
A deeper understanding of the XOR count
distribution in the context of lightweight

cryptography

Sumanta Sarkar1 and Siang Meng Sim2

1 TCS Innovation Labs, Hyderabad, INDIA
2 Nanyang Technological University, SINGAPORE
sumanta.sarkar1@tcs.com, ssim011@e.ntu.edu.sg

Abstract. In this paper, we study the behavior of the XOR count distri-
butions under different bases of finite field. XOR count of a field element
is a simplified metric to estimate the hardware implementation cost to
compute the finite field multiplication of an element. It is an important
criterion in the design of lightweight cryptographic primitives, typically
to estimate the efficiency of the diffusion layer in a block cipher. Although
several works have been done to find lightweight MDS diffusion matri-
ces, to the best of our knowledge, none has considered finding lightweight
diffusion matrices under other bases of finite field apart from the con-
ventional polynomial basis. The main challenge for considering different
bases for lightweight diffusion matrix is that the number of bases grows
exponentially as the dimension of a finite field increases, causing it to
be infeasible to check all possible bases. Through analyzing the XOR
count distributions and the relationship between the XOR count distri-
butions under different bases, we find that when all possible bases for
a finite field are considered, the collection of the XOR count distribu-
tion is invariant to the choice of the irreducible polynomial of the same
degree. In addition, we can partition the set of bases into equivalence
classes, where the XOR count distribution is invariant in an equivalence
class, thus when changing bases within an equivalence class, the XOR
count of a diffusion matrix will be the same. This significantly reduces
the number of bases to check as we only need to check one representa-
tive from each equivalence class for lightweight diffusion matrices. The
empirical evidence from our investigation says that the bases which are
in the equivalence class of the polynomial basis are the recommended
choices for constructing lightweight MDS diffusion matrices.
Key words: lightweight cryptography, finite field multiplication, basis
of finite field, XOR count, MDS matrices, diffusion layer.

1 Introduction

In today’s world Internet of Things (IoT) is a buzzword. The devices that are
involved in IoT are equipped with very limited power and memory. The stan-
dard cryptographic primitives often do not suit in these devices. Thus to cater



the security requirement of IoT, the so-called topic lightweight cryptography has
emerged.

Lightweight cryptography is mostly based on symmetric-key cryptography.
Examples of lightweight ciphers include eSTREAM finalists Grain v1 [7], MICKEY
2.0 [1], and Trivium [11]. On the other hand, the block ciphers CLEFIA [9],
PRESENT [2] have already been included in the ISO standardization project of
lightweight cryptography ISO/IEC 29192. The block cipher PRINCE [3] is another
block cipher that is lightweight, and after its arrival in 2012, it has generated a
lot of interest in the community.

There are two important cryptographic criteria of a block cipher, and other
cryptographic primitives such as hash functions that are based on block ciphers—
confusion and diffusion. The confusion layer makes the relation between key and
ciphertext as complex as possible, and on the other hand the diffusion layer
spreads the plaintext statistics through the ciphertext. A popular choice for
constructing the diffusion layer is to use maximum distance separable (MDS)
matrices, for instance AES [4] and LED [6] use MDS matrix to achieve the max-
imum diffusion power. However, having MDS matrix in a lightweight cipher is
a real challenge for the designers as MDS matrices tend to have high imple-
mentation cost. To quantify the hardware cost of the diffusion layer, a metric
to estimate the cost for implementing the coefficients of the diffusion matrix is
required.

Before [8], a common belief was that field elements with low Hamming weight
tends to be lightweight. For instance, one of the rationales for the choice of AES
diffusion matrix coefficients was its simplicity and low Hamming weight. How-
ever, there was no clear implication of how low Hamming weight elements would
result in lightweight implementation. In 2014, the authors of [8] proposed to look
at the number of XORs required to compute the multiplication of a fixed field ele-
ments. As a result, they found MDS diffusion matrices that required lesser XORs
to implement than the AES diffusion matrix and yet with higher total Hamming
weight. In 2015, the authors of [10] extended the search for lightweight diffu-
sion matrices, with special focus on involutory (self-inverse) MDS matrices, over
other finite fields defined by other irreducible polynomials besides the irreducible
polynomial used for AES diffusion matrix. Besides finding new lightweight diffu-
sion matrices, the authors proposed that the choice of irreducible polynomial to
construct lightweight matrices should not be dependent on the Hamming weight
of the polynomial, but the high standard deviation of the XOR count distri-
bution. Although all possible irreducible polynomials for generating finite fields
have been studied, the choice of the basis has not been considered.

