
A trivial debiasing scheme for Helper Data Systems

Boris Škorić

Abstract We introduce a debiasing scheme that solves

the more-noise-than-entropy problem which can occur

in Helper Data Systems when the source is very biased.

We perform a condensing step, similar to Index Based

Syndrome coding, that reduces the size of the source

space in such a way that some source entropy is lost

while the noise entropy is greatly reduced. In addition,

our method allows for even more entropy extraction by

means of a ‘spamming’ technique. Our method outper-

forms solutions based on the one-pass and two-pass von

Neumann algorithms.

1 Introduction

1.1 Helper Data Systems

The past decade has seen a lot of interest in the field of

security with noisy data. In several security applications

it is necessary to reproducibly extract secret data from

noisy measurements on a physical system. One such ap-

plication is read-proof storage of cryptographic keys us-

ing Physical Unclonable Functions (PUFs) [19,20,18,5,

16]. Another application is the privacy-preserving stor-

age of biometric data.

Storage of keys in nonvolatile digital memory can of-

ten be considered insecure because of the vulnerability

to physical attacks. (For instance, fuses can be optically

inspected with a microscope; flash memory may be re-

moved and read out.) PUFs provide an alternative way

to store keys, namely in analog form, which allows the

designer to exploit the inscrutability of analog phys-

ical behavior. Keys stored in this way are sometimes

referred to as Physically Obfuscated Keys (POKs) [12].

In both the biometrics and the PUF/POK case, one

faces the problem that some form of error correction

has to be performed, but under the constraint that the

redundancy data, which is visible to attackers, does not

endanger the secret extracted from the physical mea-

surement. This problem is solved by a special security

B. Škorić
TU Eindhoven
E-mail: b.skoric@tue.nl

primitive, the Helper Data System (HDS). A HDS in

its most general form is shown in Fig. 1. The Gen pro-

cedure takes as input a measurement X. It outputs a

secret S and (public) Helper Data W . The helper data

is stored. In the reconstruction phase, a fresh measure-

ment X ′ is obtained. Typically X ′ is a noisy version of

X, close to X (in terms of e.g. Euclidean distance or

Hamming distance) but not necessarily identical. The

Rec (reconstruction) procedure takes X ′ and W as in-

put. It outputs Ŝ, an estimate of S. If X ′ is not too

noisy then Ŝ = S.

Gen$ Rec$

storage

W

X X'

S Ŝ

Fig. 1 Data flow in a generic Helper Data System.

Two special cases of the general HDS are the Secure

Sketch (SS) and the Fuzzy Extractor (FE) [10]. The Se-

cure Sketch has S = X (and Ŝ = X̂, an estimator for

X). If X is not uniformly distributed, then S is not

uniform. The SS is suitable for privacy-preserving bio-

metrics, where high entropy of S (given W) is required,

but not uniformity. The Fuzzy Extractor is required to

have a (nearly) uniform S given W . The FE is typically

used for extracting keys from PUFs and POKs.

1.2 The Code Offset Method (COM)

By way of example we briefly present the Code Offset

Method [4,14,10,9,21], the oldest and most well-known

HDS. The COM makes use of a linear code C with k-bit

messages and n-bit codewords. The syndrome function

is denoted as Syn : {0, 1}n → {0, 1}n−k. The code sup-

ports a syndrome decoding algorithm SynDec : {0, 1}n−k
→ {0, 1}n that maps syndromes to error patterns. Use

is also made of a key derivation function KeyDeriv :

{0, 1}n × {0, 1}∗ → {0, 1}`, with ` ≤ k. Below we show

how the COM can be used as a FE for either uniform

or non-uniform source X.

2 B. Škorić

Enrollment:

The enrollment measurement gives X ∈ {0, 1}n. The

helper data is computed as W = SynX. The key is com-

puted as S = KeyDeriv(X,R), where R is (optional)

public randomness. The W and R are stored.

Reconstruction:

A fresh measurement of the PUF gives X ′ ∈ {0, 1}n.

The estimator for X is computed as

X̂ = X ′ ⊕ SynDec(W ⊕ SynX ′) (1)

and the reconstructed key is Ŝ = KeyDeriv(X̂, R).

1.3 The problem of bias

After seeing the helper data W as specified above, an

attacker has uncertainty H(X|W) about X.1 As W is

a function of X, we have H(X|W) = H(X|SynX) =

H(X)−H(SynX). Let us consider the simplest possible

noise model, the Binary Symmetric Channel (BSC). In

the case of a BSC with bit error rate β, the code’s re-

dundancy has to satisfy n− k ≥ nh(β) in order for the

error-correction to work. (Here h denotes the binary en-

tropy function, h(β) = −β log β−(1−β) log(1−β), with

‘log’ the base 2 logarithm). More generally, H(SynX)

has at least to be equal to the entropy of the noise.

Hence the COM helper data in the BSC case leaks at

least nh(β) bits of information about X. This becomes

a problem when X itself does not have much entropy,

which occurs for instance if the bits in X are highly bi-

ased [13,15]. Note that the problem is not fundamental:

if the bias parameter (see Section 2) is denoted as p, the

secrecy capacity is nh(p + β − 2pβ) − nh(β), which is

positive.

A solution was proposed by Maes et al. [17]. Their

approach is to combine debiasing with error correction.

For the debiasing they use the von Neumann algorithm

in a single-pass or multi-pass manner. Their helper data

comprises a selection ‘mask’ that helps the reconstruc-

tion algorithm to identify the locations where von Neu-

mann should yield output.

