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Abstract. In Crypto 2010, Kiltz, O’Neill and Smith used m-prime R-
SA modulus N with m ≥ 3 for constructing lossy RSA. The security
of the proposal is based on the Multi-Prime Φ-Hiding Assumption. In
this paper, we propose a heuristic algorithm based on the Herrmann-
May lattice method (Asiacrypt 2008) to solve the Multi-Prime Φ-Hiding

Problem when prime e > N
2

3m . Further, by combining with mixed lat-
tice techniques, we give an improved heuristic algorithm to solve this

problem when prime e > N
2

3m
− 1

4m2 . These two results are verified by
our experiments. Our bounds are better than the existing works.
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1 Introduction

1.1 Background

The Φ-Hiding Assumption [1] firstly introduced by Cachin, Micali and Stadler
in Eurocrypt 1999 was used for building a practical private information retrieval
scheme. Based on this assumption, many cryptographic schemes have been de-
signed, such as [3, 4, 6, 12]. This assumption is roughly stated as follows:

“For a given integer N with unknown factorization, it is hard to decide
whether a given prime e divides Φ(N), where Φ is the Euler function.”

Obviously, the Φ-Hiding Assumption holds with some requirements on the
size of e since it is not true for e ≥ N . The Φ-Hiding Assumption with RSA
modulus N = pq2k has been analyzed in Asiacrypt 2008 [16]. The corresponding
result is that a case of this variant fails with a good probability for any prime e.



For cryptographic applications, one would like e to be as large as possible,
but from a security point of view, if e divides Φ(N) and is sufficiently large, then
one can recover the factorization of N by using the idea of Coppersmith [2, 9,
14]. Thus, it is interesting to know the minimal size of e that allows for efficient
factoring attacks.

It is well known that one can utilize Coppersmith’s method to factorize the
balanced RSA modulus N = pq when prime e > N

1
4 divides Φ(N) = (p− 1)(q−

1). In Asiacrypt 2012, Kakvi, Kiltz and May proposed a lattice algorithm for
obtaining a non-trivial factor of general N under the above condition [10].

In Crypto 2010, Kiltz et al. [12] showed that the RSA function f : x → xe

mod N is a log e lossy trapdoor permutation (LTDP) under the Φ-Hiding As-
sumption with N = pq. They also showed that the RSA-OAEP is indistinguish-
able against chosen plaintext attack (IND-CPA) in the standard model under
this assumption, which is a long time open problem. Furthermore, they gener-
alized this assumption to the multi-prime situation in order to obtain a more
efficient LTDP such that RSA-OAEP can securely encrypt longer plaintext. To
be specific, this multi-prime situation is described as follows:

“For a given RSA modulus N = p1 · · · pm where bit-length of the pi are
equal for all 1 ≤ i ≤ m , it is hard to decide whether a given prime e
divides pi − 1 for all pi except one prime factor of N .”

The condition that e divides pi − 1 for all pi except one prime factor of N
implies that em−1 divides Φ(N) = (p1 − 1) · · · (pm − 1). So, this is a special case
of e divides Φ(N). Therefore, it is a variant of the Φ-Hiding Assumption. For the
sake of terminology, it is called as the Multi-Prime Φ-Hiding Assumption.

Now when e|(pi − 1) for i ∈ [1,m− 1], there are integers xi such that exi =
pi − 1. So if one obtains the integer root xi of equation exi = pi − 1 for any
i ∈ [1,m−1], factorization of N is easily possible as gcd(exi+1, N) = pi. Lattice
method like Coppersmith’s technique can be used to find xi in polynomial time.
So the research goal is to maximize the bound up to which xi can be computed
efficiently. Since the prime pi are of the same bit-length, one fully breaks the
Multi-Prime Φ-Hiding Assumption when the bound of xi reaches N

1
m .

Originally, the bound N
1
m2 of xi was received by the Howgrave-Graham

method in [9]. Later, this bound was improved up to NO( 1
mc ) for some 1 <

c ≤ 2 in [12, 7]. Eventually, the bounds NO( 1
m logm ) were acquired in [19, 15, 18].