In symmetric-key cryptography, the conventional choice of basis is the poly-
nomial basis. However, there are many other choices of basis, for instance a
normal basis, which is commonly used in elliptic curve cryptography. These new
choices of basis give rise to new sets of XOR count distributions. Hence a natural
question is whether there exist even lighter MDS diffusion matrices when we con-
sider different bases besides the polynomial basis, which is the main motivation
of this work. However, extending the search for lightweight matrices to other



bases brings about a new challenge—the number of bases grows exponentially
as the dimension of the finite field increases. Perhaps this is one reason that
little work in any aspect of cryptography has looked into the different choices of
bases.

Contributions. In this paper we deeply study the distribution of XOR count
of field elements and characterize how sensitive they are to the change of basis.
Prior to this work, little work has been done on analyzing different finite field
bases in the cryptographical aspect. In Section 2, after giving a brief introduc-
tion to finite field and its bases, we describe how to compute the XOR count of
a field element and the XOR count of a diffusion matrix. In Section 3.2, we ana-
lyze the distribution of XOR counts and show that the mean of the XOR count
distribution is invariant of the irreducible polynomial and basis. In addition, we
prove that the collection of XOR count distributions is the same for any irre-
ducible polynomial of the same degree. This implies that we only need to consider
XOR count distributions under one irreducible polynomial. In Section 3.3, we
show that there are bases that generate similar XOR count distributions, which
means that there are “redundant bases”, and we can reduce the number of bases
to consider when we search for lightweight diffusion matrices. In Section 4, we
formally define the equivalence relation between bases whose XOR count distri-
butions are invariant, and propose the concept of equivalence classes of bases.
Since it is sufficient to search for lightweight MDS diffusion matrices under one
representative basis from each equivalence class, this significantly reduces the
number of bases to consider. In Section 5, we describe the algorithms for finding
all equivalence classes of bases, and searching lightweight MDS and involutory
MDS diffusion matrices under the representative bases. Although we do not find
new lighter (involutory) MDS diffusion matrices, our empirical evidence shows
that the polynomial basis, and its equivalent bases, are the recommended choice
of bases for constructing lightweight MDS diffusion matrices.

2 Preliminary

In this section, first we give a short recap on finite field and its bases. Next, we
describe how the XOR count of a field element and XOR count of a diffusion
matrix under some irreducible polynomial are computed.

2.1 Finite field

We denote by GF(2n) the finite field with 2n elements, n ≥ 1. The addition +
over GF(2n) will be used in this paper with ambiguity, however implication will
be clear from the context. The exclusive-or (XOR) sign ⊕ will sometimes be
used to mean addition modulo 2.

The extension field GF(2n) of GF(2) is constructed using an irreducible poly-
nomial of degree n. Let GF(2n)/p(X) denote the field having the underlying



irreducible polynomial p(X) of degree n3. Note that for any other irreducible
polynomial q(X) of degree n, the two fields GF(2n)/p(X) and GF(2n)/q(X) are
isomorphic. Throughout the paper we will be using the notation GF(2n)/p(X)
only when we need to mention p(X) explicitly.

The number of irreducible polynomial of degree n over GF(2), denoted as
Mn(2), is given by the following formula,

Mn(2) =
1

n

∑
d|n

µ(d)2
n
d , (1)

where µ(d) is the Möbius function [5].

2.2 Bases of a finite field

Let α denote a primitive element of GF(2n), then any nonzero element in the
finite field can be expressed as αi. Given GF(2n), consider a set of elements in
the field B = {αr0 , αr1 , ..., αrn−1}, where ri’s are non-negative integers. If the
GF(2)-linear combinations of elements of B span the entire field, we call this
as a basis, that is through the basis, we identify GF(2n) with the vector space
GF(2)n. Sometimes we denote the basis as {αri}n−1i=0 = {αr0 , αr1 , ..., αrn−1}.

The number of bases for a given finite field GF(2n) is given as

1

n!

n−1∏
s=0

(2n − 2s). (2)

Conventionally, we use the polynomial basis {α0, α1, ..., αn−1}, but there are

many other bases such as a normal basis, which is of the form {αi, α2i, ..., α2n−1i}4,
where integer i > 0.