In this paper we follow a simpler approach similar to

the Index Based Syndrome (IBS) method [22]. In IBS

the helper data consists of an ordered list of pointers

to locations in X; the content of X in those locations

together forms a codeword.

1.4 Contributions and outline

We introduce an alternative solution to the bias prob-

lem in helper data systems. We follow the condense-

1 The notation H stands for Shannon entropy. For
information-theoretic concepts see e.g. [8].

then-fuzzy-extract philosophy proposed by Canetti et

al. [7] as one of the available options when faced with

‘more noise than entropy’ scenarios. Condensing means

mapping the source variable X to a smaller space such

that most of the entropy of X is retained, but the noise

entropy is greatly reduced. Our way of condensing the

source is to restrict X to the bit positions U , with

U ⊂ {1, . . . , n} a random subset containing all the rare

symbols. The set U becomes part of the helper data.

Our U bears some similarity to the von Neumann

mask in [17], but there are important differences. (i)

The size of U is tunable. (ii) We can extract source

information based on the legitimate party’s ability to

distinguish U from fake instances of U when a ‘spam-

ming’ technique similar to [21] is applied.

The outline of this paper is as follows. Section 2

gives the details of the scheme. Section 3 analyzes the

extractable entropy and the practicality of the ‘spam-

ming’ option. In Section 5 we make some remarks on

the use of min-entropy. Section 6 summarises and sug-

gests future work.

2 Debiasing based on subset selection

We will use the following notation. The set {1, . . . , n}
is written as [n]. The notation XU means X restricted

to the positions specified in U . Set difference is written

as ‘\’. A string consisting of n zeroes is written as 0n.

The Hamming weight of X is denoted as w(X). We

will consider a source X ∈ {0, 1}n made up of i.i.d. bits

Xi following a Bernoulli distribution with parameter p,

i.e. Pr[Xi = 1] = p. Without loss of generality we take

p ∈ (0, 12). In particular we are interested in the case

p < β where direct application of the COM fails. The

notation ‘log’ stands for the base-2 logarithm. Informa-

tion distance (Kullback-Leibler divergence) is denoted

as D(p||q) = p log p
q + (1− p) log 1−p

1−q for p, q ∈ (0, 1).

2.1 The scheme

Below we present a barebones version of our proposed

scheme. We omit details concerning the protection of

the stored data. There are well known ways to protect

helper data, using either Public Key Infrastructure or

one-way functions [6]. We also omit details that have to

do with the verification of the reconstructed key. These

details can be trivially added.

System setup

The following system parameters are fixed. An integer

u satisfying np < u < n, representing the size of U ; a

list length L; a pseudorandom generator f that takes

A trivial debiasing scheme for Helper Data Systems 3

as input a seed σ and a counter j, and outputs a subset

f(σ, j) ⊂ [n] such that |f(σ, j)| = u; a Secure Sketch

(Gen, Rec) that acts on a source in {0, 1}u and is able

to handle bit error rate β; a key derivation function

KDF : {0, 1}u × [L] → {0, 1}`. All these parameters are

public.

Enrollment

E1. Measure X ∈ {0, 1}n.
E2. Draw a random subset U ⊂ [n] of size u such that

XU contains as many ‘1’s as possible.
E3. Compute Y = XU and W = Gen(Y).
E4. Draw a random seed σ.
E5. Draw a random z ∈ [L]. Determine a permutation

π : [n]→ [n] such that2 π(U) = f(σ, z).
E6. Derive the secret key as S = KDF(Y, z).
E7. Store σ, π,W .

Reconstruction

R1. Read σ, π,W .
R2. Measure X ′ ∈ {0, 1}n.
R3. Construct a set M′ = {i ∈ [n] : X ′i = 1}. Compute

M = π(M′).
R4. Construct the list L = (f(σ, j))Lj=1.
R5. Determine the index ẑ ∈ [L] for which Lẑ has the

largest overlap with M.
R6. Compute Û = πinv(Lẑ) and Ŷ = Rec(X ′Û ,W).

R7. Reconstruct the key as Ŝ = KDF(Ŷ , ẑ).

We will typically consider u ≥ 2np. With an exponen-

tially small probability it may occur that w(X) ≥ u,

leading to XU = 1u in step E2. Even if such an excep-

tional PUF is encountered, the scheme still works.

2.2 Explanation of the scheme

The effect of steps E4,E5 is to create a list of U-candidates,

of which only entry z is correct. To an attacker (who

knows u but does not know X or X ′) the L candidates

are indistinguishable.3

Steps R3–R5 allow for a quick search to identify

the index z of the correct U-candidate. Note that the

reconstruction algorithm compares a permuted M to

L-entries instead of M to permuted L-entries; this im-

proves speed. To further optimize for speed, steps R4

and R5 can be combined in a loop to select good z

values on the fly as soon as a new Lj is generated.

Note that extremely fast pseudorandom generators

exist which spew out more than 8 bits per clock cycle

2 π(U) means π applied to each element of U individually.
3 Given the i.i.d. model for creating X, the set U itself is

uniformly random. If we want a different model for X, e.g.
with asymmetries between the positions, then L will need to
be generated in a way that follows the statistics of X.

[1,2]. This makes it practical to work with large values

of L, as long as not too many plausible z-candidates are

generated. See Section 3.3. Even on CPU-constrained

devices4 (clock speed of MHz order) it should be possi-

ble to achieve L = 210.

We did not explicitly specify how to map a seed to

a size-u subset of [n]. A very straightforward algorithm

would be to pick u pseudorandom locations in [n].