However, it is open whether a bound NO( 1
m ), i.e., the exponent being linear in

1
m , could be achieved.

1.2 Previous Works

In this subsection, we recall some known attacks on the Multi-Prime Φ-Hiding
Problem. Note that if e divides pi − 1 for all 1 ≤ i ≤ m, then N ≡ 1 mod e. It
gives a polynomial time distinguisher. To decide if e is Multi-Prime Φ-Hidden in
N , consider the system of equations

ex1 + 1 ≡ 0 mod p1, ex2 + 1 ≡ 0 mod p2, . . . , exm−1 + 1 ≡ 0 mod pm−1.



Let x1 = Nδ. Here all pi are of sizes of the same magnitude for 1 ≤ i ≤ m− 1.
Usually we have

x2 ≈ · · · ≈ xm−1 ≈ Nδ.

The Howgrave-Graham method [9] can be used to find the desired small
solutions of a modular linear equation

exi + 1 = 0 mod pi for some i ∈ {1, · · · ,m− 1}.

Using Howgrave-Graham’s method, one can solve the Multi-Prime Φ-Hiding
Problem by finding the root of the equation exi + 1 = 0 mod pi for some
i ∈ [1,m− 1] in polynomial time if

δ <
1

m2
.

In Crypto 2010, Kiltz et al. [12] constructed a polynomial equation

em−1

(
m−1∏
i=1

xi

)
+ · · ·+ e

(
m−1∑
i=1

xi

)
+ 1 ≡ 0 mod

m−1∏
i=1

pi

by multiplying all given equations. Then they linearized the polynomial and
solved it by the Herrmann-May theorem [8]. They showed that one can solve the
Multi-Prime Φ-Hiding Problem in polynomial time if4

δ <
2

m

(
1

m

) m
m−1

.

Later in Africacrypt 2011, Herrmann [7] improved the work of Kiltz et al. He
used the Herrmann-May theorem to find the desired root (x, y) in equation

e2x+ ey + 1 = 0 mod

m−1∏
i=1

pi,

where x = em−3
m−1∏
i=1

xi + · · ·+
∑
j>i

xixj , y =

m−1∑
i=1

xi. He solved the Multi-Prime

Φ-Hiding Problem in polynomial time if

δ <
2

3

(
1

m

) 3
2

.

In ACISP 2012, Tosu and Kunihiro [19] generalized the method of Herrmann.
Instead of taking two variables, they considered linear polynomials of k variables

4 There is a minor mistake in proceedings version of Crypto 2010 as reported in [7,
Page 97].



for k ∈ [1,m − 1]. They proved that one can solve the Multi-Prime Φ-Hiding
Problem in polynomial time if

δ < max
1≤k≤m−1

{
2

k + 1

(
1

m

) k+1
k
}
.

For large m, Tosu and Kunihiro further optimized k and got

δ <
2

em(lnm+ 1)

where e is the base of the natural logarithm. Thus, asymptotically bound of δ is

2

em lnm
= O(

1

m logm
).

In SPACE 2012, Sarkar [15] observed that the sizes of two components of the
desired root (x, y) in the analysis of Herrmann are not balanced. Based on this
observation, he obtained better bound on δ than the work of Herrmann.

Takayasu and Kunihiro generalized the work of Herrmann and May [8] in [17,
18]. Their bounds are better when components of the desired root are of different
size. Since there is a big difference between the sizes of x and y in Φ-Hiding
Polynomial of [7], one can get a better bound on δ than the work of Herrmann.
The bound of δ in the work of [17] is very close to [15], however, the work of [17]
is more flexible and it can deal with modular equations with more variables
than [15].

1.3 Our Contribution

In this paper, we show that the Multi-Prime Φ-Hiding Assumption does not hold
when δ < 1

3m . For the first time, we obtain such a bound of δ which is linear in
1
m . Thus we can solve the Multi-Prime Φ-Hiding Problem in polynomial time if

e > N
1
m−

1
3m = N

2
3m .

Further, we improve the bound of δ up to 1
3m + 1

4m2 . This improvement is
enormous for small values of m. Hence Multi-Prime Φ-Hiding Problem can be
solved in polynomial time if

e > N
1
m−(

1
3m+ 1

4m2 ) = N
2

3m−
1

4m2 .

