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Abstract

The study of program obfuscation is seeing great progress in recent years, which is crucially
attributed to the introduction of graded encoding schemes by Garg, Gentry and Halevi (Euro-
crypt 2013). In such schemes, elements of a ring can be encoded such that the content of the
encoding is hidden, but restricted algebraic manipulations, followed by zero-testing, can be per-
formed publicly. This primitive currently underlies all known constructions of general-purpose
obfuscators.

However, the security properties of the current candidate graded encoding schemes are not
well understood, and new attacks frequently introduced. It is therefore important to assume as
little as possible about the security of the graded encoding scheme, and use as conservative secu-
rity models as possible. This often comes at a cost of reducing the efficiency or the functionality
of the obfuscator.

In this work, we present a candidate obfuscator, based on composite-order graded encoding
schemes, which obfuscates circuits directly a la Zimmerman (Eurocrypt 2015) and Applebaum-
Brakerski (TCC 2015). Our construction requires a graded encoding scheme with only 3 “plain-
text slots” (= sub-rings of the underlying ring), which is directly related to the size and com-
plexity of the obfuscated program. We prove that our obfuscator is superior to previous works
in two different security models.

1. We prove that our obfuscator is indistinguishability-secure (iO) in the Unique Represen-
tation Generic Graded Encoding model. Previous works either required a composite-order
scheme with polynomially many slots, or were provable in a milder security model. This
immediately translates to a polynomial improvement in efficiency, and shows that improved
security does not come at the cost of efficiency in this case.

2. Following Badrinarayanan et al. (Eurocrypt 2016), we consider a model where finding any
“non-trivial” encoding of zero breaks the security of the encoding scheme. We show that,
perhaps surprisingly, secure obfuscation is possible in this model even for some classes
of non-evasive functions (for example, any class of conjunctions). We define the property
required of the function class, formulate an appropriate (generic) security model, and prove
that our aforementioned obfuscator is virtual-black-box (VBB) secure in this model.
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1 Introduction

A program obfuscator is a compiler that takes a program as input, and outputs a functionally
equivalent program that is hard to reverse engineer. Early works by Hada [Had00] and Barak et
al. [BGI+12] provided rigorous definitional treatment of obfuscation, but also showed the impossibil-
ity of achieving strong security notions for general circuits. In particular Virtual Black-Box (VBB)
security, where interaction with the obfuscated program can be simulated using only black-box
access to the obfuscated program, was proven impossible in general.

Constructing secure obfuscators, even heuristically, is a very challenging task. Indeed, until
recently, candidate obfuscators were only known to exist for a few simple function classes. The
game changer in this field had been the introduction of graded encoding schemes (GES) by Garg,
Gentry and Halevi [GGH13a] and follow-up constructions by Coron, Lepoint and Tibouchi [CLT13,
CLT15]. GES allow to encode ring elements (from some underlying ring) in a way that hides the
identity of the ring element, but still allows algebraic manipulation on the encoding (addition and
multiplication). Each encoding is associated with a level, which is a positive integer (or more
generally an integer vector). Addition is only allowed within a level, and in multiplication the level
of the output is the sum of the levels of the inputs. A GES allows to test if the contents of an
encoding is the zero element, but only at a predetermined “zero-test level”, and not beyond. Thus
GES allows arithmetic operations of bounded degree.

Garg et al. [GGH+13b] presented a candidate obfuscator for general circuits based on GES. They
conjectured, with some supporting evidence, that their obfuscator is a secure indistinguishability
obfuscator (iO). Indistinguishability obfuscation is a weak security notion and it first glance it
may seem useless. However, Sahai and Waters [SW14] showed that iO is actually sufficient for
a wide variety of applications. Numerous follow-up works showed how to use iO to construct
many desirable cryptographic primitives, thus establishing iO itself as one of the most important
cryptographic primitives. The goal of formally establishing the security of obfuscation candidates
had since been central in cryptographic research.

Brakerski and Rothblum [BR14b] presented a similar obfuscator candidate, and proved its
security in the generic GES model. This model addresses adversaries that are restricted to al-
gebraic attacks on the encoding scheme, i.e. generate encodings, perform algebraic manipulations
and test for zero, while being oblivious to the representation of the element. This is modeled
by representing the encodings using random strings, thus making them completely opaque. The
algebraic functionality is provided as oracle. Other candidate obfuscators with generic proofs fol-
lowed [BGK+14,AGIS14,MSW14]. Pass, Seth and Telang [PST14] replaced the generic model with
a strong notion of “uber-assumption”.

The constructions mentioned so far were all based on converting the obfuscated program into
a branching program, thus having computational cost which scaled with the formula size of the
program to be obfuscated.1 This was improved by newer constructions that used composite order
GES (where the underlying ring is isomorphic to ZN for a composite N). In a nutshell, composite
order rings allow for “slotted” representation of elements via the Chinese Remainder Theorem,
so that each ring element is viewed as a tuple of slots, and algebraic operations are performed
slot-wise. In particular, Zimmerman [Zim15] and Applebaum and Brakerski [AB15] presented
obfuscators whose overhead relates to the circuit size of the program and not its formula size.

1An additional “bootstrapping” step established that obfuscating polynomial-size formulae is sufficient in order
to obfuscate general circuits.
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However, using known candidate GES, the underlying encodings again incorporated overhead that
depends on the formula size. Nonetheless, these constructions carry the promise that given more
efficient GES candidates, the dependence on the formula size can be completely removed. Proofs
in generic models were provided.

Since the generic model restricts the adversary beyond its actual attack capabilities, such proofs
should be taken only as evidence in lieu of standard model proofs. In order for the evidence to
carry more weight, we should be prudent and use models that pose as few restrictions as possible
on the adversary.

For example, [BGK+14,Zim15,AB15] consider a model where one assumes that not only encod-
ings of different elements appear to the adversary as independent uniform strings, but also if the
same element is computed in two different ways then it will have two independent-looking represen-
tations. This is a fairly strong assumption and in particular one that does not hold in cryptographic
multilinear-maps, if such exist [BS02]. It is shown in [AB15] that the suggested obfuscation scheme
actually breaks if one is allowed to even test for zero at levels below the zero-test level. They
therefore proposed a more robust obfuscator that is secure in the unique representation model
of [BR13, BR14a, BR14b], in which each ring element has a unique representation. Unfortunately,
this added security came at a cost of reducing efficiency, specifically the number of “input slots”
goes up from 2 to n+ 2 (where n is the input length). This directly translates to an efficiency loss
in the construction.2

A notable progress in the study of secure obfuscation had been made recently by Gentry, Lewko,
Sahai and Waters [GLSW14]. They showed an obfuscator whose security is based on an assumption
in the standard model. It is yet unclear whether their hardness assumption holds true in known
candidate GES (recent attacks [CLR15, MF15] suggest it might not). It should further be noted
that this construction again requires a large number of input slots (essentially proportional to the
formula size of the obfuscated circuit).3

We see that the attempts to come up with a more realistic security model comes at the cost
of increasing the number of required slots, and therefore reducing the efficiency. It is not clear
whether this trade-off is necessary.

Does a stronger security model come at the cost of efficiency?

In this work, we show that at least in the generic model, one does not need to pay in efficiency
to achieve better security.

We proceed to consider an even more conservative security model, one where even finding a
non-trivial encoding of the zero element is assumed to obliterate security completely.4 This model
is motivated by new attacks on the security of all known proposed GES candidates [GGH13a,
CHL+15,CGH+15,HJ15,CLR15,MF15], showing that having access to encodings of the ring’s zero
element results, in some cases, in a complete security breach. Indeed, current attacks do not work
with just any non-trivial zero encoding, however they do raise concern that having an adversary
access an encoding of zero might be a vulnerability. This concern had been significantly heightened

2Miles, Sahai and Weiss [MSW14] suggested constraining the model in a different, orthogonal manner. Their
model is less relevant for this work.

3They also suggest a construction using a single-slot GES, however the efficiency cost was even greater.
4A “trivial” zero is, for example, the result of subtracting an encoding from itself, or of similar computations that

nullify based on the syntax of the equation rather than the encoded values.
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recently as Miles, Sahai and Zhandry [MSZ16] presented an attack on obfuscators that are based
on the [GGH13a] GES candidate. This new attack again makes crucial use of top-level encodings
of zero (but does not require “low-level” zero encodings like some prior attacks).

To hedge against these risks, Badrinarayanan, Miles, Sahai and Zhandry [BMSZ15] proposed
to avoid zeros completely. Namely, to construct an obfuscator in such a way that the adversary
is unable to generate such encodings altogether. However, this seems to defeat the purpose, since
zero-testing is the way to extract information out of an encoding for functionality purposes. They
get around this barrier in a creative way, by only obfuscating evasive functions, where finding an
accepting input using oracle access is (unconditionally) hard.5 Classes of evasive functions have
played an important role in the study of obfuscation, since many classes that are desirable to obfus-
cate are evasive (e.g. various variants of point functions, starting with the work of Canetti [Can97])
and one could hope that they can even be obfuscatable in the strong VBB setting. (See [BBC+14]
for more information and the state of the art about evasive functions.) Badrinarayanan et al. show
that when their obfuscator is applied to an evasive function, the adversary is unable to find an
encoding of zero. The proof here is in the generic model as well. The restriction to evasive func-
tions, however, excludes interesting function classes such as conjunctions [BR13, BVWW16]. We
therefore address the following question.

Can we obfuscate non-evasive functions in the zero-sensitive model?

Perhaps surprisingly, we answer this question in the affirmative, and show that our obfuscator
(the same as above) is secure in a zero-sensitive model, even for some non-evasive function classes,
and in particular for worst-case conjunctions.

1.1 Our Results

A More Efficient Circuit Obfuscator. We present a new direct circuit obfuscator, i.e. one that
does not go through branching programs. Our construction is inspired by the “robust obfuscator”
RobustObf of [AB15]. However, whereas RobustObf works over a composite order graded encoding
scheme with (n + 2) message slots, our obfuscator only requires 3 slots. Our obfuscator provides
equivalent level of security to RobustObf in the unique representation generic GES model (see
details below). This improvement translates directly to a factor n improvement in the size of the
encodings, and a poly(n)-factor improvement in the computational complexity of generating and
evaluating the obfuscated program.6 We therefore show that at least in the generic model, there
is no real efficiency gain to working in a less secure model. We hope that our techniques can be
translated to reduce the number of required slots in the non-generic setting as well, in particular
in the [GLSW14] scheme.

We prove that the resulting obfuscator is indistinguishability secure in the unique representation
graded encoding model. The proof outline is similar in spirit to that of the robust obfuscator
of [AB15], while incorporating some proof techniques from [Zim15]. In particular, we rely on the
sub-exponential hardness of factoring the order of the underlying ring, in addition to the security
of the generic model. In contrast, [AB15] work in a model where the order of the ring is hidden so
that factoring it is information theoretically hard.

5We note that if the [BMSZ15] obfuscator is applied to non evasive functions, and top-level zeros can occur, then
the [MSZ16] attack applies. This highlights the significance of completely avoiding zeros.