We did not specify an algorithm for determining

the permutation π, nor did we specify in which form π

is stored. These are minor details and have no impact

on the overall efficiency of the scheme, since steps E5

and R3 are performed only once. The computational

bottleneck is R4,R5. For details about permutations we

refer to [11,3].

Note that inputting z into the key derivation func-

tion increases the entropy of S by logL bits. If the

PUF has ample entropy then L = 1 suffices, and one

can skip all steps involving the seed σ and the per-

mutation π; the U itself is stored as helper data. This

yields a scheme that is very fast and implementable on

resource-constrained devices.

3 Analysis

3.1 Entropy after condensing

The Hamming weight of X carries very little informa-

tion. Let’s assume for the moment that T = w(X) ∈
{0, . . . , u} is known to the attacker5, just to simplify

the analysis.

Even if the attacker knows t and U (i.e. z), there

are
(
u
t

)
equally probable possibilities for Y . Hence

H(Y |Z = z, T = t) = log

(
u

t

)

> uh(
t

u
)− 1

2
log

t(u− t)
u

− log
e2√
2π
. (2)

The inequality follows from Stirling’s approximation.

As (2) does not depend on z, the entropy H(Y |T =

t) is also given by (2). A lower bound on H(Y |T) is ob-

tained by taking the expectation over t. This turns out

to be rather messy, since the distribution of t is a trun-

cated binomial. (It is given that t ≤ u, while originally

w(X) ∈ {0, . . . , n}). As t equals approximately np on

average, the result is H(Y |T) ≈ uh(npu). A more precise

lower bound is given in Theorem 1 below.

4 We are considering devices that are able to employ the
PUF key in cryptographic computations; hence they cannot
be very resource-constrained.
5 In the security analysis we denote random variables using

capitals, and their numerical realisations in lowercase.

4 B. Škorić

Theorem 1 Let δ be defined as

δ = min{e−2np2(unp−1)2 , e−np 1
3 (

u
np−1), e−nD(un ||p)}. (3)

Let δ < p. Let u ≥ 2np/(1− δ). Then the entropy of Y

given T can be lowerbounded as

H(Y |T) > uh

(
np− nδ

u

)
− 1

2
log

np

1− δ (4)

− log
e2√
2π

+
1

2 ln 2

np− nδ
u

−u
{

1− p
np

+
2δ

p
+ δ +

δ3

p3

}
(1− δ)−1(1− δ

p
)−2.

Proof: The proof in rather tedious and can be found in

Appendix A. �
The entropy of Y is obtained as follows,

H(Y) = H(Y T) = H(T) + H(Y |T). (5)

The H(T) is the entropy of the truncated binomial dis-

tribution.

Theorem 2 Let qt =
(
n
t

)
pt(1−p)n−t denote the proba-

bilities in the full binomial distribution. Let δ be defined

as in Theorem 1.

H(T) > log
2π

e

√
np(1− p)+log(1−δ)−(n−u)qu log

1

qu
.

Proof: See Appendix B. �
Theorem 3 Let δ be defined as in Theorem 1. Let δ <

p. Let u ≥ 2np/(1− δ).

H(Y) > uh

(
np− nδ

u

)
+

1

2 ln 2

np− nδ
u

− log
e3

(2π)3/2

+
1

2
log(1− p) +

3

2
log(1− δ)− (n− u)qu log

1

qu

−u
[

1−p
np

+
2δ

p
+ δ +

δ3

p3

]
(1−δ)−1(1− δ

p
)−2. (6)

Proof: Follows directly from Theorems 1 and 2 by adding

H(T) + H(Y |T). �
The complicated expression (6) can be well approx-

imated by uh(np/u) − u/np. Note that the difference

between the original source entropy H(X) = nh(p) and

the condensed form H(Y) ≈ uh(np/u)−u/np is consid-

erable. For example, setting n = 640, p = 0.1, u = 128

yields H(Y) ≈ 126 and H(X) ≈ 300. A small part of

this huge difference can be regained using the trick with

the entropy of Z. The practical aspects are discussed in

Section 3.3.

Note also that our scheme outperforms simple von

Neumann debiasing by a factor of at least 2. The von

Neumann algorithm takes n/2 pairs of bits; each pair

has a probability 2p(1 − p) of generating a (uniform)

output bit; hence the extracted entropy is np(1− p) <
np. In our scheme, if we set u ≈ 2np we get H(Y) ≈
2np − 2. Furthermore, H(Y) is an increasing function

of u.

3.2 Fuzzy Extraction after condensing

The Code Offset Method applied to Y ∈ {0, 1}u leaks

at least uh(β) bits of information about Y . In case of

a ‘perfect’ error-correcting code, the length of a noise-

robust key reconstructed with the COM is H(Y)−uh(β).

In Fig. 2 we plot H(Y)−uh(β) for some example param-

eter settings. (Note that in all cases shown here β ≥ p

holds; the COM acting on the original source X would

be unable to extract any entropy.) Clearly there is an

optimal u for given (n, p, β). In practice one is given p

and β and has to find (n, u) such that the H(Y)−uh(β)

is large enough.

200 300 400 500 600 700

20

40

60

80

100

120

140

� = 0.10

� = 0.15� = 0.20

u

H(Y) � uh(�) n = 1024; p = 0.10

Figure 2: Bladiebla.

Theorem 2 Let qt =
�
n
t

�
pt(1�p)n�t denote the probabilities in the full binomial distribution. Let

� be defined as in Theorem 1.

H(T) > log
2⇡

e

p
np(1 � p) + log(1 � �) � (n � u)qu log

1

qu
. (5)

Proof: See Appendix B. ⇤

Theorem 3 Let � be defined as in Theorem 1. Let � < p. Let u � 2np/(1 � �).

