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Campus 2, 14032 Caen Cedex, France.
(2) Higher Teacher Training College, University of Bamenda,

P.O.Box 39 Bambili, Cameroon
emmanuel.fouotsa@yahoo.fr

Abstract. Barreto, Lynn and Scott elliptic curves of embedding degree
12 denoted BLS12 have been proven to present fastest results on the
implementation of pairings at the 192-bit security level [1]. The compu-
tation of pairings in general involves the execution of the Miller algorithm
and the final exponentiation. In this paper, we improve the complexity
of these two steps up to 8% by searching an appropriate parameter. We
compute the optimal ate pairing on BLS curves of embedding degree 12
and we also extend the same analysis to BLS curves with embedding de-
gree 24. Furthermore, as many pairing based protocols are implemented
on memory constrained devices such as SIM or smart cards, we describe
an efficient algorithm for the computation of the final exponentiation less
memory intensive with an improvement up to 25% with respect to the
previous work.

Keywords: BLS curves, Optimal Ate pairing, final exponentiation, mem-
ory resources, Miller loop.

1 Introduction

The performance of pairing-based protocols depends on the efficiency of
pairing computation. This computation consists of two main parts: the
Miller step and the final exponentiation. Given an elliptic curve E de-
fined over a finite field Fp and two points R and S on E, the Miller
step consists of computing the function fu,R with divisor Div(fu,R) =
u(R)− ([u]R)− (u− 1)(O) where u is an integer and O denotes the iden-
tity element of the group of points of the elliptic curve. The efficiency
(the number of operations) of the Miller step depends on the bit length



log2(u) of u and its Hamming weight since this step uses the double-
and-add Miller algorithm [2]. The final exponentiation consists of rais-

ing the result fu,R(S) of the Miller step to the power of pk−1
r as follows

fu,R(S)
pk−1
r =

(
fu,R(S)

pk−1
φk(p)

)φk(p)

r

, where r is a large prime dividing the

order of the group of rational points of E, k is called the embedding de-
gree of E and is the smallest integer such that r divides pk−1; and φk(x)
is the k-th cyclotomic polynomial. The computation of the first part of

the final exponentiation i.e the computation of A = fu,R(S)
pk−1
φk(p) is gen-

erally cheap as it consists of few multiplications, an inversion and taking
p-th power in Fpk . The second part which consists of the computation

A
φk(p)

r is more difficult and is called the hard part. An efficient method
to compute this term is described by Scott et al. [3]. They suggested to

write d = φk(p)
r in base p as d = d0 + d1p+ ...+ dφ(k)−1p

φ(k)−1 and find a

short vectorial addition chain to compute Ad much more efficiently than
the naive method.
In this paper, we are interested in the improvement on the computation
of the Miller step and the final exponentiation on BLS curves [4] at the
192-bit security level. Indeed, the 192-bit security level is the highest se-
curity level for public-key operations in the National Security Agency’s
Suite B Cryptography standard [5]. Also based on the results concerning
implementation of pairings on elliptic curves with embedding degree 12
at the 192-bit security level, BLS12 curves have the fastest performances
[1]. Specifically, we search for an adequate value of the parameter u to
reduce the number of addition steps in the Miller algorithm and the com-
plexity of the final exponentiation. Furthermore, as many pairing-based
protocols are implemented on memory constrained devices, we describe
an efficient algorithm for the computation of the final exponentiation with
less temporary variables. The improvement in this work is up to 25% in
memory resources and about 8% in the complexity of the optimal ate pair-
ing compared to the previous work done in [1]. The rest of the paper is
organised as follows: In Section 2 we present the Barreto-Lynn and Scott
curves (BLS) and a brief description of optimal pairings. The Section 3
is the state of the art on the computation of the hard part of the final
exponentiation. In this section we follow the work of Aranha et al.[1] and
we study the number of temporary variables used for the computation of
the final exponentiation using their approach in the development of the
exponent. In Section 4 we present a new development of the exponent in



the hard part of the final exponentiation for BLS12 curves which enable
us to improve the cost of the computation and requires less memory re-
sources comparatively to the results in [1]. We propose also in section 5 a
new parameter u of the BLS12 curves which leads to the reduction of the
Miller loop and an efficient final exponentiation. The Section 6 presents
a similar analysis for BLS24 curves. The results obtained are an improve-
ment up to 8% than Aranha et al. results. In Section 7 we compare the
results obtained in this work with previous fast results on optimal ate
pairings at the 192-bit security level. Section 8 concludes our paper.

