recover private keys. Different from
previous work, our attack focuses on the modular inver-
sion operation instead of the typical scalar multiplication,
thus allowing us to target the standardized elliptic curve
P-256, circumventing its constant-time scalar multiplica-
tion implementation. The root cause of the defect is fail-
ure to set a flag in ECDSA signing nonces that indicates
only constant-time code paths should be followed.

We leverage the state-of-the-art FLUSH+RE-
LOAD [28] technique to perform our cache-timing
attack. We adapt the technique to OpenSSL’s implemen-
tation of ECDSA and the Binary Extended Euclidean
Algorithm (BEEA). Our spy program probes relevant
memory addresses to create a timing signal trace, then
the signal is processed and converted into a sequence of
right-shift and subtraction (LS) operations correspond-
ing to the BEEA execution state from which we extract
bits of information to create a lattice problem. The
solution to the lattice problem yields the ECDSA secret
key.

We discover that observing as few as 5 operations



from the LS sequence allows us to use every single cap-
tured trace for our attack. This significantly reduces both
the required amount of signatures and side-channel data
compared to previous work [8], and maintains a good
signature to lattice dimension ratio.

We build upon the performance degradation technique
of Allan et al. [2] to efficiently find the memory addresses
with the highest impact to the cache during the degrading
attack. This new approach allows us to accurately find
the best candidate memory addresses to slow the mod-
ular inversion by an average factor of 18, giving a high
resolution trace and allowing us to extract the needed bits
of information from all of the traces.

Unlike previous works targeting the wNAF scalar
multiplication code path (for curves such as BitCoin’s
secp256k1) or performing theoretical side-channel anal-
ysis of the BEEA, we are the first to demonstrate a practi-
cal cache-timing attack against the BEEA modular inver-
sion, and furthermore OpenSSL’s ECDSA signing im-
plementation with constant-time P-256 scalar multipli-
cation.

Our contributions in this work include the following:

• We identify a bug in OpenSSL that allows a
cache-timing attack on ECDSA signatures, despite
constant-time P-256 scalar multiplication. (Sec-
tion 3)

• We describe a new quantitative approach that ac-
curately identifies the most accessed victim mem-
ory addresses w.r.t. data caching, then we use them
for an improved performance degradation attack in
combination with the FLUSH+RELOAD technique.
(Section 4.3)

• We describe how to combine the FLUSH+RELOAD
technique with the improved performance degrada-
tion attack to recover side-channel traces and algo-
rithm state from the BEEA execution. (Section 4)

• We present an alternate approach to recovering
nonce bits from the LS sequences, focused on min-
imizing required side-channel information. Using
this approach, we recover bits of information from
every trace, allowing us to use every signature query
to construct and solve a lattice problem, revealing
the secret key with as few as 50 signatures and cor-
responding traces. (Section 4.4)

• We perform a key-recovery cache-timing attack on
the TLS and SSH protocols utilizing OpenSSL for
ECDSA functionality. (Section 5)

2 Background

2.1 Elliptic Curve Cryptography
ECC. Developed in the mid 1980’s, elliptic curves were
introduced to cryptography by Miller [20] and Koblitz

[17] independently. Elliptic Curve Cryptography (ECC)
became popular mainly for two important reasons: no
sub-exponential time algorithm to solve the elliptic curve
discrete logarithm problem is known for well-chosen pa-
rameters and it operates in the group of points on an el-
liptic curve, compared to the classic multiplicative group
of a finite field, thus allowing the use of smaller param-
eters to achieve the same security levels—consequently
smaller keys and signatures.

Although there are more general forms of elliptic
curves, for the purposes of this paper we restrict to short
Weierstrass curves over prime fields. With prime p > 3,
all of the x,y ∈ GF(p) solutions to the equation

E : y2 = x3 +ax+b

along with an identity element form an abelian group.
Due to their performance characteristics, the parameters
of interest are the NIST standard curves that set a = −3
and p a Mersenne-like prime.
ECDSA. Throughout this paper, we use the following
notation for the Elliptic Curve Digital Signature Algo-
rithm (ECDSA).
Parameters: A generator G∈E of an elliptic curve group
of prime order n and an approved hash function h (e.g.
SHA-1, SHA-256, SHA-512).
Private-Public key pairs: The private key α is an integer
uniformly chosen from {1 . .n−1} and the corresponding
public key D = [α]G where [i]G denotes scalar-by-point
multiplication using additive group notation. Calculat-
ing the private key given the public key requires solving
the elliptic curve discrete logarithm problem and for cor-
rectly chosen parameters, this is an intractable problem.
Signing: A given party, Alice, wants to send a signed
message m to Bob. Using her private-public key pair
(αA,DA), Alice performs the following steps:

1. Select uniformly at random a secret nonce k such
that 0 < k < n.

2. Compute r = ([k]G)x mod n.
3. Compute s = k−1(h(m)+αAr) mod n.
4. Alice sends (m,r,s) to Bob.

Verifying: Bob wants to be sure the message he re-
ceived comes from Alice—a valid ECDSA signature
gives strong evidence of authenticity. Bob performs the
following steps to verify the signature:

1. Reject the signature if it does not satisfy 0 < r < n
and 0 < s < n.

2. Compute w = s−1 mod n and h(m).
3. Compute u1 = h(m)w mod n and u2 = rw mod n.
4. Compute (x,y) = [u1]G+[u2]DA.
5. Accept the signature if and only if x = r mod n

holds.



2.2 Side-Channel Attacks

Thanks to the adoption of ECC and the increasing use of
digital signatures, ECDSA has become a popular algo-
rithm choice for digital signatures. ECDSA’s popularity
makes it a good target for side-channel attacks.

At a high level, an established methodology for EC-
DSA is to query multiple signatures, then partially re-
cover nonces ki from the side-channel, leading to a bound
on the value αti − ui that is shorter than the interval
{1 . .n−1} for some known integers ti and ui. This leads
to a version of the Hidden Number Problem (HNP) [5]:
recover α given many (ti,ui) pairs. The HNP instances
are then reduced to Closest Vector Problem (CVP) in-
stances, solved with lattice methods.

Over the past decade, several authors have described
practical side-channel attacks on ECDSA that exploit
partial nonce disclosure by different microprocessor fea-
tures to recover long-term private keys.

Brumley and Hakala [6] describe the first practical
side-channel attack against OpenSSL’s ECDSA imple-
mentation. They use the EVICT+RELOAD strategy and
an L1 data cache-timing attack to recover the LSBs of
ECDSA nonces from the library’s wNAF (a popular low-
weight signed-digit representation) scalar multiplication
implementation in OpenSSL 0.9.8k. After collecting
2,600 signatures (8K with noise) from the dgst com-
mand line tool and using the Howgrave-Graham and
Smart [15] lattice attack, the authors recover a 160-bit
ECDSA private key from standardized curve secp160r1.

Brumley and Tuveri [7] attack ECDSA with binary
curves in OpenSSL 0.9.8o. Mounting a remote timing at-
tack, the authors show the library’s Montgomery Ladder
scalar multiplication implementation leaks timing infor-
mation on the MSBs of the nonce used and after collect-
ing that information over 8,000 TLS handshakes a 162-
bit NIST B-163 private key can be recovered with lattice
methods.

Benger et al. [4] target OpenSSL’s wNAF implemen-
tation and 256-bit private keys for the standardized GLV
curve [11] secp256k1 used in the BitCoin protocol. Us-
ing as few as 200 ECDSA signatures and the FLUSH+
RELOAD technique [28], the authors find some LSBs of
the nonces and extend the lattice technique of [21, 22] to
use a varying amount of leaked bits rather than limiting
to a fixed number.

van de Pol et al. [27] attack OpenSSL’s 1.0.1e wNAF
implementation for the curve secp256k1. Leveraging the
structure of the modulus n, the authors use more infor-
mation leaked in consecutive sequences of bits anywhere
in the top half of the nonces, allowing them to recover
the secret key after observing as few as 25 ECDSA sig-
natures.

Allan et al. [2] improve on previous results by using

a performance-degradation attack to amplify the side-
channel. This amplification allows them to additionally
observe the sign bit of digits in the wNAF representa-
tion used in OpenSSL 1.0.2a and to recover secp256k1
private keys after observing only 6 signatures.

Fan et al. [10] increase the information extracted from
each signature by analyzing the wNAF implementation
in OpenSSL. Using the curve secp256k1 as a target, they
perform a successful attack after observing as few as 4
signatures.