1.4 Organization of the Paper

We organize our paper as follow. In Section 2, we recall some preliminaries. In
Section 3, we propose an algorithm using lattice technique. We give an improved
algorithm using mixed lattice methods in Section 4. In Section 5, we give the
comparison of our work with the existing results. We present our experiment
results in Section 6. Section 7 concludes the paper.



2 Preliminaries

2.1 Lattice

An integer lattice L is a discrete subgroup of Zn. An alternative equivalent
definition of an integer lattice can be given using a basis.

Let b1, · · · ,bm be linear independent row vectors in Zn, a lattice L spanned
by them is

L =

{ m∑
i=1

kibi

∣∣ ki ∈ Z
}
.

The set {b1, · · · ,bm} is called a basis of L and B = [b1
T , · · · ,bm

T ]T is the
corresponding basis matrix. The dimension and determinant of L are respectively

dim(L) = m,det(L) =
√

det(BBT ).

When m = n, lattice is called full rank. In case of a full rank lattice, det(L) =

|det(B)|. From Hadamard’s inequality, it is known that det(B) ≤
n∏
i=1

‖bi‖, where

‖b‖ denotes Euclidean `2 norm of a vector b.
For any two-dimensional lattice L, the Gauss algorithm can find out the

reduced basis vectors v1 and v2 satisfying

‖v1‖ ≤ ‖v2‖ ≤ ‖v1 ± v2‖

in time O
(
log2(max{‖v1‖,v2‖})

)
. Here v1 is the shortest nonzero vector in L

and v2 is the shortest vector in L \ {kv1 | k ∈ Z}. A shortest vector v of an

n dimensional lattice satisfies the Minkowski bound ‖v‖ ≤
√
n(det(L))

1
n . The

following result will be used in Section 4.

Lemma 1 (See, e.g., [5]). Let v1 and v2 be the reduced basis vectors of L
by the Gauss algorithm and x ∈ L. For the unique pair of integers (α, β) that
satisfies x = αv1 + βv2, we have

‖αv1‖ ≤
2√
3
‖x‖, ‖βv2‖ ≤

2√
3
‖x‖.

2.2 Finding Small Roots

Coppersmith gave rigorous methods for extracting small roots of modular uni-
variate polynomials and bivariate integer polynomials. These methods can ex-
tend to multivariate cases under the following assumption.

Assumption 1. Let h1, · · · , hn ∈ Z[x1, · · · , xn] be the polynomials that are
found by Coppersmith’s algorithm. Then the ideal generated by the polynomial
equations h1(x1, · · · , xn) = 0, · · · , hn(x1, · · · , xn) = 0 has dimension zero.



Herrmann and May used the idea of Coppersmith’s technique to analyze
modular linear polynomials and got the following result for bivariate linear poly-
nomials.

Theorem 1 ([8]). Let ε > 0 and N be a large integer with a divisor p ≥ Nβ. Let
f(x1, x2) ∈ Z[x1, x2] be a linear polynomial. Under Assumption 1, one can find
all solutions (x1, x2) of the equation f(x1, x2) = 0 mod p with |x1| ≤ Nγ1 , |x2| ≤
Nγ2 in polynomial time if

γ1 + γ2 ≤ 3β − 2 + 2(1− β)
3
2 − ε.

In our analyses, we consider the asymptotic case and ignore the low order
term.

2.3 Multi-Prime Φ-Hiding Assumption

We briefly introduce the Multi-Prime Φ-Hiding Assumption and the correspond-
ing problem. Please refer to [12, 7, 19, 15] for more details.

Definition 1 (Multi-Prime Φ-Hiding Problem). Let N = p1 · · · pm be a
Multi-Prime RSA modulus where the pi are of the same bit length for 1 ≤ i ≤ m.
Let e be a given prime of the size N

1
m−δ. Problem is to decide whether

e | (p1 − 1), · · · , e | (pm−1 − 1), e - (pm − 1).

