
Functional Encryption for Bounded Collusions, Revisited

Shweta Agrawal∗ Alon Rosen†

Abstract

We provide a new construction of functional encryption (FE) for circuits in the bounded
collusion model. In this model, security of the scheme is guaranteed as long as the number of
colluding adversaries can be a-priori bounded by some polynomial q. Our construction supports
arithmetic circuits as against Boolean circuits, which have been the focus of all prior work.
The ciphertext of our scheme is sublinear in the circuit size for the circuit class NC1 when
based on Ring LWE and any constant depth when based on standard LWE. This gives the first
constructions of arithmetic reusable garbled circuits.

Additionally, our construction achieves several desirable features:

• Our construction for reusable garbled circuits for NC1 achieves the optimal “full” simulation
based security.

• When generalised to handle Q queries for any fixed polynomial Q, our ciphertext size grows
additively with Q2. Such query dependence on ciphertext size has only been achieved in a
weaker security game otherwise [Agr17].

• The ciphertext of our scheme can be divided into a succinct data dependent component and
a non-succinct data independent component. This makes it well suited for optimization in
an online-offline model that allows a majority of the computation to be performed in an
offline phase, before the data becomes available.

Security of our scheme may be based on the Learning With Errors assumption (LWE) or
its ring variant (Ring-LWE). To achieve our result, we provide new public key and ciphertext
evaluation algorithms in the context of functional encryption. These algorithms are general, and
may find application elsewhere.

∗IIT Madras, India. Email: shweta@iitm.ac.in.
†Efi Arazi School of Computer Science, IDC Herzliya, Israel. Email: alon.rosen@idc.ac.il.

1

1 Introduction

Functional encryption (FE) [SW05, SW] generalizes public key encryption to allow fine grained
access control on encrypted data. In functional encryption, a secret key SKg corresponds to a
function g, and a ciphertext CTx corresponds to some input x from the domain of g. Given SKg
and CTx, functionality posits that the user may run the decryption procedure to learn the value
g(x), while security guarantees that nothing about x beyond g(x) can be learned.

Recent years have witnessed significant progress towards constructing functional encryption
for advanced functionalities [BF01, Coc01, BW06, BW07, GPV08, CHKP10, ABB10, GPSW06,
BSW07, KSW08, LOS+10, AFV11, Wat12, GVW13, GGH+13c, GGH+13b, GVW15]. However,
for the most general notion of functional encryption – one that allows the evaluation of arbitrary
efficient functions and is secure against general adversaries, the only known constructions rely on
indistinguishability obfuscation (iO) [GGH+13b] or on the existence of multilinear maps [GGHZ14].
For full-fledged functional encryption, reliance on such strong primitives is not a co-incidence, since
functional encryption has been shown to imply indistinguishability obfuscation [AJ15, BV15, AJS15].

Unfortunately, all known candidate multi-linear map constructions [GGH13a, CLT13, GGH15]
as well as some candidates of indistinguishability obfuscation have recently been broken [CHL+15,
CGH+15, HJ16, CJL, CFL+16, MSZ16]. To support general functionalities and base hardness
on standard assumptions, a prudent approach is to consider principled relaxations of the security
definition, as studied in [GVW12, GKP+13, GVW15].

The notion of bounded collusion functional encryption, inspired from the domain of secure
multiparty computation (MPC), was introduced by Gorbunov, Vaikuntanathan and Wee [GVW12].
This notion assumes that the number of colluding adversaries against a scheme can be upper
bounded by some polynomial q, which is known at the time of system design. It is important to note
that q-bounded security does not impose any restriction on the functionality of FE – in particular,
it does not disallow the system from issuing an arbitrary number of keys. It only posits, à la MPC,
that security is guaranteed as long as any collusion of attackers obtains at most q keys. Note that
multiple independent collusions of size at most q are supported.

The notion of q-bounded FE is appealing – proving security under the assumption that not too
many parties are dishonest is widely accepted as reasonable in protocol design. Even in the context
of FE, for the special case of Identity Based Encryption (IBE), bounded collusion security has been
considered in a number of works [DKXY02, CHH+07, GLW12].

Structure versus Generality. Gorbunov et al. [GVW12] showed that q-bounded FE can be
constructed generically from any public key encryption (PKE) scheme by leveraging ideas from
multiparty computation. Considering that most constructions of FE for general functionalities rely
on the existence of sophisticated objects such as multilinear maps or indistinguishability obfuscation,
basing a meaningful relaxation of FE on an assumption as generic and mild as PKE is both surprising,
and aesthetically appealing. However, this generality comes at the cost of efficiency and useful
structural properties. The ciphertext of the scheme is large and grows multiplicatively as O(q4)
to support collusions of size q. Additionally, the entire ciphertext is data dependent, making the
scheme unsuitable for several natural applications of FE, as discussed below.

2

1.1 Our Results

In this work, we provide a new construction of bounded key functional encryption. Our construction
makes use of the recently developed Functional Encryption for Linear Functions [ABCP15, ALS16],
denoted by LinFE, and combines this with techniques developed in the context of Fully Homomorphic
Encryption (FHE)1 [BV11b, BV11a]. Since LinFE and FHE can be based on LWE/Ring LWE, our
construction inherits the same hardness assumption. Our construction offers several advantages:

1. Our construction supports arithmetic circuits as against Boolean circuits.

2. The ciphertext of our scheme is succinct for circuits in NC1 under Ring LWE and any constant
depth under standard LWE. This gives the first construction of arithmetic reusable garbled
circuits2.

3. Our construction achieves the optimal “full” simulation based security.

4. When generalised to handle Q queries for any fixed polynomial Q, our ciphertext size grows
additively with Q2 as against [GVW12], where it grows multiplicatively with Q4.

5. The ciphertext of our scheme can be divided into a succinct data dependent component and
a non-succinct data independent component. This makes it well suited for optimization in
an online-offline model that allows a majority of the computation to be performed in an
offline phase, before the data becomes available. The structure of our ciphertext makes it very
suitable for distributed data applications, as discussed in Appendix B.

1.2 Related Work

The first functional encryption scheme for circuits was provided by Gorbunov, Vaikuntanathan and
Wee [GVW12]. Surprisingly, the security of this construction may be based only on the existence
of public key encryption. However, the ciphertext size of this construction is large and does not
enjoy the online-offline property described above. Specifically, the online component of our scheme
significantly outperforms the online component of [GVW12], and depends only on the message
size, whereas that of [GVW12] additionally depends on the circuit size and the number of queries.
Additionally, our overall ciphertext size grows additively with Q2 for a collusion bound Q, whereas
that of [GVW12] grows multiplicatively with Q4.

More recently, Agrawal et al. [ALS16] provided a construction for bounded collusion FE. However,
their ciphertext size grows as O(Q6) and does not enjoy the online-offline or decomposability
properties that our construction does.

Concurrent and Subsequent Work. Subsequent to our work, Agrawal [Agr17] also constructed
Q collusion Functional Encryption with ciphertext size growing additively with O(Q2). However,
this construction only achieves semi-adaptive rather than full security in a weak security game where
the attacker must announce all Q queries “in one shot”. Additionally, it supports Boolean rather

1We emphasise that we do not rely on FHE in a black box way, but rather adapt techniques developed in this
domain to our setting.

2We note that even single use arithmetic garbled circuits have only been constructed recently [AIK11].

3

than arithmetic circuits and makes black box use of “heavy machinery” such fully homomorphic
encryption and attribute based encryption.

In another recent work, Canetti and Chen [CC17] provide a new construction for single key
FE for NC1 achieving full security. However, to generalise this construction to support Q queries,
one must rely on the [GVW12] compiler, which incurs a multiplicative blowup of O(Q4) in the
ciphertext size. For more details about related work, please see Appendix A.

1.3 Techniques

In this section, we describe our techniques. We begin by outlining the approach taken by previous
work. [GVW12] begin with a single key FE scheme for circuits [SS10] and generalize this to a q
query scheme for NC1 circuits. This is the most sophisticated part of the construction, and leverages
techniques from multiparty computation. Then, the q query FE for NC1 is bootstrapped to q query
FE for all circuits by replacing the circuit in the key by a tuple of low degree polynomials admitted
by computational randomized encodings [AIK06].

Recently, Agrawal et al. [ALS16] observe that a different construction for bounded collusion FE
can be obtained by replacing [SS10] and its generalisation to q query FE for NC1, with an FE that
computes inner products modulo some prime p. Such a scheme, which we denote by LinFE, was
constructed by [ALS16] and computes the following functionality: the encryptor provides a ciphertext
CTx for some vector x ∈ F `p , the key generator provides a key SKv for some vector v ∈ F `p , and the
decryptor, given CTx and SKv can compute 〈x,v〉 mod p3. Since the bootstrapping theorem in
[GVW12] only requires FE for degree 3 polynomials, and FE for linear functions trivially implies
FE for bounded degree polynomials simply by linearizing the message terms x and encrypting each
monomial xixjxk separately, LinFE may be used to compute degree 3 polynomials.

Thus, in [ALS16], the challenge of supporting multiplication is “brute-forced” by merely having
the encryptor encrypt each monomial separately so that the FE must only support linear functions in
order to achieve bounded degree polynomials. This brute force approach has several disadvantages:
the ciphertext is not decomposable as the influence of bit xi cannot be contained to CTi, is not
online-succinct as the entire ciphertext is data dependent, and its size grows as O(q6). See Appendix
A for more details.

Our Approach. In this work, we observe that viewing functional encryption through the lens
of fully homomorphic encryption (FHE) enables a more sophisticated application of the Linear
FE scheme LinFE, resulting in a bounded collusion FE scheme for circuits that is decomposable,
online-succinct as well as achieves ciphertext growth of O(q2).

In what follows, we focus on FE for quadratic polynomials for ease of exposition. Additionally,
here and in the rest of the paper, we present our construction from Ring-LWE rather than standard
LWE, for notational convenience and clarity. Our construction can be ported to the standard LWE
setting, by performing standard transformations such as replacing ring products by vector tensor
products. Details are provided in Appendix C.

Consider the ring LWE based symmetric key FHE scheme of [BV11b]. Recall that the ciphertext
of this scheme, as in [Reg09], is structured as (u, c) where c = u ·s+2 ·µ+x. Here, s is the symmetric

3We note that the FE scheme by Abdalla et al. [ABCP15] also supports linear functions but only over Z, while
[ALS16] requires an FE scheme that supports Zp. Also note the difference from Inner Product orthogonality testing
schemes [KSW08, AFV11] which test whether 〈x,v〉 = 0 mod p or not.

4

key chosen randomly over an appropriate ring R, u is an element chosen by the encryptor randomly
over R, x is a message bit and µ is an error term chosen by the encryptor from an appropriate
distribution over R. Given secret key s, the decryptor may compute c− u · s mod 2 to recover the
bit x.

The main observation in [BV11b] was that if:

ci = ui · s+ 2 · µi + xi

cj = uj · s+ 2 · µj + xj

then the decryption equation can be written as

xixj ≈ cicj + (uiuj)s
2 − (ujci)s− (uicj)s

Thus, the 3 tuple (cicj , uicj + ujci, uiuj) is a legitimate level 2 FHE ciphertext, decryptable by
the secret key s. [BV11b] observed that it is sufficient to add one ciphertext element per level of the
circuit to propagate the computation.

In the context of FE, things are significantly more complex even for quadratic polynomials, since
we must return a key that allows the decryptor to learn xixj and nothing else. Hence, providing s
to the decryptor is disastrous for FE security. Here we use our first trick: observe that in the above
equation, the parenthesis can be shifted so that:

xixj ≈ cicj + uiuj(s
2)− uj(cis)− ui(cjs)

Now, if we use the Linear FE scheme to encrypt the terms in parenthesis, then we can have the
decryptor recover the term uiuj(s

2)− uj(cis)− ui(cjs). More formally, let |x| = w. Now if,

CT = LinFE.Enc(s2, c1s, . . . , cws)

SKij = LinFE.KeyGen(uiuj ,−0−, ui,−0−, uj ,−0−)

then, LinFE.Dec(SKij ,CT) should yield the above term by correctness. Since c1, . . . , cw may be
provided directly in the ciphertext, the decryptor may itself compute the term cicj . Now, LinFE
decryption yields uiuj(s

2)− uj(cis)− ui(cjs), so the decryptor may recover (approximately) xixj
as desired 4.

A bit more abstractly, we observe that a quadratic plaintext xixj can be represented as a
quadratic polynomial which is quadratic in public terms ci, cj , and only linear in secret terms cis.
In particular, since the number of secret terms cis which must be encrypted is only linear in w, we
appear to avoid the quadratic blowup caused by linearization.

