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Abstract

We study the problem of constructing De Bruijn sequences by joining cycles of linear

feedback shift registers (LFSRs) with reducible characteristic polynomials. The main dif-

ficulty for joining cycles is to find the location of conjugate pairs between cycles, and the

distribution of conjugate pairs in cycles is defined to be adjacency graphs. Let l(x) be a char-

acteristic polynomial, and l(x) = l1(x)l2(x) · · · lr(x) be a decomposition of l(x) into pairwise

co-prime factors. Firstly, we show a connection between the adjacency graph of FSR(l(x))

and the association graphs of FSR(li(x)), 1 ≤ i ≤ r. By this connection, the problem of

determining the adjacency graph of FSR(l(x)) is decomposed to the problem of determining

the association graphs of FSR(li(x)), 1 ≤ i ≤ r, which is much easier to handle. Then, we

study the association graphs of LFSRs with irreducible characteristic polynomials and give a

relationship between these association graphs and the cyclotomic numbers over finite fields.

At last, as an application of these results, we explicitly determine the adjacency graphs of

some LFSRs, and show that our results cover the previous ones.

Keywords: MSC(94A55), De Bruijn sequence, feedback shift register, adjacency graph,

irreducible polynomial, cyclotomy.

1 Introduction

Binary De Bruijn sequences of order n are sequences of period 2n such that each n-tuple appears

exactly once in one period. These sequences have many favorable properties, such as long period,

large linear span and good randomness, and they are widely used in cryptography and modern

communication systems [6]. It is well known [3] that the number of n-th order De Bruijn

sequences is 22
n−1−n. Even though the number of sequences of given order is very large, today it

is only known how to efficiently construct small fractions of this large number [1,4,5,12,13,22].

An excellent survey of algorithms for generating De Bruijn sequences is given in [6].

A classical method for constructing De Bruijn sequences is to consider a feedback shift register

(FSR) producing several cycles which are joined together to form a full cycle. This method is

known as the cycle joining method, proposed by Golomb [7]. For the application of this method,

we need to know the location of conjugate pairs between cycles. The distribution of conjugate
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pairs in the cycles of an FSR is defined to be the adjacency graph of this FSR [10]. In recent years,

constructing De Bruijn by using the adjacency graphs of FSRs has raised extensive attentions.

Because the cycle structure of nonlinear feedback shift registers (NFSRs) are hard to study,

there are few results on their adjacency graphs, and most of the known results are about linear

feedback shift registers (LFSRs). By now, many linear feedback shift registers (LFSRs) have been

analyzed about their adjacency graphs, for example, the LFSRs with characteristic polynomials

of the form p(x), (1 + x)mp(x), (1 + xm)p(x) and p1(x)p2(x) · · · pk(x), where p(x) and pi(x),

i = 1, 2, . . . , k, are primitive polynomial and m is a positive integer ≤ 5 [11, 14–17, 21]. Their

adjacency graphs were determined and a large number of De Bruijn sequences were constructed

from them.

Recently, a general method to determine the adjacency graphs of a class of LFSRs was given

in [18]. There the authors considered the LFSRs with primitive-like characteristic polynomials

(i.e., having the form l(x)p(x), where l(x) is a polynomial of small degree and p(x) is a primitive

polynomial) and gives a unified way to determine their adjacency graphs. Specifically, the au-

thors proposed the concept of association graphs of LFSRs, and they showed how to convert the

problem of determining the adjacency graph of FSR(l(x)p(x)) to the problem of determining the

association graph of FSR(l(x)). Since l(x) is a polynomial of small degree, the association graph

of FSR(l(x)) can be determined efficiently. Consequently, the adjacency graph of FSR(l(x)p(x))

is easily obtained. As an application of their method, the authors explicitly determined the

adjacency graph of FSR((1 + x+ x3 + x4)p(x)).

In this paper, we pay attention to the LFSRs with reducible characteristic polynomials,

and study the problem of constructing De Bruijn sequences from them. We will present a

way to determine their adjacency graphs, and give some properties about them. Let l(x) be a

characteristic polynomial and l(x) = l1(x)l2(x) · · · lr(x) be a decomposition of l(x) into pairwise

co-prime factors. Firstly, by using the theory of LFSRs we express the cycles of FSR(l(x)) in

terms of the cycles of FSR(li(x)), 1 ≤ i ≤ r. Then we decompose the problem of determining the

adjacency graph of FSR(l(x)) to the problem of determining the association graphs of FSR(li(x)),

1 ≤ i ≤ r. We show that, if the periods of l1(x), l2(x), . . . , lr(x) are pairwise co-prime then the

adjacency graph of FSR(l(x)) is totally determined by the association graphs of FSR(li(x)),

1 ≤ i ≤ r; otherwise the adjacency graph of FSR(l(x)) is related to the solutions of a set of

equations. Since the concept of association graph is of importance, we study especially the

association graphs of LFSRs with irreducible characteristic polynomials, and give a connection

between the association graphs and the cyclotomic numbers over finite fields. Finally, as an

application of our results, we explicitly determine the adjacency graphs of some LFSRs, and

show that our results cover the previous ones.

The paper is organized as follows. In Section 2, we introduce some preliminaries. In Section 3,

we present an efficient method to decompose a sequence in G(l(x)). Section 4 analyzes the cycle

structure of FSR(l(x)). Section 5 gives the connection between the adjacency graph of FSR(l(x))

and the association graphs of FSR(li(x)), 1 ≤ i ≤ r. Section 6 considers the association graphs of

LFSRs with irreducible characteristic polynomials. We suggest some applications of our results

in Section 7, and make a conclusion on this paper in Section 8.
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2 Preliminaries

2.1 Feedback Shift Registers

Let F2 = {0, 1} be the binary finite field, and Fn
2 be the nth-dimensional vector space over F2.

An n-variable Boolean function f(x0, x1, . . . , xn−1) is a function from Fn
2 to F2.

An n-stage feedback shift register (FSR) consists of n binary storage cells and a feedback

function F regulated by a single clock, see Figure 1.

· · · · · ·s0 s1 sn−2 sn−1

feedback function F (x0, x1, . . . , xn−1)

Figure 1: feedback shift register

The characteristic function of this FSR is defined to be f = F + xn, and we use FSR(f)

to denote the FSR with characteristic function f . At every clock pulse, the current state

(s0, s1, . . . , sn−1) is updated by (s1, s2, . . . , sn−1, F (s0, s1, . . . , sn−1)) and the bit s0 is outputted.

