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Abstract. Authenticated Key Exchange (AKE) protocols have been widely deployed in many real-world ap-
plications for securing communication channels. In this paper, we make the following contributions. First, we
revisit the security modelling of leakage-resilient AKE protocols, and show that the existing models either im-
pose some unnatural restrictions or do not sufficiently capture leakage attacks in reality. We then introduce
a new strong yet meaningful security model, named challenge-dependent leakage-resilient eCK (CLR-eCK)
model, to capture challenge-dependent leakage attacks on both long-term secret key and ephemeral secret key
(i.e., randomness). Second, we propose a general framework for constructing one-round CLR-eCK-secure AKE
protocols based on smooth projective hash functions (SPHFs). This framework ensures the session key is private
and authentic even if the adversary learns a large fraction of both long-term secret key and ephemeral secret
key, and hence provides stronger security guarantee than existing AKE protocols which become insecure if
the adversary can perform leakage attacks during the execution of a session. Finally, we also present a practical
instantiation of the general framework based on the Decisional Diffie-Hellman assumption without random ora-
cle. Our result shows that the instantiation is efficient in terms of the communication and computation overhead
and captures more general leakage attacks.

Keywords: Authenticated key exchange, challenge-dependent leakage, strong randomness extractor, smooth
projective hash function.

1 Introduction

Leakage-resilient cryptography, particularly leakage-resilient cryptographic primitives such as
encryption, signature, and pseudo-random function, has been extensively studied in recent years.
However, there are only very few works that have been done on the modelling and construction
of leakage-resilient authenticated key exchange (AKE) protocols. This is somewhat surprising
since AKE protocols are among the most widely used cryptographic primitives. In particular,
they form a central component in many network standards, such as IPSec, SSL/TLS, SSH. In
practice, the communication channel over a public network can be easily attacked by a malicious
attacker and hence is insecure by default for message transmission. An AKE protocol enables a
secure channel to be established among a set of communicating parties by first allowing them to
agree on a cryptographically strong secret key, and then applying efficient symmetric key tools
to ensure the data confidentiality and authenticity.

Many practical AKE protocols such as the ISO protocol (a.k.a. SIG-DH) [1, 12] and the
Internet Key Exchange protocol (a.k.a. SIGMA) [27] have been proposed and deployed in the
aforementioned network standards. In such an AKE protocol, each party holds a long-term
public key and the corresponding long-term secret key, which are static in the establishment
of different session keys for multiple communication sessions. In order to establish a unique
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session key for an individual session, each party also generates their own ephemeral secret
key and exchanges the corresponding ephemeral public key. Both parties can derive a common
session key based on their own secret keys and the public keys of the peer entity. We should note
that in practice, an AKE protocol proven secure in the traditional model could be completely
insecure in the presence of leakage attacks. For example, an attacker can launch a memory
attack [22, 3] to learn partial information about the static long-term secret key, and also obtain
partial information about the ephemeral secret key (i.e., randomness) of an AKE session (e.g.,
via poorly implemented PRNGs [29, 34, 38]).

1.1 Motivations of This Work

The general theme in formulating leakage resilience of cryptographic primitives is that in ad-
dition to the normal black-box interaction with an honest party, the adversary can also learn
some partial information of a user secret via an abstract leakage function f. More precisely, the
adversary is provided with access to a leakage oracle: the adversary can query the oracle with a
polynomial-time computable function f, and then receive f(sk), where sk is the user secret key.
This approach was applied to model leakage resilience of many cryptographic schemes, such as
pseudorandom generators [36], signature schemes [11] and encryption schemes [32, 14]. One of
the major problems of leakage resilient cryptography is to define a meaningful leakage function
family F for a cryptographic primitive such that the leakage functions in F can cover as many
leakage attacks as possible while at the same time it is still feasible to construct a scheme that
can be proven secure. That is, in order to allow the software-level solution to solve the leakage
problem in one go, the leakage function set F should be as large as possible and adaptively
chosen by the adversary under minimal restrictions.

Limitations in Existing Leakage-Resilient AKE Models. The above modelling approach has
been applied to define leakage-resilient AKE protocols in [6, 17,31, 5]. This was done by allow-
ing the adversary to access the leakage oracle in addition to other oracles defined in a traditional
AKE security model. However, we find that the existing leakage-resilient AKE models fail to
fully capture general leakage attacks due to the following reasons.

UNNATURAL RESTRICTIONS. The de facto security definition of AKE requires that the real
challenge session key should be indistinguishable from a randomly chosen key even when the
adversary has obtained some information (e.g., by passively eavesdropping the ephemeral pub-
lic keys, or injecting an ephemeral public key in an active attack) of the challenge session. How-
ever, such a definition will bring a problem when it comes to the leakage setting. During the
execution of the challenge session, the adversary can access to the leakage oracle by encoding
the available information about the challenge session into the leakage function and obtain par-
tial information about the real session key. The previous security definitions for leakage-resilient
AKE, e.g., [6,17,31,35], bypassed the definitional difficulty outlined above by only consider-
ing challenge-independent leakage. Namely, the adversary cannot make a leakage query which
involves a leakage function f that is related to the challenge session. Specifically, in those mod-
els, the adversary is disallowed to make any leakage query during the challenge session. This
approach indeed bypasses the technical problem, but it also puts some unnatural restrictions
on the adversary by assuming leakage would not happen during the challenge AKE session.
Such a definitional difficulty was also recognized in the prior work on leakage-resilient encryp-
tion schemes. For example, Naor and Segev wrote in [32] that “it will be very interesting to
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find an appropriate framework that allows a certain form of challenge-dependent leakage.” We
should note that there are some recent works on challenge-dependent leakage-resilient encryp-
tion schemes [24, 37], which addressed the problem by weakening the security notions.

INSUFFICIENT LEAKAGE CAPTURING. Although the notions proposed in [6, 17,31, 35, 5] have
already captured some leakage attacks, they only focused on partial leakage of the long-term se-
cret key. We should note that the partial leakage is independent from the (long-term/ephemeral)
secret key reveal queries in CK/eCK models. In reality, an attacker may completely reveal one
(long-term/ephemeral) secret key and learn partial information about the other (ephemeral/long-
term) secret key. Such an adversarial capability has never been considered in the previous mod-
els. In practice, as mentioned before, potential weakness of the randomness can be caused
due to different reasons such as the poor implementation of pseudo-random number genera-
tors (PRNGs) [29, 34, 38]. Moreover, real leakage attacks (e.g., timing or power consumption
analysis) can also be closely related to the randomness. The problem has been recognized in
prior work on leakage-resilient encryption and signature schemes. For example, Halevi and Lin
mentioned in [24] that “Another interesting question is to handle leakage from the encryption
randomness, not just the secret key”, which was later answered by the works in [10, 37]. In terms
of the signature schemes, the notion of fully leakage-resilient signatures was also proposed by
Katz and Vaikuntanathan [25]. In a fully leakage-resilient setting, the adversary is allowed to
obtain leakage of the state information, including the secret keys and internal random coins.
However, to date there is no formal treatment on the randomness leakage in AKE protocols.
This is surprising as randomness plays a crucial role in AKE protocols and determines the value
of a session key.

On After-the-Fact Leakage. It is worth noting that inspired by the work in [24], Alawatugoda
et al. [5] modelled after-the-fact leakage for AKE protocols. Their proposed model, named
bounded after-the-fact leakage eCK model (BAFL-eCK), captures the leakage of long-term se-
cret keys during the challenge session. However, the BAFL-eCK model has implicitly assumed
that the long-term secret has split-state since otherwise their definition is unachievable in the
eCK-model. Moreover, the central idea of their AKE construction is to utilize a split-state en-
cryption scheme with a special property (i.e., pair generation indistinguishability), which is a
strong assumption. We also note that the split-state approach seems not natural for dealing with
ephemeral secret leakage. The work in [4] also introduced a continuous after-the-fact leakage
eCK model which is a weaker variant of the one in [5] and hence also suffers from the afore-
mentioned limitations.

Goal of This Work. In this work, we are interested in designing a more general and powerful
leakage-resilient AKE model without the aforementioned limitations. Particularly, we ask two
questions: how to generally define a challenge-dependent leakage-resilient AKE security model
capturing both long-term and ephemeral secret leakage, and how to construct an efficient AKE
protocol proven secure under the proposed security model. The motivation of this work is to
solve these two outstanding problems which are of both practical and theoretical importance.