This intuition, while appealing, is very misleading. To begin, note that if we permit the decryptor
to learn the term uiujs

2 − ujcis − uicjs exactly, then he can recover exact quadratic equations
in the secret s, completely breaking the security of the scheme. To handle this, we resort to our
second trick: add noise artificially to the decryption equation. This takes care of the above attack,
but to handle Q queries, we need Q fresh noise terms to be encrypted in the ciphertext. This
step introduces the dependence of the ciphertext size on Q. Providing a proof of security requires
crossing several additional hurdles. The details of the proof are provided in Section 4.

4As in FHE, approximate recovery is enough since the noise can be modded out.

5

New Public Key and Ciphertext Evaluation Algorithms. We develop new public key and
ciphertext evaluation algorithms that enable an evaluator to propagate computation down a circuit
using only the public encodings/ciphertext components and public key. Our algorithm allows
computing on ciphertexts obliviously of encoded values: note that the only other known construction
[BGG+14, GVW15] crucially requires the evaluator at least one of the encoded values x1, x2 in the
clear in order to compute an encoding of x1 · x2.

To achieve this, we observe that the quadratic scheme discussed above enables the decryptor
to compute encodings of degree two polynomials that have the same structure as the message
encodings. Hence, addition or multiplication may be performed on level 2 encodings exactly as
above to propagate the computation.

In more detail, recall that the level 1 encodings c of message x along with level 2 encodings of
message c · s were sufficient to compute encodings of degree two polynomials in x. Hence, at any
level k, given an encoding ck−1 of message y where y is the output of the circuit at level k − 1, as
well as encodings of ck−1 · s , we would be in a position to compute encodings ck of level k output
of the circuit using the quadratic scheme described in Section 4.

This intuition is complicated by the fact that the encryptor may not provide ck−1 directly while
maintaining the succinctness of the ciphertext, but rather may provide succinct advice, a set of
encodings Ck−1 which enables the decryptor to compute ck−1 on the fly. The question then, is
whether there exists advice linear in the size of the set Ck−1 which suffices to compute the encodings
of (ck−1 · s) required to compute ck on the fly. We answer this affirmatively. Please see Section 5
for more details.

Organization of the paper. We provide preliminaries in Appendix 2 and recap some properties
of linear functional encryption in Section 3. Our bounded collusion functional encryption scheme
for quadratic polynomials is described in Section 4. To generalize our method beyond quadratic
polynomials, we describe our public key and ciphertext evaluation procedures in Section 5. The
succinct single key FE using these procedures is constructed in Section 6. The final scheme for
bounded collusion FE for all circuits is described in Appendix 7. We discuss parameters of our
construction in Appendix E.

2 Preliminaries

In this section, we define the notation and preliminaries we require for our constructions.

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and we represent
Zq as integers in (−q/2, q/2]. We let Zn×mq denote the set of n×m matrices with entries in Zq. We
use bold capital letters (e.g. A) to denote matrices, bold lowercase letters (e.g. x) to denote vectors
that are components of our encryption scheme, and arrows (e.g. ~v) to denote vectors that represent
attributes or predicates. The notation AT denotes the transpose of the matrix A. When we say a
matrix defined over Zq has full rank, we mean that it has full rank modulo each prime factor of q.

If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′)
matrix formed by concatenating A1 and A2. If x1 is a length m vector and x2 is a length m′ vector,
then we let [x1|x2] denote the length (m+m′) vector formed by concatenating x1 and x2. However,
when doing matrix-vector multiplication we always view vectors as column vectors.

6

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a
negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n)
to denote a polynomial function of n. We say an event occurs with overwhelming probability if its
probability is 1− negl(n). The function lg x is the base 2 logarithm of x. The notation bxe denotes
the nearest integer to x, rounding towards 0 for half-integers.

2.1 Functional Encryption

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set. Let
G =

{
Gλ
}
λ∈N denote an ensemble where each Gλ is a finite collection of circuits, and each circuit

g ∈ Gλ takes as input a string x ∈ Xλ and outputs g(x) ∈ Yλ.

A functional encryption scheme F for G consists of four algorithms F = (FE.Setup,FE.Keygen,
FE.Encrypt,FE.Decrypt) defined as follows.

• FE.Setup(1λ) is a p.p.t. algorithm takes as input the unary representation of the security
parameter and outputs the master public and secret keys (PK,MSK).

• FE.Keygen(MSK, g) is a p.p.t. algorithm that takes as input the master secret key MSK and a
circuit g ∈ Gλ and outputs a corresponding secret key SKg.

• FE.Encrypt(PK, x) is a p.p.t. algorithm that takes as input the master public key PK and an
input message x ∈ Xλ and outputs a ciphertext CT.

• FE.Decrypt(SKg,CTx) is a deterministic algorithm that takes as input the secret key SKg and
a ciphertext CTx and outputs g(x).

Definition 2.1 (Correctness). A functional encryption scheme F is correct if for all g ∈ Gλ and all
x ∈ Xλ,

Pr

[
(PK,MSK)← FE.Setup(1λ);

FE.Decrypt
(
FE.Keygen(MSK, g),FE.Encrypt(PK, x)

)
6= g(x)

]
= negl(λ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Encrypt.

2.2 Simulation Based Security for Single Key FE

In this section, we define simulation based security for single key FE, as in [GKP+13, Defn 4.1].

Definition 2.2 (FULL-SIM Security). Let F be a functional encryption scheme for a Boolean circuit
family C. For every stateful p.p.t. adversary Adv and a stateful p.p.t. simulator Sim, consider the
following two experiments:

7

ExprealF ,Adv(1
λ): ExpidealF ,Sim(1λ):

1: (PK,MSK)← FE.Setup(1λ)
2: C ← Adv(1λ,PK)
3: SKC ← FE.Keygen(MSK, C)
4: x← Adv(SKC)
5: CTx ← FE.Encrypt(PK,x)
6: α ←Adv(CTx)
7: Output (x, α)

1: (PK,MSK)← FE.Setup(1λ)
2: C ← Adv(1λ,PK)
3: SKC ← FE.Keygen(MSK, C)
4: x← Adv(SKC)
5: CTx ← Sim(1λ, 1|x|,PK, C,SKC , C(x))
6: α ←Adv(CTx)
7: Output (x, α)

The functional encryption scheme F is then said to be FULL-SIM-secure if there is an admissible
stateful p.p.t. simulator Sim such that for every stateful p.p.t. adversary Adv, the following two
distributions are computationally indistinguishable.{

ExprealF ,Adv(1
λ)

}
λ∈N

c
≈
{
ExpidealF ,Sim(1λ)

}
λ∈N

In the bounded collusion variant of the above definition, the adversary is permitted an a-priori
fixed Q queries in Step 2, and Q is input to the FE.Setup algorithm. We note that [GVW12] also
discusses a stronger variant of the above game, where the attacker can make key queries after seeing
the challenge ciphertext, but it was shown by [BSW11] that such a definition is impossible to achieve
for even a single key query while permitting an unbounded number of ciphertexts. Therefore, as in
[GKP+13], we do not consider this definition here.

2.3 Lattice Preliminaries

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is a linearly
independent set of vectors whose span is Λ.

Gaussian distributions. Let L be a discrete subset of Zn. For any vector c ∈ Rn and any
positive parameter σ ∈ R>0, let ρσ,c(x) := Exp

(
−π‖x− c‖2/σ2

)
be the Gaussian function on Rn

with center c and parameter σ. Let ρσ,c(L) :=
∑

x∈L ρσ,c(x) be the discrete integral of ρσ,c over
L, and let DL,σ,c be the discrete Gaussian distribution over L with center c and parameter σ.

Specifically, for all y ∈ L, we have DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L) . For notational convenience, ρσ,0 and DL,σ,0

are abbreviated as ρσ and DL,σ, respectively.

The following lemma gives a bound on the length of vectors sampled from a discrete Gaussian.

Lemma 2.3 ([MR07, Lemma 4.4]). Let Λ be an n-dimensional lattice, let T be a basis for Λ, and
suppose σ ≥ ‖T‖GS · ω(

√
log n). Then for any c ∈ Rn we have

Pr
[
‖x− c‖ > σ

√
n : x

R← DΛ,σ,c

]
≤ negl(n)

Lemma 2.4 (Flooding Lemma). [GKPV10] Let n ∈ N. For any real σ = ω(
√

log n), and any
c ∈ Zn,

SD(DZn,σ, DZn,σ,c) ≤ ‖c‖/σ

8

2.4 Hardness Assumptions

Our constructions can be based on the hardness of LWE or Ring LWE, defined below.

Learning With Errors. The Learning with Errors problem, or LWE, is the problem of determining
a secret vector over Fq given a polynomial number of “noisy” inner products. The decision variant
is to distinguish such samples from random. More formally, we define the (average-case) problem as
follows:

Definition 2.5 ([Reg09]). Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability distribution
on Zq. For r ∈ Znq , let Ar,χ be the probability distribution on Znq ×Zq obtained by choosing a vector
a ∈ Znq uniformly at random, choosing e ∈ Zq according to χ, and outputting (a, 〈a, r〉+ e).

The decision LWEq,n,χ problem is: for uniformly random r ∈ Znq , given a poly(n) number of
samples that are either (all) from Ar,χ or (all) uniformly random in Znq × Zq, output 0 if the former
holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time algorithms A, the
probability that A solves the decision-LWE problem (over r and A’s random coins) is negligibly
close to 1/2 as a function of n.

Ring Learning with Errors. Let R = Z[x]/(φ) where φ = xn + 1 and n is a power of 2. Let
Rq , R/qR where q is a large prime satisfying q = 1 mod 2n. The ring learning with errors
assumption, denoted by RLWE, [LPR10] is analogous to the standard LWE assumption introduced
by Regev [Reg09]. Let χ be a probability distribution on Rq. For s ∈ Rq, let As,χ be the probability
distribution on Rq × Rq obtained by choosing an element a ∈ Rq uniformly at random, choosing
e← χ and outputting (a, a · s+ e).

Definition 2.6 (Ring Learning With Errors - RLWEφ,q,χ). The decision R-LWEφ,q,χ problem is: for
s← Rq, given a poly(n) number of samples that are either (all) from As,χ or (all) uniformly random
in Rq ×Rq, output 0 if the former holds and 1 if the latter holds.

Theorem 2.7 ([LPR10]). Let r ≥ ω(
√

log n) be a real number and let R, q be as above. Then,
there is a randomized reduction from 2ω(logn) · (q/r) approximate RSVP to RLWEφ,q,χ where χ is the
discrete Gaussian distribution with parameter r. The reduction runs in time poly(n, q).

3 Linear Functional Encryption

Our construction will make use of the linear functional encryption scheme, denoted by LinFE,
constructed by [ABCP15, ALS16].In this section, we describe some structural properties of LinFE
that our construction requires. This section may be skipped on first reading and referred to as
required.

Recall the functionality of LinFE: the encryptor provides a ciphertext CTx for some vector
x ∈ Rkp , the key generator provides a key SKv for some vector v ∈ Rkp , and the decryptor, given
CTx and SKv can compute 〈x,v〉. The construction of LinFE [ABCP15, ALS16] has several useful
structural properties which our construction will rely on. These are described below.

1. Setup: Say that the message space and function space of LinFE are of dimension k, denoted
by Rkp . Then, the public key in LinFE may be interpreted as PK = (PK1, . . . ,PKk,PKindpt).

9

2. Encryption: Given a vector x ∈ Rkp , LinFE.Enc computes CTi = E(PKi, xi) for i ∈ [k]
and CTindpt ← E(PKindpt). Here, E is an encoding algorithm and all components CTi are
constructed using some common randomness. Here the data dependent components of the
ciphertext are (CT1, . . . ,CTk) and the data independent component is CTindpt. Where PKi is
evident from context, we will denote CTi simply by E(xi).

3. Key Generation: Given a function vector v, the algorithm LinFE.KeyGen is structured as
follows:

• Compute PKv = EvalPK(PK1, . . . ,PKk,v). Here, EvalPK takes as input the public key
components PK1, . . . ,PKk as well as a function vector v ∈ Rkp and outputs a “functional”
public key component PKv.

• Let kv ← GenKey(PKv,PKindpt). Here, GenKey takes as input a functional public key
component PKv and the data independent component PKindpt and outputs a functional
secret key kv.

4. Decryption. Given the public key PK = (PK1, . . . ,PKk,PKindpt), a ciphertext CTx =
(CT1, . . . ,CTk,CTindpt) and a functional key SKv = (v,kv), LinFE.Dec is structured as:

• Let CT〈x;v〉 = EvalCT(CT1, . . . ,CTk,v). Here, EvalCT takes as input the ciphertext

components CT1, . . . ,CTk as well as a function vector v ∈ Rkp and outputs a “functional”
ciphertext CT〈x;v〉.