The 2n output sequences of FSR(f) is denoted by G(f). It is shown by Golomb [7] that all

sequences in G(f) are periodic if and only if the characteristic function f is nonsingular, i.e., of

the form f = x0 + f0(x1, . . . , xn−1) + xn. In the following discussion, all characteristic functions

are assumed to be nonsingular. The next state operation T of FSR(f) is a bijection on Fn
2 ,

T : (x0, x1, . . . , xn−1) 7→ (x1, . . . , xn−1, F (x0, x1, . . . , xn−1)).

Let s = s0s1 . . . sp−1 . . . be a periodic sequence with period per(s) = p. For convenience we

denote s by s = (s0s1 . . . sp−1). We define the left shift operator L on periodic sequences by

Lis = (sisi+1 . . . si−1), where the subscripts are taken modulo p. Two periodic sequences s1
and s2 are called shift-equivalent if there exists an integer r such that s1 = Lrs2. The set G(f)

are partitioned into equivalent classes G(f) = [s1] ∪ [s2] ∪ · · · ∪ [sk] such that two sequences

are in the same equivalent class if and only if they are shift equivalent. Each equivalent class

is called a cycle of FSR(f), and the partition is called the cycle structure of FSR(f). A cycle

[(s0, s1, . . . , sp−1)] can also be represented using the state cycle form [S0,S1, . . . ,Sp−1], where

Si = (si, si+1, . . . , si+n−1) for 0 ≤ i ≤ p − 1, and the subscribes are taken modulo p. The state

Si is just the state of the FSR at the moment that the bit si is ready to be output.

An FSR is called a linear feedback shift register (LFSR) if its characteristic function f

is linear; otherwise, it is called a nonlinear feedback shift register (NFSR). With a linear

characteristic function f(x0, x1, . . . , xn) = a0x0 + a1x1 + · · · + anxn, a univariate polynomial
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c(x) = a0 + a1x+ · · ·+ anx
n ∈ F2[x] can be associated, that is usually called the characteristic

polynomial of the LFSR. In the case of LFSRs it is more convenient to use the term characteristic

polynomial rather than characteristic function.

For an n-stage FSR, the periods of its output sequences are limited by 2n. If this value is

attained, we call the sequences De Bruijn sequences, and the FSR a maximum length FSR. The

unique cycle in a maximum length FSR is called a De Bruijn cycle or a full cycle. For an n-stage

LFSR, the periods of its output sequences are limited by 2n − 1. If this value is attained, we

call the sequences m-sequences, and the FSR a maximum length LFSR. It is well known that,

FSR(l(x)) is a maximum length LFSR if and only if l(x) is primitive, that is, the period of l(x)

is per(l(x)) = 2n − 1.

2.2 Association Graphs

The concept of association graphs of LFSRs was proposed in [18] to deal with the adjacency

graphs of LFSRs with primitive-like characteristic polynomials.

Let a = a0, a1, . . . , ai, . . . and b = b0, b1, . . . , bi, . . . be two sequences, and c be an element in

F2. The sum of the two sequences a + b and the scalar product c · a are defined to be

a + b = a0 + b0, a1 + b1, . . . , ai + bi, . . . ,

c · a = ca0, ca1, . . . , cai, . . . .

Let l(x) ∈ F2[x] be a polynomial of degree n. Then G(l(x)) contains 2n periodic sequences,

and it is a vector space of dimension n over F2 when endowed with the two operations + and ·
defined above (see Chapter 8 of [19]). Let u be a sequence in G(l(x)). Because < G(l(x)),+ >

is a group, the mapping from G(l(x)) to itself:

γu : a 7→ u + a

is a bijection. It should be noted that, the bijection γu is not necessarily preserve the shift

equivalent property, that is, for two shift equivalent sequences a and b, their images γu(a) and

γu(b) may not be shift equivalent. Therefore, two sequences in a same cycle of G(l(x)) may be

mapped into different cycles. This lead us to the following definition.

Definition 1. [18] Let u be a sequence in G(l(x)), [s1] and [s2] be two cycles in G(l). The

association number of [s1] and [s2] with respect to u is defined by

Ru([s1], [s2]) = |{(i, j) | Lis1 + Ljs2 = u,

0 ≤ i ≤ per(s1)− 1, 0 ≤ j ≤ per(s2)− 1}|.

It is easy to see that, the association number Ru([s1], [s2]) is exactly the number of sequences

in [s1] whose image under γu is located in the cycle [s2]. In another word, Ru([s1], [s2]) =

|{(a,b) | a + b = u,a ∈ [s1],b ∈ [s2]}|. We can use a graph to characterise these relations of

the cycles in G(l(x)). Note that, these relations are influenced by the sequence u.
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Definition 2. [18] Let u be a sequence in G(l(x)). The association graph of FSR(l(x)) with

respect to u is an undirected graph, where the vertexes correspond to the cycles in G(l(x)), and

if Ru([s1], [s2]) > 0 then there is an edge labeled with Ru([s1], [s2]) between the two vertices [s1]

and [s2].

We refer the reader to Section VI of [18] for the basic properties of association graphs. In

Section 6 of this paper, we will give the connection between the association graphs and cyclotomic

numbers over finite fields.

2.3 Adjacency Graphs and Cyclotomy

For a state S = (s0, s1, . . . , sn−1), its conjugate is defined to be Ŝ = (s0, s1, . . . , sn−1), where s0
is the binary complement of s0. Two cycles C1 and C2 are said to be adjacent if there exists a

conjugate pair (S, Ŝ) such that the state S is on C1 while its conjugate Ŝ is on C2. Conjugate

pairs can be used to join cycles. For two cycles C1 and C2 that share a conjugate pair (S, Ŝ),

we can join the two cycles into one cycle by interchanging the successors of S and Ŝ. This is

the basic idea of the cycle joining method that proposed by Golomb [7]. For the application of

the cycle joining method, we need to find out the location of conjugate pairs shared by cycles.

This leads us to the definition of adjacency graph.

Definition 3. [10,20] For an FSR, its adjacency graph is an undirected graph where the vertexes

correspond to the cycles in it, and there exists an edge labeled with an integer m > 0 between

two vertexes if and only if the two vertexes share m conjugate pairs.

We should note that, adjacency graphs are special association graphs (see Theorem 5 of [18]).

Specifically, the adjacency graph of FSR(f) is just the association graph of FSR(f) with respect

to the sequence e, where e is generated by FSR(f) with initial state (1, 0, . . . , 0).