6See e.g. [GLW14, Appendix B] for suggested trade-offs between the number of input slots and the size of the
encoding.
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We note that one can consider many variants of the generic model: known modulus, unknown
modulus and information theoretic hardness, computational hardness. Furthermore, [Zim15] also
shows how to prove VBB security at the cost of increasing the size of the obfuscator by additional
n2 encodings. Our improvement can be applied to all of these variants, transforming them to the
unique representation model while preserving the number of slots as constant. For the sake of
concreteness, we chose to prove in a setting that we found interesting.

The Zero-Sensitive Oracle and All-or-Nothing Functions. We show that the [BMSZ15]
approach discussed above can be extended even beyond evasive functions. This may come as a
surprise since applying our obfuscator to non-evasive functions gives the adversary access to zero
encodings. As a motivating example, consider the class of conjunctions that had been studied
in [BR13]. One can think of a conjunction as string-matching with wildcards. Namely, the function
is defined by a string v ∈ {0, 1, ?}n, and fv(x) = 1 if and only if for all i, either v[i] = x[i] or
v[i] = ?. Indeed, some distributions on this class of functions are evasive, but what if we want to
obfuscate it in the worst case?

Naturally, in the worst case there could be an adversary that can find an accepting input (more
generally, no function class is evasive in the worst case except the zero function). However, the
critical observation is that this does not necessarily hinder security, since given an accepting input,
one can learn the entire function. In the case of conjunctions this is easy to do by taking an
accepting x and flipping each of its bits in turn to see if this bit is a wildcard (and switching it
back afterwards). Therefore, if we find an accepting input, we should not expect the obfuscator to
hide anything anyway!

We generalize this property and define All-or-Nothing (AoN) function classes to be ones where
if an adversary finds an accepting input, then it can recover the function in its entirety (a formal
definition is provided). We would like to show that indeed such function classes can be securely
obfuscated even in a setting where a non-trivial zero encoding implies that the GES is insecure.

In the proof of [BMSZ15] for evasive functions, proving security was split into two tasks: pre-
senting a simulator, and showing that the adversary cannot compute encodings of zero. Our notion
of security, however, requires additional definitional treatment, since we would like successful sim-
ulation even in the case where an accepting input had been found, and we cannot tell in advance
whether such an input will be found or not. We therefore define a new generic model where the
GES oracle keeps track of the encodings that the adversary generates, and if one of those is a
non-trivial zero, then the adversary gets access to a decoding oracle that allows to decode any given
encoding to obtain the plaintext. This is how we model the risk in non-trivial zeros.

Finally, we prove that our obfuscator is indeed a secure VBB obfuscator for AoN functions in
our new zero-sensitive model. Interestingly, we don’t need to use complexity leveraging here and
we can prove VBB security without increasing the number of encodings. We view this as evidence
that AoN functions may be strictly easier to obfuscate than general functions, and are perhaps a
good candidate for VBB obfuscation in the standard model.

What GES Candidate To Use? We stress that our work is completely abstract and not directly
related to any specific GES candidate, but naturally it would be more convincing if it could be
instantiated with one. To date, the only candidate composite order GES is that of [CLT13,CLT15],
and indeed this candidate can be used with our scheme. We stress that the only known attacks on
this candidate uses encodings of zero, and there are no known attacks in the zero evading model

4



(this is also true for the [GGH13a] candidate). In fact, even in the “standard” model, the attacks
of [CGH+15,MSZ16] do not seem to apply to our obfuscator when instantiated with [CLT13,CLT15].
However, these attacks suggest that obfuscators such as ours might be vulnerable to future attacks.
The goal of finding secure instantiations of composite order candidate GES is a very important
one, but orthogonal to the contributions of this paper.

1.2 Our Techniques

Our Obfuscator. Our building block is a graded encoding scheme whose plaintexts are elements
in a composite order ring. We denote the encoding of the element a by [a]. Encodings can be
added, subtracted, multiplied and tested for zero (subject to constraints imposed by the levels,
which we will ignore in this outline since they are similar to previous works). We think of a itself
as a tuple of elements via the Chinese Remainder Theorem. Each sub-ring is of high cardinality
and it is assumed that “isolating” the components of an encoded element is computationally hard
(in the generic model this relates to the hardness of factoring the order of the ring). The [AB15]
obfuscator (following [BR13,BR14a,BR14b]) adds an additional layer on top of this encoding and
rather than encoding [a] itself, it produces a pair of encodings [r] and [r · a], for a random r, i.e.
the plaintext value is the ratio between the values in the two encodings. This “rational encoding”
plays an important role in both functionality and security. For the purpose of this outline only, we
use [a]♦ as shorthand notation for the pair [r], [r · a]. It can be shown that rational encodings can
be added and multiplied, subject to constraints as in previous works.

The starting point of our construction is the “robust obfuscator” from [AB15]. This obfuscator,
in turn, is derived from a simpler solution [Zim15, AB15] that applies in a more forgiving generic
model. In the “simple obfuscator”, for each input bit i, two encodings are given as a part of the
obfuscator. These encodings are of the form [(yi, b)]

♦, for b ∈ {0, 1}, where yi is a random value that
is the same whether b = 0 or 1. The weakness of this scheme stems from the ability to subtract the
two encodings that correspond to the same i, and cancel out the yi value to obtain an encoding of
the form [(0, 1)]♦, which in turn allows to test whether the second slot of a given encoding is zero
or not (via multiplying by [(0, 1)]♦ and zero-testing). In the less restrictive multiple representation
generic model, this attack is prevented by disallowing to test for zero in some situations. However,
this cannot be avoided in a model where each element has a unique representation since one can
always test for zero by comparing to a known encoding of zero.

The robust obfuscator from [AB15] prevents this problem by adding n additional slots to the
encodings, and publishing, for each input bit of the obfuscated function, the values [wi,b]

♦, for
b ∈ {0, 1}, where wi,b = (yi, b, ρ1,b, . . . , ρn,b). The ρ values are uniform and independent, and
therefore subtracting [wi,1]

♦ − [wi,0]
♦ here will not cancel out the ρ values. The ρ values should

be eliminated in the end of the computation, and this is done by providing additional encodings
of a special form ŵi,b = (ŷi, βi,b, ρ̂1,b, . . . , ρ̂i−1,b, 0, ρ̂i+1,b, . . . , ρ̂n,b). Namely, encodings that zero out
the ith ρ value. In the evaluation, the value

∏
i ŵi,xi is computed and multiplied with the result

of the computation so far, thus zeroing out the last n slots. Note that even though the ρ values
can be zeroed out, this does not enable the previous attack. This is due to the level constraints
that impose structural limitations. In particular, [ŵi,0]

♦ and [wi,1]
♦ cannot be used in the same

computation, which is in contrast to [wi,0]
♦ and [wi,1]

♦ that cannot be prevented from interacting
(at a high level, this is because each input bit can be used many times in the circuit, but the ŵ
values are designed to only be used once).

Our modification to this scheme is quite simple. We observe that the use of n different ρ slots
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is only due to the cancellation step via ŵ, where we need to enforce that an adversary must use a
[ŵi,b]

♦ value for each and every i. The reason is that this use prevents the dangerous mix-and-match
of [wi,0]

♦ and [wi,1]
♦. We notice, however, that since rational encodings can be added and not just

multiplied, one could enforce that an ŵi,b is used for every i using a sum rather than a product.
We set ŵi,b = (ŷi, βi,b, ρ̂i), thus reducing the number of sub-rings to only 3. We choose the ρ̂i values
at random, subject to the constraint that

∑
i ρ̂i = 0. This means that in order to zero-out the ρ̂

coordinate, an adversary needs to use a [ŵi,b]
♦ element for every i. As before, we must prevent

[ŵi,0]
♦ and [ŵi,1]

♦ from interacting, since taking their difference zeros out the ρ̂ coordinate and is
therefore dangerous, but this is done in the same way as previous works.

Proving Security. As has been shown in a number of previous works, in the generic model, the
adversary is limited to applying arithmetic circuits over the encodings received as input, and testing
the output for zero. The simulator, therefore, generates a collection of random strings to play the
role of the encodings in the obfuscated program, and then to answer queries of the form of an
arithmetic circuit, determining whether applying this circuit to the encodings at hand evaluates to
zero.7 The problem is that the simulator needs to do this with only oracle access to the obfuscated
circuit. Namely, it does not fully know what is the plaintext in the encoding that it generated.

We use a proof practice that started with [BR13]. They notice that if we use rational encoding
as described above, then the polynomial computed by an arithmetic circuit can be decomposed
into a sum of terms that we call semi-monomials. A semi-monomial is a polynomial of the form
M(~r)Q(~w), where M(~r) is a product of “randomizing” variables, and Q(~w) is a polynomial in
the “content” variables. Since the randomizer variables are random and independent, the task of
testing the polynomial for zero is identical to the task of finding whether there exists a non-zero
semi-monomial.

We distinguish between semi-monomials that are “valid”, in the sense that they represent a
legal evaluation of the circuit on an input, and ones that are “invalid”. We show how to test if
a semi-monomial is valid or not, and that an invalid semi-monomial cannot zero-out, regardless
which circuit had been obfuscated, assuming the hardness of factoring the ring order. We show that
“valid” monomials zero-out if and only if the obfuscated circuit accepts their associated input x.

Therefore, our proof strategy is straightforward. We extract semi-monomials from the circuit
one after the other (one can show that this can be done). For each semi-monomial, we check
whether it is invalid, in which case we can immediately return that the arithmetic circuit computes
a non-zero. If the semi-monomial is valid for some input x, we query the obfuscated circuit oracle
on x. If it rejects, then the answer is again non-zero, but if it accepts, then the answer is still
undetermined and we need to proceed to the next semi-monomial.

This process takes 2n time in the worst case, since there can be at most 2n valid semi-monomials.
Thus the running time of our iO simulator is exponential in the input length. However, in the case
of AoN functions, the situation is much simpler and in fact only one semi-monomial needs to be
inspected. The reason is that if the extracted x is an accepting input for the circuit, then we don’t
need to proceed at all, since for AoN functions, we can efficiently learn the code of the circuit, which
allows us to continue the simulation trivially by just assigning the right values to the ~w variables.
This completes the proof.

7It may seem that the simulator needs to do much more than that, but it can be shown that all other functionalities
reduce to this problem.
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1.3 Paper Organization

Some preliminaries and facts about arithmetic circuits and polynomials appear in Section 2. This
section can safely be skipped by a knowledgeable reader. In Section 3 we present our new generic
model as well as our new zero-sensitive model, which is a new contribution. Section 4 features the
specifics of our obfuscator, and security is proven in Section 5, where we also define the class of
AoN functions.

2 Preliminaries

Definition 2.1 (Factoring). Let λ be a security parameter and let σ be polynomial in the security
parameter. The σ-factoring problem is defined as follows. Let p1, . . . , pσ be random λ-bit prime
numbers, and let N =

∏σ
i=1 pi. The input to the problem is N , and a valid solution is a number K

s.t. gcd(N,K) 6∈ {1, N}.
The σ-factoring hardness assumption is that no polynomial time algorithm can find a valid solu-

tion with non-negligible probability. We also consider a sub-exponential variant of the assumption,
which states that there exists δ > 0 such that any algorithm running in time 2λ

δ
cannot find a valid

solution with non-negligible probability.

We note that σ-factoring, for any polynomial σ, is at least as hard as the classical problem of
factoring a product of two primes.