H(Y) > uh

✓
np � n�

u

◆
+

1

2 ln 2

np � n�

u
� log

e3

(2⇡)3/2
+

1

2
log(1 � p) +

3

2
log(1 � �)

�(n � u)qu log
1

qu
� u

⇢
1 � p

np
+

2�

p
+ � +

�3

p3

�
(1 � �)�1(1 � �

p
)�2. (6)

Proof: Follows directly from Theorems 1 and 2 by adding H(T) + H(Y |T). ⇤
The complicated expression (6) can be well approximated by uh(np/u) � u/np.
Note that the di↵erence between the original source entropy H(X) = nh(p) and the condensed
form H(Y) ⇡ uh(np/u) � u/np is considerable. For example, setting n = 640, p = 0.1, u = 128
yields H(Y) ⇡ 126 and H(X) ⇡ 300. A small part of this huge di↵erence can be regained using
the trick with the entropy of Z. The practical aspects are discussed in Section 3.3.
Note also that our scheme outperforms simple von Neumann debiasing a factor of at least 2. The
von Neumann algorithm takes n/2 pairs of bits; each pair has a probability 2p(1�p) of generating
a (uniform) output bit; hence the extracted entropy is np(1 � p) < np. In our scheme, if we set
u ⇡ 2np we get H(Y) ⇡ 2np � 2. Furthermore, H(Y) is an increasing function of u.

3.2 COM secrecy extraction after condensing

The code o↵set method applied to Y 2 {0, 1}u leaks at least uh(�) bits of information about Y .
In Fig. ?? @@ we plot H(Y) � uh(�) as a function of u for fixed n, p, �.

3.3 The list size L

4 Discussion

Acknowledgments

@ Frans Willems, Sebastian Verschoor

5

100 200 300 400 500 600 700

20

40

60

80

100

120

140

n = 1024

n = 768n = 512

u

H(Y) � uh(�) p = 0.10; � = 0.10

Figure 3: Bladiebla.

A Proof of Theorem 1

We start with a number of definitions and supporting lemmas. We define the binomial probability
qt =

�
n
t

�
pt(1 � p)n�t. We define � = Pr[w(X) > u] =

Pn
t=u+1 qt and ⇡t = qt/(1 ��) for t  u,

such that the vector (⇡t) is the probability distribution of t from the attacker’s point of view.
The notation Et will refer to the binomial distribution (qt)

n
t=0, while Ẽ will refer to the truncated

binomial (⇡t)
u
t=0.

Lemma 1 Let k � 1, n � 2.

nh(
k

n
) � 1

2 log
k(n � k)

n
� log

e2

p
2⇡

 log

✓
n

k

◆
 nh(

k

n
) � 1

2 log
k(n � k)

n
� log

2⇡

e
. (7)

Proof: Follows directly from Stirling’s approximation. ⇤

Lemma 2 Let u > 2np.

�  � with �
def
= min{e�2np2(u

np�1)2 , e�np 1
3 (u

np�1), e�nD(u
n ||p)}. (8)

Proof: These are the inequalities of Hoe↵ding, Cherno↵, Cherno↵-Hoe↵ding respectively. The
listed form of the Cherno↵ inequality needs u > 2np. ⇤

Lemma 3
Ẽt t > n(p � �). (9)

Proof:

Ẽt t =
1

1 ��

uX

t=0

qtt >

uX

t=0

qtt = np �
nX

t=u+1

qtt > np �
nX

t=u+1

qtn = np � n� � np � n�. (10)

In the last step we used Lemma 2. ⇤

Lemma 4
Ẽt t <

np

1 � �
. (11)

Proof:

Ẽt t =
1

1 ��

uX

t=0

qtt <
1

1 ��

nX

t=0

qtt =
np

1 ��
 np

1 � �
. (12)

In the last step we used Lemma 2. ⇤

6

Fig. 2 The key length H(Y) − uh(β) that the Code Offset
Method can reproducibly extract after the condensing step,
plotted as a function of u for various parameter values. For
H(Y) the bound in Theorem 3 is used.

3.3 The list size L

We briefly discuss how large L can be made before the

reconstruction procedure sketched in Section 2 starts

to produce too many candidates for z. We define p̃ =

p+ β − 2pβ.

On the one hand there is the number of ‘1’ symbols

in X ′U for the correct U . The number of 1’s in XU is

A trivial debiasing scheme for Helper Data Systems 5

on average np. Of these, on average np(1 − β) will be

a ‘1’ in X ′. The (u− np) zeroes in XU will generate on

average (u−np)β 1’s in X ′. Hence the number of 1’s in

X ′U is expected to be around np(1− β) + (u− np)β =

np+ (u− 2np)β.

On the other hand there is the number of 1’s for

incorrect U-candidates. The number of 1’s in X ′ is

approximately np̃. We pretend that np̃ is integer, for

notational simplicity. We denote by A ∈ {0, . . . , np̃}
the number of 1’s in X ′V for a randomly chosen sub-

set V, with |V| = u. The A follows a hypergeometric

probability distribution

Pr[A = a] =

(
np̃
a

)(
n−np̃
u−a

)
(
n
u

) =

(
u
a

)(
n−u
np̃−a

)
(
n
np̃

) . (7)

The first expression looks at the process of selecting

u out of n positions with exactly a 1’s hitting the np̃

existing 1’s in X ′; the second expression looks at the

process of selecting np̃ positions in X ′ such that exactly

a of them lie in V. We have Ea a = up̃ and Ea(a−up̃)2 =

up̃(1 − p̃)(n − u)/(n − 1) < up̃. In other words, a is

sharply peaked around up̃.