1.2 Related Work

Traditional AKE Security Notions. The Bellare-Rogaway (BR) model [8] gives the first for-
mal security notion for AKE based on an indistinguishability game, where an adversary is re-
quired to differentiate between the real session key from a randomly chosen session key. Its
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variants are nowadays the de facto standard for AKE security analysis. In particular, the Canetti-
Krawczyk (CK) model [12], which can be considered as the extension and combination of the
BR model and the Bellare-Canetti-Krawczyk (BCK) model [7], has been used to prove the se-
curity of many widely used AKE protocols such as SIG-DH and SIGMA. Noting that the CK
model does not capture several attacks such as the Key Compromise Impersonation (KCI) at-
tacks, LaMacchia et al. [28] introduced an extension of the CK model, named eCK model, to
consider stronger adversaries (in some aspects) who is allowed to access either the long-term
secret key or the ephemeral secret key in the target session chosen by the adversary. We refer the
readers to Choo et al. [13] for a detailed summary of the differences among the aforementioned
AKE models, and to Cremers et al. [16] for a full analysis of these models.

Modelling Leakage Resilience. The method of protecting against leakage attacks by treating
them in an abstract way was first proposed by Micali and Reyzin [30] based on the assumption
that only computation leaks information. Inspired by the cold boot attack presented by Hal-
derman et al. [22], Akavia et al. [3] formalized a general framework, namely, Relative Leakage
Model, which implicitly assumes that, a leakage attack can reveal a fraction of the secret key, no
matter what the secret key size is. The Bounded-Retrieval Model (BRM) [6] is a generalization
of the relative leakage model. In BRM, the leakage-parameter forms an independent parameter
of the system. The secret key-size is then chosen flexibly depending on the leakage parameter.
Another relatively stronger leakage model is the Auxiliary Input Model [18] where the leakage
is not necessarily bounded in length, but it is assumed to be computationally hard to recover the
secret-key from the leakage.

Leakage-Resilient AKE. Alwen, Dodis and Wichs [6] presented an efficient leakage-resilient
AKE protocol in the random oracle model. They considered a leakage-resilient security model
(BRM-CK) by extending the CK model to the BRM leakage setting. They then showed that
a leakage-resilient AKE protocol can be constructed from an entropically-unforgeable digital
signature scheme secure under chose-message attacks. Such a leakage-resilient signature-based
AKE protocol, namely eSIG-DH, however, is at least 3-round and does not capture ephemeral
secret key leakage. Also, the security model considered in [6] does not capture challenge-
dependent leakage since the adversary is not allowed to make leakage queries during the execu-
tion of the challenge session. In [17], Dodis et al. proposed new constructions of AKE protocols
that are leakage-resilient in the CK security model (LR-CK). Their first construction follows the
result of [6], i.e., authenticating Diffie-Hellman (DH) key exchange using a leakage-resilient
signature scheme. The second construction, i.e., Enc-DH, is based on a leakage-resilient CCA-
secure PKE scheme: both parties authenticate each other by requiring the peer entity to correctly
decrypt the DH ephemeral public key encrypted under the long-term public key. Similar to Al-
wen at al. [6], the security model given by Dodis et al. [17] is not challenge-dependent, and both
constructions have at least 3-round and didn’t consider randomness leakage. Another leakage-
resilient model for AKE protocols is introduced by Moriyama and Okamoto [31]. Their notion,
named \-leakage resilient eCK (LR-eCK) security, is an extension of the eCK security model
with the notion of A-leakage resilience introduced in [3]. They also presented a 2-round AKE
protocol that is A\-leakage resilient eCK secure without random oracles. One limitation of their
model is that they just considered the long-term secret key leakage (when the ephemeral se-
cret key is revealed) but not the ephemeral secret key leakage (when the long-term secret key
is revealed). Also, their model is not challenge-dependent. Yang et al. [35] initiated the study
on leakage resilient AKE in the auxiliary input model. They showed that in the random oracle
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model, an AKE protocol secure under auxiliary input attacks can be built based on a digital sig-
nature scheme that is random message unforgeable under random message and auxiliary input
attacks (RU-RMAA). However, their model is based on the CK model and only captures the
challenge-independent leakage of lone-term secret.

1.3 Our Results and Techniques

In this work, we address the aforementioned open problems by designing a strong yet meaning-
ful AKE security model, namely challenge-dependent leakage-resilient eCK (CLR-eCK) model,
to capture the challenge-dependent leakage attacks on both the long-term secret key and the
ephemeral secret key; we then present a general framework for the construction of CLR-eCK-
secure one-round AKE protocol as well as an efficient instantiation based on the DDH assump-
tion. Below we give an overview of our results.

Overview of Our Model. As shown in Table 1, our model is the first split-state-free model that
captures challenge-dependent leakage on both the long-term secret key and the ephemeral secret
key (or randomness), which could occur in practice due to side-channel attacks and weak ran-
domness implementations. In our proposed model, we consider the partial Relative-Leakage [3].
We should note that the partial leakage here is independent from the secret key reveal queries
in CK/eCK models. In our CLR-eCK model, the adversary can make both leakage and key re-
veal queries for the long-term and ephemeral secret keys. To be more precise, our model allows
one (long-term/ephemeral) secret key to be completely revealed and the other (ephemeral/long-
term) secret key to be partially leaked. Such an adversarial capability has never been considered
in the previous models.

Our CLR-eCK security model addresses the limitations of the previous leakage-resilient
models by allowing both long-term and ephemeral key leakage queries before, during and af-
ter the test (i.e., challenge) session. Nevertheless, we should prevent an adversary M from
submitting a leakage function which encodes the session key derivation function of the test ses-
sion since otherwise the adversary can trivially distinguish the real session key from a random
key. To address this technical problem, instead of asking adversary M to specify the leakage
functions before the system setup (i.e., non-adaptive leakage), we require M to commit a set of
leakage functions before it obtains (via key reveal queries) all the inputs, except the to-be-leaked
one, of the session key derivation function for the test session. Once M obtains all the other
inputs, it can only use the leakage functions specified in the committed set to learn the partial
information of the last unknown secret. To be more precise, in the CLR-eCK model, after M
reveals the ephemeral secret key of the test session, it can only use any function f; € F as the
long-term secret key leakage function where F is the set of leakage functions committed by M
before it reveals the ephemeral secret key. A similar treatment is done for the ephemeral secret
key leakage function f,. Under such a restriction, neither f; nor f; can be embedded with the
session key derivation function of the test session and M cannot launch a trivial attack against
the AKE protocol. Therefore, the adversary can still make leakage queries during and after the
test session, and if the long-term/ephemeral key is not revealed, then the adversary even doesn’t
need to commit the ephemeral/long-term key leakage functions F; or F,. We can see that our
approach still allows the adversary to adaptively choose leakage functions and meanwhile can
capture challenge-dependent leakage under the minimum restriction.
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Table 1. Comparison with Existing Leakage-Resilient AKE Security Models

Partial Leakage Setting

AKE Models Challenge-Dependent|Long-Term Key|Ephemeral Key| Leakage Model Basic Models
BRM-CK [6] No Vv X Bounded-Retrieval CK
LR-CK [17] No Vv X Relative Leakage CK
Al-CK [35] No Vv X Auxiliary Input CK
LR-eCK [31] No Vv X Relative Leakage eCK
BAFL-eCK [5]|| Yes (w/ split-state) Vv X Relative Leakage eCK
CLR-eCK Yes (w/o split-state) Vv N4 Relative Leakage eCK

Generic AKE Construction. To illustrate the practicality of the model, we present a gen-
eral framework for the construction of AKE protocol secure in our newly proposed challenge-
dependent leakage-resilient eCK model. The framework can be regarded as a variant of the
AKE protocols proposed by Okamoto et al. [33, 31]. Roughly speaking, we apply both pseudo-
random functions (PRFs) and strong randomness extractors in the computation of ephemeral
public key and session key to obtain the security in the presence of key leakage. Specifically,
we employ an (extended) smooth projective hash function (SPHF) which is defined based on a
domain X and an NP language £ C X. For any word W € L, the hash value of W can be
computed using either a secret hashing key or a public projection key with the knowledge of
the witness for 1. The key property of SPHF is that the projection key uniquely determines the
hash value of any word in the language L (projective) but gives almost no information about
the hash value of any point in X' \ £ (smooth). During the session execution, both parties gen-
erate their ephemeral secret key and apply a strong extractor to extract a fresh seed for a PRF
in order to derive a word in L. They then exchange their words with the corresponding witness
kept secret locally. Additionally, they also run an ephemeral Diffie-Hellman protocol using the
exponent which is also output by the PRF. At the end of session, they derive the session key by
computing the hash value of both words along with the Diffie-Hellman shared key. The correct-
ness of the framework can be easily obtained due to the property of SPHF and Diffie-Hellman
protocol while the security is guaranteed by the strong extractors, pseudo-random functions,
along with the underlying (2-)smooth SPHF bulit on an NP language where the subgroup
decision problem is hard.