• Output d = Decode(kv,CT〈x;v〉,CTindpt). Here, Decode is an algorithm that takes the
functional secret key kv, the functional ciphertext CT〈x;v〉 and the data independent
ciphertext CTindpt and outputs the value d = 〈x; v〉.

We note that the above structure is also enjoyed by other lattice based constructions of functional
encryption [BGG+14, GVW15].

LinFE Algorithms. Additionally, the LinFE construction [ABCP15, ALS16] implements the above
operations as below. We do not provide all the details but only those which our constructions will
use; we refer the reader to [ABCP15, ALS16] for details.

1. It holds that PKindpt = w and GenKey(PKv,PKindpt) returns a short vector k such that
〈w,k〉 = PKv.

2. The ciphertext component CTindpt contains randomness encoding of the form d = w · s+ p · η
for some LWE secret s and noise η.

3. The functional ciphertext CT〈x;v〉 has the structure

CT〈x;v〉 = PKv · s+ p · ηv + 〈x; v〉

where s is an LWE secret (the same as in the previous step) and ηv is some noise.

4. The Decode algorithm computes kTd − CT〈x;v〉 mod p and outputs it. Correctness follows
exactly as in the dual Regev public key encryption scheme [GPV08]. That is, since 〈w,k〉 =

10

PKv, we have:

kTd− CT〈x;v〉 = PKv · s+ p · kTη − PKv · s+ p · ηv + 〈x; v〉
= 〈x; v〉 mod p

Additional Ciphertext Structure. Additionally, the ciphertext of [ABCP15, ALS16] has the
following additional properties:

1. Malleability: The ciphertext components of LinFE are malleable so that if CTi = E(xi) then
CTi + xj = E(xi + xj) (as long as xi + xj belong to the message space of E).

2. Additive homomorphism of public key and ciphertext components: The public key
and ciphertext components of LinFE enjoy additive homomorphism in the following sense. If
CTi = E(xi) and CTj = E(xj) then vi CTi + vj CTj = E(vixi + vjxj), as long as vi, vj belong
to the valid function space Rp of LinFE. Similarly, if PKi is the public key for CTi and PKj is
the public key for CTj then vi PKi + vj PKj is the public key for vi CTi + vj CTj .

3. Succinctness: The ciphertext of LinFE is succinct, i.e. the size of CT(x) is O(poly(λ), |x|)
where λ is the security parameter.

4. FULL-SIM Security: It was shown by [ALS16] that LinFE satisfies adaptive indistinguishability,
i.e. AD-IND security (please see Appendix 2 for the definition). As noted in [ALS16], LinFE
satisfies FULL-SIM security since it is a “pre-image sampleable” function, due to the equivalence
shown by [O’N10]. We refer the reader to [O’N10, ALS16] for details.

5. Decomposability: Decomposability means that an FE scheme supporting messages of length
k have the following property: the public key and ciphertext may be decomposed into k
components such that each component corresponds to a single element of the message. That is,
the public key in LinFE may be interpreted as PK = (PK1, . . . ,PKk,PKindpt) and the ciphertext
may be interpreted as CTx = (CT1, . . . ,CTk,CTindpt). Here the data dependent components
of the public key and the ciphertext are (PK1, . . . ,PKk) and (CT1, . . . ,CTk) and the data
independent components are (PKindpt,CTindpt). Additionally, we may write:

CTi = E (PKi, xi) ∀i ∈ [k] and CTindpt = E (PKindpt)

Here, E is a randomised encoding algorithm. All components of the encryption are tied
together using some common randomness.

These properties follow in a straightforward way from the LWE based LinFE schemes of [ABCP15,
ALS16] since the message encodings in the ciphertext of these schemes have the structure of FHE
ciphertexts [BV11a, BV11b]. The properties above are easy to verify, please see [ABCP15, ALS16]
for details.

4 Bounded Query Functional Encryption for Quadratic forms

As a warm-up, we present our bounded key FE for the special case of quadratic functions, which
we denote by QuadFE. Our construction will make use of the linear functional encryption scheme,
denoted by LinFE, constructed by [ABCP15, ALS16], described in Section 3.

11

Our construction makes use of two prime moduli p0 < p1 where p0 serves as the message space
for QuadFE, and p1 serves as the message space for LinFE. Let L = |1 ≤ j ≤ i ≤ w|. Below, let the
distribution D0 be a discrete Gaussian with width σ0, and D1 to be a discrete Gaussian with width

σ1 where
L·p0·σ2

0
σ1

= negl(λ). For more details about parameters, please see Appendix E.

For ease of exposition, our key generation algorithm receives the index of the requested key
as input5. This restriction can be removed using standard tricks, see Appendix D for details.
Additionally, we present our construction using Ring-LWE. This is both for efficiency and ease of
exposition, the transformation to standard LWE follows standard machinery. We refer the reader to
Appendix C for details.

FE.Setup(1λ, 1w, 1Q): On input a security parameter λ, a parameter w denoting the length of
message vectors and a parameter Q denoting the number of keys supported, do:

1. Invoke LinFE.Setup(1λ, 1w+1+Q) to obtain LinFE.PK and LinFE.MSK.

2. Sample u← Rwp1 .

3. Output PK = (LinFE.PK,u), MSK = (LinFE.MSK).

FE.Enc(PK,x): On input public parameters PK, and message vector x ∈ Rwp0 do:

1. Sample s1 ← Rp1 and µ← Dw0 , and compute an encoding of the message as:

c = u · s1 + p0 · µ + x ∈ Rwp1 .

2. For i ∈ [Q], sample ηi ← D1 and let η = (η1, . . . , ηQ).

3. Let b = LinFE.Enc (s2
1, c1s1, . . . , cws1, p0 · η).

4. Output CT = (c,b)

FE.KeyGen(PK,MSK, k,g): On input the public parameters PK, the master secret key MSK,
a counter k ∈ [Q] denoting the index of the requested function key and a function g =∑
1≤j≤i≤w

gijxixj , represented as a coefficient vector (gij) ∈ ZLp0 do:

1. Let ek denote the binary unit vector with a 1 in the kth position and 0 elsewhere.
Compute

ug =
(∑

1≤j≤i≤w
gij (uiuj , 0....0,−ui, 0...0,−uj , 0...0)

)
∈ Rw+1

p1 .

2. Compute SKg = LinFE.KeyGen
(
LinFE.PK, LinFE.MSK, (ug, ek)

)
and output it.

FE.Dec(PK,SKg,CTx): On input the public parameters PK, a secret key SKg for polynomial∑
1≤j≤i≤w

gijxixj , and a ciphertext CTx = (c,b), compute

∑
1≤j≤i≤w

gijcicj + LinFE.Dec(b,SKg) mod p1 mod p0

and output it.
5Alternately, one may consider a stateful algorithm which keeps track of the number of keys requested.

12

4.1 Correctness

We establish correctness of the above scheme.

Let 1 ≤ j ≤ i ≤ w. Let us assume g is the kth key constructed by KeyGen, where k ∈ [Q]. By
definition

xi + p0 · µi = ci − uis1 mod p1

xj + p0 · µj = cj − ujs1 mod p1

Letting µij = xiµj + xjµi + p0µiµj , we have

xixj + p0 · µij = cicj − ciujs1 − cjuis1 + uiujs
2
1 mod p1 (4.1)

By correctness of the linear scheme LinFE, we have that

LinFE.Dec(b, SKg) =
∑

1≤j≤i≤w
gij
(
− ciujs1 − cjuis1 + uiujs

2
1

)
+ p0 · ηk

(4.2)

Hence,
∑

1≤j≤i≤w
gijcicj + LinFE.Dec(b, SKg) =

∑
1≤j≤i≤w

gij

(
cicj − ciujs1 − cjuis1 + uiujs

2
1

)
+ p0 · ηk

=
∑

1≤j≤i≤w
gij
(
xixj + p0 · µij

)
+ p0 · ηk

=
∑

1≤j≤i≤w
gij xixj mod p1 mod p0 as desired.

4.2 Security

Theorem 4.1. The construction in Section 4 achieves full simulation based security as per definition
2.2.

Proof. We describe our simulator.

Simulator Sim
(

1λ, 1|x|,PK, {gk,SKgk ,gk(x)}k∈[Q]

)
. The simulator given input the security

parameter, length of message x, the functions g1, . . . ,gQ, the secret keys SKg1 , . . . ,SKgQ and the
values g1(x), . . . ,gQ(x) does the following:

1. It picks the ciphertext c← Rwp1 randomly.

2. It parses gk =
∑

1≤j≤i≤w
gkijxixj for some gkij ∈ Rp0 . For k ∈ [Q], it samples ηk ← D1 and

computes dk =
∑

1≤j≤i≤w
gkij
(
xixj − cicj) + p0 · ηk.

3. It invokes the Q key LinFE simulator with input d = (d1, . . . , dQ). It sets as b the output
received by the LinFE simulator.

4. It outputs CTx = (c,b).

We will prove that the output of the simulator is indistinguishable from the real world via a
sequence of hybrids.

13

The Hybrids. Our Hybrids are described below.

Hybrid 0. This is the real world.

Hybrid 1. In this hybrid, the only thing that is different is that b is computed using the LinFE
simulator as b = LinFE.Sim

(
1λ, 1w+1+Q, {gk, SKgk , dk}k∈[Q]

)
where

dk =
∑

1≤j≤i≤w
gkij
(
xixj − cicj) + p0 · (

∑
1≤j≤i≤w

gkijµij + ηk) ∀ k ∈ [Q]

Above, µij is as defined in Equation 4.1.

Hybrid 2. In this hybrid, let dk =
∑

1≤j≤i≤w
gkij
(
xixj − cicj) + p0 · ηk for k ∈ [Q].

Hybrid 3. In this hybrid, sample c at random. This is the simulated world.

Indistinguishability of Hybrids. Below we establish that consecutive hybrids are indistinguish-
able.

Claim 4.2. Hybrid 0 is indistinguishable from Hybrid 1 assuming that LinFE is secure.

Proof. Recall that for j ≤ i ≤ w, we have:

xixj + p0 · µij = cicj − ciujs1 − cjuis1 + uiujs
2
1

Hence, it holds that ∑
j≤i≤w

gkij
(
xixj + p0 · µij

)
=
∑
j≤i≤w

gkij

(
cicj + uiujs

2
1 − ujcis1 − uicjs1

)
∑
j≤i≤w

gkij
(
xixj − cicj) + p0 ·

(∑
j≤i≤w

gkijµij + ηk
)

=
∑
j≤i≤w

gkij
(
uiujs

2
1 − ujcis1 − uicjs1

)
+ p0 · ηk

In Hybrid 0, we have by Equation 4.2 that the output of LinFE decryption is:∑
1≤j≤i≤w

gij
(
− ciujs1 − cjuis1 + uiujs

2
1

)
+ p0 · ηk

=
∑
j≤i≤w

gkij
(
xixj − cicj

)
+ p0 ·

(∑
j≤i≤w

gkijµij + ηk
)

In Hybrid 1, the LinFE simulator is invoked with the above value, hence by security of LinFE, Hybrids
0 and 1 are indistinguishable.

Claim 4.3. Hybrid 1 and Hybrid 2 are statistically indistinguishable.

14

Proof. This follows by our choice of parameters since for k ∈ [Q], we have

SD
(∑

1≤j≤i≤w
gkijµij + ηk, ηk

)
= negl(λ)

Hybrid 2 and Hybrid 3 are indistinguishable assuming the hardness of LWE. In more detail, we
show:

Claim 4.4. Assume Regev public key encryption is semantically secure. Then, Hybrid 2 is
indistinguishable from Hybrid 3.

Proof. Recall that by semantic security of Regev’s (dual) public key encryption, we have that the
ciphertext c = u · s1 + p0 ·µ + x is indistinguishable from random, where u is part of the public key
and µ← D0 is suitably chosen noise. We refer the reader to [GPV08] for more details.

Given an adversary B who distinguishes between Hybrid 2 and Hybrid 3, we build an adversary
A who breaks the semantic security of Regev public key encryption. The adversary A receives
PK = u upon which, it simulates the view of B as follows:

• Run LinFE.Setup to obtain LinFE.PK and LinFE.MSK. Return PK = (LinFE.PK,u) to B.

• When B requests a key gk for k ∈ [Q], construct it honestly as in Hybrid 0.

• When B outputs challenge x, A outputs the same.

• A receives c where c = u · s1 + p0 · µ + x or random.

• A samples η1, . . . , ηQ as in Hybrid 2 and computes dk =
∑

1≤j≤i≤w
gkij
(
xixj − cicj) + p0 · ηk.