Definition 2 (Multi-Prime Φ-Hiding Assumption). There is no polyno-
mial time algorithm that solves the Multi-Prime Φ-Hiding Problem with a non-
negligible probability of success.

3 Algorithm Using Lattice Technique

In this section we give an algorithm for solving the Multi-Prime Φ-Hiding Prob-
lem. Our algorithm can be derived from the following theorem.

Theorem 2. Let N = p1 · · · pm be a Multi-Prime RSA modulus where the pi
are of same bit length for 1 ≤ i ≤ m. Let e be a prime of the size N

1
m−δ. Under

Assumption 1, we can solve the Multi-Prime Φ-Hiding Problem in polynomial
time when

δ <
1

3m
.

Proof. Let r = N mod e and s = (N−re ) mod e. If e | (p1−1), · · · , e | (pm−1−1)
and e - (pm − 1), there exist unknown integers x1, · · · , xm−1 such that

ex1 + 1 = p1, · · · , exm−1 + 1 = pm−1.

Since N = p1 · · · pm, we have (ex1 + 1) · · · (exm−1 + 1) · pm = N . Then taking
modulo e on both sides we get

pm mod e = N mod e = r.



Thus, there is an equation exm + r = pm with unknown xm. We multiply all
equations together to get (ex1 + 1) · · · (exm−1 + 1)(exm + r) = N . So we have

(em−1
m−1∏
i=1

xi + · · ·+ e2
∑

1≤i<j≤m−1

xixj + e
∑

1≤i≤m−1

xi + 1)

(exm + r) = N ⇒ (e
∑

1≤i≤m−1

xi + 1)(exm + r) ≡ N mod e2

⇒ exm + er
∑

1≤i≤m−1

xi + r ≡ N mod e2

⇒ exm + er
∑

1≤i≤m−1

xi ≡ es mod e2

⇒ xm + r
∑

1≤i≤m−1

xi − s ≡ 0 mod e

Let y1 = xm, y2 = x1 + · · · + xm−1. Consider the bivariate modular linear
equation

f(y1, y2) = y1 + ry2 − s. (1)

The equation (1) has root y := (xm, x1+· · ·+xm−1) in Ze as f(y1, y2) ≡ 0 mod e.

First, let us bound the size of y. Since 0 < xi = pi−1
e < N

1
m

N
1
m

−δ = Nδ for

i = 1, . . . ,m, we have

0 < x1 + · · ·+ xm−1 < (m− 1)Nδ = e
loge(m−1)+ δ

1
m

−δ .

Next, we use Theorem 1 for solving equation (1). Since modulus e is known,
we take β = 1. Here γ1 = δ

1
m−δ

and γ2 = loge(m−1) + δ
1
m−δ

. Under Assumption

1, we can find all solution (y1, y2) in polynomial time when

γ1 + γ2 =
2δ

1
m − δ

+ loge (m− 1) ≤ 1− ε.

Considering the asymptotic case and ignoring the lower order terms, the above
condition is simplified to

δ <
1

3m
.

Further, we check whether gcd(ey1 + r,N) gives a nontrivial factor of N
for every candidate. Thus, we can find out the desired root y and recover pm.
Conversely, if we cannot get a non-trivial factor of N under Assumption 1, then
relation e | (p1− 1), · · · , e | (pm−1− 1), e - (pm− 1) in the Multi-Prime Φ-Hiding
Problem does not hold.

Based on the Theorem 2, we have the Algorithm 1 to solve the Multi-Prime
Φ-Hiding Problem.



Algorithm 1 Solving Multi-Prime Φ-Hiding Problem

Input: Public key (N, e) and m is the number of prime factors of N .
Output: Decide whether e | (p1 − 1), · · · , e | (pm−1 − 1), e - (pm − 1).
1: Compute r = N mod e and s = (N−r

e
) mod e.

2: Solve equation y1 + ry2 − s ≡ 0 mod e using Theorem 1.
3: If gcd(ey1 + r,N) for all solutions (y1, y2) are trivial factors of N , output no. Else,

output yes.

4 Improved Algorithm Using Mixed Lattice Methods

In this section we present an improved algorithm in order to improve the bound
δ < 1

3m . This algorithm is obtained by dealing with equation (1) with mixed
lattice methods in the following theorem.