An Efficient Instantiation. We show that the building blocks in our framework can be instanti-
ated efficiently based on the DDH assumption. Precisely, we first introduce the Diffie-Hellman
language Lon = {(u1,u2)|3r € Zy,s.t.,u1 = gi,us = g5} where G is a group of primer
order p and ¢;, g € G are generators. We then show that the subset membership problem over
X = G? and Lpy is hard and use it to construct a 2-smooth SPHF, denoted by SPHFpy. A
concrete protocol based on SPH Fpy is then presented and proved to be CLR-eCK-secure. A
comparison between our protocol and the previous ones is given in Table 2. We should note
that the communication cost in €eSIG-DH [6] and Enc-DH [17] is higher than our protocol due
to the reason that they require their underlying primitive, i.e., signature or encryption scheme,
to be leakage-resilient. For example, according to the result (Theorem 5.2) of [17], to obtain
(1 — e)-leakage resilience, the ciphertexts CT transferred in the Enc-DH protocol has the size of
O(1/¢)|G|. Due to the same reason, the computation overhead of those protocols is also higher
than that of our protocol.
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Table 2. Comparison with Existing Leakage-Resilient AKE Protocols

Relative Leakage’

Protocols ||Round| Communication' Computation' = - | Security| AKE Models
eSIG-DH [6] 3 |3-|Cer|+2:|G|+2-|Sig| |4-Exp+2-Sgn+2-Ver| (1 —¢) 0 w/RO | BRM-CK [6]
Enc-DH [17]|| 3 4.|Cer|+|G|+2-|CT| |4-Exp+2-Enc+2-Dec| (1 —¢) 0 w/oRO | LR-CK [17]

MO [31] 2 |4-|Cer|+9:|G|+3-|Exk]| 20-Exp (1/4—¢) 0 w/o RO | LR-eCK [31]

m [5] 2 |4-|Cer|+2-|G|+2-|Sig] 24-Exp (I/n—¢) 0 w/o RO |BAFL-eCK [5]
Our Protocol|| 1 |4-|Cer|+6|G|+2-|ExK]| 16 -Exp (1/4—¢€)| (1 —¢) |wloRO| CLR-eCK

! For the communication cost, we use Cer to denote the certificate of a long-term public key, G a group of primer order p,
CT a ciphertext, Sig a signature and Exk the key of a randomness extractor. For the computation cost, we use Exp to denote
exponentiation, Sgn the signing operation, Ver the verification operation, Enc the encryption operation and Dec the decryption
operation.

2 The “Relative Leakage” column indicates the leakage ratio of a secret key. We use lsk to denote the long-term secret key and
esk the ephemeral secret key. In [5], the secret key is split into n parts.

2 Preliminaries

2.1 Notation

For a finite set {2, w & 2 denotes that w is selected uniformly at random from (2.

Statistical Indistinguishability. Let X and Y be two random variables over a finite domain
(2, the statistical distance between X and Y is defined as SD(X,Y) = 1/2%" .| Pr[X =
w] — Pr[Y = w]|. We say that X and Y are e-statistically indistinguishable if SD(X,Y) < €
and for simplicity we denote it by X = Y.Ife = 0, we say that X and Y are perfectly
indistinguishable.

Computational Indistinguishability. Let V; and ), be two probability distribution over a finite
set {2 where |£2| > 2" and k is a security parameter. We then define a distinguisher D as follows.
In the game, D takes as input V; and Vs, the challenger flips a coin & {0,1}. D is then

given an element v, & V1 if v = 1, otherwise an element vy & V5. Finally, D outputs a bit

v € {0,1} as its guess on 7. We define the advantage of D in this game as Advgl’vz’(k) =

Pr[y = ~] — 1/2. We say that V, and V, are computationally indistinguishable if for any
polynomial-time distinguisher D, Advgl’v2 (k) is negligible, and we denote it by V; = V.

2.2 Randomness Extractor

A central part of our work in this paper is a strong randomness extractor. Here we recall the
notion of average-case strong extractor described in [19]. We start with the introduction of
average-case min-entropy.

Average-Case Min-Entropy. The min-entropy of a random variable X is Ho (X) = — log(max,
Pr[X = z]). Dodis et al. [19] formalized the notion of average min-entropy that captures the
unpredictability of a random variable X given the value of a random variable Y, formally de-
fined as Hoo (X |Y) = — log(Ew_y[Q*HOo (XIY=v)]). They also showed the following result on
average min-entropy in [19].

Lemma 1)([19)). If Y has 2* possible values, then Hoo(X|Y) > Hoo(X) — \.

Definition 1 (Average-Case Strong Extractor)[19]. Let k € N be a security parameter. A
function Ext : {0,1}"®) x {0, 1}*) « {0, 1}*) is said to be an average-case (m, ¢)-strong
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extractor if for all pairs of random variables (X, I) such that X € {0,1}"*) and ?IOO(X |I) >
m, it holds that
SD((Ext(X,S),S,I),(U,S,I)) <e,

aslong as (k) < m—2log(1/¢), where S & {0, 1}*%) is the extraction key and U & {0, 1}1®),

2.3 Pseudo-Random Function

Here we describe the notion of pseudo-random function (PRF) defined in [21] and its spe-
cific class, namely pseudo-random function with pairwise-independent random sources (7PRF),
which was proposed by Okamoto in [33].

PRF. Let & € N be a security parameter. A function family F is associated with {Seedy, } ke,
{Domy }ken and {Rng,. } ren. Formally, for any & Seedy,, o & >..D & Dom;, and R &
Rng,, FE-2PR defines a function which maps an element of D to an element of R. That is,
Fﬁ’E’D’R(p) € R for any p € D.

Definition 2 (PRF). We say that F is a pseudo-random function (PRF) family if

{Fe>="R(pi)} = {RF(pi)}
for any {p; € D} adaptively chosen by any polynomial time distinguisher, where RF is a truly

random function. That is, for any p € D, RF(p) &R,

mPRFE. Roughly speaking, 7PRF refers to a pseudo-random function family that if a specific
key o is pairwise-independent from other keys, then the output of function with key o is com-
putationally indistinguishable from a random element.

Formally, let Zs- be a set of random variables over ) , and I~ be a set of indices regarding
> such that there exits a deterministic polynomial-time algorithm, fs~ : Is~ — Zs~, which

-----

77777

wisely independent from other variables 0;,, ..., o;_,, if for any pair of (0., 0,)(j = 1, ..., q(k)),
for any (z,y) € 3%, we have Prloy, — 2 Aoy, — y] = 1/] 3 %
Definition 3 (7PRF). Define F(pj) = FIS;JZ’D’R(pj) fori; € Iy, p; € D. We say that F is a
7PRF family if _ -

{F(p))} = {RF(p)}
for any {i; € Iy,p; € D} (j = 0,1,...,q(k)) adaptively chosen by any polynomial time
distinguisher such that o;, is pairwisely independent from o;,(j > 0), where RF is the same as

F except that ﬁl/:( po) is replace by a truly random value in R.

2.4 Smooth Projective Hash Function

Smooth projective hash function(SPHF) is originally introduced by Cramer and Shoup [15] and
extended for constructions of many cryptographic primitives [20, 23, 26, 2, 9]. We start with the
original definition.