It invokes LinFE.Sim
(
1λ, 1w+1+Q, {gk,SKgk , dk}k∈[Q]

)
and receives LinFE ciphertext b. It

returns (c,b) to B.

• B may request more keys (bounded above by Q) which are handled as before. Finally, when
B outputs a guess bit b, A outputs the same.

Clearly, if b = 0, then B sees the distribution of Hybrid 2, whereas if b = 1, it sees the distribution
of Hybrid 3. Hence the claim follows.

Basing the Construction on Standard LWE. The above construction may equivalently be
based on standard rather than ring LWE, please see Appendix C for details.

5 Public Key and Ciphertext Evaluation Algorithms

In this section, provide the tools to extend our construction for quadratic polynomials to circuits in
NC1. Throughout this section, we assume circular security of LWE. This is for ease of exposition as
well as efficiency. This assumption can be removed by choosing new randomness si for each level
i as in levelled fully homomorphic encryption. Since the intuition was discussed in Section 1, we
proceed with the technical overview and construction.

15

Notation. To begin, it will be helpful to set up some notation. We will consider circuits of depth
d, consisting of alternate addition and multiplication layers. Each layer of the circuit is associated
with a modulus pk for level k. For an addition layer at level k, the modulus pk will be the same as
the previous modulus pk−1; for a multiplication layer at level k, we require pk > pk−1. This results
in a tower of moduli p0 < p1 = p2 < p3 = . . . < pd.

As in LinFE [ABCP15, ALS16](please refer to Section 3), we define encoding functions Ek for
k ∈ [d] such that Ek : Rpk−1

→ Rpk . At level k, the encryptor will provide Lk encodings Ck for some
Lk = O(2k). For i ∈ [Lk] we define

Ek(yi) = uki · s+ pk−1 · ηki + yi.

Here uki ∈ Rpk , ηki ← χk and yi ∈ Rpk−1
. We will refer to Ek(yi) as the Regev encoding of yi. At

level k, the decryptor will be able to compute a Regev encoding of fk(x) where fk is the circuit f
restricted to level k.

It will be convenient for us to denote encodings of fk(x) by ck, i.e. ck = Ek
(
fk(x)

)
. We

emphasize that ck are computed on the fly by the decryptor whereas Ck are a set of level k encodings
provided by the encryptor to enable the decryptor to compute ck. We will denote the public key or
label of an encoding Ek(·) by PK(Ek(·)). In our construction, we will compose encodings, so that
encodings at a level k are messages to encodings at level k+ 1. We refer to such encodings as nested
encodings. We will need the notions of nesting level and nested message degree, defined as follows.

Definition 5.1 (Nesting level and Nested Message Degree.). Given a composition of successive
encodings, i.e. an encoding of the form Ek

(
Ek−1

(
. . . (E`+1(E`(y) · s) · s) . . . · s

)
· s
)
, we will denote

as nesting level the value k − `, the nested message of the encoding as y, and the nested message
degree of the encoding as the degree of the innermost polynomial y.

We prove the following theorem.

Theorem 5.2. There exists a set of encodings Ci for i ∈ [d], such that:

1. Encodings have size sublinear in circuit. ∀i ∈ [d] |Ci| = O(2i).

2. Efficient public key and ciphertext evaluation algorithms. There exist efficient
algorithms EvalPK and EvalCT so that for any circuit f of depth d, if PKf = EvalPK(PK, f) and
CT(f(x)) = EvalCT(∪

i∈[d]
Ci, f), then CT(f(x)) is a “Regev encoding” of f(x) under public key

PKf . Specifically, for some LWE secret s, we have:

CT(f(x)) = PKf · s+ pd−1 · ηd−1
f + µf(x) + f(x) (5.1)

where pd−1 · ηd−1
f is RLWE noise and µf(x) + f(x) is the desired message f(x) plus some noise

µf(x)
6. Here, µf(x) = pd−2 · ηd−2

f + . . . p0 · η0
f for some noise terms ηd−2

f , . . . , η0
f .

6Here µf(x) is clubbed with the message f(x) rather than the RLWE noise pd−1 · ηd−1
f since µf(x) + f(x) is what

will be recovered after decryption of CTf(x), whereas pd−1 · ηd−1
f will be removed by the decryption procedure. This is

merely a matter of notation.

16

3. Ciphertext and public key structure. The structure of the functional ciphertext is as:

CTf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf , Cd〉 (5.2)

where Polyf (C1, . . . , Cd−1) ∈ Rpd−1
is a high degree polynomial value obtained by computing a

public f-dependent function on level k ≤ d − 1 encodings {Ck}k∈[d−1] and Linf ∈ RLdpd is an
f -dependent linear function. We also have

f(x) + µf(x) = Polyf (C1, . . . , Cd−1) + 〈Linf ,Md〉 (5.3)

where Md are the messages encoded in Cd and µf(x) is functional noise. The public key for

the functional ciphertext is structured as:

PK
(
CTf(x)

)
=
〈
Linf ,

(
PK(Cd1), . . . ,PK(CdLd)

)〉
(5.4)

The Encodings. We define Ck recursively as follows:

1. C1 , {E1(xi), E1(s)}

2. If k is a multiplication layer, Ck = {Ek(Ck−1), Ek(Ck−1 · s), Ek(s2)}. If k is an addition layer,
let Ck = Ck−1.

We prove that:

Lemma 5.3. Assume that k is a multiplication layer. Given Ck for any 2 < k < d,

1. Level k encodings Ek(ck−1 · s) and Ek(ck−1) may be expressed as quadratic polynomials in level
k − 1 encodings and the level k advice encodings Ck. In particular, the polynomials are linear
in terms Ck and quadratic in level k − 1 encodings Ek−1(yi)Ek−1(yj). The messages yi, yj of
the form ck−3

` or ck−3
` · s for some level k − 3 ciphertext ck−3

` .

Since the exact value of the coefficients is not important, we express this as:

Ek(ck−1 · s), Ek(ck−1) = LinComb
(
Ck, Ek−1(yi)Ek−1(yj)

)
∀ i, j (5.5)

2. We can compute ck and ck+1 as a linear combination of quadratic terms in level k−1 encodings
and linear in level k encodings Ck. In particular,

ck = CT(fk(x) + µkf(x)) = 〈Linfk , Ck〉+ LinComb
(
Quad(Ek−1(yi) Ek−1(yj))

)
= 〈Linfk , Ck〉+ Polyfk

(
C1, . . . , Ck−1

)
Proof by induction.

17

Base Case. While the quadratic scheme described in Section 4 suffices as a base case, we work
out an extended base case for level 4 circuits, since this captures the more general case.

We claim that C4 defined according to the above rules, permits the evaluator to compute :

1. E4(c3 · s) and E4(c3) by taking linear combinations of elements in C4 and adding to this a
quadratic term of the form E3(yi)E3(yj) where E3(yi)E3(yj) ∈ C3 = C2. We note that since
k − 1 is an addition layer, C3 = C2.

2. Encodings of level 4 functions of x, namely c4.

Note that our level 2 ciphertext may be written as:

c2
i,j = E2(xixj + p0 · µij) = E2

(
c1
i c

1
j + u1

iu
1
j (s

2)− u1
j (c

1
i s)− u1

i (c
1
js)
)

= E2(xixj + p0 · µij) = c1
i c

1
j + E2

(
u1
iu

1
j (s

2)− u1
j (c

1
i s)− u1

i (c
1
js)
)

= c1
i c

1
j + u1

iu
1
j E2(s2)− u1

j E2(c1
i s)− u1

i E2(c1
js) ∈ Rp2 (5.6)

In the above, the first equality follows by ciphertext malleability: here, c1
i c

1
j ∈ Rp1 is a message

added to the encoding E2(u1
iu

1
j (s

2)− u1
j (c

1
i s)− u1

i (c
1
js)) . The second equality follows by additive

homomorphism of the encodings. Please see Section 3 for details. Additionally, the public key and
the noise of the resultant encoding may be computed as:

u2
` , PK

(
E2(xixj + p0 · µij)

)
= u1

iu
1
j PK

(
E2(s2)

)
− u1

j PK
(
E2(c1

i s)
)
− u1

i PK
(
E2(c1

js)
)

Nse2
` , Nse

(
E2(xixj + p0 · µij)

)
= u1

iu
1
j Nse

(
E2(s2)

)
− u1

j Nse
(
E2(c1

i s)
)
− u1

i Nse
(
E2(c1

js)
)

Above, Nse(E2(·)) refers to the noise level in the relevant encoding. Note that even though u1
i

are chosen uniformly in Rp1 , they do not blow up the noise in the above equation since the above
noise is relative to the larger ring Rp2 . This noise growth can be controlled further by using the bit
decomposition trick [BV11a, BGV12] – we do not do this here for ease of exposition.

The Quadratic Method. Thus, we may compute a level 2 encoding as:

E2(xixj + p0 · µij) = E1(xi)E1(xj) + u1
iu

1
j E2(s2)− u1

j E2(E1(xi) · s)− u1
i E2(E1(xj) · s) (5.7)

We refer to this computation as the “quadratic method”.

The key point is that our level 2 ciphertext has the exact same structure as a level 1 encoding,
namely it is a Regev encoding using some secret s, some label and noise as computed in equations
5.7. Thus, letting y` = xixj , we may write

E2(y`) = u2
` · s+ Nse2

` + y` ∈ Rp2 (5.8)

Addition (Level 3). To add two encoded messages y` = xixj+p0 ·µij and y`′ = xi′xj′+p0 ·µi′j′ ,
it is easy to see that adding their encodings suffices. The resultant public key and noise is just the
summation of the individual public keys and noise terms. Thus, if the `th wire is the sum of the ith

and jth wires, we have:
c3
` = c2

i + c2
j (5.9)

and
PK(c3

`) = PK(c2
i) + PK(c2

j) (5.10)

18

Multiplication (Level 4). The nontrivial case is that of multiplication. We next compute an
encoding for the product of y` = xixj + xmxt + p0 · µ4

` and y`′ = xi′xj′ + xm′xt′ + p0 · µ4
`′ where

µ4
` , µ

4
`′ are level 4 noise terms computed as µ4

` = µij + µmt (analogously for µ4
`′). Let c3

` and c3
`′

denote the encodings of y` and y`′ computed using the first three levels of evaluation. As before, we
have by the above quadratic method:

c4
t = E4(y`y`′) = c3

`c
3
`′ + E4

(
u3
`u

3
`′(s

2)− u3
`′(c

3
`s)− u3

` (c
3
`′s)
)
∈ Rp4

= c3
`c

3
`′ + u3

`u
3
`′ E4(s2)− u3

`′ E4(c3
`s)− u3

` E4(c3
`′s) (5.11)

By correctness of first three levels of evaluation as described above, the decryptor can compute
the encoding of y`, namely c3

` correctly, hence the quadratic term c3
`c

3
`′ may be computed. It remains

to compute the terms E4(c3
`s). Note that the encryptor may not provide the encodings E4(c3

`s)
directly and preserve succinctness because c3

` = E2(xi xj + p0 · µij) + E2(xm xt + p0 · µmt) and
E2(xi xj + p0 · µij) contains the quadratic term c1

i c
1
j as shown by Equation 5.6.

Consider the term E4(c3
`s). In fact, we will only be able to compute a noisy version of this

encoding, i.e. E4(c3
`s+ p1 · µ2

`) for some p1 · µ2
` .

E4(c3
`s) = E4

(
(E2(xi xj + p0 · µij) + E2(xm xt + p0 · µmt)) · s

)
= E4

((
c1
i c

1
j + u1

iu
1
j E2(s2)− u1

j E2(c1
i s)− u1

i E2(c1
js)
)
· s
)

+ E4
((
c1
mc

1
t + u1

mu
1
t E2(s2)− u1

t E2(c1
ms)− u1

m E2(c1
t s)
)
· s
)

= E4(c1
i c

1
js) + E4

(
u1
iu

1
j E2(s2) s

)
− E4

(
u1
j E2(c1

i s) s
)
− E4

(
u1
i E2(c1

js) s
)

+ E4
(
c1
mc

1
t s) + E4

(
u1
mu

1
t E2(s2) s

)
− E4

(
u1
t E2(c1

ms)s
)
− E4

(
u1
m E2(c1

t s) s
)

= E4(c1
i c

1
js) + u1

iu
1
j E4

(
E2(s2) s

)
− u1

j E4
(
E2(c1

i s) s
)
− u1

i E4
(
E2(c1

js) s
)

+ E4
(
c1
mc

1
t s) + u1

mu
1
t E4

(
E2(s2) s

)
− u1

t E4
(
E2(c1

ms)s
)
− u1

m E4
(
E2(c1

t s) s
)

(5.12)

Thus, to compute E4(c3
`s) by additive homomorphism, it suffices to compute the encodings

E4(c1
i c

1
js), E4

(
E2(s2) s

)
and E4

(
E2(c1

js) s
)

for all i, j. Note that by definition of C4, we have that
for m ∈ [w], {

E4
(
E2(s2) s

)
, E4

(
E2(c1

ms)s
)}
⊆ C4 (5.13)

Note that since level 3 is an addition layer, E3 = E2.