Our work differs from previous ECDSA side-channel
attacks in two important ways. (1) We focus on NIST
standard curve P-256, featured in ubiquitous security
standards such as TLS and SSH. Later in Section 2.5,
we explain the reason previous works were unable to tar-
get this extremely relevant curve. (2) We do not target
the scalar-by-point multiplication operation (i.e. the bot-
tleneck of the signing algorithm), but instead Step 3 of
the signing algorithm, the modular inversion operation.

2.3 The FLUSH+RELOAD Attack
The FLUSH+RELOAD technique is a cache-based side-
channel attack technique targeting the Last-Level Cache
(LLC) and used during our attack. FLUSH+RELOAD is
a high resolution, high accuracy and high signal-to-noise
ratio technique that positively identifies accesses to spe-
cific memory lines. It relies on cache sharing between
processes, typically achieved through the use of shared
libraries or page de-duplication.

Input: Memory Address addr.
Result: True if the victim accessed the address.

begin
flush(addr)
Wait for the victim.
time← current time()

tmp← read(addr)
readTime← current time() - time
return readTime < threshold

Figure 1: FLUSH+RELOAD Attack

A round of attack, depicted in Figure 1, consists of
three phases: (1) The attacker evicts the target memory
line from the cache. (2) The attacker waits some time
so the victim has an opportunity to access the memory
line. (3) The attacker measures the time it takes to reload
the memory line. The latency measured in the last step
tells whether or not the memory line was accessed by the
victim during the second step of the attack, i.e. identifies
cache-hits and cache-misses.

The FLUSH+RELOAD attack technique tries to
achieve the best resolution possible while keeping the



error rate low. Typically, an attacker encounters multi-
ple challenges due to several processor optimizations and
different architectures. See [2, 24, 28] for discussions of
these challenges.

2.4 Binary Extended Euclidean Algorithm
The modular inversion operation is one of the most ba-
sic and essential operations required in public key cryp-
tography. Its correct implementation and constant-time
execution has been a recurrent topic of research [1, 3, 8].

A well known algorithm used for modular inversion
is the Euclidean Extended Algorithm and in practice
is often substituted by a variant called the Binary Ex-
tended Euclidean Algorithm (BEEA) [18, Chap. 14.4.3].
This variant replaces costly division operations by simple
right-shift operations, thus, achieving performance ben-
efits over the regular version of the algorithm. BEEA is
particularly efficient for very long integers—e.g. RSA,
DSA, and ECDSA operands.

Input: Integers k and p such that gcd(k, p) = 1.
Output: k−1 mod p.
v← p, u← k, X ← 1, Y ← 0
while u 6= 0 do

while even(u) do
u← u/2 /* u loop */

if odd(X) then X ← X + p
X ← X/2

while even(v) do
v← v/2 /* v loop */

if odd(Y ) then Y ← Y + p
Y ← Y/2

if u≥ v then
u← u− v
X ← X−Y

else
v← v−u
Y ← Y −X

return Y mod p

Figure 2: Binary Extended Euclidean Algorithm.

Figure 2 shows the BEEA. Note that in each iteration
only one u or v while-loop is executed, but not both. Ad-
ditionally, in the very first iteration only the u while-loop
can be executed since v is a copy of p which is a large
prime integer n for ECDSA.

In 2007, independent research done by Aciiçmez et al.
[1], Aravamuthan and Thumparthy [3] demonstrated
side-channel attacks against the BEEA. Aravamuthan
and Thumparthy [3] attacked BEEA using Power Anal-
ysis attacks, whereas Aciiçmez et al. [1] attacked BEEA

through Simple Branch Prediction Analysis (SBPA),
demonstrating the fragility of this algorithm against side-
channel attacks.

Both previous works reach the conclusion that in order
to reveal the value of the nonce k, it is necessary to iden-
tify four critical input-dependent branches leaking infor-
mation, namely:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
3. Number and order of subtractions u := u− v.
4. Number and order of subtractions v := v−u.

Moreover, both works present a BEEA reconstruction
algorithm that allows them to fully recover the nonce
k—and therefore the secret signing key—given a per-
fect side-channel trace that distinguish the four critical
branches.

Aravamuthan and Thumparthy [3] argue that a coun-
termeasure to secure BEEA against side-channel attacks
is to render u and v subtraction branches indistinguish-
able, thus the attack is computationally expensive to
carry out. As a response, Cabrera Aldaya et al. [8]
demonstrated a Simple Power Analysis (SPA) attack
against a custom implementation of the BEEA. The au-
thors’ main contribution consists of demonstrating it is
possible to partially determine the order of subtractions
on branches u and v only by knowing the number of
right-shift operations performed in every while-loop it-
eration. Under a perfect SPA trace, the authors use an
algebraic algorithm to determine a short execution se-
quence of u and v subtraction branches.

They manage to recover various bits of information
for several ECDSA key sizes. The authors are able to
recover information only from some but not all of their
SPA traces by using their algorithm and the partial infor-
mation about right-shift and subtraction operations. Fi-
nally, using a lattice attack they recover the secret signing
key.

As can be seen from the previous works, depending on
the identifiable branches in the trace and quality of the
trace it is possible to recover full or partial information
about the nonce k. Unfortunately, the information leaked
by most of the real world side-channels does not allow
us to differentiate between subtraction branches u and v,
therefore limiting the leaked information to three input-
dependent branches:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
3. Number of subtractions.

2.5 OpenSSL History
OpenSSL has a rich and storied history as a prime se-
curity attack target [19], a distinction ascribed to the li-



brary’s ubiquitous real world application. One of the
main contributions of our work is identifying a new
OpenSSL vulnerability described later in Section 3. To
understand the nature of this vulnerability and facili-
tate root cause analysis, in this section we give a brief
overview of side-channel defenses in the OpenSSL li-
brary, along with some context and insight into what
prompted these code changes. Table 1 summarizes the
discussion.
0.9.7. Side-channel considerations started to induce code
changes in OpenSSL starting with the 0.9.7 branch. The
RSA cache-timing attack by Percival [23] recovered se-
cret exponent bits used as lookup table indices in slid-
ing window exponentiation using an EVICT+RELOAD
strategy on HyperThreading architectures. His work
prompted introduction of the BN FLG CONSTTIME flag,
with the intention of allowing special security treatment
of BIGNUMs having said flag set. At the time—and ar-
guably still—the most important use case of the flag is
modular exponentiation. Introduced alongside the flag,
the BN mod exp mont consttime function is a fixed-
window modular exponentiation algorithm featuring data
cache-timing countermeasures. Recent research brings
the security of this solution into question [29].
0.9.8. The work by Aciiçmez et al. [1] targeting BEEA
prompted the introduction of the BN mod inverse no -

branch function, an implementation with more favor-
able side-channel properties than that of BEEA. The
implementation computes modular inversions in a way
that resembles the classical extended Euclidean algo-
rithm, calculating quotients and remainders in each step
by calling BN div updated to respect the BN FLG CON-

STTIME flag. Tracking callers to BN mod inverse, the
commit1 enables the BN FLG CONSTTIME across several
cryptosystems where the modular inversion inputs were
deemed security critical, notably the published attack tar-
geting RSA.
1.0.1. Based on the work by Käsper [16], the 1.0.1
branch introduced constant-time scalar multiplication
implementations for several popular elliptic curves. This
code change was arguably motivated by the data cache-
timing attack of Brumley and Hakala [6] against Open-
SSL that recovered digits of many ECDSA nonces dur-
ing scalar multiplication on HyperThreading architec-
tures using the EVICT+RELOAD strategy. This informa-
tion was then used to construct a lattice problem and cal-
culate ECDSA private keys. The commit2 included sev-
eral new EC METHOD implementations, of which arguably
EC GFp nistp256 method has the most real world ap-
plication to date. This new scalar multiplication imple-

1https://github.com/openssl/openssl/commit/

bd31fb21454609b125ade1ad569ebcc2a2b9b73c
2https://github.com/openssl/openssl/commit/

3e00b4c9db42818c621f609e70569c7d9ae85717

Table 1: OpenSSL side-channel defenses across ver-
sions. Although BN mod exp mont consttime was in-
troduced in the 0.9.7 branch, here we are referring to its
use for modular inversion via FLT.