Notations:
In this paper we denote by:

– Mk a multiplication in Fpk .
– Sk a squaring in Fpk .
– Fk a Frobenius map application in Fpk .
– Ik an inversion in Fpk .

A multiplication, a squaring and an inversion in Fp are denoted by M , S
and I respectively.

2 Barreto-Lynn-Scott Curves (BLS12) and Optimal Ate
Pairings

In 2002, Barreto, Lynn and Scott presented in [4] a method to gener-
ate pairing-friendly elliptic curves over a prime field Fp with embedding
degree k = 12. BLS12 are defined over Fp by the following equation:

E : y2 = x3 + b

and by a parameter u ∈ Z such that:
p = (u− 1)2(u4 − u2 + 1)/3 + u
r = u4 − u2 + 1
t = u+ 1

(1)

where t is the trace of the Frobenius map on the curve. The parameter u
is chosen such that p and r are prime and have the sizes corresponding
to the desired security level following the recommendations in [6]. At the
192-bit security level for BLS12, p and r are of at least 640 and 384 bits
in sizes respectively.
The concept of optimal pairing is defined in [7]. Let πp : E

(
Fp
)
→



E
(
Fp
)
, (x, y) 7→ (xp, yp) be the Frobenius endomorphism on the curve

where Fp is an algebraic closure of Fp. Denote [n] : P 7−→ [n]P the
endomorphism defined on E(Fp) which consists of adding P to itself
n times. Let G1 = E(Fp)[r] be the r-torsion subgroup of E(Fp). Let
G2 = E′(Fp2)[r]∩ Ker(πp − [p]) where E′ is the sextic twist of E and
G3 = µr is the subgroup of F?p12 consisting of r-th roots of unity. An
explicit formula of the optimal ate pairing on BLS12 curves is detailed in
[1] and is given in Proposition 1.

Proposition 1 [7] The optimal ate pairing over the parametrized BLS12
curves is the bilinear and non degenerated map:

eopt : G1 ×G2 → G3

(P,Q) 7−→ fu,Q(P )
p12−1
r

where fu,R is the function with divisor Div(fu,R) = u(R)− ([u]R)− (u−
1)(O)

Let u = un2n + ... + u12 + u0 with ui ∈ {−1, 0, 1}. Let `R,Q be the line
passing through the points R and Q of the elliptic curves.

The function fu,Q (and in general the pairing fu,Q(P )
p12−1
r ) is efficiently

computed thanks to the following algorithm known as the Miller’s algo-
rithm [2].

Miller algorithm and pairing computation:
Input: u, n = log2(u), P ,Q

Output:fu,Q(P )
p12−1

r

1: Set f1 ← 1 and R← Q
2: For i = n− 1 down to 0 do
3: f1 ← f2

1 · `R,R(P ), R← 2R Doubling step
5: if ui = 1 then
6: f1 ← f1 · `R,Q(P ) R← R + Q, end if Addition step
7: if ui = −1 then
8: f1 ← f1 · `R,−Q(P ) R← R−Q, end for Addition step

10: return e = f
p12−1

r
1 Final exponentiation

l

Remark 2 The loop length of the Miller algorithm is log2(u) and the
addition steps are done only if ui ∈ {−1, 1}. Therefore any u with a
smaller bit size (lu) and low Hamming weight (wu) will be a good solution
for the efficiency of the algorithm. Example 3 gives an illustration.



Example 3 Aranha et al. presented in [1] a value u for the BLS12 curve
which is a 107-bit integer length (lu = 108) of Hamming weight wu = 4:

u = −2107 + 2105 + 293 + 25

This parameter yields a 638-bit prime p and 427-bit prime r. For this
parameter u, in Miller loop, the number of doubling steps is 107 and the
number of additions steps is 4.

