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Abstract

By using a recently introduced framework for non-perfect secret sharing, several known
results on perfect secret sharing are generalized to non-perfect secret sharing schemes with
constant increment, in which the amount of information provided by adding a single share to a
set is either zero or some constant value. Specifically, we discuss ideal secret sharing schemes,
constructions of efficient linear secret sharing schemes, and the search for lower bounds on
the length of the shares. Similarly to perfect secret sharing, matroids and polymatroids are
very useful to analyze these questions.
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1 Introduction

By formalizing several ideas in previous works on non-perfect secret sharing [15, 18, 19, 21, 27, 28],
a new framework was introduced in [7, 8] (the latter is the full version of the former). It is
based on the concept of access function (Definitions 2.1 and 2.3), which measures the amount of
information on the secret value that is obtained from the shares of any set of players. Several
known results on perfect secret sharing were generalized in [7, 8]. Namely, the existence of a
secret sharing scheme for every access function, lower bounds on the information ratio derived
from polymatroids, duality in linear secret sharing schemes, and a new proof for the values of
the optimal information ratio of uniform access functions, which had been determined in [27, 28].
Moreover, that new framework made it possible to overcome some concerns, which were discussed
in [11], on the existing definitions for ideal non-perfect secret sharing scheme and to choose the
most satisfactory definition for that concept [8, Section 8]. Several results on ideal perfect secret
sharing schemes and their connections to matroids were extended to non-perfect secret sharing
in [15, 21] and recently in [8, 11].

As in recent preceding papers [7, 8, 11, 27, 28], we consider here several topics that have
attracted a lot of attention for perfect secret sharing and we present new extensions of known
results to the non-perfect case. In this paper, we focus on access functions with constant
increment (Definition 2.5), a class that contains the access functions of ideal secret sharing
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schemes. We show that several questions about secret sharing for access functions with constant
increment can be reduced to the more studied case of perfect secret sharing schemes. The first
example, discussed at the beginning of Section 3, deals with the construction of efficient linear
secret sharing schemes. The other reductions are based on the basic transformations of access
functions that are introduced in Definitions 3.1 and 4.3.

One of the main open problems in secret sharing is to prove that, for general access functions,
the length of the shares must grow exponentially with the number of players [1, Conjecture 1].
This leads to the search for lower bounds on the length of the shares or, more restrictively, on the
information ratio. See [1] for a survey on these topics. By using the transformation introduced
in Definition 3.1, we prove in Proposition 3.2 that the search of lower bounds for access functions
with constant increment can be reduced to the perfect case. Recent results on perfect secret
sharing provide explicit examples of families of access functions requiring linear schemes with
super-polynomial information ratio [2], and of families requiring linear schemes with shares of
exponential length [22]. By using Proposition 3.2, those results are easily extended to access
functions with fixed constant increment.

Our main results deal with ideal secret sharing schemes and their connections with matroids.
We prove in Proposition 4.7 that an access function with constant increment admits an ideal
linear secret sharing scheme if and only if its transform, which is a perfect access function,
does so. The access function of every ideal scheme is a generalized matroid port [8, 11]. We
present in Proposition 4.9 a generalization to access functions with constant increment of [16,
Theorem 4.4], which is a separation result in perfect secret sharing between matroid ports and
the other perfect access functions. In particular, Proposition 4.9 provides a lower bound on the
optimal information information ratio of access functions with constant increment that are not
generalized matroid ports.

A line of research on perfect secret sharing is the search for families of access functions that
admit ideal perfect secret sharing schemes and have some practical interest [5, 9, 10, 12, 25, 26].
The results on ideal non-perfect secret sharing in this paper and in [8, 11] should make it possible
to extend some of the results from those works to the non-perfect case.

2 Preliminaries

We present in this section the main definitions and basic facts about secret sharing, polymatroids,
and the connections between these topics.