2.1 Purely Arithmetic Circuits and Their Structure

Definition 2.2 (Purely arithmetic-circuit). A purely arithmetic-circuit A is a circuit which con-
tains input gates (no fan-in and fan-out > 0), an output gate (fan-in 1, fan-out 0) and operator
gates for addition (+), subtraction (−) and multiplication (×) with fan-in 2 and fan-out > 0. The
size of A is the number of gates in A.

Zero-Testing an Arithmetic Circuit Modulo a Composite. As had been shown in previous
works (e.g. [AB15]), a low degree arithmetic circuit can be zero-tested efficiently, so long as all of
its factors are large enough. We re-state this property below.

Fact 2.3. Let σ ∈ N, let p1, . . . , pσ be distinct primes and let N =
∏σ
i=1 pi. Then a multivariate

polynomial of total degree d has at most dσ roots over ZP .

Moreover, we would like to define an algorithm that given an arithmetic-circuit A(x1, . . . , xn) de-
cides whether or not it computes a multivariate polynomial that is identically zero in ZN [x1, . . . , xn].
We denote A ≡ 0 if A computes the zero-polynomial.

Lemma 2.4. There exists an PPT algorithm SZTest(1λ, A,N) such that for all integer λ and every
arithmetic-circuit A of total degree d. Then for N > 2d we have:

Pr[SZTest(1λ, A,N) = 1 | A ≡ 0 (mod N)] = 1

and:
Pr[SZTest(1λ, A,N) = 1 | A 6≡ 0 (mod N)] ≤ 2−λ
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Consider a low-degree multi-variate arithmetic circuit A over some ring with efficient zero-
testing, and divide its input variables into two sets ~x, ~y. Then the polynomial computed by A(~x, ~y)
can be expressed as a sum of semi-monomials of the form M(~x)Q(~y) where M(~x) is a product of
variables from ~x, and ~y is some polynomial. We denote by QA,M (~y) the coefficient of M(~x) in the
polynomial computed by A (the Q(~y)). We omit A from the subscript when the arithmetic-circuit
we refer is clear from the context.

The following algorithm takes A as input and outputs A′ such that A′ is a circuit of size
comparable to A, which computes a single term of the terms in A. It follows immediately that the
circuit A−A′ now computes all of the terms of A except for the one in A′.

Lemma 2.5 (Semi-Monomial Extraction). Given an arithmetic-circuit A(~x, ~y) as above, there ex-
ists a ppt algorithm that determines (with all but negligible probability) whether there exists a semi-
monomial M(~x)Q(~y) that does not zero-out, that is: M(~x)Q(~y) 6≡ 0, and outputs an arithmetic-
circuit that computes such semi-monomial if exists.

Proof. We note that we can treat every coordinate in ~x as a formal variable. We denote ξ ∈ ~x
which means that ξ is the formal variable associated with one of the coordinates of ~x.

Given A we consider the following algorithm:

1. Use SZTest on A.

2. If the test returned zero:

(a) Output that A is equivalent to the zero polynomial.

3. For each of the formal variable ξ ∈ ~x:

(a) Construct an arithmetic circuit A′ by hardwiring ξ = 0.

(b) Use SZTest on A′.

(c) If the test returned non-zero:

i. Set A = A′.

4. Output A.

It is clear that the algorithm is polynomial time, we want to prove the correctness of this
algorithm. If A ≡ 0, SZTest will return zero with probability 1. But if A 6≡ 0 polynomial, only
with negligible probability over the coins of the SZTest we shall get a false-positive result.

We now want to show that the algorithm will output an arithmetic-circuit that computes exactly
one semi-monomial.

First we note that the algorithm cannot return an arithmetic-circuit that evaluate the zero-
polynomial as the first check will fail and we’ll output that A is equivalent to the zero polynomial.
Hence if the result is “non-zero”, there must be at least one monomial in the output arithmetic-
circuit (unless A is equivalent to the zero-polynomial). Assume towards contradiction that the
algorithm did result an arithmetic-circuit which equivalent to the zero-polynomial. Then, the
test in line 1 had passed, hence A is not equivalent to the zero-polynomial. Since the resulted
arithmetic-circuit is equivalent to the zero polynomial, it means that at some iteration of the loop,
the polynomial evaluated by A became equivalent to the zero polynomial. But note that this cannot
be, because we only replace A when A′ is not equivalent to the zero-polynomial.
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Now we want to show that with all but negligible probability the resulted arithmetic-circuit
will calculate no more than one monomial. Assume towards contradiction that the polynomial
evaluated by the resulted arithmetic-circuit contains two different monomials M1,M2. Since the
monomials are different there exists some variable ξ such that ξ is in one of them but not the other.
Without loss of generality assume that ξ is in M1 but not M2. Now, in the iteration where ξ was
processed, we note that the with all-but-negligible probability SZTest returns that the monomial is
non-zero. Hence A will be replaced with an hardwired ξ = 0, thus with all-but-negligible probability
M1 won’t appear in the polynomial calculated by the resulted arithmetic-circuit.

We now define the following algorithm that allows us to either check whether two polynomials
are equivalent up to multiplication by a constant moduli some number N or it output a proper
factor of N . This algorithm will be used in order to determine whether an adversary calculated a
“valid” polynomial or not.

Lemma 2.6. There exists an efficient algorithm Div = DivA,B(N) as follows. Let N ∈ N and let
A(x), B(x) be multivariate polynomials modulo N . Consider the polynomial C(x, y) = A(y)B(x)−
B(y)A(x).

If Prx[A(x) = 0] < ε and C(x, y) ≡ 0 (mod N) then DivA,B(N) succeeds with probability
(1 − ε) to either find a scalar α ∈ N such that B(x) = α · A(x), or to find a scalar β such that
1 < gcd(β,N) < N (i.e. a non-trivial factor of N).

Clearly, in the converse case, if there exists α such that B(x) = α · A(x), then C(x, y) ≡ 0
(mod N).

Proof. The algorithm Div samples a random y and computes (via oracle access) β = A(y). If β = 0
then return ⊥. Otherwise, if β is not a unit modulo N then return β. Otherwise compute B(y)
and return α = β−1 ·B(y). Correctness follows immediately.

2.2 Graded Encoding over Composite Order Groups

This section provides definitions and notation for graded encoding schemes over compositve order
groups. It is mostly adopted from [AB15].

2.2.1 General Notation

Partial Order of Natural Valued Vectors. For an integer τ ∈ N, we view vectors in Nτ as
multisets over the universe [τ ]. Correspondingly, we define a partial ordering on vectors Nτ which
corresponds to inclusion. In particular, we say that v ≤ w if for all i ∈ [τ ] it holds that v[i] ≤ w[i].
If there exists a coordinate i for which the above does not hold, we say that v 6≤ w. We note that
since our vectors are defined over the naturals, this relation is monotonous: If v ≤ w then for all
w′ ∈ Nτ it also holds that v ≤ (w + w′), and dually if v 6≤ w then for all v′ ∈ Nτ it holds that
(v + v′) 6≤ w.

CRT representation. Let σ ∈ N, let p1, . . . , pσ be distinct coprime numbers and let P =∏σ
i=1 pi. Considering the ring ZP , the Chinese Remainder Theorem (CRT) asserts that there is

an isomorphism ZP ∼= Zp1 × · · · × Zpσ such that if a ∼= (a1, . . . , aσ) and b ∼= (b1, . . . , bσ), then
a + b ∼= (a1 + b1, . . . , aσ + bσ) and a · b ∼= (a1 · b1, . . . , aσ · bσ). For a given isomorphism, we will
denote by aJiK the component ai = a (mod pi).
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2.2.2 Syntax

We begin with the definition of a graded encoding scheme in composite order groups. The definition
is adapted from [GGH13a] and follow-up works, but our notation deviates somewhat from that of
some previous work.

Definition 2.7 (Graded Encoding Scheme). Let R be a ring, and let vzt ∈ Nτ be an integer vector
of dimension τ ∈ N. A graded encoding scheme for R,vzt is a collection of sets {[α]v ⊂ {0, 1}∗ :
v ∈ Nτ ,v ≤ vzt, α ∈ R} with the following properties:

1. For every index v ≤ vzt, the sets {[α]v : α ∈ R} are disjoint, and so they are a partition
of the indexed set [R]v =

⋃
α∈R[α]v. We slightly abuse notation and often denote a = [α]v

instead of a ∈ [α]v.

2. There are binary operations “+” and “−” such that for all v ∈ {0, 1}τ , α1, α2 ∈ R and for
all u1 = [α1]v, u2 = [α2]v:

u1 + u2 = [α1 + α2]v and u1 − u2 = [α1 − α2]v ,

where α1 + α2 and α1 − α2 are addition and subtraction in R.

3. There is an associative binary operation “×” such that for all v1,v2 ∈ Nτ such that v1+v2 ≤
vzt, for all α1, α2 ∈ R and for all u1 = [α1]v1, u2 = [α2]v2, it holds that

u1 × u2 = [α1 · α2]v1+v2 ,

where α1 · α2 is multiplication in R.

The above definition does not touch upon the computational aspects of graded encoding schemes,
which are described below. We note that there is a difference between the definition below and the
definitions for the prime order definitions.

Definition 2.8 (Efficient Procedures for Graded Encoding Scheme). We consider a graded encoding
schemes (see above) where the following procedures are efficiently computable.

• Composite-Order Instance Generation: InstGen(1λ, 1σ,vzt) outputs the set of parameters params,
a description of a Graded Encoding Scheme relative to vzt and relative to a ring R such that
R ∼= Zp1 × · · · × Zpσ , where all pi are pairwise coprime numbers, i.e. R ∼= ZN for N =

∏
pi.

We assume that each prime factor of N > 2λ.

In addition, the procedure outputs a subset evparams ⊂ params that is sufficient for comput-
ing addition, multiplication and zero testing, but may be insufficient for sampling, encoding
or for randomization.

We note that for known GES candidates, the running time of the setup procedure (and all
other procedures) scales with ‖vzt‖1, and hence for such scheme this procedure may not run
in polynomial time. It is conceivable that more efficient instantiations that do not require
this additional input will be discovered in the future.

• Ring Sampler: samp(params) outputs a “level zero encoding” A ∈ [a]0 for a nearly uniform

a
$← R.
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• Sub-Ring Sampler: subsamp(params, i∗), where i∗ ∈ [σ] outputs a “level zero encoding” in a
CRT sub-ring of R. Namely, it outputs A ∈ [a]0 for an element a ∼= (a1, . . . , aσ), such that ai∗

is nearly uniform in pi∗, and for all i 6= i∗ it holds that ai = 0. We stress it is very important
for the security of our constructions that evparams does not enable such functionality.

• Encode and Re-Randomize: encRand(params,v, A) takes as input an index v ≤ vzt and
A = [a]0, and outputs an encoding B = [a]v, where the distribution of B is (statistically close
to being) only dependent on a and not otherwise dependent on A.

• Addition and Negation: add(evparams,A1, A2) takes A1 = [a1]v, A2 = [a2]v, and outputs
B = [a1 + a2]v. (If the two operands are not in the same indexed set, then add returns ⊥).
We often use the notation u1 + u2 to denote this operation when evparams is clear from the
context. Similarly, negate(evparams,A1) = [−a1]v.