We can put a threshold θ somewhere in the gap be-

tween up̃ and np+(u−2np)β, and declare a U-candidate

V to be bad if the Hamming weight of X ′V is lower

than θ. Let’s set θ = np + (u − 2np)β − c · √np with

c sufficiently large to avoid false negatives (i.e. missing

the correct U). In a way analogous to (3), we can bound

the false positive probability as

Pr[A ≥ θ] < min{e−2up̃2(θ/up̃−1)2 , e−up̃ 1
3 (θ/up̃−1),

e−uD(θu ||p̃)}. (8)

These bounds are obtained by applying (3) and replac-

ing u → θ, n → u, p → p̃. Fig. 3 shows how many bits

of entropy (b ≈ − log Pr[A > θ]) can be obtained from

z without running into false positives in step R5. To

extract b bits of entropy, a list length L = 2b is needed.

Fig. 3 serves just to show the orders of magnitude and

is by no means an exhaustive treatment of the whole

parameter space n, p, β, u, θ. We remark that the curves

depend quite strongly on the threshold parameter c.

It is important to note that it is perfectly possible

to make L extremely large. Then many false positives

occur, but this is not a fundamental problem. It requires

extra work: one key reconstruction and one verification

(e.g. of a key hash) per false positive. Depending on the

available n, the computing platform etc. this may be a

viable option.

4 Comparison to other debiasing schemes

The main algorithms to compare against are given in

the CHES2015 paper by Maes et al [17]. They introduce

1000 1500 2000

5

10

15

20

25

� log Pr[A > ✓]

n

p = 0.1 p = 0.15

p = 0.2

Figure 3: Bladiebla.

3.3 The list size L

We briefly discuss how large L can be made before the reconstruction procedure sketched in
Section 2.1 starts to produce too many candidates for z. We define p̃ = p + � � 2p�.
On the one hand there is the number of ‘1’ symbols in X 0

U for the correct U . The number of 1’s
in XU is on average np. Of these, on average np(1� �) will be a ‘1’ in X 0. The (u� np) zeroes in
XU will generate on average (u � np)� 1’s in X 0. Hence the number of 1’s in X 0

U is expected to
be around np(1 � �) + (u � np)� = np + (u � 2np)�.
On the other hand there is the number of 1’s for incorrect U -candidates. The number of 1’s in
X 0 is approximately np̃. We pretend that np̃ is integer, for notational simplicity. We denote by
A 2 {0, . . . , np̃} the number of 1’s in X 0

V for a randomly chosen subset V, with |V| = u. The A
follows a hypergeometric probability distribution

Pr[A = a] =

�
np̃
a

��
n�np̃
u�a

�
�
n
u

� =

�
u
a

��
n�u
np̃�a

�
�

n
np̃

� . (7)

The first expression looks at the process of selecting u out of n positions with exactly a 1’s hitting
the np̃ existing 1’s in X 0; the second expression looks at the process of selecting np̃ positions in X 0

such that exactly a of them lie in V. We have Ea a = up̃ and Ea(a�up̃)2 = up̃(1�p̃)(n�u)/(n�1) <
up̃. In other words, a is sharply peaked around up̃.
We can put a threshold ✓ somewhere in the gap between up̃ and np + (u � 2np)�, and declare a
U -candidate V to be bad if the Hamming weight of X 0

V is lower than ✓. Let’s set ✓ = np + (u �
2np)� � c · pnp with c su�ciently large to avoid false negatives (i.e. missing the correct U). In a
way analogous to (2), we can bound the false positive probability as

Pr[A � ✓] < min{e�2up̃2(✓/up̃�1)2 , e�up̃ 1
3 (✓/up̃�1), e�uD(✓

u ||p̃)}. (8)

These bounds are obtained by applying (2) and replacing u ! ✓, n ! u, p ! p̃.

4 Discussion

Acknowledgments

@ Frans Willems, Sebastian Verschoor

6

Fig. 3 Plots of − log Pr[A > θ] as a function of n for β = p,
u = 2.25np, and θ = np + (u − 2np)β − c√np with c = 4.
The Pr[A > θ] was obtained by numerical summation of (7).
The vertical axis represents approximately the number of bits
b = logL that can be extracted from z without generating false
positives.

several schemes that perform debiasing in the context

of a helper data system: Classic Von Neumann (CVN),

Pair-Output (2O-VN) and Multi-Pass Tuple Output

(MP-TO-VN). The following figures of merit are im-

portant, (i) the amount of entropy retained in Y , from

the original nh(p) contained in X; (ii) the amount of

work required during the reconstruction phase to derive

Ŷ from X ′.

Here we will not include the additional entropy ob-

tained from Z in our scheme. The procedure for re-

constructing ẑ has no equivalent in [17], which makes

comparison very difficult.

scheme retained entropy reconstruction of Ŷ

Trivial ≈ 2np− 2 take subset of X′

Debiasing (at u = 2np)
CVN np(1− p) take subset of X′;

≈ np binary comp.
2O-VN np(1− p) take subset of X′

MP-TO-VN np(1− p)
(two-pass) +1

2
n p2(1−p)2
p2+(1−p)2 take subset of X′

The reconstruction effort is practically the same in

all these schemes, and is very low.