Syntax. Roughly speaking, the definition of an SPHF requires the existence of a domain X
and an underlying AP language £, where elements of £ form a subset X, i.e., L C X. A key
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property of SPHF is that, for any point IV in the language £ (W € L), the hash value of W
can be computed by using either a secret hashing key which also works for the computation of
any point in the set X' \ £, or a public projection key which only works for any point W € £
and requires the knowledge of the witness w for the fact that W € L. Formally, an SPHF over
a language £ C X, onto a set ), is defined by the following algorithms

— SPHFSetup(1*): generates the global parameters param and the description of an NP lan-
guage L from the security parameter k;

— HashKG(L, param): generates a hashing key hk for the language £;

— ProjKG(hk, (£, param)): derives the projection key hp from the hashing key hk;

— Hash(hk, (£, param), W): outputs the hash value hv € ) on the word W from the hashing
key hk;

— ProjHash(hp, (£, param), W, w): outputs the hash value hv' € ), on the word W from the
projection key hp, and the witness w for the fact that W € L.

Extension. In order to make the SPHF notion well applied for our work, similar to [15], we also
need an extension of the SPHF in this paper. Precisely, we introduce the WordG algorithm and
slightly modify the Hash, ProjHash algorithms for SPHF as follows.!

— WordG(L, param, w): generates a word W € L with w the witness ;

— Hash(hk, (£, param), W, auz): outputs the hash value hv € ) on the word W from the
hashing key hk and the auxiliary input aux;

— ProjHash(hp, (£, param), W, w, auz): outputs the hash value hv’ € ), on the word W from
the projection key hp, the witness w for the fact that W € £ and the auxiliary input auz.

Property. A smooth projective hash function SPHF=(SPHFSetup, HashKG, ProjKG, WordG,
Hash, ProjHash) should satisfy the following properties,

— Correctness. Let W = WordG(L, param, w), then for all hashing key hk and projection key
hp , we have

Hash(hk, (£, param), W, auz) = ProjHash(hp, (£, param), W, w, aux)

— Smoothness. For any W € X\ L. Then the following two distributions are perfectly indis-
tinguishable:

V, = {(L, param, W, hp, auz, hv)|hv = Hash(hk, (£, param), W, auzx)},

Vs = {(L, param, W, hp, auz, hv)|hv <& V1.

To summary, a smooth projective hash function has the property that the projection key
uniquely determines the hash value of any word in the language £ but gives almost no informa-
tion about the hash value of any point in X"\ L.

Definition 4 (2-smooth SPHF). For any Wi, W, € X\L, let auzy, auxy be the auxiliary in-
puts such that (Wy,auzy) # (W, auxsy), we say an SPHF is 2-smooth if the following two
distributions are perfectly indistinguishable :

V; = {(L£, param, Wy, Wy, hp, auxy, auzs, hvy, hvy)|hve = Hash(hk, (£, param), W5, auzs)},

"In the rest of paper, all the SPHFs are referred to as the extended SPHF and defined by algorithms
(SPHFSetup, HashKG, ProjKG, WordG, Hash, ProjHash).
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Vo = {(L, param, Wy, Wy, hp, auzy, auzy, hvy, hvy)|hvy & Vi
where hvy = Hash(hk, (£, param), W1, auzy).
Definition 5 (Hard Subset Membership Problem). For a finite set X and an NP language

L C X, we say the subset membership problem is hard if for any word W & L, W is compu-
tationally indistinguishable from any random element chosen from X\ L.

3 A New Strong Leakage-Resilient AKE Security Model

We are now ready to introduce our proposed challenge-dependent leakage-resilient eCK (CLR-eCK)
security model.

3.1 AKE Protocol

An AKE protocol is run among parties (A, 3, C, ...) which are modelled as probabilistic polynomial-
time Turing Machines. Each party has a long-term secret key (Isk) together with a certificate
that binds the corresponding long-term public key (Ipk) to the party. Here we denote A (B)

as the long-term public key of party A (B3) with the certificate issued by a trusted certificate
authority CA.

Any two parties, say A and B, can be activated to run an instance of the AKE protocol,
which is referred to as a session, and obtain a shared session key. In this paper, we only focus
on one-round (i.e., two-pass) AKE protocols. Specifically, during the execution of a session,
party A generates an ephemeral public/secret key pair (epk 4, esk4) and sends (B, A, epk 4) to
the peer B, and vice versa. At the end of the session execution, each party derives the shared
session key by taking as input his/her own long-term secret key and ephemeral secret key, along
with the long-term public key and ephemeral public key received from the other party.

A session of party A with peer B is identified by the session identifier (A B , epk A> epkg)
and the session (B A , epkp, epk 1) of party B is referred to as the matching session of (A B ,epka,
epks). If the party outputs a session key at the end of the session, we call the session is com-
pleted successfully.

3.2 eCK Security Model

The extended Canetti-Krawczyk (eCK) model was proposed by LaMacchia, Lauter and Mitya-
gin [28] based on the CK model which was formulated by Canetti and Krawczyk [12] for the
AKE protocols.

Roughly speaking, in the eCK definition, the adversary M is modelled as a probabilistic
polynomial time Turing machine that controls all communications between the honest parties.
Note that M cannot interfere with communication between a single party and the C.A but is able
to register fictitious parties. The adversary plays a central role in the model and is responsible for
activating all other parties. That is, M schedules all activations of parties and message delivery.
Initially and upon the completion of each activation, M decides which party to activate next.
The adversary M also decides which incoming message or external request the activated party
is to receive.

To be more precise, in the eCK model, adversary M is given the (certified) public keys of a
set of honest users, and is allowed to issue the following oracle queries.
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— Send(A, B, message). Send message to party A on behalf of party 5, and obtain A’s re-
sponse for this message.

— EstablishParty(pid). This query allows the adversary to register a long-term public key on
behalf of party pid, which is said to be dishonest.

— LongTermKeyReveal(pid). This query allows the adversary to learn the long-term secret key
of honest party pid.

— SessionKeyReveal(sid). This query allows the adversary to obtain the session key of the
completed session sid.

— EphemeralKeyReveal(sid). This query allows the adversary to obtain the ephemeral secret
key of session sid.

Eventually, in the challenge phase, adversary M selects a completed session sid™ as the zest
session and makes a query Test(sid") as follows.

— Test(sid*). To answer this query, the challenger pick b & {0,1}. If b = 1, the challenger
returns SK* < SessionKeyReveal(sid*) . Otherwise, the challenger sends M a random key

R & {0, 118K,

Note that the Test query can be issued only once but at any time during the game, and the
game terminates as soon as M outputs its guess b’ on b. Here, we require the test session to be
a fresh session which is defined as follows.

Definition 6 (Fresh Session in eCK Model). Let sid be the completed session owned by an
honest party A with peer B, who is also honest. If there exists the matching session to session
sid, we denote the matching session as sid. Session sid is said to be fresh if none of the following
conditions hold:

— M issues a SessionKeyReveal(sid) query or a SessionKeyReveal(sid) query (If sid exists).
— sid exists and M issues either

e LongTermKeyReveal(A) A EphemeralKeyReveal(sid), or

e LongTermKeyReveal(3) A EphemeralKeyReveal(sid).
— sid does not exist and M issues either

e LongTermKeyReveal(.A) A EphemeralKeyReveal(sid), or

e LongTermKeyReveal(B).

We remark that the freshness of the test session can be identified only after the game is
completed as M can continue the other queries after the Test query. That is, M wins the game
if he correctly guesses the challenge for the test session which remains fresh until the end of the
game. Formally, we have the following notion for eCK security.

Definition 7 (eCK Security). Let the test session sid™ be fresh where adversary M issues
Test(sid*) query. We define the advantage of M in the eCK game by

AdveS (k) = Pr[t = b] — 1/2,

where k is the security parameter of the AKE protocol. We say the AKE protocol is eCK-secure if
the matching session computes the same session key and for any probabilistic polynomial-time

adversary M, Advﬁ\iK(kJ) is negligible.
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3.3 Challenge-Dependent Leakage-Resilient eCK Model

We introduce a new eCK-based security notion to capture various side-channel attacks against
AKE protocols. Our notion, named Challenge-Dependent Leakage-Resilient eCK (CLR-eCK)
model is the first split-state-free security model that captures both long-term and ephemeral key
leakage and allows the adversary to issue leakage queries even after the activation of the test
session. Formally, adversary M is allowed to issue the following queries.

- Send(A, B, message). Send message to party A on behalf of party B, and obtain A’s re-
sponse for this message.

— EstablishParty(pid). Register a long-term public key on behalf of party pid, which is said to
be dishonest.

— LongTermKeyReveal(pid). Query the long-term secret key of honest party pid.

— SessionKeyReveal(sid). Query the session key of the completed session sid.

— EphemeralKeyReveal(sid). Query the ephemeral secret key of session sid.