• Multiplication: mult(evparams,A1, A2) takes A1 = [a1]v1 , A2 = [a2]v2. If v1 + v2 ≤ vzt,
then mult outputs B = [a1 · a2]v1+v2. Otherwise, mult outputs ⊥. We often use the notation
A1 ×A2 to denote this operation when evparams is clear from the context.

• Zero Test: isZero(evparams,A) outputs 1 if A = [0]vzt, and 0 otherwise.

Noisy encodings. In known candidate constructions, encodings are noisy and the noise level
increases with addition and multiplication operations, so one has to be careful not to go over a
specified noise bound. However, the parameters can be set so as to support O(‖vzt‖1) operations, so
long as InstGen is allowed to run in poly(‖vzt‖1) time, as our function interface compels. This will be
sufficient for our purposes and we therefore ignore noise management throughout this manuscript.

Remark 2.9. Given params, we can use subsamp to efficiently generate level-0 encodings of related
elements, so long as each of their CRT components can be expressed as a polynomial size arithmetic
circuit applied to a set of uniformly distributed variables. These variables may not be shared across
CRT components, but they can be shared between elements. E.g. in a 2-composite GES, one can
generate [((a1 + a2) · a3, b1)]0, [(a3 + a4, b2)]0, [(a1 · a2, b1 + b2)]0 (but cannot generate in addition
[(b1, a1)]0. (Note that the product of level zero-encoding results in a level zero encoding.) Combining
the above with access to encRand allows, given params to encode the aforementioned elements to
arbitrary indices v ≤ vzt.

Remark 2.10. For our application we require that it is intractable to execute subsamp using only
evparams and without access to params. Our application involves an adversary that is given a set
of encodings and evparams. If the adversary is able to perform sub-ring sampling or to modify the
level of an encoded element, then our obfuscator will be insecure.

Concrete instantiations. The candidate constructions of [GGH13a, CLT13] do not support
the above functionality out of the box. Specifically, [GGH13a] only allows R of prime order,
whereas [CLT13] does natively support composite order groups, but its security features are unclear
if sub-ring sampling is allowed. This issue has been extensively addressed in [GLW14, Appendix B of
full version]. In particular the authors there present a variant of [CLT13] that appears to overcome
the aforementioned security issues. This variant supports a σ-product ring R ∼= (Zp1 × · · · × Zpσ)
where the pi’s are composite numbers with large prime divisors. Note that this is compatible with
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our requirements which allow the pi’s to be non-primes. Furthermore, this variant adheres to the
constraints we need to impose as per Remark 2.10. Overall, to the best of our knowledge, this
candidate is consistent with the requirements of our obfuscator (although we prove security only
in a generic model and not under explicit assumptions).

3 The Generic GES Model and Our New Zero-Sensitive Variant

We would like to prove the security of our construction against generic adversaries. To this end, we
will use the generic graded encoding scheme model, adapted from [BR13,BR14a,BR14b,BGK+14],
which is analogous to the generic group model (see Shoup [Sho97] and Maurer [Mau05]).

There are various flavors of generic models suggested in the literature. In this work, we follow
[BR13, AB15] and use the unique-representation model, where each element in the underlying
ring, at each level, has a unique representation. This is in contrast to the multiple-representation
model [BGK+14,Zim15,AB15] which (roughly) states that if the same element is being computed via
different computational paths, then each path will lead to a different and independent representation
of that element. While the latter model makes the task of proving security easier, it is inadequate
in some situations, as we described in the introduction. We note that a proof in the unique
representation model immediately carries over to the multiple representation model, but not the
other way around. We provide a definition of this model in Section 3.1 below.

We then introduce our zero-sensitive model. This model is motivated by recent attacks that
leverage non-trivial encodings of zero. In this model we treat a non-trivial encoding of zero at any
level as perilous. In particular, once such an encoding had been generated, the GES oracle will
no longer keep any secret, and surrender the plaintexts of all encodings to the adversary. As we
explained above, we can prove security of all-or-nothing functions in this model. See Section 3.2
for details.

Lastly, in Section 3.3, we define indistiguishability and virtual black-box obfuscation in the
presence of our oracles.

3.1 The Ideal GES Oracle

We present the “online” variant of the unique representation model. As shown in previous works,
this variant is equivalent to the “offline” variant up to negligible statistical distance. See [BR13,
AB15] for more details. We model the GES using an oracle RG which implements the functionality
of a GES in which the representations of elements are uniform and independent random strings.

The Online RG Oracle. The online RG oracle is implemented by an online polynomial time
process, which samples representations for ring elements on-the-fly. Specifically, the oracle will
maintain a table of entries of the form (v, a, labelv,a), where labelv,a ∈ {0, 1}t is the representation
of [a]v in RG, and F is either a formal variable or an arithmetic circuit over formal variables. The
table is initially empty and is filled as described below.

• Whenever a sampling query is made, RG generates an element a from R (or the appropriate
sub-ring), and a uniform length t label. It then stores the tuple (0, a, label0,a) in its table.

• For encoding and arithmetic operations, the oracle takes the input labels and finds appropriate
entries in the table that correspond to these labels. If such don’t exist then ⊥ is returned.
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Otherwise, the oracle retrieves the appropriate (v, a) values to perform the operation. It then
checks that the level values are appropriate (e.g. encRand can only be applied to level zero
encodings, addition can only take two operands of the same level), and computes the output
of the operation. It then performs the computation on the ring elements. Finally, the oracle
needs to return an encoding of an element of the form (v′, a′). To do this, the oracle checks
whether (v′, a′) is already in the table, and if so returns the appropriate labelv′,a′ . Otherwise
it samples a new uniform label, and inserts a new entry into the table.. Otherwise it samples
a new uniform label, and inserts a new entry into the table.

• Extraction is trivial in our representation, one can just use labelv′,a′ as the extracted value
for [a]v.

• Zero testing is performed by finding the appropriate entry in the table and checking whether
the respective ring element is indeed 0.

3.2 The Zero-Sensitive Generic Model

We propose a new generic model that incorporates the zero-evading requirement of [BMSZ15] into
the generic GES model. Whereas our oracle is a modification of the unique representation generic
model presented above, similar modifications can be made to other generic models in the literature.

We propose a generic model with an additional decoding functionality which will allow the
adversary to retrieve the plaintext of any encoding of its choosing, once an encoding of zero had
been generated. Some care needs to be taken, since it is easy to produce “syntactic zeros” which
are harmless. E.g. subtracting an encoding from itself will produce such a zero encoding, or less
trivially, computing an expression of the form (A + B) ∗ C − (C ∗ A + C ∗ B). These expressions
will evaluate to zero regardless of the values that are actually encoded in A,B,C and we refer to
them as “trivial” or “syntactic” zeros. Such encodings of zero are unavoidable, but they are not
dangerous. (Indeed, in known instantiations of GES [GGH13a,CLT13,CLT15], syntactic zeros are
always encoded by the all-zero string and thus provide no meaningful information.) We design
an oracle that whenever a non-syntactic zero is created (or rather, when it could potentially be
created), enables the decoding feature.

We consider the encodings that are generated by the encRand function as atomic variables,
and for every encoding generated by the adversary throughout the computation, we maintain
its representation as an algebraic circuit over these variables. Whenever we discover that two
syntactically different such arithmetic circuits evaluate to the same value, we enable the encoding
feature. Details follow.

The RGZ Oracle. The new oracle is based on the functionality of the oracle RG defined in
Section 3.1. It will maintain a table similarly to RG, but in addition each entry in the table will
contain an additional value in the form of an arithmetic circuit over the formal variables X1, X2, . . ..
Elements encoded at level 0 will not have a circuit associated with them, but whenever encRand is
executed, the resulting element will be stored in the table together with a new variable Xi. It will
also maintain a global binary state decode which is initialized to false.

When the arithmetic functionality of RGZ is called, say on operands A1, A2 whose table entries
are (v1, a1, A1, C1), (v1, a2, A2, C2), it performs exactly as RG and computes the values (v′, a′)
corresponding to the level and value of the result. In addition RGZ also defines C ′ = C1opC2,
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where op is the arithmetic operation to be performed (e.g. C ′ = C1 + C2 or C ′ = C1 × C2). Then,
just like in RG, we search the table to find whether (v′, a′) already appears. If it does not, then a
new label A′ is generated, (v′, a′, A′, C ′) is stored in the table, and A′ is returned. However, if there
already exists (v′, a′, A′′, C ′′) in the table, then there is potential for a non-trivial zero in the case
where C ′ 6≡ C ′′. This equivalence is easy to check (even in polynomial time using Schwartz-Zippel).
If the circuits are equivalent: C ′ ≡ C ′′, then there is no risk, the table entry does not change and
A′′ is returned. However, if indeed C ′ 6≡ C ′′, then the adversary can create a non-trivial zero (since
he generated the element a′ in two syntactically different ways). Therefore, in this event, RGZ sets
decode = true.

As explained above, RGZ also provides an additional decoding functionality: Decode(A). This
function, upon receiving an encoding A as input, first checks the decode variable. If decode = false
then it returns ⊥. Otherwise, it searches the table for and entry whose label is A, and returns the
corresponding “plaintext” value a.

3.2.1 Non-Trivial Zeros in the Unique Representation Model.

Our zero evading model has unique representations, in the sense that the oracle assigns a single
string to each ring element. This state of affairs may be confusing, since if there is only one
representation for each element (in particular, the zero element), it may seem that the distinction
between trivial and non-trivial zeros is meaningless. While this intuition is true in the standard
model, in a generic model the RG oracle can judge whether an encoding of zero is trivial or not even
though they are represented by the same string, since it can keep track of the path the adversary
took in generating said encoding. In fact, security in our model is stronger than in a model that
allows multiple representations. Details follow.

We note that unique representation GES (call it uGES for short) is effectively equivalent to
multiple representations GES (mGES) in which zero-testing can be performed anywhere below
level vzt and not just at vzt itself. This is because the adversary can always think about the first
representation of a specific element as the “real” one. Whenever it sees a new encoding, it can
subtract it from all previous ones that it saw in the same level, and test for zero, thus discovering
if two different encodings in fact refer to the same element. Therefore, by using uGES we only
give the adversary extra power. Another advantage of using uGES is that the extraction procedure
becomes trivially defined and does not need additional machinery. One can thus think of our use
of uGES as a formalism that allows us to seamlessly handle cases such as mGES with low-level
zero-testing (and extraction).

3.3 Obfuscation in the Generic GES Model

These definitions are fairly standard and originate from [BR13]. We start with correctness, which
should hold with respect to an arbitrary GES implementation.

Definition 3.1 (Preserving Functionality). A GES-based obfuscation scheme (Obf,Eval) for C is
functionality preserving if for every instantiation G of GES, every n ∈ N, every CK ∈ C where
K ∈ {0, 1}m(n), and every x ∈ {0, 1}n, with all but negl(λ) probability over the coins of Obf,Eval
and the GES oracle G it holds that:

EvalG(1n, 1λ, Ĉ, x) = CK(x), where Ĉ
$← ObfG(1n, 1λ,K).
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We define Indistinguishability Obfuscator with respect to some (possibly inefficient) GES in-
stantiation. Our definition is formulated in terms of unbounded simulation which is equivalent to
the more standard indistinguishability-based definition (cf. [BR14b]).