3 Previous Work on the Computation of Final
Exponentiation on BLS12

The computation of optimal ate pairing on BLS12 curves is done in [1].
However the authors do not take into consideration the number of tem-
porary variables involved especially in the computation of the final ex-
ponentiation. This may be a drawback when implementing pairings over
memory constrained devices. In this section we try to overcome this draw-
back by adding details to their computation, especially for the hard part
of the final exponentiation given by:

p12 − 1

r
=
(
p6 − 1

) (
p2 + 1

) p4 − p2 + 1

r

To compute the first part f = f
(p6−1)(p2+1)
1 we have to perform just two

easy Frobenius operations, two multiplications and an inversion in Fp12 .
This inversion is a hard operation, however it has an important conse-
quence for the rest of the computation. Indeed, powering f1 to the p6 − 1
makes the result unitary [8]. By this way, during the hard part of the final

exponentiation (the computation of f
p4−p2+1

r ) all the elements involved
are unitary. This simplifies the computations. For example any future
inversion can be implemented as a Frobenius operator, more precisely
f−1 = fp

6
which is just a conjugation [8], [9]. Consequently, we assume

in this section that inversions are free. The exponent p4−p2+1
r of the hard

part can be simply written as a polynomial in p of degree 3:

p4 − p2 + 1

r
= λ0 + λ1p+ λ2p

2 + λ3p
3

where 
λ0 = u5 − 2u4 + 2u2 − u+ 3
λ1 = u4 − 2u3 + 2u− 1
λ2 = u3 − 2u2 + u
λ3 = u2 − 2u+ 1

(2)



In [1], the computation of fλ0+λ1p+λ2p
2+λ3p3 is done in 2 steps:

First they compute

f −→ f−2 −→ fu −→ f2u −→ fu−2 −→ fu
2−2u −→

fu
3−2u2 −→ fu

4−2u3 −→ fu
4−2u3+2u −→ fu

5−2u4+2u2

which requires 5 exponentiations by u, 2 multiplications in Fp12 and 2
cyclotomic squarings. The second step is applying Frobenius maps and
multiplying terms together to have the following expression:

fd = fu
5−2u4+2u2

(
fu−2

)−1 (
fu

4−2u3+2uf−1
)p (

fu
3−2u2fu

)p2 (
fu

2−2uf
)p3

which requires 3 Frobenius maps and also other 8 multiplications. There-
fore, the total cost of the hard part of the final exponentiation through
Aranha et al. method is 5 exponentiations by u, 10 multiplications, 2
squarings and 3 Frobenius in Fp12 . In their paper, Aranha et al. do not
specify the number of temporary variables used to compute fd. This can
be a requirement if we think about implementation of pairings in a re-
stricted environment. That’s why, we have computed them and have found
that we need to use at least 6 temporary variables in Fp12 to compute the
hard part of the final exponentiation as shown in Algorithm 1. A magma
code to check the correctness of this algorithm is available here. The
overall cost of computing fd is then (5lu − 3)S12 + (5wu + 5)M12 + 3F12.
Considering the value of u chosen in example 3, the total cost of this
algorithm is 537S12 + 25M12 + 3F12.

Remark 4 In fact, neither Aranha et al [1] nor the present authors com-
pute the optimal ate pairing itself, but rather its cube. The advantage of
that is that the coefficient λi become integers.

4 New development of d with u proposed in [1]

As we earlier said in the introduction, our aim in this paper is to reduce
the complexity and the number of temporary variables used to compute

the hard part of the final exponentiation f
p4−p2+1

r . In this Section we
propose another development of the exponent d which enable us to use less
temporary variables and therefore decrease the number of multiplications