— LongTermKeylLeakage( f1, pid). This query allows M to learn f(lsk) where f; denotes the
leakage function and [sk denotes the long-term secret key of party pid.

— EphemeralKeylLeakage( f2, sid). This query allows M to learn f5(esk) where f, denotes the
leakage function and esk denotes the ephemeral secret key used by an honest user in the
session sid.

— Test(sid*). To answer this query, the challenger pick b & {0,1}. If b = 1, the challenger
returns SK* < SessionKeyReveal(sid*). Otherwise, the challenger sends the adversary a

random key R* & {0, 1}1SK71,

Note that the Test query can be issued only once but at any time during the game, and the
game terminates as soon as M outputs its guess b’ on b.

Restrictions on the Leakage Function. In our CLR-eCK security model, we consider several
restrictions on the leakage function to prevent the adversary M from trivially breaking the AKE
protocol.

The first restriction is that the output size of the leakage function f; and f, must be less
than |/sk| and |esk|, respectively. Specifically, following some previous work on leakage re-
silient cryptography [32], we require the output size of a leakage function f is at most \ bits,
which means the entropy loss of sk is at most A bits upon observing f(sk). Formally, we de-
fine the bounded leakage function family Fypg-; for the long-term secret key and Fypq-); for the
ephemeral secret key as follows. Fppg-1(k) is defined as the class of all polynomial-time com-
putable functions: f : {0, 1}kl — {0, 1}5M®) where A (k) < |Isk|. Fopa-u(k) is defined as
the class of all polynomial-time computable functions: f : {0, 1}l — {0, 1}5%(®) where
Ao(k) < |esk|. We then require that the leakage function submitted by the adversary should
satisfy that f1 € Fpba-1 and f2 € Fobd-II-

Another restriction that must be enforced is related to the challenge-dependent leakage secu-
rity of AKE protocols. Consider a test session sid” which is owned by party .A with peer 5. Note
that for a 2-pass AKE protocol, the session key of sid” is determined by (A, B, lsk 4, esk’y, Ipkg,
epkj;) which contains only two secret keys (i.e., [sk 4, esk’). Since M is allowed to reveal esk’
(Isk_4) in the eCK model, M can launch a trivial attack by encoding the session key derivation
function into the leakage function of sk 4 (esk’;) and hence wins the security game. Therefore,
adversary M should not be allowed to adaptively issue leakage query after it obtains all the
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other (secret) information for session key computation, otherwise the security of AKE protocol
is unachievable. More precisely, we describe the restrictions on Long TermKeylLeakage(f1,.4)
and EphemeralKeyLeakage( f2, sid™) as follows.

— M is allowed to ask for arbitrary leakage function f; € F,q4- before it obtains the ephemeral
secret key esk’, i.e., by issuing EphemeralKeyReveal(sid*) query; however, after obtaining
esk’, M can only use the leakage functions f; € F; C Fppg-1 Where F; is a set of leakage
functions chosen and submitted by M before it issues EphemeralKeyReveal(sid*).

— M is allowed to ask for arbitrary leakage function f; € Fppqg- before it obtains the long-
term secret key [sk 4, i.e., by issuing LongTermKeyReveal(A) query; however, after obtain-
ing [sk4, M can only use the leakage functions f, € F5 C Fppg-n Where F; is a set of
leakage functions chosen and submitted by M before it issues Long TermKeyReveal(.A).

We should note that if sid* exists, the above restriction must also be enforced for the leakage

query LongTermKeylLeakage(f;, B) and EphemeralKeyLeakage( f2, sid"), since the session key
of sid* is also determined by (A, B, Ipk 4, epk’, sk, eskp).
Adaptive Leakage. One can see that our proposed model enables adversary M to choose
Fi1, Fy adaptively and M can submit F;, F, even after the challenge phase as long as the
restriction holds. That is, M can specify function set JF;, F, after seeing epk’ and epkj.
Also, if there is no long-term (ephemeral, respectively) key reveal query, then F; (F3, re-
spectively) is the same as Fppd-1 (Fbbd-11, respectively). Implicitly, M is allowed to obtain
fi(lska), fi(lskg), f2(esk?), fo(esky) where fi, f| € Fobd-1, f2, [5 € Fobd-n1 can be dependent
on (Ipk.a, lpkg, epk’y, epkf), or to obtain fi(lska), f2(esky) where f; € Fi, fo € F; can be
dependent on (Ipk, lpks, Iskg, epk’y, epkf) and (Ipk.a, Ipkp, epk’y, esk’, epky), respectively.
Since the leakage can happen during or after the challenge session and can be related to the chal-
lenge session, our proposed security model captures the challenge-dependent leakage security
for AKE protocols.

We define the notion of a fresh session in the CLR-eCK model as follows.

Definition 8 ((\;, \2)-Leakage Fresh Session in the CLR-eCK Model). Let sid be a completed
session owned by an honest party A with peer B, who is also honest. Let sid denote the matching
session of sid, if it exists. Session sid is said to be fresh in the CLR-eCK model if the following
conditions hold:

— sid is a fresh session in the sense of eCK model.

— M only issues the queries Long TermKeyLeakage( f1,.A), LongTermKeyleakage(f, B),
EphemeralKeyleakage( f, sid), EphemeralKeylLeakage( f}, sid) (if sid exists), such that fi, f,
fa, f4 satisfy the restriction given above.

— The total output length of all the LongTermKeylLeakage queries to A (B, respectively) is at
most \i.

— The total output length of all the EphemeralKeylLeakage query to sid (sid, respectively, if it
exists) is at most \s.

We now describe the notion of CLR-eCK security.

Definition 9 (CLR-eCK Security). Let the test session sid* be (A1, \y)-leakage fresh where
adversary M issues Test(sid"*) query. We define the advantage of M in the CLR-eCK game
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by Advﬁl‘tR'eCK(k) = Pr[l/ = b] — 1/2, where k is the security parameter of the AKE pro-
tocol. We say the AKE protocol is (A1, \2)-challenge-dependent leakage-resilient eCK-secure
((A1, A2)-CLR-eCK-secure) if the matching session computes the same session key and for any
probabilistic polynomial-time adversary M, Advﬁ,LlR'ECK(kJ) is negligible.
Remark. Here we give a further discussion on the relationship between the reveal oracle, e.g.,
LongTermKeyReveal and the leakage oracle, e.g., LongTermKeyLeakage. We can see that it is
meaningless for M to issue the leakage query on the long-term secret key (ephemeral secret
key) if it has already obtained the whole key through querying the reveal oracle. Indeed, adver-
sary M can compute by itself the leakage function f(lsk,) if [sk 4 is known to him.
Therefore, we can observe that the meaningful queries that adversary M will ask in CLR-eCK
model are as follows. Suppose session sid” is the test session owned by A with the peer 5. If
sid* exists, M will only make queries that form a subset of any one of the following cases:

— {LongTermKeyReveal(A), LongTermKeyReveal(B), EphemeralKeyLeakage(sid*),
EphemeralKeylLeakage(sid*)},>

— {EphemeralKeyReveal(sid*), EphemeralKeyReveal(sid*), Long TermKeyLeakage(.A),
LongTermKeyLeakage(B)},

— {LongTermKeyReveal(A), EphemeralKeyReveal(sid*), EphemeralKeyLeakage(sid*),
LongTermKeyLeakage(B)},

— {EphemeralKeyReveal(sid*), LongTermKeyReveal(5), LongTermKeyLeakage(.A),
EphemeralKeylLeakage(sid*)}.

If sid* does not exist, we have the following cases:

— {LongTermKeyReveal(.A), EphemeralKeylLeakage(sid*), LongTermKeyLeakage(B)},
— {EphemeralKeyReveal(sid*), LongTermKeyLeakage(.A), LongTermKeylLeakage(B)}.

4 One-Round CLR-eCK-Secure AKE

In this section, we present a generic construction of one-round CLR-eCK-secure AKE protocol.

4.1 General Framework

Fig. 1 describes a generic construction of the CLR-eCK secure AKE protocol. Suppose that k is
the system security parameter. Let G be a group with prime order p and g is a random generator
of G. Let SPHF denote a 2-smooth SPHF over £ C X and onto the set ) such that the
subset membership problem between £ and X is hard. Denote the hashing key space by HIC,
the projection key space by HP, the auxiliary input space by AUX and the witness space by
W. Pick two collision-resistant hash functions H; : {0,1}* - AUX , Hy: G — ).