2.3 XOR count of finite field elements and diffusion matrices

MDS matrices are popular choice for building the diffusion layer of a block cipher.
Towards the construction of lightweight diffusion layer, it is required that the
total operations needed to execute the diffusion layer on an input vector (the
product of the matrix and a vector) should also be low. In this paper, we consider
XOR count as the metric for lightweightness of matrices as done in [8, 10].

In practice, a finite field element is represented by its corresponding vector
space element by choosing some basis. Then to realize a product of two finite
field elements we need to express the product in terms of the basis elements,
where the coefficients are linear functions of coordinates of the two elements.

3 This notation should not be confused with the finite field notation GF(2)[X]/(P ),
where (P ) is an ideal generated by irreducible polynomial P . Nevertheless, both
notations refer to the same thing. i.e., GF(2n)/p(X) = GF(2)[X]/(P )

4 This is a necessary condition for a normal basis, not every i forms a basis.



Definition 1. The XOR count of an element θ in the field GF(2n) is the number
of XORs required to implement the multiplication of θ with an arbitrary element
β. We name the set of XOR counts of all the elements of GF(2n) as the XOR
count distribution.

For example, consider GF(23)/(X3 +X+ 1) and a basis {1, α, α2}. Consider the
multiplication of α4 = α + α2 with an arbitrary element β = b0 + b1α + b2α

2,
where bi ∈ {0, 1}

(b0 + b1α+ b2α
2)(α+ α2) = (b1 + b2) + (b0 + b1)α+ (b0 + b1 + b2)α2.

In other words, the product of the α4 and β is of the form

(b1 ⊕ b2, b0 ⊕ b1, b0 ⊕ b1 ⊕ b2),

in which there are 4 XORs5. Therefore, the XOR count of the element α4 is
4. It is trivial to check that the zero element will have XOR count 0. Since
the coefficients of MDS diffusion matrices must be nonzero, in the XOR count
distribution we will not mention the XOR count of the zero element. One may
also check that for this basis, identity element also has XOR count 0.

We observe that the XOR count distribution of a field may differ as per
the choice of basis. For example, consider GF(23)/(X3 + X + 1) and enumer-
ate the nonzero field elements as {αi}6i=0. For the basis {1, α, α2}, the XOR
count distribution is {0, 1, 2, 4, 4, 3, 1}. However, if we consider the normal basis
{α3, α6, α12}6, then the XOR count distribution is {0, 3, 3, 2, 3, 2, 2}.

The XOR count of one row of a diffusion matrix can be computed using the
following formula given in [8]:

XOR count of one row =

k∑
i=1

γi + (`− 1) · n,

where γi is the XOR count of the i-th entry in the row of the matrix, k being the
order of the diffusion matrix, ` is the number of nonzero coefficients in the row
and n is the dimension of the finite field. For example, the first row of the AES

diffusion matrix being (1, 1, 2, 3) over the field GF(28)/(X8 +X4 +X3 +X+ 1),
so the XOR count for the first row is (0 + 0 + 3 + 11) + 3× 8 = 38. Note that for
MDS matrices, all coefficients are nonzero thus we can assume ` = k. Since the
latter term of the formula is dependent of the dimension of the finite field and
order of the MDS matrix, it will be a fixed constant for a given finite field and
order of the MDS matrix. Hence, we are only interested in the sum of the XOR
count of the coefficients.

In this paper, sometime we describe a diffusion matrix with relatively lower
XOR counts as a lightweight matrices.

5 We acknowledge that common terms in the expression could be computed just once
and reused to save some XOR count. However, that would require additional cycle
and extra memory cost which would very likely to outweigh the cost saved for the
XOR count.

6 Note that the element α12 can also be written as α5 as the finite field multiplication
of primitive element has a cycle of length 7.



3 XOR Count Distribution

In this section, we first give a special property of the XOR count distribution
under normal bases. Next in Section 3.2, we analyze the XOR count distribu-
tion and its relation between different irreducible polynomials. We show that
any choice of the irreducible polynomial generates the same collection of XOR
count distributions when all bases are considered. Lastly in Section 3.3, we study
the similarity of the XOR count distribution under different bases. This is the
building block for constructing the equivalence classes of bases in Section 4.

3.1 XOR count distribution under normal bases

We give an interesting property of the XOR count regarding normal bases. First,
it is known that the binary representation of an element α2i is a shift rotation
of the binary representation for αi under a normal basis. This is a nice feature
in the context of hardware implementation.