in Fp. Recall that d = p4−p2+1
r = λ0 + λ1p + λ2p

2 + λ3p
3. To improve

the cost of the computations we rewrite λi with 0 ≤ i ≤ 3 differently as

http://www.camercrypt.org/BLSformulas


Algorithm 1: Aranha et al.[1] Computed Terms Cost
development and comments

Input: f, u

Output: f
p4−p2+1

r

Temp. var.: t0, t1, t2, t3, t4
t5
t0 ← f−2 f−2 S12

t5 ← fu (lu − 1)S12 + (wu − 1)M12

t1 ← t25 f2u S12

t3 ← t0t5 fu−2 M12

t0 ← tu3 fu
2−2u (lu − 1)S12 + (wu − 1)M12

t2 ← tu0 fu
3−2u2

(lu − 1)S12 + (wu − 1)M12

t4 ← tu2 fu
4−2u3

(lu − 1)S12 + (wu − 1)M12

t4 ← t1t4 M12

t1 ← tu4 fu
5−2u4+2u2

(lu − 1)S12 + (wu − 1)M12

t3 ← t−1
3

t1 ← t3t1 M12

t1 ← t1f fλ0 M12

t3 ← f−1

t0 ← t0f fλ3 M12

t0 ← tp
3

0 F12

t4 ← t3t4 fλ1 M12

t4 ← tp4 F12

t5 ← t2t5 fλ2 M12

t5 ← tp
2

5 F12

t5 ← t5t0 M12

t5 ← t5t4 M12

t5 ← t5t1 f
p4−p2+1

r M12

return t5
Table 1. Temporary variables used in the previous work [1]

follows: 
λ0 = λ1u+ 3
λ1 = λ2u− λ3
λ2 = λ3u
λ3 = u2 − 2u+ 1

(3)

From these new relations satisfied by λ0, λ1, λ2 and λ3 we get algorithm 2

in Table 2 which allows us to compute f
p4−p2+1

r . A magma code to check
the correctness of this algorithm is available here.

To compute any exponentiation, we use the square and multiply algo-
rithm [10]. The cost of the four exponentiations by u in this algorithm is
4(lu− 1)S12 + 4(wu− 1)M12 and the cost of the exponentiation by u/2 is

http://www.camercrypt.org/BLSformulas


Algorithm 2: new Computed Terms Cost
variant of Aranha et al.[1] and comments

Input: f, u

Output: f
p4−p2+1

r

Temp. var.: t0, t1, t2, t3, t4
t0 ← f2 S12

t1 ← tu0 (lu − 1)S12 + (wu − 1)M12

t2 ← t
u/2
1 fu

2

(lu − 2)S12 + (wu − 1)M12

t3 ← f−1

t1 ← t3t1 f2u−1 M12

t1 ← t−1
1 f−2u+1

t1 ← t1t2 fλ3 M12

t2 ← tu1 fλ2 (lu − 1)S12 + (wu − 1)M12

t3 ← (t2)u fλ2u (lu − 1)S12 + (wu − 1)M12

t1 ← t−1
1 f−λ3

t3 ← t1t3 fλ1 M12

t1 ← t−1
1 fλ3

t1 ← tp
3

1 fλ3p
3

F12

t2 ← tp
2

2 fλ2p
2

F12

t1 ← t1t2 fλ3p
3

fλ2p
2

M12

t2 ← tu3 fλ1u (lu − 1)S12 + (wu − 1)M12

t2 ← t2t0 M12

t2 ← t2f fλ0 M12

t1 ← t1t2 fλ3p
3

fλ2p
2

fλ0 M12

t2 ← tp3 fλ1p F12

t1 ← t1t2 fλ3p
3

fλ2p
2

fλ1pfλ0 M12

return t1

Table 2. Temporary variables used with the new development of d

(lu−2)S12+(wu−1)M12. The overall cost of computing fd with steps given
in Algorithm 2 is then 4(lu−1)S12+(lu−2)S12+S12+(5wu+3)M12+3F12.
We summarise in Table 3 the two results from Table 1 and Table 2.

Method Complexity Temp. var.
S12 M12 F12

Aranha et al.[1]
5lu − 3 5wu + 5 3 6

(algorithm 1)

This work
5lu − 5 5wu + 3 3 4

(algorithm 2)

Table 3. Comparison between Aranha et al.[1] and our new development



Through Table 3 we remark that our approach gives faster results
than the method given in [1] for the computation of the hard part of
the final exponentiation. We saved 2 squarings and 2 multiplications in
Fp12 thanks to the fact that u is even. We have also decreased the used
memory resources, we have used 4 temporary variables instead of 6 in [1].
In order to give a more explicit comparison we consider Example 5.

Example 5 Let E a BLS12 elliptic curve defined over a prime field Fp
by

E : y2 = x3 + 4

Based on the parameter u = −2107 + 2105 + 293 + 25 proposed by Aranha
et al. an exponentiation by u needs 3 multiplications and 107 squarings
in Fp12. A detailed comparison is given in the following Table.