It was shown by Fredricksen that, C is a full cycle if and only if the existence of a state S

on C also implies the existence of its conjugate Ŝ on C (see Page 211 of [6]). This result implies

that the adjacency graph of any FSR is a connected graph. Moreover, every maximal spanning

tree of an adjacency graph corresponds to a maximum length FSR, since this represents a choice

of adjacencies that repeatedly join two cycles into one ending with a full cycle [2]. Therefore,

for a given FSR, the number of full cycles that can be constructed from it by using the cycle

joining method, is equal to the number of maximum spanning trees of its adjacency graph.

Let F2n be the finite field of 2n elements, and α be a primitive element in F2n . The field

F2n can be expressed as F2n = {0, α0, α1, . . . , α2n−2}. Let d ≥ 1 be a divisor of 2n − 1. The

cyclotomic classes C0, C1, . . . , Cd−1 of F2n are defined by Ci = {αi+jd | 0 ≤ j ≤ 2n−1
d − 1} for

0 ≤ i ≤ d − 1. For two integers l and m with 0 ≤ l,m ≤ d − 1, the cyclotomic number (l,m)d
over F2n is defined as the number of elements x ∈ Cl such that 1 + x ∈ Cm. It should be noted

that, the cyclotomic number (l,m)d is not a fixed number for given l,m, d and n, but affected

by the primitive element α, that is, different primitive elements may give different cyclotomic

numbers. We refer the reader to [8, 15] for more details.
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In [9], some relationships between the adjacency graphs of LFSRs with irreducible char-

acteristic polynomials and the cyclotomic numbers over finite fields was given. Let g(x) be an

irreducible polynomial of degree n. The authors there defined an 1-to-1 mapping from Fn
2 to F2n .

Under this mapping, the (state) cycles generated by FSR(g(x)) correspond to the cyclotomic

classes of F2n and a conjugate pair (X, X̂) corresponds to a pair of elements (γ, 1+γ) in F2n . By

using this correspondence the authors showed that, the number of conjugate pairs shared by any

two cycles of FSR(g(x)) is equal to some cyclotomic number over F2n . In Section 6 of this paper,

we will also define a mapping to deal with the association graph of FSR(g(x)). The mapping

we will define is a little different from that in [9], but has the similar properties. We will show

that the association number of any two cycles of FSR(g(x)) is equal to some cyclotomic number

over F2n .

3 The Direct Sum Decomposition of G(l(x))

Let l(x) be a characteristic polynomial of degree m, and l(x) = l1(x)l2(x) · · · lr(x) be a decom-

position of l(x) into pairwise co-prime factors. We note that, it is not necessarily that li(x) is

an irreducible polynomial or a power of an irreducible polynomial. We only require that these

factors are co-prime with each other. Let mi be the degree of li(x) for 1 ≤ i ≤ r. Without

lose of generality, we can assume m1 ≤ m2 ≤ · · · ≤ mr. Since li(x), i = 1, 2, . . . , r are pairwise

co-prime, the vector space G(l(x)) has the direct sum decomposition (see Chapter 8 of [19]):

G(l(x)) = G(l1(x)) +G(l2(x)) + · · ·+G(lr(x)),

which implies that, every sequence in G(l(x)) can be uniquely written as a sum of r sequences

in G(l1(x)), G(l2(x)), · · · , G(lr(x)) respectively. Let e be the sequence generated by FSR(l(x))

with the initial state E = (1, 0, . . . , 0). By the above discussion, e can be uniquely written as

e = e1 + e2 + · · ·+ er,

where ei ∈ G(li(x)) for i = 1, 2, . . . , r. We call the sequence ei the representative of G(li(x))

for i = 1, 2, . . . , r. The concept of representatives will be used later in this paper. Firstly, we

present an efficient method to determine these representatives.

For a bit string a = a0, a1, . . ., we use a|m to denote its first m bits, that is, a|m =

a0, a1, . . . , am. Consider the first m bits of e1, e2, . . . , er. Let them be,

e1|m = e1,0, . . . , e1,m1−1, e1,m1 , . . . , e1,m−1,

e2|m = e2,0, . . . , e2,m2−1, e2,m2 , . . . , e2,m−1,

· · · · · · · · ·
er|m = er,0, . . . , er,mr−1, er,mr , . . . , er,m−1.

Because e1 + e2 + · · ·+ er = e, we know that,

e1|m + e2|m + · · ·+ er|m = e|m = E.
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This equation is a vector equation, and it contains actually m equations. Recall that, ei is

a sequence in G(li(x)), hence the bit string ei|m satisfies the linear equation corresponding

to li(x). Consequently, these bits ei,mi , . . . , ei,m−1 can be written as linear combinations of

ei,0, . . . , ei,mi−1. Therefore, the equation e1|m + e2|m + · · ·+ er|m = E has only m unknowns,

e1,0, . . . , e1,m1−1, e2,0, . . . , e2,m2−1, · · · , er,0, . . . , er,mr−1.

This implies that, the equation is a system of m linear equations with m unknowns, and it can

be solved in time O(m2) ∼ O(m3). Once the first mi bits of ei is obtained, then the sequence

ei is totally determined.

For the representatives, we have the following property.

Theorem 1. The minimal polynomial of ei is li(x) for 1 ≤ i ≤ r.

Proof. Since the sequence e is nonzero and it contains m−1 successive 0s, it can not be generated

by any LFSR whose stages ≤ m−1. So the minimal polynomial of e is l(x). Suppose the minimal

polynomial of ei is not li(x), but a proper divisor of li(x). Then the minimal polynomial of the

sum e1 + e2 + · · ·+ er = e would be a proper divisor of l(x), which is a contradiction.

4 The Cycle Structure of G(l(x))

In this section, we consider the cycle structure of FSR(l(x)). We will express the cycles in

FSR(l(x)) in terms of the cycles in FSR(li(x)), i = 1, 2, . . . , r. For a periodic sequence a, we use

[a] to denote the cycle [a] = {a, La, . . . , Lper(a)−1a}. The sum of two cycles [a] and [b] is defined

to be [a] + [b] = {s + t | s ∈ [a], t ∈ [b]}. The following lemma deals with the sum of two cycles.

Lemma 1. [18] Let s1 and s2 be two periodic sequences such that their minimal polynomials are

co-prime. Let d = gcd(per(s1), per(s2)). Then [s1]+[s2] = [s1+s2]∪[Ls1+s2]∪· · ·∪[Ld−1s1+s2].

In particular, if gcd(per(s1),per(s2)) = 1, then [s1] + [s2] = [s1 + s2].

This lemma can be generalised to deal with the sum of more than two cycles.