Definition 3.2 (Indistinguishability/VBB Security [BGI+12]). A GES-based obfuscation scheme
(Obf,Eval) for C is called an Indistinguishability Obfuscator (iO) with respect to some GES in-
stantiation G (which possibly contains a decode function) if for every polynomial size adversary A,
there exists a (computationally unbounded) simulator S, such that for every n ∈ N and for every
CK ∈ C where K ∈ {0, 1}m(n):∣∣Pr[AG(1λ, Ĉ) = 1]− Pr[SCK (1|K|, 1n, 1λ) = 1]

∣∣ = negl(λ),

where Ĉ
$← ObfG(1n, 1λ,K). If the simulator can be implemented by polynomial size circuits than

the obfuscator is Virtually Black-Box (VBB) secure.

4 Description of Our Obfuscator and Its Correctness

4.1 Setting and Definitions

We define C = {CK}K∈{0,1}∗ to be a family of efficiently computable functions with n-bit inputs,

representation size m = m(n) and universal evaluator U . And we let Û be the arithmetized version
of U . That is, an arithmetic circuits with {+,×} gates such that for any field F if (x,K) ∈
{0, 1}n+m ⊆ Fn+m, then Û(x,K) = CK(x). We also denote by DÛ the degree of the polynomial

computed by Û .
We define the multiplicity of input wire i as follows. We consider an enumeration of the wires

of Û in topological order, such that the first n+m wires refer to the wires of the x,C inputs. For
each wire i we define a vector si ∈ Zn+m as follows. If i ≤ n + m, then si = ei (the ith indicator
vector). For a wire i which is the output wire of a gate whose input wires are j1, j2, we define
si = sj1 + sj2 . The multiplicity is defined to be Mi = sout [i], where “out” is the output wire of Û .

4.2 The Obfuscator Obf

For all i ∈ [n], b ∈ {0, 1} we define vi,b ∈ Z(n+m+1)×4 as vi,b = ei⊗ [b, 1, 1− b, 0]. We further define
v̂i,b = ei ⊗ [(1− b) ·M [i] , 0, b ·M [i] , 1].

For all i ∈ {n+ 1, . . . , n+m} we define vi = ei⊗ [1, 1, 1, 0]. We define v0 = en+m+1⊗ [1, 1, 1, 0]
and v∗ = en+m+1 ⊗ [0, 0, 0, 1]. Lastly, we define: vzt = (sout + en+m+1)⊗ [1, 1, 1, 0] +

(∑n+m
i=1 ei

)
⊗

[0, 0, 0, 1] +D · v∗ ∈ Z(n+m+1)×4, where D = DÛ + n. We note that for all x ∈ {0, 1}n it holds that

vzt = v0 +
∑n

i=1 (M [i] · vi,xi + v̂i,xi) +
∑n+m

i=n+1M [i] · vi + D · v∗. We illustrate the various level
vectors in Figure 1.

15



vi,0 =


0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0

 , vi,1 =


0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0

 , vi =


0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0



v̂i,0 =


0 · · · M [i] · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0

 , v̂i,1 =


0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · M [i] · · · 0 0
0 · · · 1 · · · 0 0



v0 =


0 · · · 0 1
0 · · · 0 1
0 · · · 0 1
0 · · · 0 0

 , v∗ =


0 · · · 0 0
0 · · · 0 0
0 · · · 0 0
0 · · · 0 1



vzt =


M [1] · · · M [n] M [n+ 1] · · · M [n+m] 1
M [1] · · · M [n] M [n+ 1] · · · M [n+m] 1
M [1] · · · M [n] M [n+ 1] · · · M [n+m] 1

1 · · · 1 0 · · · 0 D


Figure 1: The level vectors for the obfuscator.

The Obfuscator Obf:

• Input: Circuit identifier K ∈ {0, 1}m where CK ∈ C and a security parameter λ.

• Output: Obfuscated program with the same functionality as CK .

• Algorithm:

1. Instantiate a 3-composite graded encoding scheme

(params, evparams) = InstGen(1λ+log ‖vzt‖1 , 13,vzt).

2. For all i ∈ [n], compute random encodings Ri,b = [ri,b]vi,b as well as encodings of Zi,b =

[ri,b · wi,b]vi,b+v∗ , where wi,b = (yi, b, ρi,b) and yi, ρi,b are uniform.

3. For all i ∈ [i], compute random encodings: R̂i,b = [r̂i,b]v̂i,b as well as encodings of

Ẑi,b = [r̂i,b · ŵi,b]v̂i,b+v∗ , where ŵi = (ŷi, β̂i, ρ̂i), where ŷi, β̂i, {ρ̂i}i 6=n are all uniform but

ρ̂n = −
∑n−1

i=1 ρ̂i.

4. For all i ∈ {n+ 1, . . . , n+m}, compute random encodings Ri = [ri]vi as well as encod-
ings of Zi = [ri · wi]vi+v∗ , where wi = (yi,Ki−n, ρi), where Ki is the ith bit of the circuit
description and yj , ρi are uniform.

5. Compute random encodingR0 = [r0]v0
and Z0 = [r0 · w0]v0+Dv∗ , where w0 =

(∑
i∈[n] ŵi

)
·

(y0, 1, 0) and y0 = Û(y1, . . . , yn+m).
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6. The obfuscated program will contain the following:

– The evaluation parameters evparams.

– For all i ∈ [n], b ∈ {0, 1} the elements Ri,b, Zi,b, R̂i,b, Ẑi,b.

– For all i ∈ {n+ 1, . . . , n+m} the elements Ri, Zi.

– The elements R0, Z0.

We denote by Dλ(n,K) the distribution over the encoded ring elements the obfuscator outputs
according to the construction.

4.3 Evaluating an Obfuscated Program

We will now describe the evaluation procedure of our obfuscator. As can be seen in the description
of our obfuscator, we encode the obfuscated circuit in the w variables, where each variable is
encoded relative to an r variable. [AB15] showed that these pair of encodings, the r and the r · w
can be manipulated algebraically while keeping the invariant that each value is encoded relative to
an r. Which can be achieved by using the following procedure:

Procedure PairOp:

• Input: GES evaluation parameters evparams, pairs of encodings
(
R1 = [r1]v1

, Z1 = [r1w1]v1+kv∗
)
,(

R2 = [r2]v2
, Z2 = [r2w2]v2+kv∗

)
and an operation op ∈ {×,+,−}.

• Output: Pair of encodings
(
R∗ = [r1r2]v1+v2

, Z∗ = [r1r2 (w1 opw2)]v1+v2+tk·v∗
)
, where t =

1 for op ∈ {+,−} and t = 2 for op ∈ {×}. If (v1 + v2 + tk · v∗) > vzt, the procedure outputs
⊥.

• Algorithm:

1. Compute R∗ = R1 ×R2

2. If op = × compute Z∗ = Z1 × Z2.

3. If op = + compute Z∗ = Z1 ×R2 +R1 × Z2.

4. If op = − compute Z∗ = Z1 ×R2 −R1 × Z2.

We note that using PairOp iteratively we can evaluate any arithmetic circuit on pairs of encodings
and that the multiplicity of v∗ will be exactly the multiplicative degree of the evaluated circuit.

Now, we shall describe the evaluation procedure of our obfuscator.

Procedure Eval:

• Input: Obfuscated program as produced by our obfuscator for some identifier K:

O =

(
evparams,

{
Ri,b, Zi,b, R̂i,b, Ẑi,b

}
i∈[n], n∈{0,1}

, {Ri, Zi}n+mi=n+1 , {R0, Z0}
)
,

input x ∈ {0, 1}n.

• Output: Value O(x) ∈ {0, 1}.
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• Algorithm:

1. We consider the pairs of elements (Ri,xi , Zi,xi) for i ∈ [n], and Ri, Zi for i = n+1, . . . , n+
m. We apply the circuit Û on these pairs of encodings as described above, to obtain a
pair:

RU = [rU ]vU , ZU = [rU · wU ]vU+DÛ
,

where vU =
∑n

i=1M [i] · vi,xi +
∑n+m

i=n+1M [i] · vi and

wU = Û (w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

=
(
Û (y1, . . . , yn, yn+1, . . . , yn+m) , Û (x,K) , Û (ρ1,xi , . . . , ρn,xn , ρn+1, . . . , ρn+m)

)
=

(
Û(~y), CK(x), Û ( ~ρx)

)
.

2. We take the product of the pair of elements (RU , ZU ) with the sum of the pairs
(
R̂i,xi , Ẑi,xi

)
to obtain

R̂U = [r̂U ]v̂U , ẐU = [r̂U · ŵU ]v̂U+Dv∗ ,

where ŵU = (
∑n

i=1 ŵi,xi) · wU , and

v̂U =
n∑
i=1

M [i] · vi,xi +
n+m∑
i=n+1

M [i] vi +
n∑
i=1

v̂i,xi = vzt − v0

3. We subtract the pair
(
R̂U , ẐU

)
from the pair (R0, Z0), to obtain:

R′′ =
[
r′′
]
v̂U+v0

, Z ′′ =
[
r′′ · w′′

]
v̂+Dv∗+v0

,

and we notice that indeed (v̂U +Dv∗ + v0) = vzt and

w′′ = w0−

(
n∑
i=1

ŵi,xi

)
·
(
Û(~y), CK(x), Û ( ~ρx)

)
=

(
n∑
i=1

ŵi,xi

)
·
(
Û(~y)− Û(~y), 1− CK(x), Û ( ~ρx)

)
Recalling that

∑n
i=1 ρ̂i = 0 and thus

∑n
i=1 ŵi,xi = (α, β, 0), for some α, β, we have that:

w′′ = (0, β (1− CK (x)) , 0) .

4. Finally, zero testing is applied to Z ′′. If isZero (Z ′′) = 1 then output 1, otherwise output
0.

Lemma 4.1 (Correctness). Considering w′′ as above above. Then if CK(x) = 0 then PrDλ(n,K) [w′′ = 0] =
negl(λ), and if CK(x) = 1 then PrDλ(n,K) [w′′ = 0] = 1.

Proof. As seen above, PrDλ(n,K) [w′′J1K = 0] = 1 and PrDλ(n,K) [w′′J3K = 0] = 1 . It remains to
examine the value of w′′J2K. Note that:

Pr
Dλ(n,K)

[
w′′ = 0

]
= Pr

Dλ(n,K)

∑
i∈[n]

β̂i

 · (1− Û (x1, . . . , xn,K1, . . . ,Km)
)

= 0


= Pr

Dλ(n,K)

∑
i∈[n]

β̂i

 · (1− CK(x)) = 0


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Now, if CK(x) = 0 then the probability is equal to: PrDλ(n,K)

[∑
i∈[n] β̂i = 0

]
= negl(λ), whereas if

CK(x) = 1 then it is obvious that the probability is: PrDλ(n,K) [0 = 0] = 1.

5 Security

This section contains the security proofs for Obf in the standard RG model (Section 5.2) and for
all-or-nothing functions (defined in Section 5.3) in the zero-sensitive RGZ model (Section 5.4). In
Section 5.1 below, we present the notion of compatible arithmetic circuits, which will be instru-
mental in our proofs, and present some useful properties of such circuits.