OpenSSL version 0.9.6 0.9.7 0.9.8 1.0.0 1.0.1 1.0.2
BN mod inverse X X X X X X
BN FLG CONSTTIME — X X X X X
BN mod inverse no branch — — X X X X
ec nistp 64 gcc 128 — — — — X X
BN mod exp mont consttime — — — — — X
EC GFp nistz256 method — — — — — X

mentation uses fixed-window combing combined with
secure table lookups via software multiplexing (mask-
ing), and is enabled with the ec nistp 64 gcc 128 op-
tion at build time. For example, Debian 8.0 “Jessie” (cur-
rent LTS, not EOL) and 7.0 “Wheezy” (previous LTS,
not EOL) and Ubuntu 14.04 “Trusty” (previous LTS, not
EOL) enable said option when possible for their Open-
SSL 1.0.1 package builds. From the side-channel attack
perspective, we note that this change is the reason aca-
demic research (see Section 2.2) shifted to the secp256k1
curve—NIST P-256 no longer takes the generic wNAF
scalar multiplication code path like secp256k1.
1.0.2. Motivated by performance and the potential to
utilize Intel AVX extensions, a contribution by Gueron
and Krasnov [14] included fast and secure curve P-
256 operations with their custom EC GFp nistz256 -

method. Here we focus on a cherry picked commit3

that affected the ECDSA sign code path for all elliptic
curves. While speed motivated the contribution, Möller
observes4: “It seems that the BN MONT CTX-related code
(used in crypto/ecdsa for constant-time signing) is en-
tirely independent of the remainder of the patch, and
should be considered separately.” Gueron confirms:
“The optimization made for the computation of the mod-
ular inverse in the ECDSA sign, is using const-time mod-
exp. Indeed, this is independent of the rest of the patch,
and it can be used independently (for other usages of
the library). We included this addition in the patch for
the particular usage in ECDSA.” Hence following this
code change, ECDSA signing for all curves now com-
pute modular inversion via BN mod exp mont const-

time and Fermat’s Little Theorem (FLT).

3 A New Vulnerability

From Table 1, starting with 1.0.1 the reasonable expec-
tation is that cryptosystems utilizing P-256 resist timing
attacks, whether they be remote, data cache, instruction

3https://github.com/openssl/openssl/commit/

8aed2a7548362e88e84a7feb795a3a97e8395008
4https://rt.openssl.org/Ticket/Display.html?id=

3149&user=guest&pass=guest

https://github.com/openssl/openssl/commit/bd31fb21454609b125ade1ad569ebcc2a2b9b73c
https://github.com/openssl/openssl/commit/bd31fb21454609b125ade1ad569ebcc2a2b9b73c
https://github.com/openssl/openssl/commit/3e00b4c9db42818c621f609e70569c7d9ae85717
https://github.com/openssl/openssl/commit/3e00b4c9db42818c621f609e70569c7d9ae85717
https://github.com/openssl/openssl/commit/8aed2a7548362e88e84a7feb795a3a97e8395008
https://github.com/openssl/openssl/commit/8aed2a7548362e88e84a7feb795a3a97e8395008
https://rt.openssl.org/Ticket/Display.html?id=3149&user=guest&pass=guest
https://rt.openssl.org/Ticket/Display.html?id=3149&user=guest&pass=guest


cache, or branch predictor timings. We focus here on
the combination of ECDSA and P-256 within the library.
The reason this is a reasonable expectation is that ec -

nistp 64 gcc 128 provides constant-time scalar multi-
plication to protect secret scalar nonces, and BN mod in-

verse no branch provides microarchitecture attack de-
fenses when inverting these nonces. For ECDSA, these
are the two most critical locations where the secret nonce
is an operand—to produce r and s, respectively.

The vulnerability we now disclose stems from the
changes introduced in the 0.9.8 branch. The BN mod -

inverse function was modified to first check the BN -

FLG CONSTTIME flag of the BIGNUM operands—if set,
the function then early exits to BN mod inverse no -

branch to protect the security-sensitive inputs. If the
flag is not set, i.e. inputs are not secret, the control flow
continues to the stock BEEA implementation.

Paired with this code change, the next task was
to identify callers to BN mod inverse within the li-
brary, and enable the BN FLG CONSTTIME flag for
BIGNUMs in cryptosystem implementations that are
security-sensitive. Our analysis suggests this was done
by searching the code base for uses of the BN FLG EXP -

CONSTTIME flag that was replaced with BN FLG CONST-

TIME as part of the changeset, given the evolution of
constant-time as concept within OpenSSL and no longer
limited to modular exponentiation. As a result, the code
changes permeated RSA, DSA, and Diffie-Hellman im-
plementations, but not ECC-based cryptosystems such as
ECDH and ECDSA.

This leaves a gap for 1.0.1 with respect to EC-
DSA. While ec nistp 64 gcc 128 provides constant-
time scalar multiplication to compute the r component
of P-256 ECDSA signatures, the s component will com-
pute modular inverses of security-critical nonces with
the stock BN mod inverse function, not taking the BN -

mod inverse no branch code path. In the end, the root
cause is that the ECDSA signing implementation does
not set the BN FLG CONSTTIME flag for nonces. Scalar
multiplication with ec nistp 64 gcc 128 is oblivious
to this flag and always treats single scalar inputs as
security-sensitive, yet BN mod inverse requires said
flag to take the new secure code path.

Figure 3 illustrates this vulnerability running in Open-
SSL 1.0.1u. The caller function ecdsa sign setup

contains the bulk of the ECDSA signing cryptosystem—
generating a nonce, computing the scalar multiple, in-
verting the nonce, computing r, and so on. When control
flow reaches callee BN mod inverse, inputs a and n are
the nonce and generator order, respectively. Stepping by
instruction, it shows that the call to BN mod inverse -

no branch never takes place, since the BN FLG CONST-

TIME flag is not set for either of these operands. Failing
this security critical branch, the control flow continues to

+--bn_gcd.c--------------------------------------------------------------------+

|226 BIGNUM *BN_mod_inverse(BIGNUM *in, |

|227 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |

|228 { |

B+ |229 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |

|230 BIGNUM *ret = NULL; |

|231 int sign; |

|232 |

|233 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) |

>|234 || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { |

|235 return BN_mod_inverse_no_branch(in, a, n, ctx); |

|236 } |

+------------------------------------------------------------------------------+

|0x7ffff77da1c7 <BN_mod_inverse+56> mov -0x90(%rbp),%rax |

|0x7ffff77da1ce <BN_mod_inverse+63> mov 0x14(%rax),%eax |

|0x7ffff77da1d1 <BN_mod_inverse+66> and $0x4,%eax |

|0x7ffff77da1d4 <BN_mod_inverse+69> test %eax,%eax |

|0x7ffff77da1d6 <BN_mod_inverse+71> jne 0x7ffff77da1e9 <BN_mod_inverse+90> |

|0x7ffff77da1d8 <BN_mod_inverse+73> mov -0x98(%rbp),%rax |

|0x7ffff77da1df <BN_mod_inverse+80> mov 0x14(%rax),%eax |

|0x7ffff77da1e2 <BN_mod_inverse+83> and $0x4,%eax |

|0x7ffff77da1e5 <BN_mod_inverse+86> test %eax,%eax |

>|0x7ffff77da1e7 <BN_mod_inverse+88> je 0x7ffff77da212 <BN_mod_inverse+131> |

+------------------------------------------------------------------------------+

native process 3399 In: BN_mod_inverse L234 PC: 0x7ffff77da1e7

(gdb) run dgst -sha256 -sign prime256v1.pem -out lsb-release.sig /etc/lsb-release

Starting program: /usr/local/ssl/bin/openssl dgst -sha256 -sign prime256v1.pem ...

Breakpoint 1, BN_mod_inverse (...) at bn_gcd.c:229

(gdb) backtrace

#0 BN_mod_inverse (...) at bn_gcd.c:229

#1 0x00007ffff782aed9 in ecdsa_sign_setup (...) at ecs_ossl.c:182

#2 0x00007ffff782bc35 in ECDSA_sign_setup (...) at ecs_sign.c:105

#3 0x00007ffff782b29a in ecdsa_do_sign (...) at ecs_ossl.c:269

#4 0x00007ffff782bafd in ECDSA_do_sign_ex (...) at ecs_sign.c:74

#5 0x00007ffff782bb97 in ECDSA_sign_ex (...) at ecs_sign.c:89

#6 0x00007ffff782bb44 in ECDSA_sign (...) at ecs_sign.c:80 ...

(gdb) stepi

(gdb) macro expand BN_get_flags(a, BN_FLG_CONSTTIME)

expands to: ((a)->flags&(0x04))

(gdb) print BN_get_flags(a, BN_FLG_CONSTTIME)

$1 = 0

(gdb) print BN_get_flags(n, BN_FLG_CONSTTIME)

$2 = 0

Figure 3: Modular inversion within OpenSSL 1.0.1u
(built with ec nistp 64 gcc 128 enabled) for P-256
ECDSA signing. Operands a and n are the nonce and
generator order, respectively. The early exit to BN mod -

inverse no branch never takes place, since the caller
ecdsa sign setup fails to set the BN FLG CONSTTIME

flag on the operands. Control flow continues to the stock,
classical BEEA implementation.

the stock, classical BEEA implementation.