We begin by introducing some notation. We use a compact notation for set unions, that
is, we write XY for X UY and Xy for X U {y}. In addition, we write X \Y for the set
difference and X \ z for X \ {z}. For a set E, we notate P(E) for the power set of E, that
is, the set of all subsets of E. Only discrete random variables are considered in this paper.
Given a discrete random vector S = (S;)zcr and a set X C E, we notate Sy = (Sz)zex-
The Shannon entropy of the random variable Sx is denoted by H(Sx). In addition, for such
random variables, one can consider the conditional entropy H(Sx|Sy) = H(Sxy) — H(Sy), the
mutual information I(Sx:Sy) = H(Sx) — H(Sx|Sy), and the conditional mutual information
I(Sx:Sy|Sz) = H(Sx|Sz) — H(Sx|Syz). Throughout the paper, P and @ stand for finite sets
with @ = Pp, for some p, ¢ P. Most of the times, P denotes the set of players in a secret
sharing scheme while, for convenience, p, can be thought of as a special player, usually called
dealer, who holds the secret value. Finally, we need some additional notation to define two useful
transformations of access functions. For every positive integer k, we use Pok to denote a set with
|P¥| = k such that p, € P¥ and PN P¥ = (), and we put Q = PP¥ and P, = Q, \ po.



2.1 Secret Sharing Schemes

Definition 2.1 (Access function). An access function on a set P is a monotone increasing
function ® : P(P) — [0,1] with ®(@) = 0 and ®(P) = 1. The forbidden and qualified sets of the
access function ® are those with ®(X) = 0 and, respectively, ®(X) = 1. An access function is
said to be perfect if its only values are 0 and 1. An access function is called rational if it only
takes rational values.

Definition 2.2 (Secret sharing scheme). Let @ be a finite set of players, let p, € Q be a
distinguished player, which is called dealer, and take P = Q ~ p,. A secret sharing scheme
Y on the set of players P is a discrete random vector (S;)zcq such that H(S,,) > 0 and
H(Sp,|Sp) = 0. The random variable S, corresponds to the secret value, while the random
variables (S;)zcp correspond to the shares of the secret that are distributed among the players
in P. Most of the times, we are going to write S, instead of S, .

Definition 2.3. The access function ® of a secret sharing scheme ¥ = (.5;);cq on P is defined
by

I1(S,:S5x)
(X)) = —15-
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for every X C P, while its access structure is the one associated to its access function. A secret
sharing scheme is perfect if its access function is so.

The access function of a secret sharing scheme measures the amount of information on the
secret value that is derived from any set of shares. In particular, if X C P is qualified, then
I(S,:Sx) = H(S,), which implies that the secret value is determined by the shares of the players
in X. The random variables S, and Sy are independent if X is a forbidden set, that is, the
shares of the players in X do not provide any information on the secret.

Definition 2.4 (Connected access function). An access function ® on P is connected if, for
every player z € P, there exist a forbidden set X C P and a qualified set Y C P with z € Y
such that ®(Xz) >0 and ®(Y \ z) < 1.

From now on, only connected access functions are considered. In particular, we avoid in
this way the existence of redundant players. Moreover, the results in this paper deal almost
exclusively with access functions with constant increment.

Definition 2.5 (Constant increment). An access function ® has constant increment pu if
O(Xy)—P(X) € {0, pu} for every X C P and y € P. In this situation, u = 1/k for some positive
integer k and the values of ® are integer multiples of 1/k.

There exists a secret sharing scheme for every access function [7, 8]. Nevertheless, all known
general constructions are inefficient because the length of the shares is exponential in the number
of players. This is also the situation for perfect secret sharing schemes. Therefore, the search for
families of access functions that admit efficient secret sharing schemes is worth considering. The
length of the shares and the information ratio are among the main parameters to measure the
efficiency of a secret sharing scheme.

Definition 2.6 (Information ratio). The information ratio of a secret sharing scheme ¥ =
(Sz)zeq is defined as max,cp H(S;)/H(S,). It approximates the ratio between the maximum
length of the shares and the length of the secret.



Most of the known efficient constructions involve linear secret sharing schemes. In addition,
the homomorphic properties of linear schemes make them suitable for the main applications of
secret sharing. By an abuse of notation, when dealing with linear secret sharing schemes, the
symbol Sx denotes both a linear map and a random variable that is determined by it.

Definition 2.7 (Linear secret sharing scheme). Let K be a finite field and let ¢ be a positive
integer. In a (K, ¢)-linear secret sharing scheme, the random variables (S;)zcq are determined
by surjective K-linear maps S, : V' — V, by taking the uniform probability distribution on V.
In addition, the dimension of V,,, = V,, over the field K is equal to /.