5.1 Compatible Arithmetic Circuits

We present some tools that will be useful in proving security in the RG and in the RGZ model. We
recall that in both cases, the adversary gets as input a sequence of encodings, and it can perform a
sequence of arithmetic operations that respect the levels of the GES. Following [AB15], we say that
such an obfuscator is in “canonical form” and further that it defines a class of arithmetic circuits
on the encodings that are computable by an adversary.

Definition 5.1 (Obfuscator in Canonical form). Let λ be the security parameter, Rλ,σ,vzt be some
ensemble of probability distributions over rings. An obfuscator for the class C = {CK}K∈{0,1}∗ of
functions over {0, 1}n is in canonical form if it can be presented as follows:

1. Based on n, the obfuscator deterministically generates ` = `(n) integer-valued vectors v1, . . . ,v`,
a zero-testing vector vzt and a ring arity σ ∈ N.

2. Based on λ,K, n, the obfuscator defines a joint distribution Dλ(n,K) over ` (generic) ring
elements (a1, . . . , a`).

3. Then, the obfuscator initializes the GES which samples R R← Rλ,σ,vzt the obfuscator samples
the tuple (a1, . . . , a`) from R according to the distribution Dλ(n,K), and outputs the vector
of encodings ([a1]v1 , . . . , [a1]v`) together with the evaluation parameters evparams.

Overall, such a canonical obfuscator can be defined by the length function ` = `(n), the ring arity
σ(n), the vectors Vn = (v1, . . . ,v`,vzt), the distribution Dλ(n,K), and the ring distribution Rλ,σ,vzt.

Intuitively, an adversary that tries to break the obfuscated program gets as input a sequence
of encodings ([a1]v1 , . . . , [a1]v`) representing the obfuscated program, and has access to arithmetic
functionality using the oracle. It can thus evaluate arithmetic circuits over the ring elements
(a1, . . . , a`). As the definitions of the oracles RG,RGZ suggests, whether that arithmetic circuit
evaluates to zero on the ring elements dictates the behavior of the oracle and thus will be crucial
for the simulator. A successful simulator will thus need to be able to take an arithmetic circuit
A and determine whether it will evaluate to zero over ring elements of the distribution Dλ(n,K).
This distribution is unknown to the simulator since it does not have access to K, only oracle access
to CK . We show below that a lot can be learned about A using only oracle access to CK . We start
by noticing that A has to respect the level restrictions imposed by the GES.
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Definition 5.2 (V -compatible circuits). A purely arithmetic-circuit A is evaluated over the integer
valued vectors (v1, . . . ,v`) via the following recursive process. The i-th input gate takes the value
vi, a multiplication gate with input v,v′ takes the value v + v′, and an addition (or subtraction)
gate with identical inputs v = v′ takes the value v. If there exists an addition (subtraction) gate
with non-identical inputs v 6= v′ then the circuit is defined to be syntactically-illegal. We say that
A is compatible with V = (v1, . . . ,v`,vzt) if the computation A(v1, . . . ,v`) is syntactically legal and
the level v of the output gate is lower or equal to the zero-test level vzt, i.e., v ≤ vzt. When v = vzt

we say that A is strongly compatible with V .

Concretely for our obfuscator, which is in canonical form, given a low-degree V -compatible
arithmetic circuit A on the variables ~r, ~w, we would like to find whether A(~r, ~w) ≡ 0 (mod N)
when ~r, ~w are generated as per the obfuscator’s description. (We use ~r as shorthand notation for
the set of variables r(·), r̂(·), and ~w as shorthand notation for the set of variables w(·), ŵ(·).) We
consider the polynomial computed by A(~r, ~w) as a sum of semi-monomials of the form M(~r)Q(~w),
where M(~r) is a monomial in the ~r variables (i.e. a product of a subset of the variables in ~r), and Q
can be an arbitrary polynomial on variables in ~w. It is easy to see that since the ~r variables are all
uniform and independent, it suffices to find a single semi-monomial for which the Q component is
not congruent to zero in order to conclude that the entire expression computed by A is not congruent
to 0 (this is since a low-degree non-zero polynomial will take non-zero value with overwhelming
probability).

We would like to use a zero tester for compatible circuits that is unlikely to error throughout
the course of the simulation, To this end we note that V -compatible circuits have degree at most
‖vzt‖1 (the `1 norm of the vzt vector), and by the choice of the order of the ring (N), it holds that
SZTest(1(λ+n), A,N) outputs the correct response with all but 2−λ−n probability. Therefore, if the
number of calls to SZTest is at most 2n · poly(λ) then with all but negligible probability, we will
have no errors in any of the calls. We will call this procedure ZeroTest and assume from this point
and on that it always outputs the correct value. The following lemma summarizes the properties
of ZeroTest.

Lemma 5.3. Let N be the order of the underlying ring in the construction of Obf, and define
ZeroTest(A) = SZTest(1(λ+n), A,N). Then a simulator that calls ZeroTest at most 2n · poly(λ)
times with A which is V -compatible, will always receive a correct output whether A ≡ 0 (mod N)
or not, in all calls with probability 1− negl(λ).

In what follows, we analyze the structure of the semi-monomials of A and show that they must
take some special forms which dictate certain properties.

Claim 5.4. Let N be the order of the underlying ring in the construction of Obf, and let A be a
V -compatible circuit such that A 6≡ 0 (mod N). Then:

Pr
~r, ~w

[A(~r, ~w) = 0 (mod N)] ≤ 2−λ

where the elements of ~r, ~w are randomly chosen from N

Definition 5.5. Let P (X1, · · · , Xn) be a polynomial. We say that P is Xi-free if all monomials
that contain Xi take zero value in P ’s coefficient vector. We extend this notation to monomials
and say that P is (

∏
Xdi
i )-free if all monomials that are divisible by (

∏
Xdi
i ) take zero value in P ’s

coefficient vector. For a set of monomials {M1, . . . ,Mk} we say that P is {M1, . . . ,Mk}-free if it
is Mj-free for all j = 1, . . . , k.
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The Structure of the Q Component. We assert the following structural claims on Q which
hold due to A’s being V -compatible. These properties hold here for the same reason as in [AB15]
but we add the proofs for the sake of completeness.

Lemma 5.6. There exists a constant a and a w0-free polynomial Q′(w) such that

Q(~w) = a · w0 −Q′(~w)

Proof. First, we note that the level associated with w0 prevents it from being multiplied with any
of the other ~w variables. The reason is that w0 is of level ≥ (D + n)v∗, and the other ~w variables
are encoded at level ≥ v∗. Thus, the product of w0 with any other w(·) variable will result an
element in a level ≥ (D + n+ 1)v∗ 6≤ vzt and contradiction follows.

Lemma 5.7. For all i ∈ [n], the polynomial Q (and therefore also Q′ from Lemma 5.6) is ŵ2
i -free.

Proof. Assume towards contradiction that this is not the case. Therefore, there exists an i and
b1, b2 ∈ {0, 1} such that r̂i,b1 · r̂i,b2 | M . Thus, P is of level at least: v̂i,b1 + v̂i,b2 6≤ vzt, and
contradiction follows.

Lemma 5.8. If Q′(~w) =
(∑

i∈[n] ŵi

)
· Q′′(~w) for some Q′′, then there exists ~x = (x1, . . . , xn) ∈

{0, 1}n such that Q′′ is {wi,1−xi}i∈[n]-free.

And by Lemma 5.7, Q′′ is also {ŵi}i∈[n]-free.

Proof. For the sake of convenience, we denote: ŵx =
∑

i∈[n] ŵi,xi . Note that the level of ŵx is:

v̂x =
∑n

i=1 v̂i,xi .
Assume towards contradiction that this is not the case. Namely that there exists i ∈ [n] such

that Q′′(w) is neither wi,0-free nor wi,1-free. This means that ri,0 · ri,1 | M(r). However it also
holds that r̂i,b | M(r) for some b ∈ {0, 1}. The latter is since ŵx | Q′ and thus Q is not ŵi,xi-free.
However, for all b ∈ {0, 1}, vi,0 + vi,1 + v̂i,b 6≤ vzt and contradiction follows.

Classification of Semi-Monomials. We distinguish between three main classes of semi-monomials.

• Invalid I: It holds that
(∑

i∈[n] ŵi

)
- Q′(~w)

• Invalid II: It holds that
(∑

i∈[n] ŵi

)
| Q′(~w), namely there existsQ′′(~w) which is {w0, ŵ1, . . . , ŵn}-

free and:

Q(~w) = aw0 −

∑
i∈[n]

ŵi

 ·Q′′(w).

However,
Q′′(~w) 6= a · Û (w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

for any ~x = (x1, . . . , xn) ∈ {0, 1}n.

• Valid: There exists ~x = (x1, . . . , xn) ∈ {0, 1}n such that:

Q(~w) = a ·

w0 −

∑
i∈[n]

ŵi

 · Û (w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

 .
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We define the canonical valid semi-monomial for input ~x as follows. We let

Q∗~x(~w) = w0 −

∑
i∈[n]

ŵi

 · Û (w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m) ,

and denote A∗~x(~r, ~w) = M∗~x(~r)Q∗~x(~w), where M∗~x(~r) the monomial in ~r that was yielded by the
truthful evaluation of the obfuscated program.

Validity Testing. We show that the validity of a semi-monomial, represented by an arithmetic
circuit, can be tested efficiently.

Lemma 5.9 (Validity Check). There exists an algorithm isValidZeroTest(1λ, A,N) that on an input
A which is a V -compatible arithmetic circuit that computes a single semi-monomial, and a modulus
N , either returns a non-trivial factor of N or answers whether A is a valid semi-monomial and if
so outputs it’s corresponding input.

Proof. First we note that we can extract a unique input-configuration from the semi-monomial A
computes. We do that by simply by iterating over ri,b, hardwiring them to zero and getting a
new arithmetic circuit A′. We then check using ZeroTest on the new arithmetic-circuit whether
A′ ≡ 0 or not. If the A′ ≡ 0 when hardwiring the ri,b it means that it is present in the semi-
monomial, therefore we say that the input-configuration of A incorporates (i, b). We say that the
input-configuration is inconsistent if it incorporates both (i, 0) and (i, 1) for some i, and in such
case we output that the semi-monomial is “invalid”. We also output that the monomial is “invalid”
if it doesn’t incorporate neither (i, 0) nor (i, 1) for some i.

Now, we have the input-configuration of A, denote it by ~x, and we made sure that A contains
exactly one semi-monomial. We construct A∗~x, the valid semi-monomial associated with the input-
configuration ~x. We use the algorithm Div in lemma 2.6 on the A and A∗~x, storing the result in
α. We check if α is a proper factor of N by checking gcd(α,N) if the result is different than 1 we
output it. For last, run ZeroTest on the circuit defined by α · A − A∗~x and output “valid” and the
value of ~x if the result was “zero” and “invalid” otherwise.

Correctness holds since A∗~x is a valid semi-monomial, it means that A∗~x 6≡ 0 and thus Prξ[A
∗
~x(ξ) =

0] = negl(λ).If Div output a proper factor of N then the gcd will return an answer 6= 1, thus we
will return a factor as required. If not, than it returns a factor s.t. α · A = A∗~x or determine that
A is indeed invalid.