3.1 Forks
OpenSSL is not the only software library affected by this
vulnerability. Following HeartBleed, OpenBSD forked
OpenSSL to LibreSSL in July 2014, and Google forked
OpenSSL to BoringSSL in June 2014. We now discuss
this vulnerability within the context of these two forks.
LibreSSL. An 04 Nov 2016 commit5 cherry picked the
EC GFp nistz256 method for LibreSSL. Interestingly,
LibreSSL is the library most severely affected by this
vulnerability. The reason is they did not cherry pick
the BN mod exp mont consttime ECDSA nonce in-
version. That is, as of this writing (fixed during dis-
closure) the current LibreSSL master branch can fea-
ture constant-time P-256 scalar multiplication with ei-
ther EC GFp nistz256 method or EC GFp nistp256 -

method callees depending on compile-time options and
minor code changes, but inverts all ECDSA nonces with

5https://github.com/libressl-portable/openbsd/

commit/85b48e7c232e1dd18292a78a266c95dd317e23d3

https://github.com/libressl-portable/openbsd/commit/85b48e7c232e1dd18292a78a266c95dd317e23d3
https://github.com/libressl-portable/openbsd/commit/85b48e7c232e1dd18292a78a266c95dd317e23d3


the BN mod inverse callee that fails the same security
critical branch as OpenSSL, due to the caller ecdsa -

sign setup not setting the BN FLG CONSTTIME flag for
ECDSA signing nonces. We confirmed the vulnerability
using a LibreSSL build with debug symbols, checking
the inversion code path with a debugger.
BoringSSL. An 03 Nov 2015 commit6 picked up
the EC GFp nistz256 method implementation for Bor-
ingSSL. That commit also included the BN mod exp -

mont consttime ECDSA nonce inversion callee, which
OpenSSL cherry picked. The parent tree7 is slightly
older on the same day. Said tree features constant-
time P-256 scalar multiplication with callee EC GFp -

nistp256 method, but inverts ECDSA signing nonces
with callee BN mod inverse that fails the same security
critical branch, again due to the BN FLG CONSTTIME flag
not being set by the caller—i.e. it follows essentially the
same code path as OpenSSL. We verified the vulnerabil-
ity affects said tree using a debugger.

4 Exploiting the Vulnerability

Exploiting the vulnerability and performing our cache-
timing attack is a long and complex process, therefore
the analysis details are decomposed in several subsec-
tions. Section 4.1 discusses the hardware and software
setup used during our experimentation phase. Section 4.2
analyzes and describes the sources of leakage in Open-
SSL and the exploitation techniques. Section 4.3 and
Section 4.4 describe in detail our improvements on the
performance degradation technique and key recovery, re-
spectively. Figure 4 gives an overview of the attack sce-
nario followed during our experiments.

4.1 Attack Setup

Our attack setup consists of an Intel Core i5-2400 Sandy
Bridge 3.10GHz (32 nm) with 8GB of memory running
64-bit Ubuntu 16.04 LTS “Xenial”. Each CPU core has
an 8-way 32KB L1 data cache, an 8-way 32KB L1 in-
struction cache, an 8-way 256KB L2 unified cache, and
all the cores share a 12-way 6MB unified LLC (all with
64B cache lines). It does not feature HyperThreading.

We built OpenSSL 1.0.1u with debugging symbols
on the executable. Debugging symbols facilitate map-
ping source code to memory addresses, serving a dou-
ble purpose to us: (1) Improving our degrading attack
(see Section 4.3); (2) Probing the sequence of opera-
tions accurately. Note that debugging symbols are not

6https://boringssl.googlesource.com/boringssl/+/

18954938684e269ccd59152027d2244040e2b819%5E%21/
7https://boringssl.googlesource.com/boringssl/+/

27a0d086f7bbf7076270dbeee5e65552eb2eab3a

Figure 4: Simplified attack scenario depicting a victim,
a spy and two performance degradation processes each
running on a different core. OpenSSL is a shared library
and all the processes have a shared LLC.

loaded during run time, thus not affecting victim’s per-
formance. Attackers can map source code to memory
addresses by using reverse engineering techniques [9] if
debugging symbols are not available. We set enable-
ec nistp 64 gcc 128 and shared as configuration op-
tions at build time to ensure faster execution, constant-
time scalar multiplication and compile OpenSSL as a
shared object.

4.2 Source of Leakage

As seen in the Figure 3 backtrace, when performing an
ECDSA digital signature, OpenSSL calls ecdsa sign -

setup to prepare the required parameters and compute
most of the actual signature. The random nonce k is cre-
ated and to avoid possible timing attacks [7] an equiva-
lent fixed bit-length nonce is computed. The length of
the equivalent nonce k̂ is fixed to one bit more than that
of the group’s prime order n, thus the equivalent nonce
satisfies k̂ = k+ γ ·n where γ ∈ {1,2}.

Additionally, ecdsa sign setup computes the sig-
nature’s r using a scalar multiplication function pointer
wrapper (i.e. for P-256, traversing the constant-time code
path instead of generic wNAF) followed by the modular
inverse k−1, needed for the s component of the signa-
ture. To compute the inversion, it calls BN mod inverse,
where the BN FLG CONSTTIME flag is checked but due
to the vulnerability discussed in Section 3 the condition
fails, therefore proceeding to compute k−1 using the clas-
sical BEEA.

Note that before executing the BEEA, the equivalent
nonce k̂ is unpadded through a modular reduction oper-
ation, resulting in the original nonce k and voiding the
fixed bit-length countermeasure applied shortly before
by ecdsa sign setup.

The goal of our attack is to accurately trace and re-

https://boringssl.googlesource.com/boringssl/+/18954938684e269ccd59152027d2244040e2b819%5E%21/
https://boringssl.googlesource.com/boringssl/+/18954938684e269ccd59152027d2244040e2b819%5E%21/
https://boringssl.googlesource.com/boringssl/+/27a0d086f7bbf7076270dbeee5e65552eb2eab3a
https://boringssl.googlesource.com/boringssl/+/27a0d086f7bbf7076270dbeee5e65552eb2eab3a


cover side-channel information leaked from the BEEA
execution, allowing us to construct the sequence of right-
shift and subtraction operations. To that end, we identify
the routines used in the BN mod inverse method leak-
ing side-channel information.

The BN mod inverse method operates with very
large integers, therefore it uses several specific routines
to perform basic operations with BIGNUMs. Addition
operations call the routine BN uadd, which is a wrapper
for bn add words—assembly code performing the ac-
tual addition. Two different routines are called to per-
form right-shift operations. The BN rshift1 routine
performs a single right-shift by one bit position, used on
X and Y in their respective loops. The BN rshift rou-
tine receives the number of bit positions to shift right as
an argument, used on u and v at the end of their respec-
tive loops. OpenSSL keeps a counter for the shift count,
and the loop conditions test u and v bit values at this off-
set. This is an optimization allowing u and v to be right-
shifted all at once in a single call instead of iteratively.
Additionally, subtraction is achieved through the use of
the BN usub routine, which is a pure C implementation.

Similar in spirit to previous works [4, 24, 27] that
instead target other functionality within OpenSSL, we
use the FLUSH+RELOAD technique to attack OpenSSL’s
BEEA implementation. As mentioned before in Sec-
tion 2.4, unfortunately the side-channel and the algo-
rithm implementation do not allow us to efficiently
probe and distinguish the four critical input-dependent
branches, therefore we are limited to knowing only the
execution of addition, right-shift and subtraction opera-
tions.

After identifying the input-dependent branches in
OpenSSL’s implementation of the BEEA, using the FLU-
SH+RELOAD technique we place probes in code routines
BN rshift1 and BN usub. These two routines provide
the best resolution and combination of probes, allowing
us to identify the critical input-dependent branches.

The modular inversion is an extremely fast operation
and only a small fraction of the entire digital signa-
ture. It is challenging to get good resolution and enough
granularity with the FLUSH+RELOAD technique due to
the speed of the technique itself, therefore, we apply a
variation of the performance degradation attack to slow
down the modular inversion operation by a factor of ~18.
(See Section 4.3.)