The entropy estimates are obtained as follows. The

result np(1 − p) for the original von Neumann algo-

rithm was discussed in Section 3.1. The CVN and 2O-

VN retain exactly this amount. In the second VN pass

as described in [17], there are n
2 − np(1 − p) bit pairs

left after the first pass, and in each bit pair the two

bits have the same value. In the second pass this gives

rise to n
4 − 1

2np(1 − p) = n
4 [p2 + (1 − p)2] von Neu-

mann comparisons. Each comparison yields an output

bit with probability 2 p2

p2+(1−p)2
(1−p)2

p2+(1−p)2 . Hence the ex-

pected number of output bits in the second pass is
1
2np

2(1− p)2/[p2 + (1− p)2].

6 B. Škorić

Note that the two-pass MP-TO-VN adds at most

25% to the CVN entropy, while Trivial Debiasing adds

slightly more than 100%.

5 Some remarks on min-entropy

One could take the point of view that the relevant quan-

tity to study is min-entropy instead of Shannon en-

tropy, since we are deriving cryptographic keys. The

min-entropy of the source is Hmin(X) = n log(1− p)−1,

corresponding to the all-zero string. For small p this is

significantly smaller than the Shannon entropy H(X) =

nh(p). On the other hand, the entropy loss is also smaller

when computed in terms of min-entropy.

Theorem 4 Consider a linear binary code with mes-

sage length k and codeword length n that is able to cor-

rect t errors. Let X ∈ {0, 1}n consist of i.i.d. bits that

are Bernoulli-distributed with parameter p < 1
2 .

Hmin(X|SynX) > Hmin(X)− (n− k)

+(t+ 1) log
1− p
p

− 1

2n−k ln 2

t∑

a=0

(
n

a

){
(
1− p
p

)t−a+1 − 1

}
. (9)

The proof is given in Appendix C. For codes that are

far from perfect, the last term in (9) is negligible.

However, there are strong arguments against using

min-entropy in the context of biased PUFs. A situation

where X has a Hamming weight far below the typical

value np can be seen as a hardware error and is likely to

occur only when the chip itself is malfunctioning. If we

condition all our probabilities on the premise that the

hardware is functioning correctly, then we are back in

the typical regime; there min-entropy is almost identical

to Shannon entropy.

6 Summary

We have introduced a method for source debiasing that

can be used in Helper Data Systems to solve the ‘more

noise than entropy’ problem. Our method applies the

condense-then-fuzzy-extract idea [7] in a particularly

simple way: the space {0, 1}n is condensed to {0, 1}u in

such a way that all the rare symbols are kept; mean-

while the noise entropy is reduced from nh(β) to uh(β).

Theorem 3 gives a lower bound on the retained entropy

H(Y). Furthermore, there is the option of extracting ad-

ditional entropy from the index z, which points at the

real subset U among the fakes. Even in its bare form,

without the fake subsets, our method outperforms basic

von Neumann debiasing by factor of at least 2.

Fig. 2 shows that after the condensing step the Code

Offset Method can extract significant entropy in a sit-

uation where the bare COM fails. It also shows the

tradeoff between the reduction of source entropy and

noise entropy as u varies.

In Section 3.3 we did a very preliminary analysis

of the practicality of extracting information from the

index z. More work is needed to determine how this

works out for real-world parameter values n, p, β and

to see how the computations in steps R4 and R5 can

be optimised for speed.

The entropy analysis can be improved and extended

in various ways, e.g. by considering different noise mod-

els such as asymmetric noise.

Acknowledgements We thank Sebastian Verschoor, Frans
Willems, Ruud Pellikaan and Niels de Vreede for useful dis-
cussions.

A Proof of Theorem 1

We start with a number of definitions and supporting lemmas.
We define the binomial probability qt =

(
n
t

)
pt(1−p)n−t. We

define ∆ = Pr[w(X) > u] =
∑n
t=u+1 qt and πt = qt/(1−∆)

for t ≤ u, such that the vector (πt) is the probability distri-
bution of t from the attacker’s point of view. The notation
Et will refer to the binomial distribution (qt)nt=0, while Ẽ will
refer to the truncated binomial (πt)ut=0.

Lemma 1 Let k ≥ 1, n ≥ 2.

nh(
k

n
)− 1

2
log

k(n− k)

n
− log

e2
√

2π
≤ log

(n
k

)
≤ nh(

k

n
)− 1

2
log

k(n− k)

n
− log

2π

e
. (10)

Proof: We write
(
n
k

)
= n!
k!(n−k)! and apply Stirling’s inequal-

ities
√

2πNN+
1
2 e−N ≤ N ! ≤ eNN+

1
2 e−N (valid for N ≥ 1)

to n!, k! and (n−k)!. In the first line the inequalities used are
n! ≥ . . ., k! ≤ . . ., and (n − k)! ≤ In the second line the
inequalities point in the other direction. After some tedious
rewriting the Lemma follows. �

Lemma 2 Let u > 2np. For the above defined ∆ it then
holds that ∆ ≤ δ, with

δ
def
= min{e−2np2(u

np
−1)2

, e
−np 1

3
(u

np
−1)

, e−nD(u
n
||p)}. (11)

Proof: The three expressions result from the tail inequalities
of Hoeffding, Chernoff, and Chernoff-Hoeffding respectively.
Hoeffding’s inequality states that Pr[w(X) ≥ np + nε] ≤
exp(−2nε2); a version the Chernoff bound for ε ≥ p has
Pr[w(X) ≥ np+ nε] ≤ exp(−1

3
nε); Chernoff-Hoeffding gives

exp[−nD(p+ε||p)]. We have ε = u/n−p. Only the listed form
of the Chernoff bound actually needs u > 2np as a condition.
�

Lemma 3 It holds that Ẽt t > n(p− δ).