Theorem 3. Let N = p1 · · · pm be a Multi-Prime RSA modulus where the pi
are of same bit length for 1 ≤ i ≤ m. Let e be a prime of the size N

1
m−δ. Under

Assumption 1, we can solve the Multi-Prime Φ-Hiding Problem in polynomial
time when

δ <
4

3m
− 2

3
+

2

3

(
1− 1

m

)3/2

.

Proof. If e | (p1 − 1), · · · , e | (pm−1 − 1) and e - (pm − 1), we know

y1 + ry2 ≡ s mod e (2)

has integer root y := (xm, x1 + · · ·+ xm−1), where

‖y‖ =
√

(x1 + · · ·+ xm−1)2 + x2m < m ·Nδ.

The set of solutions

L =
{

(y1, y2) ∈ Z2 | y1 + ry2 ≡ 0 mod e
}

forms an additive discrete subgroup of Z2. Thus, L is a 2-dimensional integer
lattice. Lattice L is spanned by the row vectors of the basis matrix

B =

[
−r 1
e 0

]
.

Let us briefly check integer span of B, denoted by span(B) is indeed equal
to L. First both (−r, 1) and (e, 0) are solutions of y1 + ry2 ≡ 0 mod e. Thus
span(B) ⊆ L. Conversely, let (y1, y2) ∈ L. So we have y1 + ry2 = ke for some
k ∈ Z. Then (y2, k)B = (y1, y2) ∈ span(B). Thus L ⊆ span(B).

Consider the set
L′ =

{
(s+ y1, y2) | (y1, y2) ∈ L

}
.

It is clear that for any (x, y) ∈ L′, (x, y) will satisfy the equation (2).



Let u := (u1, u2) be the smallest length vector in L′, which can be obtained by
the closest vector algorithm on the lattice L from the point (−s, 0) in polynomial
time (see, e.g., [11]). Obviously, ‖u‖ ≤ ‖y‖ < m ·Nδ.

Let v1 := (v11, v12),v2 := (v21, v22) be Gauss-reduced basis vectors of L.
Since y − u belongs to L, there exist integer coefficients α1, α2 such that

y − u = α1v1 + α2v2. (3)

Observing that the first component of y is equal to pm−r
e and rearranging equa-

tion (3), we get ev11α1 + ev21α2 + eu1 + r = pm. In Appendix A, we prove that
|v11| ≤

√
2e and v11 6= 0. Thus, the bivariate modular linear equation

(ev11)x1 + (ev21)x2 + (eu1 + r) ≡ 0 mod pm (4)

has an integer root (α1, α2).
First, let us bound the sizes of unknown α1 and α2. From (3), according to

Lemma 1, we obtain

|α1| ≤
2‖y − u‖√

3‖v1‖
≤ 2(‖y‖+ |u‖)√

3‖v1‖
<

4mNδ

√
3‖v1‖

,

|α2| ≤
2‖y − u‖√

3‖v2‖
≤ 2(‖y‖+ |u‖)√

3‖v2‖
<

4mN δ

√
3‖v2‖

.

So |α1α2| < 16m2N2δ

3‖v1‖‖v2‖ . Notice that e = det(L) ≤ ‖v1‖‖v2‖. Thus we have

|α1α2| <
16m2N2δ

3‖v1‖‖v2‖
= N3δ− 1

m+logN
16m2

3 , as e = N
1
m−δ.

Next, we use Theorem 1 to solve the equation (4), where the size of unknown

modulus pm is N
1
m . So we take β = 1

m . Under Assumption 1, we can find all
roots (x1, x2) of the equation (4) in polynomial time when

3δ − 1

m
+ logN

16m2

3
≤ 3

m
− 2 + 2

(
1− 1

m

) 3
2

− ε.

Ignoring the term logN
16m2

3 as m� N , we get

δ <
4

3m
− 2

3
+

2

3

(
1− 1

m

)3/2

.