Lemma 2. Let s1, s2, . . . , sr be periodic sequences such that their minimal polynomials are pair-

wise co-prime. Let di = gcd(per(s1 + · · ·+ si),per(si+1)) for i = 1, 2, . . . , r − 1. Then,

[s1] + [s2] + · · ·+ [sr]

= ∪d1−1I1=0 ∪
d2−1
I2=0 · · · ∪

dr−1−1
Ir−1=0 [LI1+I2+···+Ir−1s1 + LI2+···+Ir−1s2 + · · ·+ LIr−1sr−1 + sr].

In particular, if per(s1),per(s2), . . . ,per(sr) are pairwise co-prime, then

[s1] + [s2] + · · ·+ [sr] = [s1 + s2 + · · ·+ sr].
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Proof.

[s1] + [s2] + · · ·+ [sr]

=
(
∪d1−1I1=0 [LI1s1 + s2]

)
+ [s3] + · · ·+ [sr]

=
(
∪d1−1I1=0 ∪

d2−1
I2=0 [LI1+I2s1 + LI2s2 + s3]

)
+ [s4] + · · ·+ [sr]

· · ·

= ∪d1−1I1=0 ∪
d2−1
I2=0 · · · ∪

dr−1−1
Ir−1=0 [LI1+I2+···+Ir−1s1 + LI2+···+Ir−1s2 + · · ·+ LIr−1sr−1 + sr]

By using this lemma, we can express the cycles in G(l(x)) in terms of the cycles in G(li(x)),

1 ≤ i ≤ r. We first recall some properties about the periods of polynomials. Let c(x) be a

polynomial satisfying c(x) 6= 0. The period of c(x) is defined to be the least positive integer k

such that c(x) | xk +1. Some basic properties about the periods of polynomials are given in [19].

It is not hard to show that, if the periods of l1(x), l2(x), . . . , lr(x) are pairwise co-prime then

l1(x), l2(x), . . . , lr(x) must be pairwise co-prime. However, these polynomials being pairwise

co-prime does not guarantee that their periods are pairwise co-prime.

Theorem 2. Let l(x) be a characteristic polynomial and l(x) = l1(x)l2(x) · · · lr(x) be a decom-

position of l(x) into pairwise co-prime factors. Let the cycle structure of G(l1(x)),G(l2(x)),. . .,

G(lr(x)) be,

G(l1(x)) =[s1,1] ∪ [s1,2] ∪ · · · ∪ [s1,k1 ]

G(l2(x)) =[s2,1] ∪ [s2,2] ∪ · · · ∪ [s2,k2 ]

...

G(lr(x)) =[sr,1] ∪ [sr,2] ∪ · · · ∪ [sr,kr ],

where ki is the number of cycles in G(li(x)) for 1 ≤ i ≤ r. Then the cycle structure of G(l(x))

is given by,

G(l(x)) =
(
∪k1i1=1 ∪

k2
i2=1 · · · ∪

kr
ir=1

)(
∪d1−1I1=0 ∪

d2−1
I2=0 · · · ∪

dr−1−1
Ir−1=0

)
[LI1+I2···+Ir−1s1,i1 + LI2···+Ir−1s2,i2 + · · ·+ LIr−1sr−1,ir−1 + sr,ir ],

where dj = gcd(per(s1,i1 + · · ·+ sj,ij ), per(sj+1,ij+1)) for j = 1, 2, . . . , r − 1.

In particular, if the periods of l1(x), l2(x), . . . , lr(x) are pairwise co-prime, then,

G(l(x)) = ∪k1i1=1 ∪
k2
i2=1 · · · ∪

kr
ir=1 [s1,i1 + s2,i2 + · · ·+ sr,ir ].

8



Proof. Because l1(x), l2(x), . . . , lr(x) are pairwise co-prime polynomials, we have the direct sum

decomposition G(l(x)) = G(l1(x)) +G(l2(x)) + · · ·+G(lr(x)). Then we get that,

G(l(x)) =G(l1(x)) +G(l2(x)) + · · ·+G(lr(x))

=
(
∪k1i1=1[s1,i1 ]

)
+
(
∪k2i2=1[s1,i2 ]

)
+ · · ·+

(
∪krir=1[s1,ir ]

)
=
(
∪k1i1=1 ∪

k2
i2=1 · · · ∪

kr
ir=1

)
([s1,i1 ] + [s1,i2 ] + · · ·+ [s1,ir ])

=
(
∪k1i1=1 ∪

k2
i2=1 · · · ∪

kr
ir=1

)(
∪d1−1I1=0 ∪

d2−1
I2=0 · · · ∪

dr−1−1
Ir−1=0

)
[LI1+I2···+Ir−1s1,i1 + LI2···+Ir−1s2,i2 + · · ·+ LIr−1sr−1,ir−1 + sr,ir ],

where the last equation is valid because of Lemma 2.

If the periods of l1(x), l2(x), . . . , lr(x) are pairwise co-prime, then for any r sequences s1 ∈
G(l1(x)), s2 ∈ G(l2(x)), . . . , sr ∈ G(lr(x)) their periods must be pairwise co-prime, which implies

that these parameters d1, d2, . . . , dr−1 all equal to 1. Therefore, G(l(x)) = ∪k1i1=1 ∪
k2
i2=1 · · · ∪

kr
ir=1

[s1,i1 + s2,i2 + · · ·+ sr,ir ].

By this theorem, the cycles in G(l(x)) has the form [La1s1+La2s2+ · · ·+Larsr], where si is a

sequence in G(li(x)) and ai is an integer satisfying 0 ≤ ai ≤ per(si) for 1 ≤ i ≤ r. In particular,

if the periods of l1(x), l2(x), . . . , lr(x) are pairwise co-prime, then the cycles in G(l(x)) has the

form [s1 + s2 + · · ·+ sr], where si is a sequence in G(li(x)) for i = 1, 2, . . . , r.

We should note that, different arrays (a1, a2, . . . , ar) 6= (b1, b2, . . . , br) may give the same

cycle [La1s1 +La2s2 + · · ·+Larsr] = [Lb1s1 +Lb2s2 + · · ·+Lbrsr]. Theorem 2 shows a full list of

the cycles in G(l(x)) without repeating, but it does not mean that different arrays always result

in different cycles. The following theorem gives the condition for two cycles be the same one.

Theorem 3. Let C1 = [La1s1 + La2s2 + · · ·+ Larsr] and C2 = [Lb1s1 + Lb2s2 + · · ·+ Lbrsr] be

two cycles in G(l(x)). Then C1 = C2 if and only if gcd(per(si),per(sj)) | (ai − aj) − (bi − bj)
for any 1 ≤ i 6= j ≤ r.