In a (K, £)-linear secret sharing scheme (S;)zeq, for every X C @, the random variable Sy,
which is determined by the linear map Sx: V' — [[,cx Vi, is uniform on its support. Because
of that, H(Sx) = rank Sx - log|K]|, and hence

I1(S,:5x) = (rank S, + rank Sy — rank Sx,,) log |K].
Therefore, the access function of a (K, ¢)-linear secret sharing scheme is

rank S, + rank Sx — rank Sx,, 1 rank Sxp, — rank Sx

®(X) = rank S, - 14

and its information ratio is

max;cprank S,  maxgcp dim V,

rank .S, a y4

Observe that all values of the access function are integer multiples of 1/¢. In particular, if the
access function of a (K, ¢)-linear secret sharing scheme has constant increment 1/k, then ¢ is a
multiple of k. Every rational access function admits a linear secret sharing scheme [7, 8.

A (K, ¢)-linear secret sharing scheme with information ratio o is determined by linear maps
Sy V =V, with dim V,, < max{¢, o/} for every x € Q and dimV < erQ dim V.. Therefore,
the computational complexity of the scheme, which comprises the required amount of randomness
and the computation time and space for both the distribution phase (computing the shares
from the secret value and some randomness) and the reconstruction phase (partially or totally
recovering the secret value from some shares) is polynomial in log |K|, ¢, o, and the number of
players.

Definition 2.8 (Optimal information ratio). The optimal information ratio o(®) of an access
function ® is the infimum of the information ratios of the secret sharing schemes for ®. We
notate A(®) for the infimum of the information ratios of the linear secret sharing schemes for ®.
Obviously, a(®) < A(P).

The optimal information ratio of the uniform access functions, which are the natural
generalization of threshold perfect access structures, was determined in [27, 28] and a new proof
for that result was given in [7, 8.

Let @ be an access function with constant increment 1/k. By a well known result in non-
perfect secret sharing [18, 19, 21], H(S,) > H(S,)/k for every x € P if (S;)zeq is a secret
sharing scheme for ®. Therefore, o(®) > 1/k. A secret sharing scheme is ideal if its access
function has constant increment and this lower bound is attained.

Definition 2.9 (Ideal secret sharing scheme). A secret sharing scheme ¥ = (S;)zcq is ideal if
its access function has constant increment 1/k and H(S;) = H(S,)/k for every xz € P.



Example 2.10 (Ramp access functions). Given integers ¢,r,n with 0 < t < r < n, the
(t,r,n)-ramp access function on a set P with |P| = n is defined by: ®(X) =0 if | X| < ¢, and
O(X)=(|X|-t)/(r—1t)ift <|X| <r,and ®(X) =1 if |X| > r. Clearly, this access function
has constant increment 1/(r — ¢). By the construction presented by Blakley and Meadows [4],
which is described in [8, Example 2.9], there is an ideal (K, r — ¢)-linear secret sharing scheme
for the (¢, r,n)-ramp access function for every finite field K with |K| > n 4+ r —¢.

2.2 Polymatroids, Matroids, and Matroid Ports

The joint Shannon entropies of a collection of random variables define a polymatroid [13, 14].
Because of that, these combinatorial objects play a fundamental role in secret sharing.

We introduce some notation before presenting the definition of polymatroid. For a function
F :P(FE) — R and subsets X,Y, Z C E, we notate

Ap(Y:Z|X) = F(XY) + F(XZ) — F(XYZ) — F(X) (1)
and Ap(Y:Z) = Ap(Y:Z|0).

Definition 2.11. A polymatroid is a pair S = (F, f) formed by a finite set E, the ground set,
and a rank function f: P(E) — R such that

L) =0,
2. f is monotone increasing: if X CY C E, then f(X) < f(Y), and
3. fis submodular: f(X)+ f(Y)> f(XUY)+ f(XNY) for every X, Y C E.

A matroid is a polymatroid such that its rank function f is integer-valued and satisfies f(X) < | X|
for every X C F.

Observe that f: P(E) — R is the rank function of a polymatroid if and only if f()) = 0 and
A¢(Y:Z|X) >0 for every X,Y,Z CE.

If (Sz)zeck is a random vector, then the map h: P(E) — R defined by h(X) = H(Sx)
is the rank function of a polymatroid with ground set E [13, 14]. This connection between
polymatroids and the Shannon entropy is a consequence of the conditional mutual information
being nonnegative. The notation introduced in (1) is motivated by this connection. Indeed, for
every X,Y,Z C E, the conditional mutual information I(Sy:Sz|Sx) is equal to Ay (Y:Z|X).