Maximizing performance degradation by identifying
the best candidate memory lines gives us the granularity
required for the attack. Combining the FLUSH+RELOAD
technique with a performance degradation attack allows
us to determine the number of right-shift operations exe-
cuted between subtraction calls by the BEEA. From the
trace, we reconstruct the sequence of right-shift and sub-
traction operations (LS sequence) executed by the BEEA.
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Figure 5: Raw traces for the beginning of two BEEA ex-
ecutions. The L probe tracks right-shift latencies and the
S probe tracks subtraction. Latency is in CPU clock cy-
cles. For visualization, focus on the amplitude valleys,
i.e. low latency. Top: LS sequence starting SLLLL cor-
responds to j = 5, `i = 4, ai = 1. Bottom: LS sequence
starting LSLLSLS corresponds to j = 7, `i = 5, ai = 10.
See Section 4.4 for notation.

As Figure 4 illustrates, our attack scenario exploits
three CPU cores by running a malicious process in every
core and the victim process in the fourth core. The at-
tack consists of a spy process probing the right-shift and
subtraction operations running in parallel with the vic-
tim application. Additionally, two degrading processes
slow down victim’s execution, allowing us to capture the
LS sequence almost perfectly. Unfortunately there is not
always a reliable indicator in the signal for transitions
from one right-shift operation to the next, therefore we
estimate the number of adjacent right-shift operations by
taking into account the latency and the horizontal dis-
tance between subtractions. Figure 5 contains sample
raw traces captured in our test environment.

Our spy process accurately captures all the subtrac-
tion operations but duplicates some right-shift opera-
tions, therefore we focus on the first part of the sequence
to recover a variable amount of bits of information from
every trace. (See Section 4.4.)

4.3 Improving Performance Degradation
Performance degradation attacks amplify side-channel
signals, improving the quality and the amount of in-
formation leaked. Our performance degradation attack
improves upon the work of Allan et al. [2]. In their
work, the authors first need to identify “hot” memory
addresses, i.e. memory addresses frequently accessed.
They suggest two approaches to find suitable memory
lines to degrade. The first approach is to read and under-



stand the victim code in order to identify frequently ac-
cessed code sections such as tight loops. This approach
requires understanding the code, a task that might not al-
ways be possible, takes time and it is prone to errors [26],
therefore the authors propose another option.

The second and novel approach they propose is to au-
tomate code analysis by collecting code coverage infor-
mation using the gcov tool. The code coverage tool out-
puts accessed code lines and then using this information
it is possible for an attacker to locate the memory lines
corresponding to the code lines. Some caveats of this
approach are that source lines can be replicated due to
compiler optimizations, thus the gcov tool might misre-
port the number of memory accesses. Moreover, code
lines containing function calls can be twice as effective
compared to the gcov output. In addition to the caveats
mentioned previously, we note that the gcov profiling
tool adds instrumentation to the code. The instrumenta-
tion skews the performance of the program, therefore this
approach is suboptimal since it requires building the tar-
get code twice, one with instrumentation to identify code
lines and other only with debugging symbols to measure
the real performance.

Once the “hot” memory addresses are identified, the
next step is to evict them from the cache in a tight loop,
thus increasing the execution time of the process access-
ing those addresses. This technique allows to stealthily
degrade a process without alerting the victim, since the
increased execution time is not noticeable by a typical
user. Performance degradation attacks have been used
previously in conjunction with other side-channel attacks
(see e.g. [24]).

We note that it can be difficult and time consuming
to identify the “hot” memory addresses to degrade that
result in the best information leak. To that end, we fol-
low a similar but faster and more quantitative approach,
potentially more accurate since it leverages additional
metrics. Similar to [2] we test the efficiency of the at-
tack for several candidate memory lines. We compare
cache-misses between a regular modular inversion and
a degraded modular inversion execution, resulting in a
list of the “hottest” memory lines, building the code only
once with debugging symbols and using hardware regis-
ter counters.

The perf command in Linux offers access to per-
formance counters—CPU hardware registers counting
hardware events (e.g. CPU cycles, instructions executed,
cache-misses and branch mispredictions). We execute
calls to OpenSSL’s modular inverse operation, counting
the number of cache-misses during a regular execution of
the operation. Next, we degrade—by flushing in a loop
from the cache—one memory line at a time from the
caller BN mod inverse and callees BN rshift1, BN -

rshift, BN uadd, bn add words, BN usub.

The perf command output gives us the real count
of cache-misses during the regular execution of BN -

mod inverse, then under degradation of each candidate
memory line. This effectively identifies the “hottest” ad-
dresses during a modular inverse operation with respect
to both the cache and the actual malicious processes we
will use during the attack.

Table 2 summarizes the results over 1,000 iterations of
a regular modular inversion execution versus the degra-
dation of different candidate memory lines identified us-
ing our technique. The table shows cache-miss rates
ranging from ~35% (BN rshift and BN usub) to ~172%
(BN rshift1) for one degrading address. Degrading the
overall 6 “hottest” addresses accessed by the BN mod -

inverse function results in an impressive cache-miss
rate of ~1,146%.

Interestingly, the last column of Table 2 reveals the
real impact of cache-misses in the execution time of
the modular inversion operation. Despite the impres-
sive cache-miss rates, the clock cycle slow down is more
modest with a maximum slow down of ~18. These re-
sults suggest that in order to get a quality trace, the goal is
to achieve an increased rate of cache-misses rather than a
CPU clock cycle slow down because whereas the cache-
misses suggest a CPU clock cycle slow down, it is not
the case for the opposite direction.

The effectiveness of the attack varies for each use case
and for each routine called. Some of the routines iter-
ate over internal loops several times (e.g. BN rshift1)
whereas in some other routines, iteration over internal
loops happens few times (e.g. BN usub) or none at all.
Take for example previous “hot” addresses from Ta-
ble 2—degrading the most used address from each rou-
tine does not necessarily give the best result. Overall
“hottest” addresses in Table 2 shows the result of choos-
ing the best strategy for our use case, where the addresses
degraded in every routine varies from multiple addresses
per routine to no addresses at all.

For our use case, we observe the best results with 6
degrading addresses across two degrading processes ex-
ecuting in different CPU cores. Additional addresses do
not provide any additional slow down, instead they im-
pact negatively the FLUSH+RELOAD technique.

4.4 Improving Key Recovery

Arguably the most significant contribution of [8] is they
show the LS sequence is sufficient to extract a certain
number of LSBs from nonces, even when it is not known
whether branch u or v gets taken. They give an algebraic
method to recover these LSBs, and utilize these partial
nonce bits in a lattice attack, using the formalization in
[21, 22]. The disadvantage of that approach is that it fixes
the number of known LSBs (denoted `) per equation [8,



Table 2: perf cache-misses and CPU clock cycle statis-
tics over 1,000 iterations for relevant routines called by
the BN mod inverse method.

Cache Clock CM CC
Target misses (CM) cycles (CC) CMBL CCBL
Baseline (BL) 13 211,324 1.0 1.0
BN rshift1 2,396 947,925 172.6 4.4
BN usub 489 364,399 35.2 1.7
BN mod inverse 956 540,357 68.9 2.5
BN uadd 855 485,088 61.6 2.2
bn add words 1,124 558,839 81.0 2.6
BN rshift 514 367,929 37.0 1.7
Previous “hot” 10,280 2,576,360 740.5 12.1
Overall “hottest” 15,910 3,817,748 1,146.2 18.0

Sec. 5]: “when a set of signatures are collected such that,
for each of them, [`] bits of the nonce are known, a set
of equations . . . can be obtained and the problem of find-
ing the private key can be reduced to an instance of the
[HNP].” Fixing ` impacts their results in two important
ways. First, since their lattice utilizes a fixed `, they fo-
cus on the ability to algebraically recover only a fixed
number of bits from the LS sequence. From [8, Tbl. 1],
our target implementation is similar to their “Standard-
M0” target, and they focus on ` ∈ {8,12,16,20}. For
example, to extract ` = 8 LSBs they need to query on
average 4 signatures, discarding all remaining signatures
that do not satisfy `≥ 8. Second, this directly influences
the number of signatures needed in the lattice phase.
From [8, Tbl. 2-3], for 256-bit n and ` = 8, they re-
quire 168 signatures. This is because they are discard-
ing three out of four signatures on average where ` < 8,
then go on to construct a d + 1-dimension lattice where
d = 168/4 = 42 from the signatures that meet the ` ≥ 8
restriction. The metric of interest from the attacker per-
spective is the number of required signatures.