Proof. Suppose C1 = C2, then there exists an integer k such that,

Lk (La1s1 + La2s2 + · · ·+ Larsr) = Lb1s1 + Lb2s2 + · · ·+ Lbrsr,

which implies that,

La1+ks1 + La2+ks2 + · · ·+ Lar+ksr = Lb1s1 + Lb2s2 + · · ·+ Lbrsr.

Then by a simple deformation we get that,(
La1+ks1 + Lb1s1

)
=
(
La2+ks2 + Lb2s2

)
+ · · ·+

(
Lar+ksr + Lbrsr

)
.

Since (
La1+ks1 + Lb1s1

)
∈ G(l1(x))

9



and (
La2+ks2 + Lb2s2

)
+ · · ·+

(
Lar+ksr + Lbrsr

)
∈ G(l2(x) · · · lr(x)),

and the two polynomials l1(x) and l2(x) · · · lr(x) are co-prime, we know that La1+ks1+Lb1s1 = 0,

the zero sequence. Similarly, we can show that La2+ks2 + Lb2s2 = · · · = Lar+ksr + Lbrsr = 0.

Therefore, k satisfies the following congruence equations.
k ≡ a1 − b1 mod per(s1)

k ≡ a2 − b2 mod per(s2)

· · · · · · · · · · · · · · · · · · · · · · · ·
k ≡ ar − br mod per(sr)

It is not hard to show that, these congruence equations have a solution if and only if gcd(per(si),

per(sj)) | (ai − aj)− (bi − bj) for any 1 ≤ i 6= j ≤ r.

5 The Adjacency Graph of FSR(l(x))

In this section, we consider the adjacency graph of FSR(l(x)). We will give formulas for the

number of conjugate pairs shared by any two cycles in G(l(x)). According to Theorem 2, the

cycles in G(l(x)) has the form [La1s1 + La2s2 + · · ·+ Larsr], where si is a sequence in G(li(x))

and ai is an integer satisfying 0 ≤ ai ≤ per(si) for 1 ≤ i ≤ r.

Theorem 4. Let [La1s1 +La2s2 + · · ·+Larsr] and [Lb1t1 +Lb2t2 + · · ·+Lbrtr] be two cycles in

G(l(x)), where si and ti are two sequences in G(li(x)), and ai and bi are two integers satisfying

0 ≤ ai ≤ per(si), 0 ≤ bi ≤ per(ti) for any 1 ≤ i ≤ r. Then the number of conjugate pairs shared

by the two cycles is equal to the number of arrays (u1, u2, . . . , ur, v1, v2, . . . , vr) that satisfy the

following four conditions:

1. Luisi + Lviti = ei for any 1 ≤ i ≤ r.

2. gcd(per(si), per(sj)) | (ui − uj)− (ai − aj) for any 1 ≤ i 6= j ≤ r.

3. gcd(per(ti),per(tj)) | (vi − vj)− (bi − bj) for any 1 ≤ i 6= j ≤ r.

4. 0 ≤ ui ≤ per(si), 0 ≤ vi ≤ per(ti) for any 1 ≤ i ≤ r.

where ei is the representative of G(li(x)) for 1 ≤ i ≤ r.

Proof. Write the cycles [s1], [s2], . . . , [sr] and [t1], [t2], . . . , [tr] in the state cycle form, where each
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state is of length m.

[s1] =[S1,0,S1,1, . . . ,S1,per(·)−1] [t1] =[T1,0,T1,1, . . . ,T1,per(·)−1]

[s2] =[S2,0,S2,1, . . . ,S2,per(·)−1] [t2] =[T2,0,T2,1, . . . ,T2,per(·)−1]

...
...

[sr] =[Sr,0,Sr,1, . . . ,Sr,per(·)−1] [tr] =[Tr,0,Tr,1, . . . ,Tr,per(·)−1]

For simplicity, we use the notation per(·) to denote the period of the corresponding sequence.

We need to show that there is an 1-to-1 correspondence between the conjugate pairs shared by

the two cycles [La1s1 + La2s2 + · · · + Larsr] and [Lb1t1 + Lb2t2 + · · · + Lbrtr] and the arrays

(u1, u2, . . . , ur, v1, v2, . . . , vr) that satisfy the four conditions.

Suppose there exists an array (u1, u2, . . . , ur, v1, v2, . . . , vr) that satisfy the four conditions.

Since this array satisfies Condition 1 we have,

Lu1s1 + Lv1t1 + Lu2s2 + Lv2t2 + · · ·+ Lursr + Lvrtr = e,

which implies

S1,u1 + T1,v1 + S2,u2 + T2,v2 + · · ·+ Sr,ur + Tr,vr = E, (1)

where E = (1, 0, . . . , 0). Define,

X = S1,u1 + S2,u2 + · · ·+ Sr,ur , Y = T1,v1 + T2,v2 + · · ·+ Tr,vr .

Then the above equation shows that, (X,Y) is a conjugate pair.

Since the array (u1, u2, . . . , ur, v1, v2, . . . , vr) satisfies Condition 2, that is, gcd(per(si), per(sj)) |
(ui − uj) − (ai − aj) for any 1 ≤ i 6= j ≤ r, by Theorem 3 we know that X is a state on the

cycle [La1s1 +La2s2 + · · ·+Larsr]. Similarly, Condition 3 ensures that Y is a state on the cycle

[Lb1t1 + Lb2t2 + · · · + Lbrtr]. Therefore, (X,Y) is a conjugate pair shared by the two cycles

[La1s1 + La2s2 + · · ·+ Larsr] and [Lb1t1 + Lb2t2 + · · ·+ Lbrtr].

On the other hand, suppose (X,Y) is a conjugate pair shared by the two cycles [La1s1 +

La2s2 + · · ·+ Larsr] and [Lb1t1 + Lb2t2 + · · ·+ Lbrtr]. We can assume,

X = S1,u1 + S2,u2 + · · ·+ Sr,ur , Y = T1,v1 + T2,v2 + · · ·+ Tr,vr .

Since X is state on the cycle [La1s1 + La2s2 + · · ·+ Larsr] and Y is state on the cycle [La1s1 +

La2s2 + · · ·+Larsr], by Theorem 3 we know that the array (u1, u2, . . . , ur, v1, v2, . . . , vr) satisfies

Condition 2 and Condition 3.

Because (X,Y) is a conjugate pair, the equation X + Y = E holds. This implies that,

S1,u1 + T1,v1 + S2,u2 + T2,v2 + · · ·+ Sr,ur + Tr,vr = E.