Since secret sharing schemes are given by random vectors, a connection between secret
sharing and polymatroids arises naturally. Specifically, associated to every secret sharing scheme
Y = (Sz)zeq there is the polymatroid (Q, h) given by h(X) = H(Sx) for every X C Q. The
access function ® and the information ratio o of 3 are determined by this polymatroid. Indeed,
O(X) = Ap(po:X)/h(po) for every X C P and 0 = maxep h(z)/h(p,). This motivates the
following definition.

Definition 2.12. For an access function ® on P, every polymatroid (@, f) such that ®(X) =
A¢(po:X)/f(po) for every X C P is called a ®-polymatroid.

For an access function @, the value x(®) is defined as the infimum, over all ®-polymatroids
(Q, f), of max,ep f(z)/f(po). Clearly, k(®) < o(®). The reader is referred to [8] for additional
results on this lower bound on the optimal information ratio. Similarly to the perfect case,
k(®) is the optimal value of a linear programming problem [17, 20], and hence the infimum is
a minimum and k(@) is a rational number if ® is a rational access function. If ® is an access
function with constant increment 1/k, then x(®) > 1/k [8].



We discuss next some well known facts about linear representations of polymatroids and their
associated linear random vectors. The reader is referred to [17] for a more detailed explanation.
An integer-valued polymatroid (F, f) is said to be K-linearly representable or simply K-linear
if there exists a vector space W over the field K and a collection (W, ),cg of vector subspaces
of E such that f(X) = dim (3 ,cx W) for every X C E. In this situation, the collection
(Wa)zep is called a K-linear representation of the polymatroid (E, f). Every (K, ¢)-linear secret
sharing scheme (S;)zcq with access function ® determines a K-linear representation of the
®-polymatroid (Q, f) defined by f(X) = rank(Sy). Conversely, every K-linear representation
of an integer-valued ®-polymatroid (@, f) determines a (K, f(p,))-linear secret sharing scheme
with access function ® and information ratio max,ecp f(x)/f(po).

3 On the Information Ratio

For an access function ® with constant increment 1/k and for every ¢ = 1,..., k, consider the
perfect access function ®; whose qualified sets are those with ®(B) > i/k. For a finite field K
and a positive integer ¢ consider, for every i = 1,...,k, a (K, £)-linear secret sharing scheme with
access function ®; and information ratio at most o. The concatenation (as in [8, Section 7.1]) of
these schemes produces a (K, k¢)-linear secret sharing scheme with information ratio at most o
for the access function ®. Therefore, the search for efficient linear secret sharing schemes for
access functions with constant increment can be reduced to the search for efficient perfect linear
secret sharing schemes. Nevertheless, some access functions can be realized by linear secret
sharing schemes that have lower information ratio than the concatenation of perfect schemes.
For instance, the access functions of ideal linear secret sharing schemes.

We introduce next a transformation from perfect access functions to access functions with
any given constant increment. It makes it possible to reduce the search of lower bounds for
non-perfect secret sharing with constant increment to the more studied case of perfect secret
sharing.

Definition 3.1. For a perfect access function ® on P and a positive integer k, we define the
access function ®F on Py by PF(XZ) = (®(X) +|Z|)/k for every X C P and Z C P, \ P.
Clearly, the access function ®* has constant increment 1/k.

Proposition 3.2. Let ® be a perfect access function on P and let Ok pe its associated access
function on Py with constant increment 1/k. Then r(®%) = k(®)/k and A\(®*) = \(®)/k

Proof. The result about the parameter k was proved in [8, Lemma 5.8].