In this section, we improve with respect to both
points—extracting a varying number of bits from every
nonce, subsequently allowing our lattice problem to uti-
lize every signature queried, resulting in a significantly
reduced number of required signatures.
Extracting nonce bits. Rather than focusing on the aver-
age number of required signatures as a function of a num-
ber of target LSBs, our approach is to examine the aver-
age number of bits extracted as a function of LS sequence
length. We empirically measured this quantity by gener-
ating βi uniformly at random from {1 . .n−1} for P-256
n, running the BEEA on βi and n to obtain the ground
truth LS sequence, and taking the first j operations from
this sequence. We then grouped the βi by these length- j
subsequence values, and finally determined the maximal
shared LSBs value of each group. Intuitively, this maps
any length- j subsequence to a known LSBs value. For
example, a sequence beginning LLS has j = 3, ` = 3,

a = 4 interpreted as a length-3 subsequence that leaks 3
LSBs with a value of 4.

We performed 226 trials (i.e. 1 ≤ i ≤ 226) for each
length 1 ≤ j ≤ 16 independently and Figure 6 contains
the results (see Table 6 in the appendix for the raw data).
Naturally as the length of the sequence grows, we are
able to extract more bits. But at the same time, in real-
ity for practical side-channels longer sequences are more
likely to contain trace errors (i.e. incorrectly inferred
LS sequences), ultimately leading to nonsensical lattice
problems for key recovery. So we are looking for the
right balance between these two factors. Figure 6 allows
us to draw several conclusions, including but not limited
to: (1) Sequences of length 5 or more allow us to ex-
tract a minimum of 3 nonce bits per signature; (2) Sim-
ilarly length 7 or more for a minimum of 4 nonce bits;
(3) The average number of bits extracted grows rapidly
at first, then the growth slows as the sequence length in-
creases. This observation pairs nicely with the nature
of side-channels: attempting to target longer sequences
(risking trace errors) only marginally increases the aver-
age number of bits extracted. From the lattice perspec-
tive, ` ≥ 3 is a practical requirement [21, Sec. 4.2] so
in that respect sequences of length 5 is the minimum to
guarantee that every signature can be used as an equation
for the lattice problem.

To summarize, the data used to produce Figure 6 al-
lows us to essentially build a dictionary that maps LS
sequences of a given length to an (`i,ai) pair, which we
now define and utilize.
Recovering private keys. We follow the formalization
of [21, 22] with the use of per-equation `i due to [4,
Sec. 4]. Extracted from our side-channel, we are left with
equations ki = 2`ibi +ai where `i and ai are known, and
since 0 < ki < n it follows that 0 ≤ bi ≤ n/2`i . Denote
bxcn modular reduction of x to the interval {0 . .n− 1}
and |x|n to the interval {−(n−1)/2 . .(n−1)/2}. Define
the following (attacker-known) values.

ti = bri/(2`isi)cn
ûi = b(ai−hi/si)/2`icn

It now follows that 0≤ bαti− ûicn < n/2`i . Setting

ui = ûi +n/2`i+1, we obtain

vi = |αti−ui|n ≤ n/2`i+1,

i.e. integers λi exist such that |αti− ui−λin| ≤ n/2`i+1

holds. The ui approximate αti since they are closer than
a uniformly random value from {1 . .n− 1}, leading to
an instance of the HNP [5]: recover α given many (ti,ui)
pairs.

Consider the rational d + 1-dimension lattice gener-
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Figure 6: Empirical number of extracted bits for vari-
ous sequence lengths. Each sequence length consisted of
226 trials, over which we calculated the mean (with de-
viation), maximum, and minimum number of recovered
LSBs. Error bars are one standard deviation on each side.
See Table 6 in the appendix for the raw data.

ated by the rows of the following matrix.

B =



2`1+1n 0 . . . . . . 0

0 2`2+1n
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 2`d+1n 0

2`1+1t1 . . . . . . 2`d+1td 1


Setting

~x = (λ1, . . . ,λd ,α)

~y = (2`1+1v1, . . . ,2`d+1vd ,α)

~u = (2`1+1u1, . . . ,2`d+1ud ,0)

establishes the relationship~xB−~u =~y. Solving the CVP
with inputs B and ~u yields ~x and hence α . We use the
embedding strategy [13, Sec. 3.4] to heuristically reduce
CVP approximations to Shortest Vector Problem (SVP)
approximations. Consider the rational d + 2-dimension
lattice generated by the rows of the following matrix.

B̂ =

[
B 0
~u n

]
There is a reasonable chance that lattice-reduced B̂ will
contain the short lattice basis vector (~x,−1)B̂ = (~y,−n),

revealing α . To extend the search space, we use the ran-
domization technique inspired by Gama et al. [12, Sec.
5], shuffling the order of ti and ui and multiplying by a
random sparse unimodular matrix between lattice reduc-
tions.
Empirical results. Table 3 contains our empirical re-
sults for various lattice parameters targeting P-256. As
part of our experiments, we were able to successfully
reproduce and verify the ` ∈ {8,12}, lgn ≈ 256 lattice
results of Cabrera Aldaya et al. [8] in our environment
for comparison. While the goal is to minimize the num-
ber of required signatures, this should be weighed with
observed HNP success probability, affecting search dura-
tion. From Figure 6 we focus on LS subsequence lengths
j ∈ {5,7} that yield `i nonce LSBs from ranges {3 . .5}
and {4 . .7}, respectively. Again this is in contrast to [8]
that fixes ` and discards signatures—this is the reason
their signature count is much higher than the d+2 lattice
dimension in their case, but equal in ours.

A relevant metric affecting success probability is the
total number of known nonce bits for each HNP instance.
Naturally as this sum approaches lgn one expects correct
solutions to start emerging. On the other hand, increas-
ing this sum demands querying more signatures, at the
same time increasing d and lattice methods become less
precise. For a given HNP instance, denote l =∑

d
i=1 `i, i.e.

the total number of known nonce bits over all the equa-
tions for the particular HNP instance. Table 3 denotes µl
the mean value of l over all successful HNP instances—
intuitively tracking how many known nonce bits needed
in total to reasonably expect success.

We ran 200 independent trials for each set of param-
eters on a computing cluster with Intel Xeon X5650
nodes. We allowed each trial to execute at most four
hours, and we say successful trials are those HNP in-
stances recovering the private key within this allotted
time. Our lattice implementation uses Sage software
with BKZ [25] reduction, block size 30.

To summarize, utilizing every signature in our HNP
instances leads to a significant improvement over previ-
ous work with respect to both the number of required
signatures and amount of side-channel data required.

5 Attacking Applications

OpenSSL is a shared library and therefore any vulnera-
bility present in it can potentially be exploited from any
application linked against it. This is the case for the
present work and to demonstrate the feasibility of our
attack in a concrete real-life scenario, we focus on two
applications implementing two ubiquitous security pro-
tocols: TLS within stunnel and SSH within OpenSSH.

OpenSSL provides ECDSA functionality for both ap-
plications and therefore we mount our attack against



Table 3: P-256 ECDSA lattice attack improvements for
BEEA leakage. Empirical values are over 200 trials (4hr
max trial duration). Lattice dimension is d + 2. The
number of leaked LSBs per nonce is `. LS subsequence
length is j. The average total number of leaked nonce
bits per successful HNP instance is µl . CPU time is the
median.

Signa- Success CPU
Source tures d ` j µl Rate (%) Minutes
Prev. [8] 168 42 8 — 336.0 100.0 0.7
Prev. [8] 312 24 12 — 288.0 100.0 0.6
This work 50 50 {4 . .7} 7 249.7 14.0 79.5
This work 55 55 {4 . .7} 7 268.8 98.0 1.7
This work 60 60 {4 . .7} 7 293.4 100.0 0.7
This work 70 70 {3 . .5} 5 258.2 5.0 130.8
This work 80 80 {3 . .5} 5 286.1 94.5 13.2
This work 90 90 {3 . .5} 5 321.2 100.0 4.0

OpenSSL’s ECDSA running within them. More pre-
cisely, this section describes the tools and the setup fol-
lowed to successfully exploit the vulnerability within
these applications. In addition, we explain the relevant
messages collected for each application, later used for
private key recovery together with the trace data and the
signatures.

5.1 TLS

Stunnel8 is a popular portable open source software ap-
plication that forwards network connections from one
port to another and provides a TLS wrapper. Network ap-
plications that do not natively support TLS communica-
tion benefit from the use of stunnel. More precisely, stun-
nel can be used to provide a TLS connection between a
public port exposing a TLS-enabled network service and
a localhost port providing a non-TLS network service. It
links against OpenSSL to provide TLS functionality.

For our experiments, we used stunnel 5.39 compiled
from stock source and linked against OpenSSL 1.0.1u.
We generated a P-256 ECDSA certificate for the stunnel
service and chose the ECDHE-ECDSA-AES128-SHA TLS
1.2 cipher suite.