The only terms above not accounted for are E4(c1
i c

1
js) and E4

(
c1
mc

1
t s). Consider the former.

To compute this, we view c1
i c

1
js as a quadratic term in c1

i and c1
j · s and re-apply the quadratic

method given in Equation 5.7. This will enable us to compute a noisy version of E4(c1
i c

1
js), namely

E4(c1
i c

1
js+ p1 · µ2

ij) for some noise µ2
ij .

Applying the Quadratic Method (Equation 5.7): Given E2(c1
i), E2(c1

j · s) along with

E4
(
E2(c1

i) s
)

and E4
(
E2(c1

j · s) s
)

we may compute E4(c1
i c

1
js + p1 · µ2

ij) as described above. In
more detail, we let

di , E2(c1
i) , hj , E2(c1

j · s) ∈ Rp2 and d̂i , E4
(
E2(c1

i) s
)
, ĥj , E4

(
E2(c1

j · s) s
)
∈ Rp4

19

Then, we have:

E4(c1
i c

1
js+p1·µ2

ij) = dihj+PK
(
E2(c1

i)
)
PK
(
E2(c1

j · s)
)
E4(s2)−PK

(
E2(c1

i)
)
ĥj−PK

(
E2(c1

j · s)
)
d̂i ∈ Rp4

(5.14)
where µ2

ij = c1
i · Nse(E2(c1

j · s)) + c2
j · Nse(E2(c1

i)) + p1 · Nse(E2(c1
j · s)) · Nse(E2(c1

i)).

Also, the public key for E4(c1
i c

1
js+ p1 · µ2

ij) may be computed as:

PK
(
E4(c1

i c
1
js+p1·µ2

ij)
)

= PK
(
E2(c1

i)
)
PK
(
E2(c1

j · s)
)
PK
(
E4(s2)

)
−PK

(
E2(c1

i)
)
PK(ĥj)−PK

(
E2(c1

j · s)
)
PK(d̂i)

(5.15)

Thus we have, E4(c3
`s+ p1 · µ2

`) is a Regev encoding with public key

PK
(
E4(c3

`s+ p1 · µ2
`)) = PK

(
E4(c1

i c
1
js+ p1 · µ2

ij) + u1
iu

1
j E4

(
E2(s2) s

)
− u1

j E4
(
E2(c1

i s) s
)
− u1

i E4
(
E2(c1

js) s
)

+ E4(
(
c1
mc

1
t s+ p1 · µ2

mt) + u1
mu

1
t E4

(
E2(s2) s

)
− u1

t E4
(
E2(c1

ms)s
)
− u1

m E4
(
E2(c1

t s) s
))

= PK
(
E4(c1

i c
1
js+ p1 · µ2

ij)
)

+ u1
iu

1
j PK

(
E4
(
E2(s2) s

))
− u1

j PK
(
E4
(
E2(c1

i s) s
))

(5.16)

− u1
i PK

(
E4
(
E2(c1

js) s
))

+ PK
(
E4(
(
c1
mc

1
t s+ p1 · µ2

mt)
)

+ u1
mu

1
t PK

(
E4
(
E2(s2) s

))
− u1

t PK
(
E4
(
E2(c1

ms)s
))
− u1

m PK
(
E4
(
E2(c1

t s) s
))

Above PK
(
E4(c1

i c
1
js+ p1 · µ2

ij)
)

may be computed by Equation 5.15 and the remaining public keys

are provided in C4 as described in Equation 5.13. Also, we have µ2
` = µ2

ij + µ2
mt.

By equations 5.12, 5.13 and 5.14, we may compute E4(c2
`s+ p1 · µ2

`) for any `.

Note that,

E4(c2
`s+ p1 · µ2

`) = LinComb
(
E2(c1

i) · E2(c1
j · s), E4

(
E2(c1

i) s
)
, E4

(
E2(c1

j · s) s
))

= 〈Linf4 , C4〉+ Quad
(
E2(c1

i) · E2(c1
j · s)

)
for some linear function Linf4 .

5.1 Ciphertext and Public Key Structure.

By Equation 5.11, we then get that

c4
t = c3

` c
3
`′ + u3

` u
3
`′E4(s2)− u3

`

(
〈Lin′f4 , C4〉+ Quad′

(
E2(c1

i) · E2(c1
j · s)

))
− u3

`′

(
〈Lin′′f4 , C4〉+ Quad′′

(
E2(c1

i) · E2(c1
j · s)

))
= 〈Lin′′′f4 , C4〉+ Polyf4(C1, C2, C3)

for some linear functions Lin′f4 , Lin
′′
f4 , Lin

′′′
f4 and quadratic functions Quad′, Quad′′ and polynomial

Polyf4 .

Thus, we have computed E4(c3
`s+ p1 · µ2

`) and hence, c4 by Equation 5.11. The final public key
for c4 is given by:

PK(c4) = u3
`u

3
`′ PK(E4(s2))− u3

`′ PK(E4(c3
`s))− u3

` PK(E4(c3
`′s)) (5.17)

20

E4(c3) and E4(c1
i c

1
j) are computed analogously. Thus, we have established correctness of the

base case.

Note. In the base case, we see that each time the quadratic method is applied to compute an
encoding of a product of two messages, we end up with an encoding of the desired product plus
noise.

Induction Step. Assume that the claim is true for level k − 1. Then we establish that it is true
for level k.

By the I.H, we have that:

1. We can compute Ek−1(ck−2 · s) and Ek−1(ck−2) by taking linear combinations of elements in
Ck−1 and quadratic terms of the form Ek−2(yi)Ek−2(yj) for some yi, yj of the form ck−4

i , ck−4
j s.

2. We can compute ck−1.

Computing Ek(ck−1 · s). We claim that:

Claim 5.4. The term Ek(ck−1
` s) (hence ck) can be computed as a linear combination of elements in

Ck and quadratic terms of the form Ek−1(·) · Ek−1(·).

Proof. The term Ek(ck−1 · s) may be written as:

Ek(ck−1 · s) = Ek
((
ck−2
i ck−2

j − uk−2
i Ek−1(ck−2

j · s)− uk−2
j Ek−1(ck−2

i · s) + uk−2
i uk−2

j Ek−1(s2)
)
· s
)

= Ek(ck−2
i ck−2

j s)− uk−2
i Ek

(
Ek−1(ck−2

j · s) · s
)

− uk−2
j Ek

(
Ek−1(ck−2

i · s) · s
)

+ uk−2
i uk−2

j Ek
(
Ek−1(s2) · s

)
(5.18)

Consider Ek
(
Ek−1(s2) · s

)
. Since Ek−1(s2) ∈ Ck−1 and Ek

(
Ck−1 · s

)
is contained in Ck, we have

that Ek
(
Ek−1(s2) · s

)
∈ Ck.

Consider the term Ek(ck−2
i ck−2

j s). We may compute Ek(ck−2
i ck−2

j s) using the quadratic method
as:

Ek(ck−2
i ck−2

j s) =
(
Ek−1(ck−2

i) · Ek−1(ck−2
j · s)

)
+ PK

(
Ek−1(ck−2

i)
)
PK
(
Ek−1(ck−2

j · s)
)
Ek(s2)

− PK
(
Ek−1(ck−2

i)
)(
Ek
(
Ek−1(ck−2

j · s) · s
))
− PK

(
Ek−1(ck−2

j · s)
)(
Ek
(
Ek−1(ck−2

i) · s
))

(5.19)

Thus, to compute Ek(ck−1 · s), it suffices to compute the term Ek(ck−2
i ck−2

j s) since the additional

terms such as Ek
(
Ek−1(ck−2

i · s) · s
)

that appear in Equation 5.18 also appear in Equation 5.19 and

will be computed in the process of computing Ek(ck−2
i ck−2

j s).

Note. We observe that in Equation 5.19, by “factoring out” the quadratic term Ek−1(ck−2
i) ·

Ek−1(ck−2
j · s), we reduce the computation of Ek(ck−2

i ck−2
j s) to Ek

(
Ek−1(ck−2

j · s) · s
)

where the
latter value has half the degree of the former at the cost of adding one more level of nesting and a
new multiplication by s. By recursively applying Equation 5.19, we will obtain d quadratic encodings

21

in level k − 1 and a linear term in level k advice encodings Ck.

Proceeding, we see that to compute Ek(ck−2
i ck−2

j s), we are required to compute the following
terms:

1. Ek−1(ck−2
i) and Ek−1(ck−2

j · s). These can be computed by the induction hypothesis using

linear combinations of elements in Ck−1 and quadratic terms of the form Ek−2(yi)Ek−2(yj) for
some yi, yj . Since the precise linear coefficients are not important, we shall denote:

Ek−1(ck−2
j · s) = LinComb

(
Ck−1, Ek−2(·)Ek−2(·)

)
(5.20)

2. Ek
(
Ek−1(ck−2

i) · s
)

and Ek
(
Ek−1(ck−2

j · s) · s
)
: Consider the latter term (the former can be

computed analogously).

By the induction hypothesis,

Ek
(
Ek−1(ck−2

j · s) · s
)

= Ek
(
LinComb

(
Ck−1, Ek−2(·)Ek−2(·)

)
· s
)

= Ek
(
LinComb

(
Ck−1 · s

))
+ Ek

(
LinComb

(
Ek−2(ya)Ek−2(yb) · s

))
= LinComb

(
Ek
(
Ck−1 · s

))
+ LinComb

(
Ek
(
Ek−2(ya)Ek−2(yb) · s

))
(5.21)

Again, we note that the terms Ek
(
Ck−1 · s

)
∈ Ck by definition hence it remains to construct

Ek
((
Ek−2(yi)Ek−2(yj)

)
· s
)

.

Thus, we have reduced the computation of Ek(ck−2
i ck−2

j s) to the computation of terms of the

form Ek
(
Ek−2(ya)Ek−2(yb)·s

)
for some ya, yb, by Equation 5.217. Hence, expanding ck−2

i ck−2
j s

yields a degree 4 term in ck−3 whereas expanding the latter only yields a quadratic term in ck−3.

To proceed, again, we will consider zi = Ek−2(yi) and zj = Ek−2(yj) · s as messages and apply
the quadratic method to compute an encoding of their product. In more detail,

Ek
((
Ek−2(yi)Ek−2(yj)

)
· s
)

= LinComb
(
Ek−1(Ek−2(yi)) · Ek−1(Ek−2(yj) · s), Ek

(
Ek−1(Ek−2(yi)) · s

)
, Ek

(
Ek−1(Ek−2(yj) · s) · s

))
(5.22)

Thus, we are required to compute:

(a) Ek−1(Ek−2(yi)), Ek−1(Ek−2(yj) · s): These can be computed via the induction hypothesis.

7We note that while ck−2
i is also a degree k − 2 encoding, the difference between ck−2

i and Ek−2(ya) is that the
former contains a quadratic term ck−3

i′ ck−3
j′ for some i′, j′ while in the latter, ya is of the form ck−3s, which has half

the nested message degree as the former.

22

(b) Ek
(
Ek−1

(
Ek−2(yi)

)
· s
)

and Ek
(
Ek−1(Ek−2(yj) · s) · s

)
: Consider the latter term (the

former may be computed analogously). Note that

Ek−2(yj) = LinComb
(
Ck−2, Ek−3(·)Ek−3(·)

)
Hence, Ek

(
Ek−1(Ek−2(yj) · s) · s

)
= Ek

(
Ek−1(LinComb

(
Ck−2, Ek−3(·)Ek−3(·)

)
· s) · s

)
Again, Ek(Ek−1(Ck−2 · s) · s) ∈ Ck so we are left with the computation of

Ek
(
Ek−1(Ek−3(·)Ek−3(·) · s) · s

)
= Ek

(
LinComb

(
Ek−2

(
Ek−3(·) · s

)
· Ek−2(Ek−3(·)

)
,

Ek−1
(
Ek−2

(
Ek−3(·) · s

)
· s
)))

= LinComb
(
Ek−1

(
Ek−2

(
Ek−3(·) · s

))
· Ek−1

(
Ek−2

(
Ek−3(·) · s

)
· s
)
,

Ek
(
Ek−1

(
Ek−2

(
Ek−3(·) · s

)
· s
)
· s
)
· s
)

Proceeding recursively, we see that Ek
(
Ek−1(Ek−2(yj) ·s) ·s

)
contains a linear combination

of quadratic terms of the form Ek−1(·)Ek−1(·) for each level and nested encodings of the

form Ek
(
Ek−1

(
Ek−2(· · ·) · s

)
· s
)

. At the last level, we obtain nested encodings which are

contained in Ck by construction. Hence we may compute Ek
(
Ek−1(Ek−2(yj) · s) · s

)
as a

linear combination of quadratic terms of the form Ek−1(·)Ek−1(·) and linear terms in Ck.
Note that the public key PK(Ek(ck−1 · s)) can be computed as a linear combination of
the public keys PK(Ck), as in Equation 5.16.