Furthermore, we check whether gcd(ev11x1 + ev21x2 + eu1 + r,N) gives a
nontrivial factor of N for every candidate. Thus, we can obtain the desired root
(α1, α2) and recover the factor pm of N .

Since (1− 1
m )

3
2 = 1− 3

2m + 3
8m2 + o( 1

m2 ), we have 4
3m −

2
3 + 2

3

(
1− 1

m

)3/2

≈
1

3m + 1
4m2 . Thus the simplified condition is

δ <
1

3m
+

1

4m2
.



Algorithm 2 Further Solving Multi-Prime Φ-Hiding Problem

Input: Public key (N, e) and m is the number of prime factors of N .
Output: Decide whether e | (p1 − 1), · · · , e | (pm−1 − 1), e - (pm − 1).
1: Compute r = N mod e and s = (N−r

e
) mod e.

2: Find the smallest Euclidean length root (u1, u2) of equation y1 + ry2 ≡ s mod e
using the closest vector algorithm.

3: Generate lattice L spanned by the row vectors of the matrix[
−r 1
e 0

]
.

4: Compute Gauss-reduced basis vectors (v11, v12) and (v21, v22) of lattice L.
5: Solve equation (ev11)x1 + (ev21)x2 + (eu1 + r) ≡ 0 mod pm using Theorem 1.
6: If gcd(ev11x1 + ev21x2 + eu1 + r,N) for all solutions (x1, x2) are trivial factors of
N , output no. Else, output yes.

So when e > N
1
m−

1
3m−

1
4m2 = N

2m
3 −

1
4m2 , one can solve Multi-Prime Φ-Hiding

Problem in polynomial time.

Since 4
3m −

2
3 + 2

3

(
1− 1

m

)3/2

> 1
3m , bound of δ in Theorem 3 is better than

that of Theorem 2. In Figure 1, we present the two bounds pictorially.

5 10 15 20
m

0.02

0.04

0.06

0.08

0.1

0.12

0.14

δ

Theorem 2
Theorem 3

Fig. 1. Comparison between the bounds δ for Theorem 2 and Theorem 3 when 3 ≤
m ≤ 20.

Based on the Theorem 3, we have the Algorithm 2 to solve the Multi-Prime
Φ-Hiding Problem.



5 Comparison with the existing works

In this section, we compare our results with previous works.

In Figure 2, we compare our results with the existing works pictorially. We
observe that the curve of [18] is almost identical with that of [15]. So we do
not plot it explicitly. It is clear from the figure that our bound is much better
than the existing bounds. Thus our new attack solves the Multi-Prime Φ-Hiding
Problem for more values of e than the existing works. One can see that exist-
ing curves [7, 19, 15] are very close to each other. On the other hand, we are
achieving much improved curve. More importantly, for small values of m, these
differences are more prominent. For example when m = 4, new bound of δ be-
comes 0.09968 whereas existing was 0.08358 in [18]. Thus the improvement is
significant for small values of m. Also m cannot be large as in that case Elliptic
Curve Factorization [13] will be efficient.

5 10 15 20
m0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

δ

Howgrave-Graham [9]
Kiltz et al. [12]
Herrmann [7]
Tosu et al. [19]
Sarkar [15]
New Attack

Fig. 2. Comparison of our bound δ < 4
3m
− 2

3
+ 2

3

(
1− 1

m

)3/2

with the existing works

for 3 ≤ m ≤ 20.

In Table 1, we present the minimum bit lengths of e for which Φ-Hidding
Problem is polynomial time solvable for different values of m. Here we take
2048-bit N . From the table, it is clear that all existing bounds are almost same
for m = 3. Though early works improve the work of [12] for values m > 3, this
work improves the bound on δ for m > 3 as well as m = 3. So one can solve
Φ-Hidding Problem in polynomial time for much smaller values of e.