Let T be the next state operation corresponding to FSR(l(x)). For any integer t ≥ 0, we have

T t (S1,u1 + T1,v1 + S2,u2 + T2,v2 + · · ·+ Sr,ur + Tr,vr) = T tE,
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which implies

T tS1,u1 + T tT1,v1 + T tS2,u2 + T tT2,v2 + · · ·+ T tSr,ur + T tTr,vr = T tE.

Therefore, the following equation holds,

Lu1s1 + Lv1t1 + Lu2s2 + Lv2t2 + · · ·+ Lursr + Lvrtr = e.

Then by the uniqueness of the decomposition of e, we get that

Lu1s1 + Lv1t1 = e1, L
u2s2 + Lv2t2 = e2, · · · , Lursr + Lvrtr = er.

This shows that the array (u1, u2, . . . , ur, v1, v2, . . . , vr) satisfies Condition 1.

According to the proof of Theorem 4, the conjugate pairs shared by the two cycles [La1s1 +

La2s2 + · · · + Larsr] and [Lb1t1 + Lb2t2 + · · · + Lbrtr] are exactly those (S1,u1 + S2,u2 + · · · +
Sr,ur ,T1,v1 + T2,v2 + · · ·+ Tr,vr), where the array (u1, u2, . . . , ur, v1, v2, . . . , vr) satisfies the four

conditions.

We note that, in Theorem 4 we didn’t require that the two cycles [La1s1+La2s2+ · · ·+Larsr]

and [Lb1t1 + Lb2t2 + · · · + Lbrtr] are different. When the two cycles are the same one, we can

obtain the number of conjugate pairs that located in the cycle [La1s1 + La2s2 + · · · + Larsr].

Therefore, Theorem 4 considers all the adjacency relations of the cycles in FSR(l(x)).

In Theorem 4, Conditions 2 and 3 are used to ensure that the two states X and Y are located

on the two cycles respectively. If the periods of l1(x), l2(x), . . . , lr(x) are pairwise co-prime, then

the two conditions are no longer needed, and in this case we get a more concise formula.

Corollary 1. In the case that the periods of l1(x), l2(x), . . . , lr(x) are pairwise co-prime, let

[s1 + s2 + · · · + sr] and [t1 + t2 + · · · + tr] be two cycles in G(l(x)), where si and ti are two

sequences in G(li(x)) for any 1 ≤ i ≤ r. Then the two cycles share

Re1([s1], [t1])Re2([s2], [t2]) · · ·Rer([sr], [tr])

conjugate pairs, where ei is the representative of G(li(x)) for 1 ≤ i ≤ r.

Proof. In this special case, we know that the periods of s1, s2, . . . , sr are pairwise co-prime, that

is, gcd(per(si), per(sj)) = 1 for any 1 ≤ i 6= j ≤ r. Consequently, Condition 2 of Theorem 4 is al-

ways valid. Similarly, Condition 3 is also always valid. Then by Theorem 4, the number of conju-

gate pairs shared by the two cycles is equal to the number of arrays (u1, u2, . . . , ur, v1, v2, . . . , vr)

that satisfy the following two conditions:

1. Luisi + Lviti = ei for any 1 ≤ i ≤ r.

2. 0 ≤ ui ≤ per(si), 0 ≤ vi ≤ per(ti) for any 1 ≤ i ≤ r.
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By the definition of association numbers, the number of pairs (ui, vi) that satisfy the two con-

ditions is Rei([si], [ti]). Because these pairs (u1, v1), (u2, v2), . . . , (ur, vr) are independent with

each other, the number of arrays (u1, u2, . . . , ur, v1, v2, . . . , vr) that satisfy the two conditions is

Re1([s1], [t1])Re2([s2], [t2]) · · ·Rer([sr], [tr]).

It is easy to verify that, the conjugate pairs shared by the two cycles [s1 + s2 + · · ·+ sr] and

[t1+t2+· · ·+tr] are exactly those (S1,u1 +S2,u2 +· · ·+Sr,ur ,T1,v1 +T2,v2 +· · ·+Tr,vr), where the

array (u1, u2, . . . , ur, v1, v2, . . . , vr) satisfies Lu1s1 +Lv1t1 = e1, L
u2s2 +Lv2t2 = e2, · · · , Lursr +

Lvrtr = er. Hence, the problem of finding conjugate pairs shared by any two cycles in G(l(x)) is

decomposed into the problems of finding the association relations between the cycles in G(li(x))

for i = 1, 2, . . . , r, which are obviously easier to handle.

We note that, in Corollary 1, we didn’t require the two cycles [s1 + s2 + · · · + sr] and

[t1 + t2 + · · · + tr] are different. When the two cycles are the same one, we get that, there

are 1
2Re1([s1], [s1])Re2([s2], [s2]) · · ·Rer([sr], [sr]) conjugate pairs in the cycle [s1 + s2 + · · ·+ sr].

Therefore, Corollary 1 considers all the adjacency relations of the cycles in FSR(l(x)).

6 Irreducible Polynomials and Cyclotomy

By the results in Section 5, the adjacency graph of FSR(l(x)) relies on the association graphs

of FSR(l1(x)),FSR(l2(x)), . . . ,FSR(lr(x)). So it is helpful to study the association graphs of

LFSRs. In [18], the authors presents some basic properties about association graphs. In this

section, we pay attention to the LFSRs with irreducible characteristic polynomials, and give a

connection between their association graphs and the cyclotomic numbers over finite fields.

Let g(x) be an irreducible polynomial of degree n and period p. Let q = 2n−1
p . By the theory

of LFSRs, G(g(x)) contains the zero cycle [0] and q cycles of length p. Denote the q non-zero

cycles by [s0], [s1], . . . , [sq−1], where s0, s2, . . . , sq−1 are non-zero sequences in G(g(x)) that in

different cycles. Let β be a root of g in some extended field of F2. Then we can construct a

finite field F2n with g(x) as a defining polynomial. Let α ∈ F2n be a primitive element satisfying

αq = β, then F2n = F2(α) = {0, α0, α1, . . . , α2n−2}. It is well known that, for any sequence

a ∈ G(g), there exists a unique γ ∈ F2n such that a = (ai)
∞
i=0 = (Tr(γβi))∞i=0, where the trace

function Tr is from F2n to F2 and ai is the i-th element of a. This is usually called the trace

representation of a. Define a mapping from G(g) to F2n ,

Ψ : G(g)→ F2n , a 7→ γ.

The mapping is defined in a different way from that in [9], but has the similar properties.

Theorem 5. The mapping Ψ is an 1-to-1 mapping and has the properties that, for any sequences

a and b in G(g), we have Ψ(La) = Ψ(a)β and Ψ(a + b) = Ψ(a) + Ψ(b).