In order to collect digital signature and digest tuples,
we wrote a custom TLS client that connects to the stun-
nel service. Our TLS client initiates TLS connections,
collects the protocol messages and continues the hand-
shake until it receives the ServerHelloDone message,
then it drops the connection. The protocol messages
contain relevant information for the attack. The Clien-
tHello and ServeHello messages contain each a 32-
byte random field, in practice these bytes represent a
4-byte UNIX timestamp concatenated with a 28-byte
nonce. The Certificate message contains the P-256

8https://www.stunnel.org

ECDSA certificate generated for the stunnel service. The
ServerKeyExchange message contains ECDH key ex-
change parameters including the curve type (named -

curve), the curve name (secp256r1) and the Signa-

tureHashAlgorithm. Finally, the digital signature it-
self is sent as part of the ServerKeyExchange message.
The ECDSA signature is over the concatenated string

ClientHello.random + ServerHello.random +

ServerKeyExchange.params

and the hash function is SHA-512, proposed by the client
in the ClientHello message and accepted by the server
in the SignatureHashAlgorithm field (explicit values
0x06, 0x03). Our TLS client saves the hash of the con-
catenated string and the DER-encoded ECDSA signature
sent by the server.

In order to achieve synchronization between the spy
and the victim processes, our spy process is launched
prior to the TLS handshakes, therefore it collects the
trace for each ECDSA signature performed during the
handshakes, then it stops when the ServerHelloDone

message is received. The process is repeated as needed
to build up a set of distinct trace, digital signature, and
digest tuples. Section 5.3 contains accuracy results for
several LS subsequence patterns for an stunnel victim.

5.2 SSH
OpenSSH9 is a widely used open source software suite to
provide secure communication over an insecure channel.
OpenSSH is a set of tools implementing the SSH net-
work protocol and it is typically linked against OpenSSL
to perform several cryptographic operations, including
digital signatures (excluding ed25519 signatures) and
key exchange.

For our experiments, we used OpenSSH 7.4p1 com-
piled from stock source and linked against OpenSSL
1.0.1u. The ECDSA key pair used by the server and tar-
geted by our attack is the default P-256 key pair gener-
ated during installation of OpenSSH.

Following a similar approach to Section 5.1, we wrote
a custom SSH client that connects to the OpenSSH server
to collect digital signatures and digest tuples. At the
same time, our spy process running on the server side
collects the timing signals leaked by the server during
the handshake.

Relevant to this work, the OpenSSH server was con-
figured with the ecdsa-sha2-nistp256 host key al-
gorithm and the default P-256 key pair. After the ini-
tial ClientVersion and ServerVersionmessages, the
protocol defines the Diffie-Hellman key exchange pa-
rameters, the signature algorithm and the hash function

9http://www.openssh.com/
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PROTOCOL_VERSION

----->

PROTOCOL_VERSION

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

publicKey_alg]

<-----

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

publicKey_alg]

SSH_MSG_KEX_ECDH_INIT

[Q_C]

----->

SSH_MSG_KEX_ECDH_REPLY

[K_S, Q_S, Signature]

SSH_MSG_NEWKEYS

<-----

Application Data <----> Application Data

Figure 7: ECC SSH handshake flow with correspond-
ing parameters from all the messages to construct the di-
gest. Our spy process collects timing traces in parallel to
the server’s ECDSA sign operation, said digital signature
being included in a SSH MSG KEX ECDH REPLY field and
collected by our client.

identifiers in the SSH MSG KEXINIT message. To provide
host authentication by the client and the server, a 16-byte
random nonce is included in the SSH MSG KEXINIT mes-
sage. The SSH MSG KEX ECDH REPLY10 message con-
tains the server’s public host key K S (used to create and
verify the signature), server’s ECDH ephemeral public
key Q S (used to compute the shared secret K in combi-
nation with the client’s ECDH ephemeral public key Q C)
and the signature itself. The ECDSA signature is over the
hash of the concatenated string

ClientVersion + ServerVersion +

Client.SSH_MSG_KEXINIT +

Server.SSH_MSG_KEXINIT +

K_S + Q_C + Q_S + K

Our SSH client was configured to use
ecdh-sha2-nistp256 and ecdsa-sha2-nistp256 as
key exchange and public key algorithms, respectively.

Similar to the previous case, our SSH client saves the
hash of the concatenated string and the raw bytes of the
ECDSA signature sent by the server. To synchronize the
spy and victim processes, our spy process is launched
prior to the SSH handshakes and it stops when the SSH -

MSG NEWKEYS message is received, therefore it collects

10https://tools.ietf.org/html/rfc5656

Table 4: Accuracy for length j = 5 subsequences over
15,000 TLS/SSH handshakes.

TLS SSH
Pattern `i ai Accuracy (%) Accuracy (%)
LLLLL 5 0 77.9 73.3
SLLLL 4 1 99.8 98.0
LSLLL 4 2 99.3 98.9
SLSLL 3 3 98.9 97.2
LLSLL 4 4 98.0 96.7
SLLSL 3 5 95.8 95.5
LSLSL 3 6 85.5 97.2
SLSLS 3 7 99.2 97.8
LLLSL 4 8 93.3 92.5
SLLLS 4 9 94.4 94.6
LSLLS 4 10 81.1 93.5
LLSLS 4 12 96.4 96.7
LLLLS 5 16 89.8 85.0

the trace for each ECDSA signature performed during
the handshakes. All the protocol messages starting from
SSH MSG NEWKEYS and any client responses are not re-
quired by our attack, therefore the client drops the con-
nection and repeats the process as needed to build up a
set of distinct trace, digital signature, and digest tuples.
Section 5.3 contains accuracy results for several LS sub-
sequence patterns for an SSH server victim.

5.3 Attack Results

Procurement accuracy. Table 4 and Table 5 show the
empirical accuracy results for patterns of length j = 5
and j = 7, respectively. These patterns represent the
beginning of the LS sequence in the context of Open-
SSL ECDSA executing in real world applications (TLS
via stunnel, SSH via OpenSSH). From our empirical
results we note three trends: (1) Similar to previous
works [4, 24, 27], the accuracy of the subsequence de-
creases as ` increases due to the deviation in the right-
shift operation width. (2) The accuracy also decreases for
subsequences containing several contiguous right-shift
operations, e.g. first and last rows, due to the variable
width of right-shift operations within a single trace. (3)
SSH traces are slightly noisier than TLS traces; we spec-
ulate this is due to the computation of the ECDH shared
secret prior to the ECDSA signature itself. Using our
improved degradation technique (Section 4.3) we can re-
cover a with very high probability, despite the speed of
the modular inversion operation and the imperfect traces.
Key recovery. We close with a few data points
for our end-to-end attack, here focusing on TLS. In
this context, end-to-end means all steps from the at-
tacker perspective—i.e. launching the degrade processes,

https://tools.ietf.org/html/rfc5656


Table 5: Accuracy for length j = 7 subsequences over
15,000 TLS/SSH handshakes.

TLS SSH
Pattern `i ai Accuracy (%) Accuracy (%)
LLLLLLL 7 0 43.8 30.1
SLLLLSL 5 1 93.4 93.1
LSLLLLS 6 2 82.6 88.0
SLSLLSL 4 3 94.8 93.4
LLSLLLL 6 4 92.9 86.4
SLLSLSL 4 5 95.2 94.1
LSLSLLS 5 6 79.2 92.3
SLSLSLL 4 7 98.8 96.6
LLLSLLL 6 8 84.8 80.5
SLLLSLL 5 9 80.0 81.1
LSLLSLS 5 10 80.8 90.9
SLSLLLS 5 11 91.7 85.4
LLSLSLL 5 12 94.3 94.5
SLLSLLS 5 13 90.9 90.6
LSLSLSL 4 14 83.5 95.1
SLSLSLS 4 15 97.8 97.1
LLLLSLL 6 16 87.7 83.8
SLLLLLL 6 17 92.0 92.4
LSLLLSL 5 18 81.8 90.7
LLSLLSL 5 20 94.3 94.7
LSLSLLL 5 22 80.0 91.5
LLLSLSL 5 24 94.4 91.1
SLLLSLS 5 25 94.3 94.3
LSLLSLL 5 26 74.7 86.1
SLSLLLL 5 27 92.9 89.7
LLSLSLS 5 28 94.6 93.6
SLLSLLL 5 29 85.4 84.8
LLLLLSL 6 32 65.7 61.1
LSLLLLL 6 34 91.5 91.5
LLSLLLS 6 36 93.0 89.3
LLLSLLS 6 40 89.0 88.5
LLLLSLS 6 48 87.2 82.7
SLLLLLS 6 49 86.8 85.5
LLLLLLS 7 64 25.6 33.0

launching the spy process, and launching our custom
TLS client. Finally, repeating these steps to gather mul-
tiple trace and signature pairs, then running the lattice
attack for key recovery. That is, no steps in the attack
chain are abstracted away.