Let A\; = A;(k) be the bound on the amount of long-term secret key leakage and Ay = Ay (k)
be that of the ephemeral secret key leakage. Let Exty, Exty, Exts be strong extractors as follows.
Ext; : HIC x {0,1}1®) — {0,1}1*) is an average-case (|HK| — A1, €;)-strong extractor.
Exty : {0, 1}“®) x {0,1}2®) — £0,1}2%) is an average-case (k — )y, €)-strong extractor.
Exts : Y x {0,1}3®) — {0,1}3(®) is an average-case (|| — A, €3)-strong extractor. Here
€1 = €1(k), €2 = e3(k), €5 = e3(k) are negligible.

2 For simplicity, we will omit the leakage function in the input of the leakage query in the rest of the paper.
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A B
Long-Term Key Generation

hk & HashKG(param, £), hk' & HashKG(param, £),
hp & ProjKG(param, £, hk), hp’ & ProjKG(param, £, hk’),
ra, & 10,1300 0 & (0,130, gy & {0,130 ) rg & {0,1}t2(R),
lska = hk,lpks = (hp,T4,,7A5)- lskg = hK',lpkp = (hp',r8,,78,)-

Session Execution

eskg & {0,134 £, & 0,1}, eskp & {0,114 15 & {0, 1}ts(k)
l/s\kA = Ext1(lska,74,), l/s7f3 = Ext1(Iskg,T85,),
e/sEA = Exta(eska,74,), ;SEB = Exta(eskp,T5,),
(wa,x) = ﬁlj;;A (eska) + Fg  (ray), (wp,y) = ﬁfgzs (eskp) + F 5 . (r8,),
W4 = WordG(param, L, w4), X = g%, Wp = WordG(param, £,wg),Y = g¥,
Erase all state except (eska, W4, X,t4). Erase all state except (eskp, Wi, Y, t5).

(B,A,Wa,X,ta)

(A\:§7WB>Y7tB)

Session Key Ouput
Setsid = (A, B, W4, X,t4, Wg, Y, t5) Setsid = (A, B, W, X,t4, Wg, Y, tg)
aux = Hy(sid), K4, =Y7, aux = Hy(sid), K4, = XY,
K 4, = ProjHash(param, L, Ipkp, W4, w4, auzx), Kp, = Hash(param, L, Iskp, W 4, aux),
K 4, = Hash(param, L, Isk 4, W, auz), Kp, = ProjHash(param, L, Ipk 4, Wi, ws, auzx),
sA = Extg(Hz(KAl) D Ka, ®Ka,,ta Dtr), sB = Extg(Hg(KBl) © Kp, ® Kp;,ta Dtr),
SK 4 = Fs , (sid). SKp = Fyy(sid).

Fig. 1. Framework for CLR-eCK secure AKE

Let F and F be PRF families and F be a 7PRF family as follows.
FEXePeRe . Se = {0,133 De = {0,1}*®) Re = W x Z,,
FRaRPERE S 0,110 Dp = {0,1}4®) Re = W x Z,,

FEXEPeRE - S = {0, 1330 De = (Ar)? x £2 x G2 x {0,1}2®) R = {0,1}14®) 3

Let F « FESePeRe F o FO-PPPRF and B o FRSeDeRe,

The system parameter is (param, G, p, g, Hy, Ho, Exty, Exto, Exts, ﬁ, F, f) where param <—
SPHFSetup(1*).

Long-Term Key Generation. At the long-term key generation stage, A runs the algorithm
HashKG to obtain a hashing key hk and then the algorithm ProjKG to obtain the projection

key hp, picks 74, < {0,1}0R) 1y 4, & {0,1}*®), then sets its long-term key pair as lsk 4 =
hk, ipka = (hp,7.4,,7.4,). Similarly, B generates its long-term key pair as [skz = hK', Ipks =
(hp/, 7”31,7’32).

Session Execution (.4 = B). The key exchange protocol between A and BB executes as follows.

- (A — B). A performs the following steps.
1. Selects the ephemeral secret key esk4 <~ {0, 1}“®) and picks ¢4 &~ {0, 1},

3 In this paper, we denote the space of a certified long-term public key (such as .AT) by Aj.



16 R.Chen et al.

Sets ZTSZ?A = Ext; (ZS]CA, T‘Al), ;SEA = EXtQ(GSkA, T’A2).

Computes (w4, z) = E@A(€Sk,4) +F g (ra,)

Runs the algorithm WordG(param, £, w 4) to obtain a word W4 and computes X = g*.
Erase all state except (eska, W4, X, t4), sets (W4, X, t4) as the ephemeral public key
and sends (E, g, Wy, X, t4) to B.

- (B — A). Similarly, B executes the following steps.

Selects the ephemeral secret key eskp & {0,1}%*) and picks t5 & {0, 1)),

Sets @3 = Extl(lskBA, 7“31),29%3 = Exty(eskp, rs,)-

Computes (wg, y) = Fi (eskp) + F;’%B (rg,)-

Runs the algorithm WordG(param, £, wp) to obtain a word Wy and computes Y = g¥.
Erase all state except (eskg, Wi, Y, t5), sets (Wg, Y, t5) as the ephemeral public key and

sends (ﬁ, ]§, Wg, Y, tg) to A.

AN

A e

Session Key Output. When A receives (A\, LA?, Wg, Y, tg), Asetssid = (fAl, LA?, Wy, X, ta, W5, Y, t5)
and computes the session key as follows.

1. Reconstructs (w4, x) from (Isk .4, Ipk .4, esk_4), and computes aux = H; (sid).

2. Computes K 4, = Y* K 4, = ProjHash(param, L, Ipkg, W4, w4, auz), K 4, = Hash(param,
L, sk, Wg, aux).

3. Sets s4 = El‘tg(Hg(KAl) S Ky, P KA3,tA S%) tg).

4. Computes SK 4 = F ,(sid).

Similarly, party B sets sid = (g, B Wy, X, t4, Wg, Y, tg) and then computes the session
key as follows.

1. Reconstructs (wg, y) from (Iskg, Ipkg, eskg) and computes aur = H;(sid).

2. Computes K3, = XY, K, = Hash(param, L, [skg, W4, auz), K, = ProjHash(param, L,
Ipka, Wg, wg, auz).

3. Sets sg = EItg(HQ(K&) @ Kp, ® KB3,tA D tlg).

4. Computes SKp = Fj,(sid).

Correctness Analysis. One can note that K4, = Kp, as K4, = Y* = XY = Kp, = g".
Due to the property of SPHF, we have K4, = ProjHash(param, L, lpkp, W4, wa,auz) =
Hash(param, £, lskg, W 4, aux) = Kp,, K4, = Hash(param, L, lsk 4, Wg, auz) = ProjHash
(param, L, Ipk 4, Wp, wp, aux) = Kp,. Therefore, we can obtain that s4 = Fuats(Hay(K4,) ®
Ky, ® Ky, ta @ tp) = sp = Exts(Ho(Kp,) ® Kp, ® Kg,,t4 ® tg), which guarantees that
SK, = SKp.

4.2 Security Analysis

Theorem 1. The AKE protocol following the general framework is (A1, A2)-CLR-eCK-secure
if the underlying smooth projective hash function is 2-smooth, the DDH assumption holds in
G, H,y, Hy are collision-resistant hash functions, F and F are PRF families and F is a TPRF
family. Here Ay < min{|HK| — 2log(1/e1) — l1(k),|V| — 2log(1/e3) — I3(k)}, Ao < u(k) —
2log(1/e9) — la(k).
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Proof. Let session sid* = (ﬁ, E, W, Xt W, Y™ 1) be the target session chosen by ad-
versary M. A is the owner of the session sid* and B is the peer. We then analyze the security of
the AKE protocol in the following two disjoint cases.
Case L. There exists a matching session, sid*, of the target session sid*.

we analyse the security based on the type of the reveal query and leakage query that the
adversary issues to the target session, the matching session and the corresponding parties.