A trivial debiasing scheme for Helper Data Systems 7

Proof:

Ẽt t =
1

1−∆

u∑
t=0

qtt >

u∑
t=0

qtt = np−
n∑

t=u+1

qtt

> np−
n∑

t=u+1

qtn = np− n∆ ≥ np− nδ. (12)

In the last step we used Lemma 2. �

Lemma 4 It holds that Ẽt t < np
1−δ .

Proof:

Ẽt t =
1

1−∆

u∑
t=0

qtt <
1

1−∆

n∑
t=0

qtt =
np

1−∆
≤

np

1− δ
.

(13)

In the last step we used Lemma 2. �

Lemma 5 It holds that

Ẽt t2 <
(np)2 + np(1− p)

1− δ
. (14)

Proof:

Ẽt t2 =
1

1−∆

u∑
t=0

qtt
2 <

1

1−∆
Et t2

=
(np)2 + np(1− p)

1−∆
≤

(np)2 + np(1− p)
1− δ

. (15)

In the last step we used Lemma 2. �

Lemma 6 Let p ∈ [0, 1]. Let r ∈ (0, 1
2

]. Then it holds that

h(p) ≥ Ωr(p) (16)

Ωr(p) = h(r) + (p− r)h′(r)−
(p− r)2

r2
[h(r)− rh′(r)].

The expression h(r)−rh′(r) is a nonnegative increasing func-
tion on r ∈ (0, 1

2
].

Proof: Ωr is a parabola constructed such that Ωr(0) = 0,
Ωr(r) = h(r) and Ω′r(r) = h′(r). The property h(p) ≥ Ωr(p)
is verified by visual inspection. We define g(r) = h(r)−rh′(r).
We have limr→0 g(r) = 0. Furthermore d

dr
g(r) = −rh′′(r) >

0, which proves that g is increasing. Together with g(0) = 0
that implies that g(r) is nonnegative on the given interval. �

Lemma 7 Let δ < p and u ≥ 2np/(1− δ).

Ẽt h(
t

u
) > h(

np− nδ
u

) (17)

−
{

1− p
np

+
2δ

p
+ δ +

δ3

p3

}
(1− δ)−1(1−

δ

p
)−2.

Proof: We use Lemma 6 to expand h(t
u

) around t = Ẽt t,

h(t
u

) ≥ h(Ẽt tu)+linear−
(t− Ẽt t)2

(Ẽt t)2
[h(Ẽt tu)−Ẽt[tu]h′(Ẽt tu)].

(18)

When we take the expectation Ẽt, the term linear in t− Ẽt t
disappears,

Ẽth(t
u

) ≥ h(Ẽt tu)− [
Ẽt t2

(Ẽt t)2
− 1]

[
h(Ẽt tu)− Ẽt[tu]h′(Ẽt tu)

]
.

(19)

We use Ẽt t < u/2 to bound the second occurrence of h(Ẽt tu)
as h(· · ·) < 1 and to use h′ > 0. For the first occurrence

of h(Ẽt tu) we use that h is an increasing function and apply
Lemma 3.

Ẽth(t
u

) > h(
np− nδ

u
)− [

Ẽt t2

(Ẽt t)2
− 1]. (20)

Finally we bound Ẽt t2 using Lemma 5 and we bound Ẽt t
using Lemma 3. �
Lemma 8

Ẽt log
(u
t

)
> uẼth(t

u
)−log

e2
√

2π
−1

2
log

np

1− δ
+

1

2 ln 2

np− nδ
u

.

(21)

Proof: We start from Lemma 1 and write

log
(u
t

)
≥ uh(

t

u
)− 1

2
log

t(u− t)
u

− log
e2
√

2π
. (22)

We expand the second term as −1
2

log t(u−t)
u

= −1
2

log t −
1
2

log(1− t
u

) > −1
2

log t+ 1
2 ln 2

t
u

. Then we apply Ẽt. Jensen

followed by Lemma 4 gives Ẽt log t ≤ log Ẽt t < log np
1−δ .

Lemma 3 gives Et tu >
np−nδ
u

. �
With all these lemmas we can finally prove Theorem 1.

From (2) we have

H(Y |T) = ẼtH(Y |T = t) = Ẽt log
(u
t

)
. (23)

We apply Lemma 8, and then Lemma 7 to lowerbound Ẽth(t
u

).

B Proof of Theorem 2

We begin by lowerbounding the entropy of the un-truncated
distribution (qt)nt=0.

Lemma 9 It holds that H(q) ≥ log 2π
e

√
np(1− p).

Proof:

H(q) = −Et log[
(n
t

)
pt(1− p)n−t]

= (−Ett) log p− (n− Ett) log(1− p)− Et log
(n
t

)
= nh(p)− Et log

(n
t

)
≥ nh(p)− log

(n
Ett

)
= nh(p)− log

(n
np

)
. (24)

In the last line we used Jensen’s inequality for the function
log
(
n
t

)
. We use Lemma 1 to upperbound log

(
n
np

)
. �

Now we write

H(T) = Ẽt log
1−∆
qt

= log(1−∆) +
1

1−∆

u∑
t=0

qt log
1

qt

> log(1− δ) +

u∑
t=0

qt log
1

qt

= log(1− δ) + H(q)−
n∑

t=u+1

qt log
1

qt

> log(1− δ) + H(q)−
n∑

t=u+1

qu log
1

qu

= log(1− δ) + H(q)− (n− u)qu log
1

qu
. (25)

8 B. Škorić

In the last inequality we used that qt log 1
qt

is a decreasing

function of t for t > u. Finally we lowerbound H(q) with
Lemma 9.