Invalid Semi-Monomials Should not Zero-Out. We show that an invalid semi-monomial
cannot evaluate to zero with more than negligible probability modulo N , unless it is easy to factor
N .

Lemma 5.10. Let A be a V -compatible circuit that computes an invalid semi-monomial. If for
some non-negligible ε:

Pr
~r, ~w←Dλ(n,K)

[A(~r, ~w) = 0] > ε ,

then there exists an efficient algorithm that outputs a non-trivial factor of N in polynomial time.

Proof. Let A be an invalid semi-monomial, let M,Q be such that A(r, w) = M(r)Q(w) and let
Q′(w) be derived from Q(w) as above.
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If A is Invalid-I, then
∑n

i=1 ŵi,xi does not divide Q′(w). Define the distribution D1 on r, w such
that w0 = 0, ŵi,0 = ŵi,1 = ŵi (chosen uniformly) for all 1 ≤ i ≤ n − 1, ŵn,0 = ŵn,1 = −

∑n−1
i=1 ŵi

(mod N) the rest of the formal variables are uniformly random. We will prove that PrD1 [A(r, w) = 0
(mod N)] = negl(λ) and PrD1 [A(r, w) = 0 (mod p3)] > ε, which allows us to find a factor for N
efficiently.

To show that PrD1 [A(r, w) = 0 (mod p3)] > ε, we observe that D1 is equivalent to Dλ(n,K)
modulo p3. Thus by the assumption we have PrD1 [A(r, w) = 0 (mod p3)] > ε.

To show that PrD1 [A(r, w) = 0 (mod N)] = negl(λ) we notice that Q′ is of the form:

Q′(~w) = a(~w) + ŵn · b(~w)

where a and b are both ŵn-free because we know that Q′ is ŵ2
n-free by Lemma 5.7. We define a

new polynomial Q̃ by substituting ŵn = −
∑n−1

i=0 ŵi and we get that:

Q̃(~w) = a(~w)−

(
n−1∑
i=0

ŵi

)
b(~w).

If Q′ evaluates to zero with noticeable probability over D1 so must Q̃. But note that Q̃ is a
multivariate polynomial with one less variables and we substitute uniformly random values. Hence,
from Claim 5.4, if we get 0 with noticeable probability it has to be equivalent to the zero polynomial.
Thus:

a(~w) =

(
n−1∑
i=0

ŵi

)
b(~w).

So, looking again at Q′ we get:

Q′(~w) =

(
n−1∑
i=0

ŵi

)
b(~w) + ŵn · b(~w)

Hence
∑n

i=1 ŵi,xi divides Q′ which contradicts the assumption.

On the other hand, if A is Invalid-II then we let Q′′(~w) be as above and by assumption

∀~x ∈ {0, 1}n Q′′(~w) 6≡ a · Û (w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m) .

Define the distribution D2 on r, w such that all the variables are chosen uniformly only that:
ŵi,0 = ŵi,1 = ŵi for all 1 ≤ i ≤ n and wi,0 = wi,1 = wi for all 1 ≤ i ≤ n and we define: w0 =(∑n−1

i=0 ŵi

)
Û (w1, . . . , wn, wn+1, . . . , wn+m). We will prove that PrD2 [A(r, w) = 0 (mod N)] =

negl(λ) and PrD2 [A(r, w) = 0 (mod p1)] > ε, which allows us to find a factor for N efficiently.
To show that PrD2 [A(r, w) = 0 (mod p1)] > ε, we observe that D2 is equivalent to Dλ(n,K)

modulo p1. Thus by the assumption we have PrD2 [A(r, w) = 0 (mod p1)] > ε.
To show that PrD2 [A(r, w) = 0 (mod N)] = negl(λ) we notice that by Lemma 5.8, there exists

a polynomial Q̂ such that:

Q′′(w) = Q̂ (w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m) .

23



Because we are going to take the probability over the distribution D2, and in that distribution
wi,0 = wi,1 = wi for i ≤ i ≤ n we can also write:

Q′′(w) = Q̂ (w1, . . . , wn, wn+1, . . . , wn+m) .

We now note that:

Pr
D2

[Q(w) = 0] ≤ Pr
D2

∑
i∈[n]

ŵi = 0

+ Pr
D2

[
a · w0 −Q′′(~w) = 0

]
≤ Pr

D2

[
a · w0 −Q′′(~w) = 0

]
+ negl(λ)

= Pr
D2

[
a · w0 − Q̂(w1, . . . , wn, wn+1, . . . , wn+m) = 0

]
+ negl(λ)

= Pr
D2

[
a · Û(w1, . . . , wn, wn+1, . . . , wn+m)− Q̂(w1, . . . , wn, wn+1, . . . , wn+m) = 0

]
+ negl(λ)

However, because A is Invalid-II we have that:
(
a · Û(·)−Q′′(·)

)
6≡ 0, and therefore the probability

of zero is negligible because all of the variables in the polynomial that is written inside the last
probability are uniformly random, hence from Claim 5.4 we get the bound we wish for.

Rejecting Semi-Monomials Should not Zero-Out. Moreover, we show that an valid semi-
monomial cannot evaluate to zero with more than negligible probability modulo N if the input
corresponding to this monomial is a rejecting input, unless it is easy to factor N .

Lemma 5.11. Given an x = (x1, . . . , xn) ∈ {0, 1}n and a semi-monomial that evaluate such that:

Q(~w) = a ·

w0 −

∑
i∈[n]

ŵi

 · Û (w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)


and CK(x) = 0. Then if PrDλ(n,K) [Q = 0] > ε for a non-negligible ε there exists an efficient
algorithm that outputs a non-trivial factor of N in polynomial time.

Proof. Let x,Q be as in the lemma statement. By definition, PrDλ(n,K) [QJ1K = 0] = 1 and
PrDλ(n,K) [QJ3K = 0] = 1 . It remains to examine the value of Q(~w)J2K = QJ2K(wJ2K). Note
that:

Pr
Dλ(n,K)

[Q(~w) = 0] = Pr
Dλ(n,K)

[QJ2K(~wJ2K) = 0]

= Pr
Dλ(n,K)

aJ2K ·

∑
i∈[n]

β̂i

 · (1− Û (x1, . . . , xn,K1, . . . ,Km)
)

= 0


= Pr

Dλ(n,K)

aJ2K ·

∑
i∈[n]

β̂i

 · (1− CK(x)) = 0


= Pr

Dλ(n,K)
[aJ2K = 0] + Pr

∑
i∈[n]

β̂i

 · (1− CK(x))


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Note that since CK(x) = 0 then the probability of the second term is equal to: PrDλ(K)

[∑
i∈[n] β̂i = 0

]
=

negl(λ).Hence, if PrDλ(n,K) [Q(~w) = 0] > ε it means that PrDλ(n,K) [aJ2K = 0] > ε− negl(λ). In that
case we construct Q∗~x, the valid evaluation of x (without the a factor), and use Div from Lemma
2.6. Which either output a or a factor of n. But since aJ2K = 0 it means that p2 | a, thus either
way we’ve found a factor of N with probability > ε− negl(λ).

5.2 Indistinguishability Obfuscation Security in the Classic Generic Model

Theorem 5.12. The obfuscator Obf is an indistinguishability obfuscator in the generic GES model
relative to the oracle RG, under the sub-exponential hardness of factoring (Definition 2.1), so long
as λ ≥ n1/δ.

Proof. In order to prove security, we construct a simulator that will simulate the view of the adver-
sary with only oracle access to CK . Since we only want to prove indistinguishability obfuscation,
we can allow the simulator to run in time 2n · poly(λ). Thus it can read the entire truth table of
CK .

Initialization: The simulator generate a number N from the same distribution as the ring order
in the GES. The simulator also creates a table L. For each encoding the obfuscator outputs, S
will create a row in the table associating random label string with the formal variable represented
by the encoding and the appropriate level of the encoding. S, just like the obfuscator, will output
a list of label strings for each of the obfuscated encodings and give them to the adversary.

S.Add(enc1, enc2),S.Mult(enc1, enc2),S.Negate(enc): Given an arithmetic operation (Add, Mult,
Negate), the simulator will construct an arithmetic-circuit Ares = Aenc1 op Aenc2 (where Aenc1

and Aenc2 are the arithmetic-circuits associated with enc1 and enc2 respectively) and check if it is
equivalent to one of the other elements in the table with the same level. It can easily be done by
subtracting Ares from the arithmetic-circuit in the table and using isZero procedure. If they are
equivalent, the simulator will response with the same label. Otherwise, the simulator will create a
new row in L containing a new label, Ares and the new level. Outputs the label to the adversary.

S.isZero(enc): Upon an isZero request, the simulator checks the table L for the encoding element
enc. If it is not contained in the table, the simulator will output ⊥. Otherwise, we denote by A the
arithmetic-circuit associated with enc.

From Lemma 5.13 we can determine whether A evaluates to zero or not with overwhelming
probability. This process runs in time 2npoly(λ), which is allowed in the context of iO.

Lemma 5.13. Let λ ≥ n1/δ, there exists an algorithm iOZeroCK that given a V -compatible arithmetic-
circuit A outputs a bit β ∈ {0, 1} such that with all-but-negligible probability:∣∣∣∣ Pr

~r, ~w←Dλ(n,K)
[A(~r, ~w) = 0]− β

∣∣∣∣ ≤ negl(λ)

under the sub-exponential assumption of factoring (Definition 2.1).
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Note that this implies that with all-but-negligible probability A either evaluates to zero almost
everywhere or not to zero almost everywhere under Dλ(n,K).

Proof. Consider the following algorithm:

1. Create a new empty arithmetic-circuit S.

2. For every ~x ∈ {0, 1}n:

(a) Generate a new arithmetic-circuit A~x which is created by taking A and hardwiring
ri,1−xi , r̂i,1−xi to zero.

(b) Check “minimality” of A~x: meaning that A~x does not contain more than one semi-
monomial and that all of ri,xi , r̂i,xi , ri, r0 are used in the semi-monomial represented by
A~x. We do that by a process similar to the one in the semi-monomial extraction algorithm
(Lemma 2.5). We simply try to hardwire more rs to zero and if we can hardwire another
r without getting an arithmetic-circuit that is equivalent to the zero-circuit (denote this
arithmetic-circuit by A′) it means that all the semi-monomials M ′(~r)Q′(~w) in A′ (that
must also be contained in A~x) maintain that either r0 isn’t present in M ′(~r), there exists
an 1 ≤ i ≤ n such that either ri,xi or r̂i,xi not present in M ′(~r) or there exists an
n + 1 ≤ i ≤ n + m such that ri not present in M ′(~r). By using the semi-monomial
extraction procedure (Lemma 2.5) on A′ we can extract such monomial, by doing so
we’ve found an invalid semi-monomial in A~x and therefore in A so we output that A
evaluates to “non-zero”.

(c) Now we know that A~x contains only one semi-monomial. Run the validity check (Lemma
5.9) on A~x. If it is invalid output that A evaluates to “non-zero”.

(d) Query the CK-oracle on the input ~x if it returned 0 output “non-zero”.

(e) Replace S with S +A~x.