— LongTermKeyReveal(A), LongTermKeyReveal(B), EphemeralKeyLeakage(sid*),
EphemeralKeylLeakage(sid*). In this sub-case, suppose that the adversary obtains at most
Ao-bits of the ephemeral secret key of target session sid*, we have that

eshy = Exta(eskiy, ray) =e, ek 4 & {0,132, (1)

Therefore, (w¥, z*) = }?@:A(esk;)JrFa; (ra,) = (w'y, ") Ew X Zy. Similarly, suppose
that the adversary obtains at most Ap-bits of the ephemeral secret key of matching session
sid*, we have that

;SE; = Exty(esky, rs,) %62 ZSE; & {0, 1}l2(k)7 )
x % - * Fnl < $
and thus (wg, y*) = Fig, (eskp) + ;E;(Tgl) = (wy,y') < W X Z,.

— EphemeralKeyReveal(sid*), EphemeralKeyReveal(sid*), Long TermKeyLeakage(.A),
LongTermKeyLeakage(B). In this sub-case, suppose that the adversary obtains at most A;-
bits of the long-term secret key of party .4, we have that

1/574;1 = Exty(lska,74,) %61 @::4 & {0, l}ll(k), 3)

hence (w%, z*) = ﬁ@;(eskj) +F&E;(TA) = (w'y,2') W Z,. Similarly, suppose that
the adversary obtains at most \;-bits of the long-term secret key of party B, we have that

Isky = Exty (Isks, rs,) =., Isky & {0,111, 4)

and therefore (w, y*) = Fig: (eshy) + Pz (1)) = (wh, ) & W x Z,,

— LongTermKeyReveal(A), EphemeralKeyReveal(sid*), EphemeralKeylLeakage(sid*),
LongTermKeyLeakage(B). In this sub-case, suppose that the adversary obtains at most A,-
bits of the ephemeral secret key of target session sid”, at most A;-bits of the long-term secret

key of party B3, then based on the Equation (1),(4), we have that (w%, 2*) = F@;(eskm +

esk 4

W X Zy.

— EphemeralKeyReveal(sid*), LongTermKeyReveal(B), Long TermKeyLeakage(.A),
EphemeralKeylLeakage(sid*). In this sub-case, suppose that the adversary obtains at most
A1-bits of the long-term secret key of party A, at most \»-bits of the ephemeral secret

key of matching session sid*, then based on Equation (2),(3), we have that (w’,z*) =
- * nl < $ * * I * Fal <
E@;(eSkA)+F&E; (ra,) = (Wy, o) < WxZ,and (wg, y*) = ﬂ;};(esktg)—i—Fa; (rg,) =

(whs, 1)) & W x Z,.

nl ¢ $ * * - * nl < $
F—s(r4,) = (Wy,2") &< W xZ, and (wg, y*) = E;}*B(eSkB)+F§5\k;(TBl> = (wg, ') <




18 R.Chen et al.

Therefore, regardless of the type of the reveal query and leakage query, (z*,y*) are uni-
formly random elements in Z2 from the view of adversary M. Therefore, K, = K = g" ¥’
is computationally indistinguishable from a random element in G according to the DDH as-
sumption and hence Hy(K ) is a uniform random string from the view of M who is given
X* = ¢, Y* = ¢g¥". We then have that the seed s* for the 7PRF function is uniformly dis-
tributed and unknown to the adversary and thus the derived session key S K is computationally
indistinguishable from a random string. It is worth noting that in this case we only require Fto
be a normal PRF.

Case I1. There exists no matching session of the test session sid*.

In this case, the adversary cannot issues Long TermKeyReveal query to reveal the long-term
secret key of B but may issues the leakage query LongTermKeylLeakage to learn some bit-
information of [skz. We prove the security of the AKE protocol as follows.

In the simulation, we modify the security game via the following steps to obtain two new
games.

— Game 1: Replace K7, = ProjHash(param, £, Ipkg, W, w’, auz™) by K3 = Hash(param,
L, lskg, W3, auz®).
— Game 2: Choose W7 € X'\ L instead of deriving it from £ through the algorithm WordG.

We can see that Game 1 is identical to the original game from the view of adversary M due
to the fact that ProjHash(param, L, Ipkg, W, w’) = Hash(param, L, skg, W), and Game 2
is indistinguishable from Game 1 (and hence also the original game) due to the difficulty of the
subset membership problem which ensures that the distribution of X' \ £ is indistinguishable
from L.

Note that adversary M may actives a session sid, which is not matching to session sid”,
with B. Precisely, M can choose W € X'\ L (e.g., by replaying W7), send IV to B and issues
SessionKeyReveal(sid) query to learn the shared key. According to the property of 2-smooth
of the underlying smooth projective hash function, we have that K7} is pairwisely independent
from any other such key (denoted by K ) and all public information (i.e., param, £, Ipkg, W, aux™)
and hence _

ﬁoo(Kjb]K, param, L, lpkp, W7, auz™) = |)|.

Suppose that the leakage of [skp is at most A;-bits (denoted by l/87€;3), and therefore (see Lemma

)

IZIOO(KZQNN(, param, L, lpkp, W, auz™, 12753) > ﬁm(KZ2]lN(, param, L, Ipkp, W, aux™) — A
= V[ = A

Therefore, by using the strong extractor Exts, it holds that
Sj“ - EXt3(}I2(]:(»Al>>'< ® K:lQ © Kjlg’tjzl ©® t%’) %ES 8:4 <$; {07 1}13(k)

One can see that A obtains a variable s* which is pairwisely independent from any other such
variables and thus the derived session key SK’; is computationally indistinguishable from a
truly random element from M’s view due to the application of 7PRF, which completes the
proof.
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Simulation for Non-test Session. Note that for the two cases above, we have to simulate the
non-test session correctly with the adversary. Specifically, when adversary M activates a non-
test session with 4 or B, the session execution simulated should be identical to the session run
by A or B from the view of M. One can note that this can be easily guaranteed when the query
LongTermKeyReveal(.A) or LongTermKeyReveal(B) is issued in the game. Since we know the
long-term secret key of 4 or 3, we can just select an ephemeral secret key and compute the
ephemeral public key correctly by using the long-term secret key and long-term public key.
Nevertheless, if the query LongTermKeyReveal(A) or LongTermKeyReveal(B) is not issued,
that is, without the long-term secret key of A or B, the simulation of the non-test session owned
by A or B can no longer be simulated as shown above. In this case, we simulate the session as
follows. Suppose that we are to simulate the session owned by A without knowing [sk 4, we

pick (r1,72) Ewx Z,, and then compute W4 = WordG(param, £, r;), X = g". We say that
the session simulated in this way can be identical to the real session from M’s view due to the
pseudo-randomness of the PRF. To be more precise, even when M obtains at most \;-bits of

Isk 4 through LongTermKeylLeakage(.A), the variable ZTSZ;A, which comes from Ext; ({sk4, 7 4)

and inputs to the pseudo-random function F/, still remains unknown to adversary M. Therefore,
the value of F@A (esk ) is computationally indistinguishable from a random element.

5 An Instantiation from DDH Assumption

In this section, we first introduce an SPHF based on the DDH assumption and then show how
to construct a CLR-eCK-secure AKE protocol based on this function.

5.1 DDH-based SPHF

In the following, we present the language we use in the instantiation of our generic CLR-eCK-
secure AKE protocol. Specifically, we introduce the Diffie Hellman language Lpy and show
how to construct a 2-smooth SPHF on Lpn.

Diffie-Hellman Language. Let G be a group of primer order p and gy, go € G. The Diffie-
Hellman Language is as follows.

Lon = {(u1,ug)|3r € Zp, s.t.,u1 = g7, us = g}

One can see that the witness space of Lpy is W = Z, and Lpy C X = G2. We have the
following theorems.

Theorem 2. The subset membership problem over X = G* and Lpy is hard.

Proof. One can easily obtain the theorem above from the DDH assumption and hence we omit
the proof here. Actually, if an adversary can distinguish a word randomly picked from Lpy from
a random element chosen from X'\ Lpy, we can build a distinguisher for the DDH problem by
using the adversary as a subroutine.

SPHF on Lpy. Here we show how to construct a 2-smooth SPHF (denoted by SPHFph)
over the language Lpy C X = G? onto the group Y = G. Let H; : {0,1}* — Z, denote a
collision-resistant hash function. The concrete construction is as follows.
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— SPHFSetup(1*): param = (G, p, g1, g2);

HashKG(Lpn, param): hk = (ay, as, f1, 52) & Zy;

ProjKG(hk, (Lpw, param)): hp = (hp,, hp,) = (97" 95°, 97" 95°) € G2

WordG(hk, (Lpn, param),w =1): W = (g7, ¢5);

Hash(hk, (Lo, param), W = (uy, us) = (g}, ¢5), aux = d = Hy (W, auz’)): hv = uS* T2,
ProjHash(hp, (Lpn, param), W = (u1,u2) = (g, 95),w = r,aux = d = Hy(W, auz’)):

hv/ = hplhpd".