Method Complexity Temp. var.
S12 M12 F12

Aranha et al.[1]
537 25 3 6

(algorithm 1)

This work
535 23 3 4

(algorithm 2)

Table 4. Comparison between Aranha et al.[1] and our new development

For a full comparison, we give the complexity of each Fp12 operation in
Fp. In our case −1 is not a square and (1 + α) is neither a cube nor a
square.
The field Fp12 is built using the following extension tower.

– Fp2 = Fp[α]/(α2 + 1)
– Fp6 = Fp2 [β]/

(
β3 − (α+ 1))

)
– Fp12 = Fp6 [γ]/

(
γ2 − β

)
The cost of arithmetic operations in Fp, Fp2 , Fp6 and Fp12 are detailed in
[11], [12], [1].

5 Development of d with a New Parameter u

Our aim is to reduce the complexity of the computation of the pairing as
much as possible for both the computation of the hard part of the final
exponentiation and also the Miller loop. We wrote a Pari/GP code to find



a suitable u with low hamming weight and minimal number of bits for
the 192- bits security level.

Proposition 6 The best value of u we were able to find is

u = −2107 + 284 + 219

which gives p a 641-bit prime number and r a 428-bit prime number.
The Hamming weight of u is wu = 3, this low Hamming weight has an
advantage because any exponentiation by u needs only 2 multiplications
instead of 3 needed if we use the parameter proposed by Aranha et al.

Now we present the improved cost of our development of the hard part
of the final exponentiation using the new value of the parameter u in the
following Table 5. We can deduce that using the new parameter u in our

Method Complexity Number of Temp. var.
S12 M12 F12 must used

Aranha et al.[1]
537 25 3 6

This work with
535 23 3 4

u of Aranha et al.[1]

This work
535 18 3 4

with new u

Table 5. Comparison of the cost of the hard part of the final exponentiation

development is a fast alternative for computing the hard part of the final
exponentiation.

The overall cost of the final exponentiation f (p
6−1)(p2+1) p

4−p2+1
r is an in-

version in Fp12 , 10 multiplications, 4 Frobenius, one cyclotomic squaring, 5
exponentiations by u and 1 exponentiation by u/2, where the easiest part
costs 2 multiplications, an inversion and a Frobenius. Any exponentiation
by our new parameter u requires 107 compressed squarings, simultaneous
decompression of 4 field elements when Karabina’s exponentiation tech-
nique [13] is employed and 2 multiplications in Fp12 . So we have to perform
107(6S2) + 4(3M2 + 3S2) + 3(3M2) + I2 + 2(18M2) = (57M2 + 654S2 + I2)
to compute any exponentiation by u. The overall cost of the final expo-
nentiation is therefore 4(57M2 + 654S2 + I2) + (57M2 + 648S2 + I2) +
4(15M) + 10(18M2) + (23M2 + 11S2 + I2) + 9S2=8116M+6I.
As computed in [1], the cost of a multiplication in Fp12 is about 54M , a
cyclotomic squaring costs 18M and a Frobenius in Fp12 is 15 multiplica-
tions in Fp. Consequently, the cost of the final exponentiation using the



new parameter u and our new development is less than the cost given in
[1]. We saved about 408 multiplications in Fp which is about 5% of the
overall cost of the final exponentiation. The advantage of our parameter
u is also that we reduced the computational cost in the Miller loop. The
number of doubling step in Miller algorithm is determined by the length
of u in base 2 which is blog2(u)c = lu. The Hamming weight of u deter-
mines the number of addition steps in Miller’s algorithm.
That’s why, using the new parameter u that we proposed in this paper we
have to perform just 2 addition steps instead of 3 done in [1]. Therefore
we save an addition step with line evaluation and also a multiplication in
Fp12 . This gain is about 80 multiplications in Fp which represents 1%.

6 Optimal Ate Pairings over BLS24 Curves

Although BLS12 curves present the fastest results for the implementation
of pairings at the 192 bits security level [1], BLS curves of embedding
degree 24 are also well suited for implementing pairings at the high secu-
rity level [14]. The objective of this section is to improve the cost of the
computation of the optimal ate pairing over BLS24 curves. The analysis
follows the same approach we used in the case of BLS12 curves. Mainly,
a new parameter is obtained with low hamming weight. This enables us
to improve the cost of the Miller loop and the computation of the final
exponentiation. BLS24 curves are families of elliptic curves parametrized
as follows: 

p = (u− 1)2(u8 − u4 + 1)/3 + u
r = u8 − u4 + 1
t = u+ 1

(4)

The authors in [1] consider the implementation of optimal ate pairing
on the BLS24 curve defined by the equation y2 = x3 + 4 and with the
parameter u = −248 + 245 + 231 − 27.