PK(Ek(ck−1 · s)) = LinComb(PK(Ck)) (5.23)

Note that for the public key computation, the higher degree encoding computations are
not relevant as these form the message of the final level k encoding.

Computing level k ciphertext. Next, we have that:

ckt = ck−1
` ck−1

`′ + Ek
(
uk−1
` uk−1

`′ (s2)− uk−1
`′ (ck−1

` s)− uk−1
` (ck−1

`′ s)
)

= ck−1
` ck−1

`′ + uk−1
` uk−1

`′ Ek(s2)− uk−1
`′ Ek(ck−1

` s)− uk−1
` Ek(ck−1

`′ s) (5.24)

Similarly,

PK(ckt) = uk−1
` uk−1

`′ PK(Ek(s2))− uk−1
`′ PK

(
Ek(ck−1

` s)
)
− uk−1

` PK
(
Ek(ck−1

`′ s)
)

(5.25)

Public Key and Ciphertext Structure. From the above, we claim:

Claim 5.5. The public key for ckt (for any t) is a publicly computable linear combination of public
keys of level k encodings PK(Ek(s2)) and PK

(
Ek(ck−1

` s)
)

for all `

23

Regarding the ciphertext, since we computed Ek(ck−1
` s) from Ck above, and ck−1 may be

computed via the induction hypothesis, we may compute ck as desired. Moreover, since Ek(ck−1
` s) is

linear in level k encodings and has quadratic terms in level k − 1 encodings, we get by unrolling the
recursion that Ek(ck−1

` s) and hence level k ciphertext ck is linear in level k encodings and polynomial
in lower level encodings C1, . . . , Ck−1. Hence, we have that:

ck = CT(fk(x) + µkf(x)) = 〈Linfk , Ck〉+ LinComb
(
Quad(Ek−1(yi) Ek−1(yj))

)
= 〈Linfk , Ck〉+ Polyfk

(
C1, . . . , Ck−1

)
The Public Key and Ciphertext Evaluation Algorithms. Our evaluation algorithms EvalPK
and EvalCT are defined recursively, so that to compute the functional public key and functional
ciphertext at level k, the algorithms require the same for level k − 1.

EvalkPK(∪
i∈[k]

PK(Ci), `) : To compute the label for the `th wire in the level k circuit, do:

1. If the `th wire at level k is the addition of the ith and jth wire at level k − 1, then do the
following:

• If k = 3 (base case), then compute PK(c3
`) = PK(c2

i) + PK(c2
j) as in Equation 5.10.

• Let PKk−1
i = Evalk−1

PK (∪
j∈[k−1]

PK(Cj), i) and PKk−1
j = Evalk−1

PK (∪
i∈[k−1]

PK(Ci), j),

• Let PKk` = PKk−1
i + PKk−1

j

2. If the `th wire at level k is the multiplication of the ith and jth wire at level k− 1, then do the
following:

• If k = 4 (base case), then compute PKk` as described in Equation 5.17.

• Let uk−1
i = Evalk−1

PK (∪
j∈[k−1]

PK(Cj), i) and uk−1
j = Evalk−1

PK (∪
i∈[k−1]

PK(Ci), j),

• Let PK(ck`) = uk−1
i uk−1

j PK(Ek(s2)) − uk−1
j PK

(
Ek(ck−1

i s)
)
− uk−1

i PK
(
Ek(ck−1

j s)
)

as in

Equation 5.25. Here PK(Ek(s2)), PK
(
Ek(ck−1

i s)
)

and PK
(
Ek(ck−1

j s)
)

are computed using

Ck as described in Equation 5.16, 5.23.

EvalkCT(∪
i∈[k]
Ci, `) To compute the encoding for the `th wire in the level k circuit, do:

1. If the `th wire at level k is the addition of the ith and jth wire at level k − 1, then do the
following:

• If k = 3 (base case), then compute c3
` = c2

i + c2
j as in Equation 5.9.

• Let CTk−1
i = Evalk−1

CT (∪
j∈[k−1]

Cj , i) and CTk−1
j = Evalk−1

CT (∪
i∈[k−1]

Ci, j),

• Let CTk` = CTk−1
i + CTk−1

j

2. If the `th wire at level k is the multiplication of the ith and jth wire at level k− 1, then do the
following:

24

• If k = 4 (base case) then compute c4
` (for any `) using Equations 5.11 and 5.12.

• Let ck−1
i = Evalk−1

CT (∪
j∈[k−1]

Cj , i) and ck−1
j = Evalk−1

CT (∪
i∈[k−1]

Ci, j),

• Let ck` = ck−1
i ck−1

j + uk−1
i uk−1

j Ek(s2)− uk−1
j Ek(ck−1

i s)− uk−1
i Ek(ck−1

j s) as in Equation

5.24. Here, the terms Ek(s2), Ek(ck−1
i s) and Ek(ck−1

j s) are computed using Ck as described
in claim 5.4

Remark. We note that the above EvalCT and EvalPK algorithms are generalisations of the
corresponding algorithms in the LinFE construction (please see Section 3 for details) and produce
ciphertext and public key with exactly the same structure as the evaluated LinFE ciphertext and
public key. Indeed, the GenKey and Decode algorithms defined in Section 3 work correctly if invoked
with outputs of EvalCT and EvalPK described above.

6 Succinct Functional Encryption for NC1.

In this section, we extend the construction for quadratic functional encryption provided in Section 4
to circuits of depth O(log n). The construction generalises directly the QuadFE scheme using the
public key and ciphertext evaluation algorithms from the previous section. We make non black box
use of the LinFE scheme, please see Section 3 for definitions of algorithms GenKey and Decode.

We proceed to describe the construction.

Poly.Setup(1λ, 1w, 1d): Upon input the security parameter λ, the message dimension w, and the
circuit depth d, do:

1. For k ∈ [d], let Lk = |Ck| where Ck is as defined in Theorem 5.2. For k ∈ [d− 1], i ∈ [Lk],
choose uniformly random ui,k ∈ Rpk . Denote uk = (ui,k) ∈ RLkpk .

2. Invoke LinFE.Setup(1λ, 1Ld , pd) to obtain PK = LinFE.PK and MSK = LinFE.MSK. Parse
LinFE.PK = (w,ud).

3. Output PK = (w,u1, . . . ,ud) and MSK = LinFE.MSK.

Poly.KeyGen(MSK, f)): Upon input the master secret key MSK and a circuit f of depth d, do:

1. Let PKf = EvalPK(PK, f).

2. Invoke GenKey(MSK,PKf) as described in Section 3 to obtain kf and output it. In more
detail, the algorithm chooses a short vector kf such that 〈w,kf 〉 = PKf mod pd and
outputs it.

Poly.Enc(x,PK): Upon input the public key and the input x, do:

1. Compute the encodings Ck for k ∈ [d] as defined in Theorem 5.2 using the LinFE encoding
function E described in Section 3. Denote by s the LWE secret used for these encodings.

2. Let d = w · s+ η for some noise η. Note that the LWE secret s is the same as that used
in computing encodings Ck for k ∈ [d].

25

3. Output CTx = ({Ck}k∈[d],d).

Note that an equivalent way to perform the first two steps above is to compute encodings Ck
for k ∈ [d− 1] as defined in Theorem 5.2 and use LinFE.Enc(PK, Cd−1, Cd−1 · s) to obtain the
randomness encoding d and the level d encodings Cd.

Poly.Dec(PK,CTx,SKf): Upon input a ciphertext CTx for vector x, and a secret key SKf = kf for
circuit f , do:

1. Compute CTf(x) = EvalCT({Ck}k∈[d], f).

2. Compute Decode(kf ,CTf(x)) = 〈k,d〉 − CTf(x) mod pd mod pd−1 . . . mod p0 and
output it.

Correctness follows from correctness of EvalPK and EvalCT. In more detail, we have that
〈w,kf 〉 = PKf mod pd by construction. Hence,

〈kf ,d〉 = PKf · s+ pk−1 · η′k−1 mod pd

Additionally, by correctness of EvalPK and EvalCT algorithms, we have that

CTf(x) = PKf · s+ pk−1 · ηk−1 + . . .+ p0 · η0 + f(x)

Hence,
〈kf ,d〉 − CTf(x) mod pd mod pd−1 . . . mod p0 = f(x)

as desired.

Analysis of Ciphertext Structure. Note that the ciphertext comprises message dependent
encodings Ck for k ∈ [d] and a randomness encoding d. Since each message dependent encoding
depends only on a single bit of the message, the ciphertext is decomposable (in the sense defined
in Section 3). We note that this makes our ciphertext enjoy local-updates: if a single bit of the
message changes, then only O(d) encodings need updating, not the entire ciphertext.

Also, since the LinFE ciphertext is succinct as described in Section 3, the data dependent
component of our ciphertext is also succinct.

Ring versus Standard LWE. The above construction may also be based on standard LWE as
against Ring LWE, but at the cost of a larger ciphertext. Basing the construction on standard LWE
incurs a factor n blowup in the ciphertext size at each level, and this restricts the depth of the
circuit being computed to (any) constant. Please see Appendix C for details.

The proof of security is analogous to that of the quadratic scheme. We prove security for the
case of a single key request, the case of bounded keys can be handled exactly as in Section 4.2.

Theorem 6.1. The construction in Section 6 achieves full simulation based security as per definition
2.2.

Proof. We describe our simulator.

26

Simulator Sim(1λ, 1|x|,PK, f,SKf , f(x)). The simulator given input the security parameter,
length of message x, the circuit f , the secret key SKf and the value f(x) does the following:

1. It computes PKf = EvalPK(PK, f). Note that by claim 5.5, PKf is a f -dependent linear
combination of the level d public key components ud. Denote this linear function as gf .

2. It samples all encodings upto level d− 1 randomly, i.e. Ck ← RLkpk . Treating level d encodings

Cd as formal variables, compute CTf(x) = EvalCT
(
{Ck}k∈[d], f

)
. Note that by the structure

of EvalCT (please see Section 5), we have that CTf(x) may be expressed as zpoly + zlin where
zpoly is the high degree polynomial value obtained by evaluating on level k < d− 1 encoding
values and zlin = 〈gf , Cd〉 is the linear function gf evaluated on level d encoding variables Cd.

3. It samples η ← Dd and computes d′ = f(x) − zpoly + η and invokes the single key LinFE
simulator with input d′.

4. It sets as b the output received by the LinFE simulator.

5. It outputs CTx = ({Ck}k∈[d],b).

We will prove that the output of the simulator is indistinguishable from the real world via a
sequence of hybrids.

The Hybrids. Our Hybrids are described below.

Hybrid 0. This is the real world.

Hybrid 1. In this hybrid, the only thing that is different is that b is computed using the LinFE
simulator In more detail,

• It computes CTf(x) = EvalCT
(
{Ck}k∈[d], f

)
.

• It parses
CTf(x) = PKf · s+ pk−1 · ηk−1 + pk−2 · ηk−2 + . . .+ p0 · η0 + f(x)

for some noise terms ηk−1, . . . , η0. Here pk−1 · ηk−1 is treated as the noise in the encoding and
pk−2 · ηk−2 + . . .+ p0 · η0 + f(x) as the message.

• It alternately parses CTf(x) = zpoly +zlin where zpoly is the high degree polynomial obtained by

evaluating on level k < d− 1 encodings and zlin = 〈gf , Cd〉 is the linear function gf evaluated
on level d encodings Cd.

• It computes d′ = pk−2 · ηk−2 + . . .+ p0 · η0 + f(x)− zpoly.

• It samples η∗ such that

SD
(
η∗, pk−2 · ηk−2 + . . .+ p0 · η0

)
≤ negl(λ) (6.1)

and invokes the single key LinFE simulator with input d′ + η∗.

27

Hybrid 2. In this hybrid, let d′ = f(x)− zpoly and invoke the LinFE simulator with d′ + η∗.

Hybrid 3. In this hybrid, sample Ck for k ∈ [d− 1] at random. This is the simulated world.