C Proof of Theorem 4

Hmin(X|SynX) = − logEσ max
x

Pr[X = x|SynX = σ]

= − log
∑
σ

max
x

Pr[X = x ∧ SynX = σ]

= − log
∑
σ

max
x: Synx=σ

pw(x)(1− p)n−w(x)

= − log(1− p)n
∑
σ

max
x: Synx=σ

(
p

1− p
)w(x)

= Hmin(X)− log
∑
σ

max
x: Synx=σ

(
p

1− p
)w(x).

The maxx selects the smallest weight w(x). Among the strings
x ∈ {0, 1}n that have syndrome σ (a coset), the one with the
lowest Hamming weight is called the coset leader. For each
weight a, there are possibly multiple cosets whose leader has
weight a. The coset leader weight enumerator, denoted as ca,
counts how many cosets have a leader of weight a. The

∑
σ

summation in the expression above can be written in terms
of the ca,∑
σ

max
x: Synx=σ

(
p

1− p
)w(x) =

∑
a≥0

ca(
p

1− p
)a. (26)

The code can correct t errors, so for a ≤ t it holds that
ca =

(
n
a

)
. A perfect code has ca = 0 for a > t. We consider

codes that are far from perfect. We split
∑
σ, which has 2n−k

terms, into a part with coset leader weights ≤ t and a part
with weights > t. In the latter part we write (p

1−p)w(x) ≤
(p
1−p)t+1. This yields

Hmin(X|SynX)− Hmin(X) ≥ (27)

− log

[
t∑

a=0

(n
a

)
(

p

1− p
)a + (

p

1− p
)t+1{2n−k −

t∑
a=0

(n
a

)
}

]
.

For a far-from-perfect code, the dominant term in the loga-
rithm is (p

1−p)t+12n−k. We write the logarithm term in (27)

as − log[(p
1−p)t+12n−k(1 + ε)], with ε � 1, which equals

−(n − k) + (t + 1) log 1−p
p
− log(1 + ε). Finally we apply

− log(1 + ε) ≥ −ε.

References

1. http://gjrand.sourceforge.net/.
2. http://www.digicortex.net/node/22.
3. E.F. Beckenbach. Applied combinatorial mathematics.

John Wiley and sons, 1964.
4. C.H. Bennett, G. Brassard, C. Crépeau, and M. Sku-

biszewska. Practical quantum oblivious transfer. In
CRYPTO, pages 351–366, 1991.

5. C. Böhm and M. Hofer. Physical Unclonable Functions
in Theory and Practice. Springer, 2013.

6. X. Boyen. Reusable cryptographic fuzzy extractors. In
ACM Conference on Computer and Communications Se-
curity, pages 82–91, 2004.

7. R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and
A. Smith. Reusable fuzzy extractors for low-entropy dis-
tributions. In Eurocrypt 2016, 2016. eprint.iacr.org/

2014/243.
8. T.M. Cover and J.A. Thomas. Elements of Information

Theory. John Wiley & Sons, Inc., second edition, 2005.
9. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy

Extractors: how to generate strong keys from biometrics
and other noisy data. SIAM J. Comput., 38(1):97–139,
2008.

10. Y. Dodis, M. Reyzin, and A. Smith. Fuzzy Extractors:
How to generate strong keys from biometrics and other
noisy data. In Eurocrypt 2004, volume 3027 of LNCS,
pages 523–540. Springer-Verlag, 2004.

11. R. Durstenfeld. ACM Algorithm 235: Random Permuta-
tion. Communications of the ACM, 7(7):420, 1964.

12. B. Gassend. Physical Random Functions. Master’s thesis,
Massachusetts Institute of Technology, 2003.

13. T. Ignatenko and F.M.J. Willems. Information leakage
in fuzzy commitment schemes. IEEE Transactions on
Information Forensics and Security, 5(2):337–348, 2010.

14. A. Juels and M. Wattenberg. A fuzzy commitment
scheme. In ACM Conference on Computer and Com-
munications Security (CCS) 1999, pages 28–36, 1999.

15. P. Koeberl, J. Li, A. Rajan, and W. Wu. Entropy loss in
PUF-based key generation schemes: The repetition code
pitfall. In IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST) 2014, pages 44–49,
2014.

16. R. Maes. Physically Unclonable Functions: Construc-
tions, Properties and Applications. Springer, 2013.

17. R. Maes, V. van der Leest, E. van der Sluis, and F.M.J.
Willems. Secure key generation from biased PUFs. In
Cryptographic Hardware and Embedded Systems (CHES)
2015, volume 9293 of LNCS, pages 517–534. Springer,
2015.

18. A.-R. Sadeghi and D. Naccache, editors. Towards
hardware-intrinsic security. Springer, 2010.

19. P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, R. Ver-
haegh, and R. Wolters. Read-proof hardware from pro-
tective coatings. In Cryptographic Hardware and Embed-
ded Systems (CHES) 2006, volume 4249 of LNCS, pages
369–383. Springer-Verlag, 2006.

20. P. Tuyls, B. Škorić, and T. Kevenaar. Security with Noisy
Data: Private Biometrics, Secure Key Storage and Anti-
Counterfeiting. Springer, London, 2007.

21. B. Škorić and N. de Vreede. The Spammed Code Offset
Method. IEEE Transactions on Information Forensics
and Security, 9(5):875–884, May 2014.

22. M.-D. Yu and S. Devadas. Secure and robust error cor-
rection for Physical Unclonable Functions. IEEE Design
& Test of Computers, 27(1):48–65, 2010.