Note that Y = G, HK = Zé,HP = GIQ),AZ/{X = Zyp, W = Z,. Then we have the following
theorem.

Theorem 3. SPHFpy is a 2-smooth SPHF.
Proof. We show that SPH Fpy is projective and smooth (2-smooth).

— Correctness. With the above notations, for a word W = (uy, u2) = (g7, g5) we have
Hash(hk, (Lpn, param), W, d) = uS" T 45219 — hpThpd™ = ProjHash(hp, (Lpn, param), W, r, d).

al o

— Smoothness (2-smooth). Suppose go = ¢¢. Note that hp, = g¢{" g%, hp, = gfl 9252 which
constraints (o, g, 81, 52) to satisfy

log,, hp; = a; + fas. 5)
log,, hpy = f1 + 0. (6)

Let Wi = (g, g5), Wa = (g1, g5") € X\ Low where 1 # ra,74 # 7}, suppose auz, =
di = Hi(Wh, aux)), auzy = dy = Hi(Ws, auxly), then the hash value hv; of Wy, hvy of 5
are as follows,

hv; = Hash(hk, (Lon, param), Wi, aua;) = gj* (@ Tib) gralextdifa)
hve = Hash(hk, (Con, param), W, auay) = gyt @ F%) gra(eetazi)
which also constraint (o, g, 51, f2) to satisfy
loggl hV1 =riog + 7’29042 + Tldlﬂl + T2d1962. (7)
loggl hVQ = 7",1061 + 7’;(90(2 + Tlldzﬁl + Tédgeﬂg. (8)
From the above equations, we have
(0617 Qg, /817 /82) A= (10ggl hp17 10g91 hp27 loggl hV17 logg1 hv2)7

where A is a matrix defined as

1 66 0 0
0 O 1 0
A= 1 07"2 Tldl 97’2611
ry Orh, ridy Orhdsy
Since (W, auxy) # (Wa,auxy) where auzy = dy = Hy(Wi,aux)),auxs = dy =

H, (W5, aux}), we have that d; # dy. Furthermore, as 6 # 0, r; # ro and 7} # 1), we
can obtain that the determinant of A is 6% - (ry — 1) - (15, — 71) - (da — d1) # 0 and hence
the equation (8) is independent of the equation (7). Therefore, we have that hv, is perfectly
indistinguishable from any element randomly chosen from G.
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A B

Long-Term Key Generation

hk = (a1, a2, B1, ) & 7, hK' = (a4, b, 81, 83) & Z},
hp = (hpy, hpy) = (957957, 97" 95°) € Gp, hp' = (hp’, hph) = (957952, 97 g52) € G2,
r {0,111y & 0,1y, rh & {0,131, g & {0, 1)),
Iska = hk,lpka = (hp,71,72). Iskp = hK',lpkp = (hp’,71,75).

Session Execution

e & {0,13® ¢ & f0,1}t®) ¢ & {0,132 ¢ & {0, 1}t ®),
Iska = Exti(lska,r1), Isks = Exti (Isks, 1),
e/sEA = Exta(e, r2), gs\kg = Exta(e’, r3),
(Tv l’) = F@A(e) + F;JCA(TI)v (Tlvy) = F@B (6/) /‘*‘FIQQB(TD’
W= (u17u2) = (g{agg)aX =g, W' = (ullvué) = (gI )92 )7Y =gY,
Erase all state except (e, W, X, t). Erase all state except (¢/, W', Y, t').
(B,A,W, X, )
- (27 é? W/7 Kt,)
Session Key Ouput
Setsid = (A, B,W, X, t, W', Y,t') Setsid = (A, B,W, X, t, W', Y,t)
d=H1(Sid),KA1 =Y, d= Hi(sid), K4, = XY,
KA2 — hP/17hP/2dT7 K.A3 — u/1a1+d51 u/20<2+d527 KB‘Z — u(lx/1+dﬁi ugl2+d/3é7 K.A3 — hpi'hpgr/7
sA = Ext3(Ka, ® Kay, ® Kag,ta ®tg), sg = Eat3(Kp, © K, ® Kp,,ta ®15),
SKa = F, ,(sid). SKp = Fyy(sid).

Fig. 2. CLR-eCK secure AKE Protocol

5.2 Concrete AKE Protocol

We then show a concrete AKE protocol based on SPHFpy in Fig. 2.
Protocol Description. In the system setup phase, let G be a group of primer order p and g1, g2 €
G. For the SPH Fpn, we have that Y = G, HK = Zf,,HP = Gf,,ALIX = Lip, W = Z,. We
then choose a collision-resistant hash functions H; : {0,1}* — G. * We pick strong extractors
as follows. Let Ext; : Z1 x {0,1}® — {0,1}1(*) be average-case (4 - logp — A1, €;)-strong
extractor, Exty : {0, 1}*) x {0, 1}2*) — {0,1}"2(*) be average-case (u(k) — \g, €2)-strong
extractor and Exts : G x {0, 1}#®) — {0, 1}3(%) be average-case (log p — Ay, €3)-strong extrac-
tor. Choose F' + FF-XeDeRe T« Ek’EF’T’RF and F « FFXeDeRe The system parameter is
(Gap7 91,92, 9, H17 Eth EXt27 EXt37 F7 F? F)

For the long-term key generation, A chooses (a1, as, 81, 52) & Zé as its long-term secret
key, computes (hp,, hp,) = (¢ ¢52, g7 ¢5), picks & {0,110 -y & {0, 1}*2®) and sets

4 Note that in the concrete construction, H> is not needed as the hash value space ) = G.
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its long-term public key as (hp,, hp,, 71, 72). Similarly, 53 sets its long-term secret/public key
pair as ((a, a, B1, B3), (hpl, hpy, 71, 75)).

After a session is activated, A picks an ephemeral secret key e and the extraction key ¢ &
{0, 1}*+®), derives (r, x) using the secret keys and sends (B, A, W = (u1,us) = (g}, 95), X =
g®,t) to B. Simultaneously, B executes the same procedure and returns (A\, B,W' = (u),ub) =
(91,95).Y = g",t') to A.

To compute the shared session key, A runs the ProjHash algorithm to compute the hash
value of W using the witness r and the long-term public key of B, runs the Hash algorithm
to compute the hash value of W’ using its long-term secret key. B runs the Hash algorithm
to compute the hash value of W using its long-term secret key, runs the Hash algorithm to
compute the hash value of W' using the witness 7" and the long-term public key of .A. Note that
the auxiliary input to all the hash value computation is d = Hy(A, B,W, X ,t, W’ Y t'). Both
A and B also compute the value of ¢g*¥. They then finally apply the 7PRF function F to derive
the session key.

Correctness. The correctness of the protocol can be easily obtained from the correctness of
S’PH.FDH. Precisely, ui‘1+dﬁ1ug‘2+d52 — hpllrhp/2dr,u/1a1+dﬁlu/2a2+d,32 _ hpg’hpgr” XY — V* —
9.

Based on Theorem 1, Theorem 2 and Theorem 3, we have the following result for the
concrete AKE protocol.

Theorem 4. The concrete AKE protocol is (A1, Ay)-CLR-eCK-secure, where A\; < min{4log p—
2log(1/e1) — li(k),logp — 2log(1/e3) — l3(k)}, A2 < u(k) — 2log(1/e2) — l2(k).

6 Conclusion

In this paper, we introduced a new leakage-resilient security model for AKE protocols to over-
come the limitations in the previous models. Our model is the first to allow the adversary to
obtain challenge-dependent leakage on both long-term and ephemeral secret keys, and hence
are strong yet meaningful compared with the previous models. We also presented a generic
framework to construct efficient one-round AKE protocol that is secure under the proposed
security model, as well as an efficient instantiation of the general framework under the DDH
assumption. Our framework ensures the session key are private and authentic even if the ad-
versary learns a large fraction of both the long-term secret key and ephemeral secret key and
provides qualitatively stronger privacy guarantees than existing AKE protocols constructed in
prior and concurrent works, since such protocols necessarily become insecure if the adversary
can perform leakage attacks during the execution of session.
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