Indistinguishability of Hybrids proceeds exactly as in Section 4. The only difference is
indistinguishability of Hybrids 0 and 1. In Hybrid 0, LinFE decryption yields the value
pk−2 · ηk−2 + . . .+ p0 · η0 + f(x) + η∗ − zpoly which is what is used to invoke the LinFE simulator in
Hybrid 1. Hence, by security of LinFE, we have that Hybrids 0 and 1 are indistinguishable. Hybrids
1 and 2 are statistically indistinguishable by Equation 6.1. Hybrids 2 and 3 are indistinguishable
due to semantic security of Regev encodings.

7 Putting it together : Bounded Collusion FE for all circuits

In this section, we describe how to put together the pieces from the previous sections to build a
bounded collusion FE scheme for all circuits in P, denoted by BddFE. The approach follows the (by
now) standard bootstrapping method of using low depth randomized encodings to represent any
polynomial sized circuit. This approach was first suggested by Gorbunov et al. [GVW12], who show
that q query FE for degree three polynomials can be bootstrapped to q query FE for all circuits.

At a high level, their approach can be summarized as follows. Let C be a family of polynomial
sized circuits. Let C ∈ C and let x be some input. Let C̃(x, R) be a randomized encoding of C that
is computable by a constant depth circuit with respect to inputs x and R. Then consider a new
family of circuits G defined by:

GC,∆(x, R1, . . . , RS) = C̃
(
x; ⊕

a∈∆
Ra

)
Note that GC,∆(·, ·) is computable by a degree three polynomial, one for each output bit. Given an
FE scheme for G, one may construct a scheme for C by having the decryptor first recover the output
of GC,∆(x, R1, . . . , RS) and then applying the decoder for the randomized encoding to recover C(x).
Since our construction from Section 6 is capable of evaluating degree 3 polynomials, it suffices for
bootstrapping, to yield q-query FE for all circuits. We will denote this scheme by PolyFE.

As in [GVW12, ALS16], let (S, v,m) be parameters to the construction. Let ∆i for i ∈ [q] be
a uniformly random subset of [S] of size v. To support q queries, the key generator identifies the
set ∆i ⊆ [S] with query i. If v = O(λ) and S = O(λ · q2) then the sets ∆i are cover free with high
probability as shown by [GVW12]. Let L , (`3 + S ·m).

BddFE.Setup(1λ, 1`): Upon input the security parameter λ and the message space {0, 1}`, invoke
(mpk,msk) = PolyFE.Setup(1λ, 1L) and output it.

BddFE.KeyGen(msk, C)): Upon input the master secret key and a circuit C, do:

1. Choose a uniformly random subset ∆ ⊆ [S] of size v.

2. Express C(x) by GC,∆(x, R1, . . . , RS), which in turn can be expressed as a sequence of
degree 3 polynomials P1, . . . , Pk, where k ∈ poly(λ).

28

3. Set BddFE.SKC = {SKi = PolyFE.KeyGen(PolyFE.msk, Pi)}i∈[k] and output it.

BddFE.Enc(x,mpk): Upon input the public key and the input x, do:

1. Choose R1, . . . , RS ← {0, 1}m, where m is the size of the random input in the randomized
encoding.

2. Set CTx = PolyFE.Enc(PolyFE.mpk,x, R1, . . . , Rs) and output it.

BddFE.Dec(mpk,CTx,SKC): Upon input a ciphertext CTx for vector x, and a secret key SKC for
circuit C, do the following:

1. Compute GC,∆(x, R1, . . . , RS) = PolyFE.Dec(CTx,SKC).

2. Run the Decoder for the randomized encoding to recover C(x) from GC,∆(x, R1, . . . , RS).

Correctness follows immediately from the correctness of PolyFE and the correctness of randomized
encodings.

Note that the above construction can be based on standard rather than ring LWE, since it only
requires PolyFE for depth 3 circuits to apply the bootstrapping technique. As discussed in Appendix
C, PolyFE can be constructed using standard LWE for constant depth circuits.

7.1 Security

we argue that the construction is secure. The proof follows easily from the security of randomized
encodings and of the PolyFE scheme.

Let us assume that the randomized encodings are secure. Then, given an attacker A who breaks
the security of the BddFE, we construct an attacker B who breaks the security of PolyFE as follows.
B does the following:

1. B obtains the public key PK from the PolyFE challenger and returns this to A.

2. A outputs challenges x0,x1. B chooses the randomness R = R1, . . . , RS and returns (x0,R)
and (x1,R) as the challenge messages to the PolyFE challenger.

3. The PolyFE challenger returns the challenge CT, which B returns to A.

4. B picks ∆1, . . . ,∆q ⊆ S randomly, of size v each. When A makes a query for a circuit Ci,
where i ∈ [Q], B converts it to a tuple of degree 3 polynomials GCi,∆i(·) and sends these to
the challenger. It forwards the challenger’s response to A.

5. When A outputs a bit, B does the same.

Note that by security of randomized encodings, B is an admissible adversary. If B is admissible,
then the advantage of B is exactly the advantage of A.

Ciphertext Structure. We note that the BddFE ciphertext is a PolyFE ciphertext for the
message vector (x, R1, . . . , RS). Since the PolyFE ciphertext is decomposable, and has a succinct
data dependent component, the same features are inherited by the BddFE ciphertext.

29

Distributed Data Applications. Note that since BddFE CT is decomposable and online succinct,
k parties holding k pieces of data x1, . . . , xk can share a PRF seed to generate the common randomness
required to tie together the components of the ciphertext. Given this seed, they can independently
encode their individual inputs xi to construct CTi and upload these to a common server. We note
that the data independent offline component CTindpt may be generated by a designated party with
a high bandwidth upload link, or by the server itself.

Acknowledgements. We thank Damien Stehlé and Chris Peikert for helpful discussions.

30

REFERENCES AND SUPPLEMENTARY MATERIAL

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In EUROCRYPT, pages 553–572, 2010.

[ABCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. In PKC, 2015.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Asiacrypt, 2011.

[Agr17] Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions and
attacks. In Crypto, 2017.

[AGVW13] Shweta Agrawal, Sergey Gurbanov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. In Crypto, 2013.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private
randomizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits.
In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, pages 120–129, 2011.

[AIK14] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits.
SIAM J. Comput., 43(2):905–929, 2014.

[AIKW15] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding functions
with constant online rate, or how to compress garbled circuit keys. SIAM Journal on
Computing, 44(2):433–466, 2015.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, pages 308–326, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation
from functional encryption for simple functions. Eprint 2015/730, 2015.

[ALS16] Shweta Agrawal, Benoit Libert, and Damien Stehlé. Fully secure functional encryption
for linear functions from standard assumptions, and applications. In CRYPTO, 2016.
https://eprint.iacr.org/2015/608.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In CRYPTO, pages 213–229, 2001.

31

https://eprint.iacr.org/2015/608

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic
encryption, arithmetic circuit abe and compact garbled circuits. In Phong Q. Nguyen
and Elisabeth Oswald, editors, Eurocrypt, 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS, pages 309–325, 2012.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, pages 253–273, 2011.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 97–106,
2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. In Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, pages 505–524, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. IACR Cryptology ePrint Archive, 2015:163, 2015.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption
(without random oracles). In CRYPTO, pages 290–307, 2006.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, pages 535–554, 2007.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1 from lwe. In
Eurocrypt, 2017.

[CFL+16] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu.
Cryptanalysis of the new clt multilinear map over the integers. In Eurocrypt, 2016.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta K
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing
without low-level zeroes: New mmap attacks and their limitations. In Advances in
Cryptology–CRYPTO 2015, pages 247–266. Springer, 2015.

[CHH+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael
Pass, Abhi Shelat, and Vinod Vaikuntanathan. Bounded cca2-secure encryption. In
Proceedings of the Advances in Crypotology 13th International Conference on Theory
and Application of Cryptology and Information Security, ASIACRYPT’07, 2007.

32

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, pages 523–552, 2010.

[CHL+15] J.-H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear
map over the integers. In Proc. of EUROCRYPT, volume 9056 of LNCS, pages 3–12.
Springer, 2015.

[CJL] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for ntru problems
and cryptanalysis of the ggh multilinear map without a low level encoding of zero.
Eprint 2016/139.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 476–493, 2013.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
IMA Int. Conf., pages 360–363, 2001.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public
key cryptosystems. In Proceedings of the International Conference on the Theory and
Applications of Cryptographic Techniques: Advances in Cryptology, EUROCRYPT ’02,
2002.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional
encryption. In EUROCRYPT, pages 578–602, 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013. http://eprint.iacr.org/.

[GGH+13c] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In CRYPTO, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, pages 498–527,
2015.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption without obfuscation. In IACR Cryptology ePrint Archive, volume 2014,
page 666, 2014.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
STOC, pages 555–564, 2013.

33

http://eprint.iacr.org/

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan.
Robustness of the learning with errors assumption. In ITCS, 2010.

[GLW12] Shafi Goldwasser, Allison Lewko, and David Wilson. Bounded-collusion ibe from key
homomorphism. In Theory of Cryptography, Lecture Notes in Computer Science, 2012.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM Conference
on Computer and Communications Security, pages 89–98, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions from multiparty computation. In CRYPTO, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute based encryption
for circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from lwe. In CRYPTO, 2015.

[HJ16] Y. Hu and H. Jia. Cryptanalysis of GGH map. In Eurocrypt, 2016.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J
Malozemoff. Amortizing garbled circuits. In International Cryptology Conference,
pages 458–475. Springer, 2014.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, pages
146–162, 2008.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In EUROCRYPT, pages 62–91, 2010.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, volume 6110, 2010.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose yao-based secure computation in the
online/offline and batch settings. In International Cryptology Conference, pages 476–494.
Springer, 2014.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM Journal on Computing (SICOMP), 37(1):267–302, 2007.
extended abstract in FOCS 2004.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over ggh13. In Crypto, 2016.

34

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. http://eprint.iacr.org/.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J.ACM, 56(6), 2009. extended abstract in STOC’05.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: Functional encryption
with public keys. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS ’10, 2010.

[SW] Amit Sahai and Brent Waters. Functional encryption:beyond public key cryptography.
Power Point Presentation, 2008. http://userweb.cs.utexas.edu/bwaters/presentations/
files/functional.ppt.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[Wat12] Brent Waters. Functional encryption for regular languages. In Crypto, 2012.

Appendix

A Previous Constructions for Bounded Collusion FE

In this section, we discuss previous constructions for Bounded Collusion FE.

A.1 The GVW12 Construction

In this section we sketch the GVW scheme and discuss why it is unsuitable for the applications
discussed in Section 1. The scheme can be summarized as follows.

• The first ingredient they need is a single key FE scheme for all circuits. A construction for
this was provided by Sahai and Seyalioglu in [SS10].

• Next, the single FE scheme is generalized to a q query scheme for NC1 circuits. This
gerenalization is fairly complex, we provide an outline here. At a high level, they run N
copies of the single key scheme, where N = O(q4). The encryptor encrypts the views of the
BGW MPC protocol for N parties, computing some functionality related to C. They rely on
the fact that BGW is non-interactive when used to compute bounded degree functions. To
generate a secret key, KeyGen chooses a random subset of the single query FE keys, where the
parameters are set so that the subsets have small pairwise intersections. This subset of keys
enables the decryptor to recover sufficiently many shares of C(x) which allows him to recover
C(x). [GVW12] argue that an attacker with q keys only learns a share xi when two subsets
of keys intersect, but since the subsets were chosen to have small pairwise intersections, this
does not occur often enough to recover enough shares of x. Finally, by the security of secret
sharing, x remains hidden.

35

http://eprint.iacr.org/

• As the last step they “bootstrap” the q query FE for NC1 to q query FE for all circuits using
computational randomized encodings [AIK06]. They must additionally use cover free sets to
ensure that fresh randomness is used for each randomized encoding.

Thus, to encrypt a message x, the encryptor must secret share it into N = O(q4) shares, and
encrypt each one with the one query FE. Since they use Shamir secret sharing with polynomial of
degree t and t = O(q2), note that at most O(q2) shares can be generated offline, since t+ 1 points
will determine the polynomial. Hence O(q4) shares must be generated in the online phase. This
results in an online encryption time that degrades as O(q4).

A.2 The ALS16 construction

[ALS16] provide a conceptually simpler way to build q-query Functional Encryption for all circuits.
Their construction replaces steps 1 and 2 described above with a inner product modulo p FE scheme,
and then uses step 3 as in [GVW12]. Thus, the construction of single key FE in step 1 by Sahai
and Seyalioglu, and the nontrivial “MPC in the head” of step 2 can both be replaced by the simple
abstraction of an inner product FE scheme. For step 3, observe that the bootstrapping theorem of
[GVW12] provides a method to bootstrap an FE for NC1 that handles q queries to an FE for all
polynomial-size circuits that is also secure against q queries. The bootstrapping relies on the result
of Applebaum et al. [AIK06, Theorem 4.11] which states that every polynomial time computable
function f admits a perfectly correct computational randomized encoding of degree 3.