Let ¥ be a (K, ¢)-linear secret sharing scheme with information ratio o and access function
®. Observe that o > 1 because ® is a perfect access function. We define next a (K, k¢)-linear
secret sharing scheme ¥ on Pj,. For a secret value (sg, s1,...,sk_1) € (K/)*, the k — 1 players in
Py . P receive the shares s1,. .., sk—1, while the players in P receive shares for the secret value
sp according to the scheme Y. Clearly, the access function of ¥ is ®* and its information ratio is
equal to o /k. Therefore, A\(®*) < A(®)/k. N N
_ Consider now a (K, kf)-linear secret sharing scheme 3 with access function ®F. Recall that
¥ is determined by a tuple (S;)zc@, of K-linear maps S;: V' — V,. Take Z = P, ~ P and
W = ker Sz, and consider the linear secret sharing scheme ¥ = (S%)zcq, where S,: W — S,(W)
is the restriction of S, to the subspace W C V. Observe that

rank S% = dim W — dim ker S% = dim W — dim(W Nker Sx) = rank Sxz — rank Sz

for every X C Q. In particular, rank S/, = rank Sy,, — rank S = k(1 — ®*(Z)) = ¢, and hence
Y is a (K, ¢)-linear secret sharing scheme. We affirm that ¥ has access function ®. Indeed, if ¥



is the access function of 3, then, for every X C P,

rank S%.  — rank S’ —
\I/(X):l— Xpoe X :1_rankSXZpO£ ra,nkSXZ.

On the other hand,

rank SXZpO — rank SXZ
kl

@(X):kék(XZ)—(k—l):k(1— )—k+1:\I/(X)
and our affirmation is proved. Finally, since rank S/, < rank S, for every x € P, the information
ratio of ¥ is at most k times the information ratio of ¥. Therefore, A(®) < kEA(®). O

4 On Ideal Secret Sharing Schemes

The problem of determining which perfect access functions can be realized by an ideal secret
sharing scheme has attracted a lot of attention. We argue in this section that no new difficulties
appear when extending this problem to non-perfect secret sharing.

We begin recalling the known results about the connections between ideal secret sharing
schemes and matroids. Then we present in Definition 4.3 an operation that transforms any given
access function ¢ with constant increment k into an associated perfect access function d. We
prove in Proposition 4.7 that & admits an ideal secret sharing scheme if and only if so does
. Finally, in Proposition 4.9, we generalize to non-perfect secret sharing the separation result
from [16] between matroid ports and the other perfect access functions.

Definition 4.1. Let M = (Q, f) be a matroid. The perfect access function ® on P defined by
P(X) = Af(po:X) for every X C P is called the port of the matroid M at p,.

Observe that M = (Q, f) is a ®-polymatroid if ® is the port of the matroid M at p,. By
Brickell-Davenport theorem [6], the access function of every ideal perfect secret sharing scheme
is a matroid port. A generalization of matroid ports was introduced in [11] to extend that result
to non-perfect secret sharing.

Definition 4.2 (Generalized matroid port). Let N” = (Qy, f) be a PF-normalized matroid.
Then the access function ® on P defined by

for every X C P is the k-port of N at P¥. In this situation, we say that ® is a matroid k-port
or a generalized matroid port.

Observe that matroid k-ports are access functions with constant increment 1/k. As a
consequence of [11, Theorem 3|, the access function of every ideal secret sharing scheme is a
generalized matroid port. In addition, every connected matroid k-port is the k-port of a unique
Pf—normalized matroid. Moreover, as a consequence of [11, Proposition 7], a connected access
function ® with constant increment 1/k is a matroid k-port if and only if k(®) = 1/k.

Definition 4.3. For an access function ® on P with constant increment 1/k, we define the
perfect access function ® on Pi as the one in which a set X C Py is qualified if and only if
E®(XNP)+|X\P|>k.



Definition 4.4. A polymatroid (Qy, f) is called P¥*-normalized if f(PF) = k and
F(XZ) = min{f(XF;), [(X) + |2}
for every X C P and Z C Pf.

Lemma 4.5. Let § = (Q, f) be a polymatroid with f(p,) = k. Then there exists a unique
PY-normalized polymatroid S = (Qy, g) with g(X) = f(X) and g(XPF) = f(Xp,) for every
X CP.

Proof. The only possibility for ¢ is ¢(XZ) = min{f(Xp,), f(X) + |Z|} for every X C P and
Z C PF. One can prove that this is the rank function of a polymatroid. O

Proposition 4.6. Let ® be an access function on P with constant increment 1/k and d the
associated perfect access function on Py. Then k(®) < kx(®) and \(®) < kA(D)

Proof. Let S = (Q, f) be a ®-polymatroid with f(po) = k. By Lemma 4.5, there exists a unique
PF-normalized polymatroid S = (Qy, g) with g(X) = f(X) and g(XP¥) = f(Xp,) for every
X CP.