6.1 Previous results on BLS24 curves

The final exponentiation for BLS24 curves is

p24 − 1

r
=
(
p12 − 1

) (
p4 + 1

) p8 − p4 + 1

r



The exponent p8−p4+1
r of the hard part of the final exponentiation is

written as

p8 − p4 + 1

r
=

φ(24)−1∑
i=0

λip
i = λ0 + λ1p+ λ2p

2 + · · ·+ λ7p
7

where 

λ0 = u9 − 2u8 + u7 − u5 + 2u4 − u3 + 3
λ1 = u8 − 2u7 + u6 − u4 + 2u3 − u2
λ2 = u7 − 2u6 + u5 − u3 + 2u2 − u
λ3 = u6 − 2u5 + u4 − u2 + 2u− 1
λ4 = u5 − 2u4 + u3

λ5 = u4 − 2u3 + u2

λ6 = u3 − 2u2 + u
λ7 = u2 − 2u+ 1

(5)

The hard part of the final exponentiation is computed as

fd = fλ0fλ1pfλ2p
2
fλ3p

3
fλ4p

4
fλ5p

5
fλ6p

6
fλ7p

7

Following [1], the computation of fd needs 9 exponentiations by u, 7
Frobenius operations, 2 cyclotomic squarings and 12 multiplications in
Fp24 .
Considering the parameter u = −248 + 245 + 231 − 27, an exponentiation
by u requires (lu− 1) squarings and (wu− 1) multiplications in Fp24 . The
cost of the hard part of the final exponentiation presented in [1] is then
(9(lu − 1) + 2)S24, (9(wu − 1) + 12)M24 and 7 Frobenius operations.

6.2 Improvement of the cost of Optimal Ate pairing on
BLS24 curves

To improve the computation of fd we observed that the coefficients in
the decomposition of d verify the following relations:

λ0 = λ1u+ 3
λ1 = λ2u
λ2 = λ3u
λ3 = λ4u− λ7
λ4 = λ5u
λ5 = λ6u
λ6 = λ7u
λ7 = u2 − 2u+ 1

(6)

Using these relations we can evaluate fd in Algorithm 3.



Algorithm 3: BLS24 Computed Terms Cost
curves. and comments
Input: f, u

Output: f
p8−p4+1

r

Temp. var.: t0, t1, t2, t3, t4
t7 ← f2 S24

t1 ← tu7 f2u (lu − 1)S24 + (wu − 1)M24

t2 ← t
u/2
1 fu (lu − 2)S24 + (wu − 1)M24

t3 ← t−1
2

t2 ← t1t3 M24

t2 ← t2f fλ7 M24

t3 ← tu2 fλ6 (lu − 1)S24 + (wu − 1)M24

t4 ← tu3 fλ5 (lu − 1)S24 + (wu − 1)M24

t3 ← tp
6

3 fλ6p
6

F24

t4 ← tp
5

4 fλ5p
5

F24

t3 ← t3t4 M24

t5 ← tu4 fλ4 (lu − 2)S24 + (wu − 1)M24

t6 ← tu5 (lu − 1)S24 + (wu − 1)M24

t0 ← t−1
2

t6 ← t6t0 fλ3 M24

t5 ← tp
3

6 fλ3p
3

F24

t3 ← t3t5 M24

t5 ← tu6 fλ2 (lu − 1)S24 + (wu − 1)M24

t0 ← tp
2

5 fλ2p
2

F24

t3 ← t3t0 M24

t6 ← tu5 fλ1 (lu − 1)S24 + (wu − 1)M24

t0 ← tp6 fλ1p F24

t3 ← t3t0 M24

t5 ← tu6 fλ0 (lu − 1)S24 + (wu − 1)M24

t2 ← tp
7

2 fλ7p
7

F24

t5 ← t5t7 M24

t3 ← t3t2 M24

t3 ← t3t5 M24

return t3

This algorithm requires (8(lu − 1))S24, (lu − 2)S24, S24,
(9(wu − 1) + 12)M24 and 7 Frobenius operations in Fp24 . Thanks to the
fact that u is even, we saved 2 squarings in Fp24 .
As in section 5, we also tried in this case to find a new parameter u which
has a low Hamming weight. Our Pari/GP code let us find the following
parameter

u′ = 248 − 230 + 226

which gives p a 479-bit prime number and r a 384-bit prime number. This
new parameter u′ is a 48−bit integer as the u proposed in [1]. However its