Proof. Let a = (ai)
∞
i=0 and b = (bi)

∞
i=0 be two sequences in G(g(x)). If Ψ(a) = Ψ(b), then
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ai = Tr(Ψ(a)βi) = Tr(Ψ(b)βi) = bi holds for any i ≥ 0, which implies a = b. Therefore, Ψ is

an injection. Since G(g) and F2n have the same size, Ψ must be an 1-to-1 mapping.

Let Ψ(a) = γ and Ψ(b) = δ. By the definition of Ψ, we get that, Ψ(La) = Ψ((ai+1)
∞
i=0) =

Ψ(Tr(γβi+1)∞i=0) = Ψ(Tr(γββi)∞i=0) = γβ = Ψ(a)β, and Ψ(a + b) = Ψ((ai)
∞
i=0 + (bi)

∞
i=0) =

Ψ(Tr(γβi)∞i=0 + Tr(δβi)∞i=0) = Ψ(Tr((γ + δ)βi)∞i=0) = γ + δ = Ψ(a) + Ψ(b).

These properties of Ψ induce a correspondence between the cycles in G(g) and the cyclotomic

classes in F2n . Consider the following cyclotomic classes,

C0 = {β0, β1, . . . , βp−1}
C1 = {αβ0, αβ1, . . . , αβp−1}
· · ·

Cq−1 = {αq−1β0, αq−1β1, . . . , αq−1βp−1}

The class Ci is the i-th cyclotomic class of F2n . The set F2n \ {0} is partitioned into disjoint

classes, i.e., F2n \ {0} = C0 ∪ C1 ∪ · · · ∪ Cq−1. Given a cycle [si] in G(g), this cycle contains si
and all its shift equivalent sequences,

[si] = {si, Lsi, . . . , L
p−1si}.

Since Ψ(La) = Ψ(a)β holds for any a ∈ G(g(x)), the set

{Ψ(si),Ψ(Lsi), . . . ,Ψ(Lp−1si)},

is a cyclotomic class of F2n . For convenience, we use Ψ([si]) to denote this set. Because Ψ is an

1-to-1 mapping, different cycles in G(g) must give different cyclotomic classes, and there is an

1-to-1 correspondence between the cycles in G(g) and the cyclotomic classes of F2m . Without

lose of generality, in the following discussion we assume Ψ([si]) = Ci for 0 ≤ i ≤ q − 1.

Theorem 6. Let s be a sequence in G(g), and let Ψ(s) = αaβb, where a and b are two integers

satisfying 0 ≤ a ≤ q − 1 and 0 ≤ b ≤ p − 1. Then the association number of [si] and [sj ] with

respect to s is

Rs([si], [sj ]) = (i− a, j − a)q,

where the two integers i− a and j − a are reduced modulo q.

Proof. Let γ be an element in F2m . We use γ + Ci to denote the set {γ + δ | δ ∈ Ci}, and γCi

to denote the set {γδ | δ ∈ Ci}. We need to prove that |(αaβb +Ci)∩Cj | = (i− a, j − a)q. This

can be done as follows,

|(αaβb + Ci) ∩ Cj | =|α−aβ−b((αaβb + Ci) ∩ Cj)|
=|α−a((αa + Ci) ∩ Cj)|
=|(1 + Ci−a) ∩ Cj−a)|
=(i− a, j − a)q.
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It is shown in [9] (see Theorem 4 of [9]) that the conjugate pairs shared by any two cycles

of FSR(g(x)) is equal to some cyclotomic number over F2n , while this theorem shows that the

association number of any two cycles of FSR(g(x)) is equal to some cyclotomic number. Because

adjacency graphs are special association graphs (see Theorem 5 of [18]), this theorem partially

generalized the result in [9].

7 Applications

7.1 Applications to the product of primitive polynomials

Let p(x) be a primitive polynomial of degree n. Then G(p(x)) contains two cycles, [0] and [s],

where 0 is the zero sequence and s is an m-sequence in G(p(x)). Since the cycle structure of

FSR(p(x)) is very simply, its association graph can be obtained directly.

Theorem 7. Let p(x) be a primitive polynomial of degree n, and G(p(x)) = [0] ∪ [s] where s

is an m-sequence in G(p(x)). The association numbers of the cycles in G(p(x)) with respect to

any nonzero sequence u ∈ G(p(x)) is

Ru([0], [0]) = 0, Ru([0], [s]) = 1, Ru([s], [s]) = 2n − 2.

Proof. It is easy to see that Ru([0], [0]) = 0 and Ru([0], [s]) = 1. In the following, we show that

Ru([s], [s]) = 2n − 2. By the definition of association numbers, Ru([s], [s]) = |{s1 | u + s1 ∈
[s], s1 ∈ [s]}| = |G(p(x)) \ {0,u}| = 2n − 2. This completes the proof.

In [18], the association graphs of LFSRs is assumed to be obtained by using the exhaustive

search method, that is, for a given polynomial l(x) of degree m and a sequence u ∈ G(l(x)),

we need time O(2m) to calculate the association graph of FSR(l(x)) with respect to u. How-

ever, by Theorem 7 if l(x) is a primitive polynomial then its association graph can be ob-

tained directly. We should note that, Corollary 1 together with Theorem 7 give the adjacency

graph of G(p1(x)p2(x) · · · pr(x)), where p1(x), p2(x), . . . , pr(x) are primitive polynomials such

that deg p1(x),deg p1(x), . . . ,deg p1(x) are pairwise co-prime. These adjacency graphs have been

studied in [16] using a different method.

It is easy to verify that, the degrees of p1(x), p1(x), . . . , p1(x) are pairwise co-prime implies

that the periods of p1(x), p2(x), . . . , pr(x) are pairwise co-prime. By Theorem 2, if this is the

case then the cycles in G(p1(x)p2(x) · · · pr(x)) have the form of [s1 + s2 + · · ·+ sr], where si is a

sequence in G(pi(x)).

Corollary 2. [16] Let p1(x), p2(x), . . . , pr(x) be primitive polynomials with their degrees pair-

wise co-prime. Let [s1+s2+· · ·+sr] and [t1+t2+· · ·+tr] be two cycles in G(p1(x)p2(x) · · · pr(x)),

where si and ti are two nonzero sequences in G(pi(x)) for 1 ≤ i ≤ r. Then the number of con-
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jugate pairs shared by the two cycles is ∏
{i|si 6=0,ti 6=0}

(2ni − 2)

 ∏
{i|si=0,ti 6=0}

1

 ∏
{i|si 6=0,ti=0}

1

 ∏
{i|si=0,ti=0}

0

 .