The experiments for Table 3 assume perfect traces.
However, as seen in Table 4 and Table 5, while we ob-
serve quite high accuracy, in our environment we are un-
able to realize absolutely perfect traces. Trace errors will
occur, and lattice methods have no recourse to compen-
sate for them. We resort to oversampling and randomized
brute force search to achieve key recovery in practice.

For the j = 5 case, we procured 150 signatures with

(potentially imperfect) trace data. Consulting Table 3,
we took 400 random subsets of size 80 from this set
and ran lattice attack instances on a computing cluster.
The first instance to succeed in recovering the private
key did so in roughly 8 minutes. Checking the ground
truth afterwards, 142 of these original 150 traces were
correct, i.e. ~0.18% of all possible subsets are error-free.
This successful attack is consistent with the probability
1− (1−0.0018)400 ≈ 51.4%.

Similarly for the j = 7 case, we procured 150 signa-
tures with (potentially imperfect) trace data. Consulting
Table 3, we took 400 random subsets of size 55 from this
set and ran lattice attack instances on a computing clus-
ter. The first instance to succeed in recovering the private
key did so in under a minute. Checking the ground truth
afterwards, 137 of these original 150 traces were correct,
i.e. ~0.19% of all possible subsets are error-free. This
successful attack is also consistent with the probability
1− (1−0.0019)400 ≈ 53.3%.

It is worth noting that with this naı̈ve strategy, it
is always possible to trade signatures for more offline
search effort. Moreover, it is possible to traverse the
search space by weighting trace data subsets according
to known pattern accuracy, e.g. explore patterns with ac-
curacy ≥ 95% sooner.

6 Conclusion

In this work, we disclose a new vulnerability in widely-
deployed software libraries that causes ECDSA nonce
inversions to be computed with the BEEA instead of a
code path with microarchitecture attack mitigations. We
design and demonstrate a practical cache-timing attack
against this insecure code path, leveraging our new per-
formance degradation metric. Combined with our im-
proved nonce bits recovery approach and lattice parame-
terization, this enable us to recover P-256 ECDSA pri-
vate keys from OpenSSL despite constant-time scalar
multiplication. As far as we are aware, this is the first
cache-timing attack targeting nonce inversion in Open-
SSL, and furthermore the first side-channel attack against
cryptosystems leveraging its constant-time P-256 scalar
multiplication methods. Our contributions traverse both
practice and theory, recovering keys with as few as 50
signatures and corresponding traces.

Stepping back from the concrete side-channel attack
we realized here, our improved nonce bit recovery ap-
proach coupled with tuned lattice parameters demon-
strates that even small leaks of BEEA execution can have
disastrous consequences. Observing as few as the first 5
operations in the LS sequence allows every signature to
be used as an equation for the lattice problem. Moreover,
our work highlights the fact that constant-time consider-
ations are ultimately about the software stack, and not



necessarily a single component in isolation.
The rapid development of cache-timing attacks paired

with the need for fast solutions and mitigations led to
the inclusion of the BN FLG CONSTTIME flag in Open-
SSL. Over the years, the flag proved to be useful when
introducing new constant-time implementations, but un-
fortunately its usage is now beyond OpenSSL’s original
design. As new cache-timing attacks emerged, the us-
age of the flag increased throughout the library. At the
same time the programming error probability increased,
and many of those errors permeated to forks such as
LibreSSL and BoringSSL. The recent exploitation sur-
rounding the flag’s usage, this work included, highlights
it as a prime example of why failing securely is a fun-
damental concept in security by design. For example,
P-256 takes the constant-time scalar multiplication code
path by default, oblivious to the flag, while in stark con-
trast modular inversion relies critically on this flag being
set to follow the code path with microarchitecture attack
mitigations.

Following responsible disclosure procedures, we re-
ported the issue to the developers of the affected products
after our findings. We lifted the embargo in December
2016. Despite OpenSSL’s 1.0.1 branch being a standard
package shipped with popular Linux distributions such
as Ubuntu (12.04 LTS and 14.04 LTS), Debian (7.0 and
8.0), and SUSE, it reached EOL in January 2017. Back-
porting security fixes to EOL packages is a necessary and
challenging task, and to contribute we provide a patch to
mitigate our attack. OpenSSL assigned CVE-2016-7056
based on our work. See the appendix for the patch.
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A Mitigation

Below is the fix for CVE-2016-7056 in uuencode format.

begin-base64 664 fix_CVE-2016-7056.patch
RnJvbSAyNDliY2YzMTQwNWUxNjIyZDA1ZWY2MGRjNWU3M2M1NGVmYTY0ZjNj
IE1vbiBTZXAgMTcgMDA6MDA6MDAgMjAwMQpGcm9tOiA9P1VURi04P3E/Q2Vz
YXI9MjBQZXJlaWRhPTIwR2FyYz1DMz1BRGE/PSA8Y2VzYXIucGVyZWlkYWdh
cmNpYUB0dXQuZmk+CkRhdGU6IEZyaSwgMTYgRGVjIDIwMTYgMTI6MDI6MTkg
KzAyMDAKU3ViamVjdDogW1BBVENIXSBFQ0RTQSB2dWxuZXJhYmxlIHRvIGNh
Y2hlLXRpbWluZyBhdHRhY2suIEJOX21vZF9pbnZlcnNlIGZhaWxzCiB0byB0
YWtlIGNvbnN0YW50LXRpbWUgcGF0aCwgdGh1cyBsZWFraW5nIG5vbmNlJ3Mg
aW5mb3JtYXRpb24uCgotLS0KIGNyeXB0by9lY2RzYS9lY3Nfb3NzbC5jIHwg
MiArKwogMSBmaWxlIGNoYW5nZWQsIDIgaW5zZXJ0aW9ucygrKQoKZGlmZiAt
LWdpdCBhL2NyeXB0by9lY2RzYS9lY3Nfb3NzbC5jIGIvY3J5cHRvL2VjZHNh
L2Vjc19vc3NsLmMKaW5kZXggNGM1ZmE2Yi4uNzJlN2MwNSAxMDA2NDQKLS0t
IGEvY3J5cHRvL2VjZHNhL2Vjc19vc3NsLmMKKysrIGIvY3J5cHRvL2VjZHNh
L2Vjc19vc3NsLmMKQEAgLTE0Nyw2ICsxNDcsOCBAQCBzdGF0aWMgaW50IGVj
ZHNhX3NpZ25fc2V0dXAoRUNfS0VZICplY2tleSwgQk5fQ1RYICpjdHhfaW4s
IEJJR05VTSAqKmtpbnZwLAogICAgICAgICAgICAgaWYgKCFCTl9hZGQoaywg
aywgb3JkZXIpKQogICAgICAgICAgICAgICAgIGdvdG8gZXJyOwogCisgICAg
ICAgIEJOX3NldF9mbGFncyhrLCBCTl9GTEdfQ09OU1RUSU1FKTsKKwogICAg
ICAgICAvKiBjb21wdXRlIHIgdGhlIHgtY29vcmRpbmF0ZSBvZiBnZW5lcmF0
b3IgKiBrICovCiAgICAgICAgIGlmICghRUNfUE9JTlRfbXVsKGdyb3VwLCB0
bXBfcG9pbnQsIGssIE5VTEwsIE5VTEwsIGN0eCkpIHsKICAgICAgICAgICAg
IEVDRFNBZXJyKEVDRFNBX0ZfRUNEU0FfU0lHTl9TRVRVUCwgRVJSX1JfRUNf
TElCKTsKLS0gCjIuNy40Cgo=
====

B Supplementary Empirical Data

Table 6 contains the raw data used to produce Figure 6.

Table 6: Empirical number of extracted bits for vari-
ous sequence lengths. Each sequence length consisted of
226 trials, over which we calculated the mean (with de-
viation), maximum, and minimum number of recovered
LSBs. See Figure 6 for an illustration.

j Mean St. Dev. Min Max
1 1.00 0.00 1 1
2 1.50 0.50 1 2
3 2.25 0.43 2 3
4 2.87 0.60 2 4
5 3.56 0.61 3 5
6 4.22 0.70 3 6
7 4.89 0.73 4 7
8 5.43 0.93 4 8
9 5.88 1.15 4 9

10 6.23 1.40 4 10
11 6.52 1.64 4 11
12 6.73 1.87 4 12
13 6.91 2.07 4 13
14 7.04 2.24 4 14
15 7.15 2.40 4 15
16 7.23 2.53 4 16
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