3. Check whether S and A are equivalent by using ZeroTest on the arithmetic-circuit S −A. If
they are equivalent output “zero”. Otherwise, using semi-monomial extraction on S −A will
yield an invalid semi-monomial, so we can output “non-zero”.

Correctness: We first note that this algorithm runs in time 2npoly(n, λ), therefore under the
sub-exponential assumption on factoring, this algorithm cannot factor N . Hence, the validity
check cannot return a proper factor of N with more than negligible probability and therefore will
return whether the semi-monomials are valid or not and by Lemma 5.10 we get that all invalid
semi-monomials evaluate to zero only with negligible probability. Hence if the algorithm finds an
invalid semi-monomial during the evaluation, we’ve found a semi-monomial which is not congruent
to zero, thus A evaluates to non-zero with overwhelming probability, so we can output “non-zero”
and quit the process.

If we encounter a valid semi-monomial such that the CK-oracle on the input ~x returned 0 then
according to Lemma 5.11, since this algorithm cannot break factoring then with overwhelming prob-
ability this semi-monomial does not evaluate to zero, and again it means that with overwhelming
probability A evaluates to non-zero.

It remains to check the case in which all semi-monomials in the loop were valid. In this case
we check whether S and A are equivalent. If they are, it means that A consists only of the
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semi-monomials we’ve checked, and we know that each and every one of them evaluates to zero
(otherwise, we would have stopped the process beforehand) and therefore A evaluates to zero. But
if A and S are not equivalent, that means that there is another semi-monomial in A that was
not covered in the loop. This semi-monomial has to be invalid because we covered all possible
valid semi-monomials. Therefore it will evaluate to zero only with negligible probability because of
Lemma 5.10 and as a result so does A.

5.3 All-or-Nothing (AoN) Functions

We define a category of “all or nothing” functions. These are functions such that are either evasive
or perfectly learnable, namely, finding an accepting input for a function in the class implies that
the code of the function can be retrieved. This class is an extension of the class of evasive functions.
For simplicity we provide the definition in the standalone setting, but it can be extended to the
auxiliary input setting as well.

Definition 5.14. An ensemble of functions C = {Cn} is AoN if for any ppt algorithm A, there
exists a ppt algorithm B such that for all C ∈ Cn,

Pr
r

[(
C
(
AC (1n; r)

)
= 1
)
∧
(
BC(1n; r) 6= C

)]
= negl(λ) ,

that is A,B use the same random tape r.

We can also define an average-case analogue:

Definition 5.15. An ensemble of functions C = {Cn} together with distributions {Dn} over C is
average-case AoN if for any ppt algorithm A, there exists a ppt algorithm B such that:

Pr
r, C←Dn

[(
C
(
AC (1n; r)

)
= 1
)
∧
(
BC(1n; r) 6= C

)]
= negl(λ) ,

that is A,B use the same random tape r.

Note that we ask that B outputs the exact code of C, given only black box access. Therefore,
AoN function classes which are not evasive need to have programs with unique representations.
This indeed holds for classes such as conjunctions.

5.4 Zero-Sensitive Security for All-or-Nothing Functions

The following theorem states the VBB security of Obf for any class of AoN functions. We note that
while we provide a proof for worst-case AoN, the average case setting follows by a similar proof
(note that there could exist function classes that are average case AoN but not worst case AoN).

Theorem 5.16. Assuming factoring is hard then if C is a family of AoN functions, then Obf is
VBB-secure with respect to the oracle RGZ .

Proof. In order to prove VBB security, we want to define an efficient simulator S that will simulate
the view of the adversary using only an oracle access to CK .

Similarly to the definition of the RGZ oracle in Section 3.2, the simulator S will need to act
differently when a non-trivial encoding of zero is encountered (that is, simulate the performance of
RGZ when decode = true). The simulator will maintain a variable decode that upon initialization
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will be set to false and only when we encounter a non-trivial encoding of zero it will be set to
true. As long as decode = false, we use the hardness of factorization in order to show that finding
non-trivial zero using invalid monomials is unlikely, therefore up to the point where such encoding
is found, the simulator will not use the factorization of the ring at all. The factorization will only
be used afterwards in order to continue the simulation after decode was set to true.

Initialization: The simulator generate a number N which it knows how to factor into three
factors p1, p2, p3 (which have gcd(pi, pj) = 1 for i 6= j, but does not have to be primes). In similar
with the RGZ oracle, the simulator will also create a table L. For each encoding the obfuscator
outputs, S will create a row in the table associating random label string with the formal variable
represented by the encoding and the appropriate level of the encoding. S, just like the obfuscator,
will output a list of label strings for each of the obfuscated encodings and give them to the adversary.
The only difference between the simulator and the oracle here is that the ring element is not stored
in the table at this point.

S.Add(enc1, enc2),S.Mult(enc1, enc2),S.Negate(enc): Given an arithmetic operation (Add, Mult,
Negate), the simulator will construct an arithmetic-circuit Ares = Aenc1 op Aenc2 (where Aenc1

and Aenc2 are the arithmetic-circuits associated with enc1 and enc2 respectively) and check if it is
equivalent to one of the other elements in the table with the same level. It can easily be done by
subtracting Ares from the arithmetic-circuit in the table and using isZero procedure. If they are
equivalent, the simulator will response with the same label. Otherwise, the simulator will create a
new row in L containing a new label, Ares and the new level. Outputs the label to the adversary.

S.isZero(enc): The isZero algorithm works differently when decode is set to true or false.

The case where decode = false: The simulator will check if enc is in L. If not it will output
⊥, otherwise the simulator use the following algorithm:

1. Use the AoNZero algorithm from Lemma 5.18 on the arithmetic-circuit associated with enc
in order to determine whether it evaluates to zero or in order to find an accepting input. If
the algorithm output a decision regarding the evaluation of the arithmetic-circuit output it.

2. Otherwise, we note that the adversary together with the simulator up to this point is an
efficient algorithm that finds an accepting input. From the definition of the function class
(Definition 5.14) we can use the B algorithm associated with this combined algorithm in order
to find the code of the obfuscated circuit C.

3. Generate values to all the formal variables given in the initialization step using the known
factorization of the ring. And store the values for future use.

We note that when we choose random variables, we could have broken consistency with
previous queries, as it could have been that using these values previous isZero calls would
have response with true. But note that such inconsistency can only occur with negligible
probability.

4. Set decode = true and run S.isZero(enc) again.
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Remark 5.17. The isZero algorithm this case can only return that the value is indeed “zero” if the
encoded element is a trivial zero. In any other case we either output “non-zero” or we change to
the case where decode = true.

The case where decode = true: In this case, the simulator has already assigned values to
each of the formal variables in the table L, and therefore it can easily evaluate the result of the
arithmetic-circuit associated with enc and reply to the isZero accordingly.

S.Decode(enc): If decode = false simply return ⊥ as this is what the simulator will do. We note
that in every arithmetic operation that the adversary does, we initiate isZero on all the elements at
the same level. Therefore, if the adversary succeeded in finding a non-trivial zero or received the
same element in two different ways, the simulator will change decode to be true. Thus in that case,
the simulator has already assigned values to all the formal variables used in the arithmetic-circuit
associated with enc. By substituting those variables into this arithmetic-circuit results the decoded
value of enc which we can output to the adversary.

Correctness: We want to show the correctness of the S.isZero procedure in both cases. We note
that if decode = true, the simulator already knows the function evaluated and it have assignments
to all the formal variables that are in use, therefore, it is clear that substituting this values in the
arithmetic-circuit associated with the encoding the adversary wish to zero test will yield a correct
answer.

On the other hand, while decode = false, the correctness is immediate from the correctness of
Lemma 5.18 together with the definition of the AoN class and the hardness of factoring. But using
the hardness of factoring is delicate since S knows factors of N , therefore we cannot simply solve
factoring using the simulator, because in order to construct the simulator those factors are needed
to be known in advanced. We note that once decode = true the hardness of factoring doesn’t play
a role in the correctness of the simulator.

Because we only care when decode = false, we can construct a new simulator S1 that will abort
when decode = true. It is clear that if AoNZero in S broke factoring while decode = false so it
must during S1. Now, we introduce the simulator S2 which is similar to S1 only that S2 does
not know any proper factors of N . We notice that those factors are only being used when we set
decode = true, and since S1 aborts when decode is set to true the behavior of S1 and S2 is the same,
and therefore the behavior of S2 and S is the same as long as decode = false.

Now, we want to bound the probability that AoNZero, when being used in the S during the
time decode = true, will output a factor or fail (which occurs only in negligible probability as
explained in Lemma 5.18). We note that in simulator S2 the probability to either of those event is
negligible since factoring is hard. Thus, because the behavior of S and S2 is the same as long as
decode = false, the probability will have to be negligible in S.

Lemma 5.18. Let C is from a family of AoN functions. There exists an algorithm AoNZeroC

that when given an arithmetic circuit A either determines whether it evaluates to zero, outputs an
accepting input for C or output a non-trivial factor of N .

Proof. Consider the following algorithm:
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1. Run ZeroTest on A, if the output of the ZeroTest was “zero” - output “zero” as the circuit is
with overwhelming probability computes the zero-polynomial.

2. Use the Semi-Monomial Extraction algorithm from lemma 2.5 in order to extract an arbitrary
semi-monomial from the associated arithmetic-circuit.

3. Check whether the evaluated semi-monomial is valid by using the validity check algorithm
in lemma 5.9. If the semi-monomial is invalid, use the algorithm defined by Lemma 5.10 in
order to try and exact a factor of N if manage to find a factor output it otherwise output
“nonzero”. If the the validity check returned a proper factor of N , output it. For last, if the
semi-monomial was valid, denote the input of semi-monomial by x.

4. Query the C-oracle for C(x), if C(x) = 0, output “non-zero”. As the resulted encoding cannot
zero-out in this case with non-negligible probability.

5. Otherwise, output the x.

Correctness: If A is equivalent to the zero-circuit, the first line of the algorithm uses ZeroTest
that with probability 1 will output “zero”, hence we indeed return the right answer.

If A is not equivalent to the zero-circuit, then by using the semi-monomial extraction algorithm
(Lemma 2.5) in the second step of the algorithm we get a semi-monomial.

We note that since factoring is hard, validity check will not return a proper factor with over-
whelming probability. Therefore it will output whether the semi-monomial is valid or not. If this
semi-monomial is valid then the validity check must accept and also output the corresponding
input, denote it by ~x. In step 4 we query the oracle for the value C(~x), if it returns that the
C(~x) = 1 then we have successfully found an accepting input, and we output it. On the other
hand, if oracle response was that C(~x) = 0, then according to Lemma 5.11, since factoring is hard
this semi-monomial cannot zero-out with noticeable probability. Thus from Claim 5.4 we know
that A only returns 0 with negligible probability as it contains a monomial that does not cancels
out.

Now, if A is an invalid semi-monomial and if the encoding is indeed encoding of zero then from
Lemma 5.10 we can construct an algorithm that will output a factor of N . By amplification it
will fail only in negligible probability. If it fails, that mean that with overwhelming probability A
will not zero-out. Therefore, from Claim 5.4 we get that A will not zero out with overwhelming
probability.
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Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without
low-level zeroes: New MMAP attacks and their limitations. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, volume 9215 of Lecture Notes in Computer Science, pages 247–266. Springer,
2015.

31



[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
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