We affirm that S is a $—polymatroid. Indeed, take X € P and Z C P, ~ P. Then
®(XZ) = 1if and only if k — |Z| < k®(X) = k + f(X) — f(Xp,), which is equivalent to
|Z] > f(Xpo) — f(X) = g(XPE) — g(X), and hence equivalent to g(XZ) = g(X P¥). Finally,
this is equivalent to Ag(po:XZ) =1+ g(XZ) — g(XZp,) = 1. This proves our affirmation,
which clearly implies that «(®) < kr(®).

For a positive integer a, consider the polymatroids (@, af) and (Qg, g). As a consequence of
the results in [9], if (Q, af) is K-linearly representable, then (Q, ag) is L-linearly representable
for some finite extension L of K. Therefore, if there exists a (K, ak)-linear secret sharing scheme
for ® with information ratio o, then there exists, for some finite extension L of K, an (LL, «)-linear
secret sharing scheme for ® with information ratio ko. This proves that A(®) < kA(®). O

Proposition 4.7. Let ® be a connected access function with constant increment 1/k. Then
® 1s a matroid k-port if and only if its associated perfect access function ® is a matroid port.
Moreover, ® admits an ideal linear secret sharing scheme if and only if ® admits an ideal linear
secret sharing scheme.

Proof. If ® is the k-port at P¥ of a P¥-normalized matroid ' = (Q, f), then d is the port of
N at p,. Conversely, if ® is the port of a matroid A" = (Qg, f) at po, then N is P¥-normalized
and ® is the k-port of N at Pf. In that situation, these access functions admit ideal linear
secret sharing schemes if and only if there is a positive integer o such that the polymatroid
(Qk, ar) is linearly representable over some finite field. O

As a consequence of the forbidden minor characterization of matroid ports by Seymour [23],
k(P) > 3/2 if ® is a perfect access function that is not a matroid port [16, Theorem 4.4].
Therefore, every perfect secret sharing scheme whose access function is not a matroid port has
information ratio at least 3/2. We discuss in the following the extension of these results to
non-perfect secret sharing.

Lemma 4.8. Let ® be a perfect access function on P and let S = (Q, f) be a ®-polymatroid
with f(po) = 1. If ® is not a matroid port, then there exist x,y € P such that f(zy) > 3.

Proof. Immediate from [16, Theorems 3.4 and 4.4]. O



Proposition 4.9. For a connected access function ® on P with constant increment 1/k, the
following statements are equivalent.

1. ® is a matroid k-port.
2. k(®) =1/k.
3. k(P) < 3/(2k).

In particular, there is no such access function ® with 1/k < k(®) < 3/(2k). This gap in the
values of k does not apply to the optimal information ratio, that is, there exists an access function
& with constant increment k such that 1 < o(®) < A\(P) < 2/3.

Proof. The first two statements are equivalent by [11, Proposition 7]. We prove next that
k(®) > 3/(2k) if ® is not a matroid k-port. Let S = (Q, f) be a ®-polymatroid with f(p,) = k.
Consider the associated perfect access function ® on P, and the only PF-normalized polymatroid
S = (Qg, 9) with g(XP¥) = f(Xp,) for every X C P. By the proof of Proposition 4.6, Sisa
&)—polymatroid. By Proposition 4.7, ® is not a matroid port, and hence, by Lemma 4.8, there
exist z,y € Py such that g(zy) > 3. Then we can assume that g(z) > 3/2, and hence z € P
because ¢g(z) =1 for every z € P, \. P. Therefore, f(z) = g(z) > 3/2.

If ® is a port of the Vamos matroid, then 1 < o(®) < A(®) < 3/2 [3], and hence 1/k <
o(DF) < A\(®*) < 3/(2k) by Proposition 3.2. O

As a consequence of Proposition 4.9, the optimal information ratio of every connected access
function ® with constant increment 1/k that is not a matroid k-port is at least 3/(2k). This
bound is tight. Indeed, there exist perfect access functions ® that are not matroid ports and
satisfy k(®) = o(®) = A\(®) = 3/2 [24, Table 1]. By Proposition 3.2, the associated access
functions ®F satisfy x(®%) = o(®*) = A(®*) = 3/(2k). Observe that ®* are not matroid k-ports
because x(®*) # 1/k.
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