Table 1. Comparison of bit lengths of the minimum e with 2048-bit N

hhhhhhhhhhhhhhhhResults

m
3 4 5 6 7 8 9 10

Kiltz et al. [12] 420 351 301 262 233 209 190 174

Herrmann [7] 420 342 288 249 219 196 177 162

Tosu et al. [19] 420 342 288 248 217 192 173 158

Sarkar [15] 420 341 286 245 214 190 170 155

Takayasu et al. [18] 421 341 286 245 214 190 170 154

( 1
m
− 1

3m
) · 2048 456 342 274 228 196 171 152 137(

1
m
− ( 4

3m
− 2

3
+ 2

3
(1− 1

m
)3/2)

)
· 2048 395 308 252 213 185 163 146 132

6 Experiment Results

We implement the above attacks with LLL algorithm in Magma on a PC with
Intel(R) Core(TM) Quad CPU (2.83GHz, 3.25GB RAM, Windows XP). In our
experiments, Assumption 1 is always verified. We present our experimental re-
sults in Table 2. As we can see that the experimental results and theoretical
upper bounds on δ are perfectly match.

For Theorem 2, we take 3 ≤ m ≤ 10. We use Theorem 1 to solve equation
y1 + ry2 − s = 0 mod e. For a positive integer t, we generate polynomials

gk,i(y1, y2) := yi2(y1 + ry2 − s)ket−k

which share the common root y modulo et, where k = 0, · · · , t; i = 0, . . . , t− k.
In our experiments, we choose t = 8. The dimensions of the involved lattices are
1
2 (t2 + 3t+ 2) = 45. Then the desired root can be obtained by lattice reduction.
Hence the factor pm of the modulus N can be recovered when e is Multi-Prime
Φ-Hidden in N and the corresponding δ satisfies the experimental value.

For Theorem 3, we present the situations of 3 ≤ m ≤ 5. We neglect run-
ning times of the closest vector algorithm and the Gauss algorithm as they are
negligible since the corresponding lattices are only two-dimensional. In order
to use Theorem 1, we first multiply the equation (ev11)x1 + (ev21)x2 + (eu1 +
r) ≡ 0 mod pm by (ev11)−1 modulo N and get a monic equation f(x1, x2) ≡
0 mod pm. Then, we collect the polynomials which share a common root (α1, α2)
modulo N l

hk,i(x1, x2) := xi2f
k(x1, x2)Nmax{l−k,0}

for k = 0, · · · , t; i = 0, . . . , t− k and l =

⌊(
1−

√
m−1
m

)
t

⌋
. In our experiments,

we take t = 12. The dimensions of the corresponding lattices are 1
2 (t2 +3t+2) =

91. Finally, we obtain the desired (α1, α2).

7 Conclusion

In this paper, we have reduced the Multi-Prime Φ-Hiding Problem to the problem
of finding small root of a bivariate modular linear equation. Based on this, we



Table 2. Experiment results for different values of m with 2048 bit N

Analyses m δ δ LLL Gröbner
(theoretical) (experimental) (seconds) (seconds)

Theorem 2

3 0.1111 0.1100 60.497 0.842
4 0.0833 0.0820 32.854 0.484
5 0.0667 0.0657 19.859 0.421
6 0.0556 0.0548 15.241 0.296
7 0.0476 0.0469 11.778 0.287
8 0.0417 0.0409 8.299 0.187
9 0.0370 0.0355 6.349 0.125
10 0.0333 0.0315 5.444 0.078

Theorem 3
3 0.1407 0.1320 3975.826 1120.540
4 0.0997 0.0891 2059.156 121.734
5 0.0770 0.0683 1866.188 109.938

have proposed two algorithms using lattice techniques to solve the problem. We
have obtained better bounds than the existing works.
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A Proof on |v11| ≤
√
2e and v11 6= 0

Proof. Note that v1 = (v11, v12) is the shortest nonzero vector in lattice L.
According to Minkowski bound, we know that

‖v1‖ ≤
√

2 det(L) =
√

2e.

Since v11 is a component of v1, we have |v11| ≤
√

2e. Now, we prove that v11 6= 0.
Since v1 ∈ L, there exists some integer c1 such that

v11 + rv12 = c1e.



If v11 = 0, we get rv12 = c1e. Since e is a prime and 0 < r < e, e divides v12.
Thus e divides ‖v1‖. So ‖v1‖ ≥ e. However, it is impossible since ‖v1‖ ≤

√
2e.

Therefore, v11 6= 0.