Proof. Let e be the sequence generated by FSR(p1(x)p2(x) · · · pr(x)) with the initial state (1,

0, . . ., 0). The sequence e has the unique decomposition e = e1 + e2 + · · · + er such that

er ∈ G(pi(x)) for 1 ≤ i ≤ r. By Theorem 1, the minimal polynomial of ei is pi(x), that is,

ei 6= 0 for 1 ≤ i ≤ r. By Corollary 1, the number of conjugate pairs shared by the two cycles is

Re1([s1], [t1])Re2([s2], [t2]) · · ·Rer([sr], [tr]). Then we can finish the proof by applying Theorem

7 to this formula.

In fact, Corollary 1 together with Theorem 6 also give some results on the adjacency graph-

s of LFSRs whose characteristic polynomials are a product of irreducible polynomials. Let

g1(x), g2(x), . . . , gr(x) be irreducible polynomials with their periods pairwise co-prime (which

implies that g1(x), g2(x), . . . , gr(x) are pairwise co-prime). Then the number of conjugate pairs

shared by any two cycles in G(g1(x)g2(x) . . . gr(x)) is a product of some cyclotomic numbers.

7.2 Applications to primitive-like polynomials

Primitive-like polynomials are defined to be the polynomials of the form l(x)p(x), where l(x)

is a polynomial of small degree and p(x) is a primitive polynomial [18]. Let deg l(x) = m and

deg p(x) = n. For simplicity, we consider here only the case of gcd(per(l(x)), per(p(x))) = 1. Let

e be the sequence generated by FSR(l(x)p(x)) with the initial state (1, 0, . . . , 0), and e = u + s

be the decomposition of e such that u ∈ G(l(x)) and s ∈ G(p(x)). It was shown in [18] that,

the adjacency graph of FSR(l(x)p(x)) is related to the association graph of FSR(l(x)) with

respect to u. The decomposition e = u + s is assumed to be obtained in time O(n2m) and

the association graph of FSR(l(x)) is assumed to be obtained in time O(2m). Therefore, by the

results there determining the adjacency graph of FSR(l(x)p(x)) needs time O(n2m). In fact, the

time complicity can be optimized by using the results in this paper.

Let l(x) = l1(x)l2(x) · · · lr(x) be a decomposition of l(x) into pairwise co-prime factors. Let

the degree of li(x) be mi for 1 ≤ i ≤ r. Without lose of generality, we assume m1 ≤ m2 ≤ · · · ≤
mr. Let e = e1 +e2 + · · ·+er +s be the decomposition of e such that ei ∈ G(li(x)) for 1 ≤ i ≤ r
and s ∈ G(p(x)). By the discussion in Section 3, the decomposition of e can be obtained in

time O((m + n)3). Then, by Corollary 1 we can get the adjacency graph of FSR(l(x)p(x)) by

analyzing the association graphs of FSR(li(x)) with respect to ei for 1 ≤ i ≤ r, which needs

time O(2m1 + 2m2 + · · ·+ 2mr). Therefore, the total time to determine the adjacency graph of

FSR(l(x)p(x)) is O((m+n)3 + 2m1 + 2m2 + · · ·+ 2mr), which can be much smaller than O(n2m).

We use an example to explain the above discussion. The adjacency graph of FSR((1 + x +

x3 + x4)p(x)) has been analyzed in [18]. Since 1 + x+ x3 + x4 = (1 + x2)(1 + x+ x2), instead of

analyzing the association graph of FSR(1+x+x3+x4) with respect to u = (000111) (see Figures
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1 and 2 in [18]), we can analyze the association graphs of FSR(1 +x2) and FSR(1 +x+x2) with

respect to e1 = (10) and e2 = (101) respectively. The two mappings γe1 and γe2 are shown in

Figures 2 and 3.

(0)

(01)

(10)

(1)

(0)

(01)

(10)

(1)

[(0)]

[(01)]

[(1)]

Figure 2: The mapping γe1 on G(1 + x2), where e1 = (10)

(0)

(011)

(110)

(101)

(0)

(011)

(110)

(101)

[(0)]

[(011)]

Figure 3: The mapping γe2 on G(1 + x+ x2), where e2 = (101)

The association graphs of FSR(1 + x2) and FSR(1 + x+ x2) with respect to e1 = (10) and

e2 = (101) respectively can be easily determined from two mappings γe1 and γe2 , and they will

not be given here. The cycle structure of G(1 + x2), G(1 + x+ x2) and G(p(x)) are,

G(1 + x2) = [(0)] ∪ [(01)] ∪ [(1)]

G(1 + x+ x2) = [(0)] ∪ [(011)]

G(p(x)) = [(0)] ∪ [s].

By Theorem 2, the cycle structure of FSR((1 + x2)(1 + x+ x2)p(x)) is,

G((1 + x2)(1 + x+ x2)p(x))

=[(0) + (0) + (0)] ∪ [(01) + (0) + (0)] ∪ [(1) + (0) + (0)]+

[(0) + (011) + (0)] ∪ [(01) + (011) + (0)] ∪ [(1) + (011) + (0)]+

[(0) + (0) + s] ∪ [(01) + (0) + s] ∪ [(1) + (0) + s]+

[(0) + (011) + s] ∪ [(01) + (011) + s] ∪ [(1) + (011) + s]

=[(0)] ∪ [(01)] ∪ [(1)] + [(011)] ∪ [(000111)] ∪ [(001)]+

[s] ∪ [(01) + s] ∪ [(1) + s] + [(011) + s] ∪ [(000111) + s] ∪ [(001) + s].

From the association graphs of FSR(1 + x2), FSR(1 + x + x2) and FSR(p(x)), the adjacency

graph of FSR((1 + x+ x2)(1 + x2)p(x)) can be determined. We take the two cycles [(011)] and
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[(000111) + s] for example to show how to calculate the number of conjugate pairs shared by

them. Because [(011)] = [(0) + (011) + (0)] and [(000111) + s] = [(01) + (011) + s], by Corollary

1 the number of conjugate pairs shared by the two cycles is

Re1([(0)], [(01)])Re2([(011)], [(011)])Rs([(0)], [s]) = 2,

which coincides with the result in [18].

8 Conclusion

We studied the relationship between the adjacency graphs and the association graphs of LFSRs.

By using this relationship, the problem of determining the adjacency graphs of LFSRs is decom-

posed to the problem of determining the association graphs of LFSRs with small orders, which

is much easier to handle. We also studied the association graphs of LFSRs with irreducible char-

acteristic polynomials, and showed that these association graphs are related to the cyclotomic

numbers over finite fields. At the end, we suggested some applications of these results.
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