In more detail, let C be a family of polynomial-size circuits. Let C ∈ C and let x be some input.
Let C̃(x,R) be a randomized encoding of C that is computable by a constant depth circuit with
respect to inputs x and R. Then consider a new family of circuits G defined by:

GC,∆(x,R1, . . . , RS) =

{
C̃
(
x; ⊕

a∈∆
Ra

)
: C ∈ C, ∆ ⊆ [S]

}
,

for some sufficiently large S (quadratic in the number of queries q). As observed in [GVW12],
circuit GC,∆(·, ·) is computable by a constant degree polynomial (one for each output bit). Given an
FE scheme for G, one may construct a scheme for C by having the decryptor first recover the output
of GC,∆(x,R1, . . . , RS) and then applying the decoder for the randomized encoding to recover C(x).

However, to support q queries the decryptor must compute q randomized encodings, each of
which needs fresh randomness. This is handled by hardcoding S random elements in the ciphertext
and using random subsets ∆ ⊆ [S] (which are cover-free with overwhelming probability) to compute
fresh randomness ⊕

a∈∆
Ra for every query. [ALS16] observe that bootstrapping only requires support

for the particular circuit class G described above. This circuit class, being computable by degree 3
polynomials, may be supported by a linear FE scheme, via linearization of the degree 3 polynomials.

Putting it together, the encryptor encrypts all degree 3 monomials in the inputs R1, . . . , RS
and x1, . . . , x`. Note that this ciphertext is polynomial in size. Now, for a given circuit C, the
keygen algorithm samples some ∆ ⊆ [S] and computes the symbolic degree 3 polynomials which
must be released to the decryptor. It then provides the linear FE keys to compute the same. By
correctness and security of Linear FE as well as the randomizing polynomial construction, the
decryptor learns C(x) and nothing else.

Note that in this construction the challenge of supporting multiplication is sidestepped by merely
having the encryptor encrypt each monomial xixj separately so that the FE need only support

36

addition. This “brute force” approach incurs several disadvantages. For instance, decomposability
is lost – even though the ciphertext can be decomposed into |x|2 components, any input bit x1

(say) must feature in |x| ciphertext components x1x2, . . . , x1xw, where w = |x|. This makes the
scheme inapplicable for all applications involving distributed data, where a centre or a sensor device
knows a bit xi but is oblivious to the other bits. Additionally, the scheme is not online-offline, since
all the ciphertext components depend on the data, hence the entire encryption operation must
be performed after the data becomes available. For applications where a centre or sensor must
transmit data-dependent ciphertext after the data is observed, this incurs a significant cost in terms
of bandwidth. Indeed, the work performed by the sensor device in computing the data dependent
ciphertext becomes proportional to the size of the function being computed on the data, which may
be infeasible for weak devices.

Another approach to obtain bounded collusion FE is to compile the single key FE of Goldwasser
et al [GKP+13] with the compiler of [GVW12] to support Q queries. Again, this approach yields
succinct CTs but the CT grows as O(q4) rather than O(q2) as in our scheme.

B Distributed Data Applications.

Our construction is very suitable for applications where data belonging to a single party is distributed
across multiple locations. As an example, consider a large healthcare organization with k > 1
branches across multiple cities, which desires to store data from all centres in a central repository
and compute functions on this. Ideally, we would like each centre to upload encryptions of its
data to the server independently of other centres. Our construction provides a natural solution
– all k centres may share a PRF seed, using which centre i can construct ciphertext component
CTi that depends only on its data xi and upload this. The size of the ciphertext component CTi
is poly(λ, |xi|), where λ is the security parameter, hence the upload operation consumes optimal
bandwidth. The ciphertext components CT1, . . . ,CTk can then be combined to produce a ciphertext
CTx which may be decrypted by a function key SKg to obtain g(x). See Section 7 for more details.
Note that decomposability does not imply the stronger notion of multi-input functional encryption
[GGG+14], since in the former case, only “matching” ciphertext components (i.e. those that share
randomness) can be combined, whereas in the latter, any combination of ciphertexts constructed by
the multiple parties are valid input to the function key.

As another example consider the following scenario described by Applebaum et al. [AIK14]: a
computationally weak device is sent to the field in order to perform some expensive computation
C on some sensitive data x. The computation is too expensive for the device to perform it on its
own, but since the data is sensitive, the device cannot send the data back in the clear. As noted
by [AIK14], garbled circuits provide the only feasible non-interactive solution to this question: the
weak device can compute the garbled circuit for circuit C in an offline phase before going to the
field, and keep the garbled keys {K0

i ,K
1
i }i∈[|x|] with itself. Once it learns the input x, it performs

the lightweight operation of selecting the appropriate keys Kxi
i and sends these back. Note that

this application crucially relies on succinctness of the “online” or data-dependent component of the
encoding Kxi

i , so that transmission cost is minimized. Indeed, reducing the online complexity of
randomized encodings, for both single and multiple executions of the circuit, is an active area of
research – see [LR14, HKK+14, AIKW15] and references therein. Also, note that decomposability of
garbled circuits enables supporting multiple sensor devices: since the encoding Kxi

i depends only on

37

bit xi and none other, device i may be given keys (K0
i ,K

1
i) before it is sent to the field, and the

function may be computed on data collected by multiple devices.

Since functional encryption may be viewed as a generalization of randomized encodings, many
applications of randomized encodings benefit immediately from the additional power offered by FE.
For instance, by replacing the decomposable, online-succinct garbled circuit in the above example by
a decomposable, online-succinct functional encryption scheme, we may: 1) choose the function to be
computed on the data after the devices are sent to the field, 2) a given function may be computed
on an unbounded number of ciphertexts, and 3) we may compute multiple (i.e. q) functions on a
given set of data. It is evident that these capabilities are not enjoyed by the garbled circuit protocol
described above. Also note that since computing CTi is the online part of the operation and is
efficient, it is within the capabilities of the weak device.

See Section 7 for more details about how our scheme achieves these properties and Appendix A
for a discussion on why previous schemes could not.

C Construction from Standard LWE

In this section, we briefly discuss how the scheme presented in Section 4 can be modified to rely
on standard LWE rather than ring LWE. The modification is straightforward: instead of requiring
LinFE to compute a noisy linear function over a polynomial ring, we now compute a noisy linear
function over a field Zq.

In more detail, the message carrier (for a vector x ∈ Zwp0 in the encrypt algorithm is now a
vector:

c = UTs1 + p · µ + x ∈ Zwq .

Here, U = (ui) ∈ Zn×wq , s1 ← Znq and µ ∈ Zw is appropriately sampled noise.

Let us examine what we require for correctness.

Let 1 ≤ j ≤ i ≤ w. By definition

xi + p · µi = ci − 〈ui; s1〉,
xj + p · µj = cj − 〈uj ; s1〉.

Letting µij = xiµj + xjµi + µiµj , we have

xixj + p · µij = cicj − ci〈uj ; s1〉 − cj〈ui; s1〉+ 〈ui; s1〉〈uj ; s1〉,

which equals

cicj −
∑
k∈[n]

∑
τ∈[T]

ujkτ (2τ cis
1
k)−

∑
k∈[n]

∑
τ∈[T]

uikτ (2τ cjs
1
k) +

∑
k,`∈[n]

∑
τ∈[T]

(uikuj`)τ (2τs1
ks

1
`). (C.1)

Clearly

−
∑
k∈[n]

∑
τ∈[T]

ujkτ (2τ cis
1
k)−

∑
k∈[n]

∑
τ∈[T]

uikτ (2τ cjs
1
k) +

∑
k,`∈[n]

∑
τ∈[T]

(uikuj`)τ (2τs1
ks

1
`). (C.2)

is a linear equation which can be computed by the linear inner product scheme LinFE.

38

In more detail, LinFE encrypt algorithm encrypts messages {2τ cis1
k ∈ Zq} and {2τs1

ks
1
` ∈ Zq} for

k, ` ∈ [n], τ ∈ [log q], i ∈ [w] while the key generator provides a key corresponding to vector(
0, (uikuj`)τ ,0,−uikτ , 0, −ujkτ 0

)
so that the equation C.2 may be computed. The remaining details are easily translated from the
ring to the standard setting by carefully replacing ring products by field inner products.

Note that the ci is multiplied by n elements s1
1, . . . , s

1
n to encode at level 2, this causes a factor n

blowup at each level. The “dimension reduction” trick developed in the context of fully homomorphic
encryption [BV11a, BGV12] is not immediately applicable in our context, since it is not the keys
that are growing in size, but the messages that are being encrypted at each level. While there may
be more sophisticated techniques to perform dimension reduction in our setting, we do not explore
this here and leave it to future work.

Hence, from standard LWE, the ciphertext grows by a factor n at each level and this forces the
construction in Section 6 to be restricted to d levels for any constant d.

D Making KeyGen stateless for QuadFE

We note that the keygen algorithm can be made stateless by using standard tricks, as in [GVW12,
Section 6]. To see this, let us examine how noise is added in the above system at present. The
encryptor provides encryptions of Q noise terms η and for i ∈ [Q], the key generator appends the
ith key vector gi with a Q sized unit vector ei. As a result, decryption of the ith key with the
ciphertext results in an additional term ηTei = ηi, which gets added to the decryption value gz

i .
Thus, to ensure that a fresh noise term ηi is added for each decryption equation, the key generator
must keep track of how many keys it has issued in the past (or receive this information as input).

Cover free sets offer a natural tool to deal with this issue, and this technique was used towards a
similar end in [GVW12]. The idea is to choose Q′ > Q and have the encryptor provide encryptions
of Q′ noise values in place of Q. The key generator is modified to be stateless and randomly pick a
Q′ sized binary vector of weight v in place of ei. Now the decryption computes a random subset
sum of Q′ noise terms for every key, which for appropriate setting of Q′ and v guarantees that each
decryption equation has at least one fresh noise term. It is shown in [GVW12] that Q′ = Q2 and
v = λ suffices.

The careful reader might notice that the summands in this case are discrete Gaussians and a
random subset of discrete Gaussians does not yield the original distribution. However, fortunately
this is not an issue, since the cover free property implies that every decryption equation has at
least one freshly sampled discrete Gaussian that is not used in any other equation. This suffices for
security.

39

E Parameters

In this section, we discuss the parameters for our constructions. We denote the magnitude of noise
used in the level i encodings by Bi. We require Bi ≤ O(pi/4) at every level for correct decryption.
We have that the message space for level 1 encodings E1 is Rp0 and encoding space is Rp1 . Then
message space for E2 is O(p2

0 +B2
1) = O(B2

1) since the noise at level 1 is a multiple of p0. Then, p2

must be chosen as O(B2
1). At the next multiplication level, i.e. level 4, we have the message space

as O(p2
2 +B2

2) = O(B4
1). In general, for d levels, it suffices to set pd = O(B2d).

We also require all the distinct moduli to be relatively prime, hence we choose all the moduli to
be prime numbers of the aforementioned size.

We must also choose the size of the noise that is added for flooding. As described in Section 4, for

quadratic polynomials we require
L·p0·σ2

0
σ1

= negl(λ) where σ1 is the standard deviation for the noise

ηi for i ∈ [Q] encoded in the ciphertext. For depth d (Section 6), we require

Ld·
∏

i∈[0,d]
pi·B2d

σ = negl(λ)
where σ is the standard deviation of the noise η encoded in the ciphertext.

Since Ld = poly(λ) by definition, we require

σ ≥ O(poly(λ)B2d+1

We may set p0 = n with initial noise level as B1 = poly(n) and any Bi, pi = O(B2i
1). Also, the

number of encodings provided at level d is Ld = O(2d), so in general we may let d = O(log n), thus
supporting the circuit class NC1.

We note that by the definition of efficiency of reusable garbled circuits [GKP+13], it suffices to
have ciphertext size that is sublinear in circuit size, which is achieved by our construction.

40

	Introduction
	Our Results
	Related Work
	Techniques

	Preliminaries
	Functional Encryption
	Simulation Based Security for Single Key FE
	Lattice Preliminaries
	Hardness Assumptions

	Linear Functional Encryption
	Bounded Query Functional Encryption for Quadratic forms
	Correctness
	Security

	Public Key and Ciphertext Evaluation Algorithms
	Ciphertext and Public Key Structure.

	Succinct Functional Encryption for NC1.
	Putting it together : Bounded Collusion FE for all circuits
	Security

	Previous Constructions for Bounded Collusion FE
	The GVW12 Construction
	The ALS16 construction

	Distributed Data Applications.
	Construction from Standard LWE
	Making KeyGen stateless for QuadFE
	Parameters