Hamming weight is 3 instead of 4 in the case of [1]. This is an advantage
because we have in our case less operations to perform. For the param-
eters p et r, the extension field Fp24 is built using the following tower of
extensions:

– Fp2 = Fp[α]/(α2 + 1)
– Fp6 = Fp2 [β]/

(
β3 − (α+ 2))

)
– Fp12 = Fp6 [γ]/

(
γ2 − β

)
– Fp24 = Fp12 [θ]/

(
θ2 − γ

)
The arithmetic for this tower of extension is presented in [1]. Using the
new parameter u′, any exponentiation by this parameter costs (lu − 1)
squarings and (wu − 2) multiplications in Fp24 . Because the Hamming
weight of u′ is 3, this enables to save one multiplication in Fp24 in each ex-
ponentiation by u′ giving a total of 9 saved multiplications in Fp24 . There-
fore the hard part of the final exponentiation requires (8(lu − 1))S24,
(lu − 2)S24, S24, (9(wu − 2) + 12)M24 and 7 Frobenius operations. Then
the overall cost of the computation of the final exponentiation is
8 (48(12M2) + 89M2 + 2S2 + 2(54M2) + I2)+8(45M)+14(54M2)+18M2

+ (47(12M2) + 89M2 + 2S2 + 2(54M2) + I2) = 7802M2 + 29S2 + 400M +
10I. In term of the computation of the hard part of the final exponenti-
ation, our method is faster than Aranha et al. method presented in [1].
We saved 1548 multiplications in Fp which is about 8%.

The fastest cost of the Miller loop for computing optimal ate pairing
over BLS24 curves is reported in [1]. The doubling step costs 21M2 + 8M
for the point doubling and 36M2 for updating the Miller function in this
step. The addition step costs 37M2+8M for the point addition and 39M2

for updating the Miller function in this step. In this work, we presented a
new parameter u′ which enable us to perfom only 3 point additions with
line evaluations instead of 4 by using u. We win also one multiplication in
Fp24 which represents 353 multiplications in Fp. Hence the gain is 2.5%.

7 Comparison
In this paper we were not only interested in the complexity of the optimal
ate pairing curves but also on memory usage on BLS12 . We also studied
the complexity of the computation of the optimal ate pairing on BLS24
curves using a new development of the hard part of the final exponen-
tiation and we presented a new parameter u. A full comparison of the
results in this work with previous fast results on optimal ate pairings at
the 192-bit security level is given in the following table.



Curves Method u
Complexity of Complexity of

Miller loop the final expo

BLS12 Curves
Aranha et al.[1] 10865 8524M+6I

This work 10785 8166M+6I

BLS24 Curves
Aranha et al.[1] 14927 25412M+10I

This work 14574 23864M+10I

BN Curves Aranha et al.[1] 16553M 7218M+4I

KSS18 Curves Aranha et al.[1] 13168M 23821M+8I

Table 6. Comparison of previous fast results with this work on pairing at the 192-bit
security level

Table 6 shows that our new approach is more efficient than the method
presented by Aranha et al.[1] in the case of BLS12 curves and also BLS24
curves.

8 Conclusion

For the 192-bit level security, it is recommended to use BLS12 curves
because the computation of pairings over this category of curves is more
efficient than others curves such as BN curves [15], KSS16 curves [16].
In this paper we improved the computation of the hard part of the final
exponentiation and also the computation of Miller loop compared to the
costs presented in [1] in BLS12 and BLS24 curves. We implemented our
new algorithms in Magma to verify their correctness [17]. As a conclusion,
our new methods for computing the hard part of the final exponentiation
are more efficient than previous methods in the literature and they are
always less memory intensive. Hence, there are an interesting alternative
for pairing implementation in restricted environments for the 192-security
level.
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