Proposition 1. Under a normal basis, αi of GF(2n) has the same XOR count
as α2i.

Proof. Without loss of generality, let the normal basis be {α, α2, ..., α2n−1}, an

element αi can be expressed as a polynomial αi = a0α+ a1α
2 + ...+ an−1α

2n−1

,
while the square of the element has a shift in the coefficient, α2i = an−1α +

a0α
2 + ...+ an−2α

2n−1

.

For any arbitrary element b0α + b1α
2 + ... + bn−1α

2n−1

, the XOR count of
α2i can be computed as

(an−1α+ a0α
2 + ...+ an−2α

2n−1

)(b0α+ b1α
2 + ...+ bn−1α

2n−1

)

=
(

(a0α+ a1α
2 + ...+ an−1α

2n−1

)(b1α+ b2α
2 + ...+ b0α

2n−1

)
)2
.

Since squaring is simply a shift in the binary representation, the number of XORs

in
(
αi(b1α+ b2α

2 + ...+ b0α
2n−1

)
)2

is the same as that of α2i(b1α+ b2α
2 + ...+

b0α
2n−1

). Furthermore, the number of XORs in α2i(b1α+ b2α
2 + ...+ b0α

2n−1

) is

the same as that of α2i(b0α+ b1α
2 + ...+ bn−1α

2n−1

) as {b0, . . . , bn−1} is simply
a permutation of {b1, . . . , b0}. Hence, the XOR count of α2i is the same as the
XOR count of αi. ut

Thus there will be several repetitions in the XOR count distributions when
normal basis is considered. As one can see from the example in the previous
section that the elements α, α2 and α4 have the same XOR count 3 while α3,
α6 and α5 have the same XOR count 2.



3.2 XOR count spectrum

For a field element θ, we can define a matrix such that the XOR count of the
product with an arbitrary element b can be computed directly from that matrix.

Let {1, α} be a basis of GF(22). For a fixed element a0 + a1α of GF(22) the
multiplication with an arbitrary element b0 + b1α will give

(b0 + b1α)(a0 + a1α) = b0a0 + b1a1 + (b0a1 + (a0 + a1)b1)α.

In vector notation, this product is actually (b0a0⊕b1a1, b0a1⊕(a0⊕a1)b1, which
can be written as a matrix product(

a0 a1
a1 a0 ⊕ a1

)
×
(
b0
b1

)
.

Clearly if there are ki 1’s in the i-th row, then there will be ki − 1 XORs of bi’s
in the i-th coordinate of the product.

In general if {αr1 , . . . , αrn} is a basis of GF(2n)/p(X), the product of a fixed
element θ = a0α

r1 + . . . + an−1α
rn and an arbitrary element b = b0α

r1 + . . . +
bn−1α

rn can be expressed as a multiplication matrix Mθ and (b0, . . . , bn−1),
where

Mθ =


L0,0(a0, . . . , an−1) . . . L0,n−1(a0, . . . , an−1)
L1,0(a0, . . . , an−1) . . . L1,n−1(a0, . . . , an−1)

...
. . .

...
Ln−1,0(a0, . . . , an−1) . . . Ln−1,n−1(a0, . . . , an−1)

 ,
note that each Li,j(a0, . . . , an−1) is some GF(2)-linear combination of {a0, . . . , an−1}.
As said before if there are ki 1’s in row i, the total number of XORs needed is∑n
i=1(ki − 1).
It is to be noted that the matrix Mθ is invertible, since θ−1θb = b, equiva-

lently M−1θ Mθ × [b0, . . . , bn−1]T should give [b0, . . . , bn−1]T . This fact is used to
determine the following property of the matrix Mθ.

We call an n-tuple binary vector nonzero if at least one coordinate of it is
nonzero.

Lemma 1. The collection of the row vectors taken from any fixed row of all the
matrices Mθ for all nonzero θ, is in bijection with the set of nonzero n-tuple
binary vectors.

Proof. It is clear that every row of the matrix Mθ of a nonzero element θ is
nonzero n-tuple binary vectors, else Mθ is not invertible. Consequently, for each
row i, row vectors are pairwise distinct for all such matrices. Suppose not, let θ1
and θ2 be distinct elements with the same binary vector in row i. Then θ1 + θ2
is another nonzero element with zeroes in row i which contradicts that nonzero
elements are invertible. ut

Proposition 2. The total XOR count of the elements in GF(2n) is n
∑n
i=2

(
n
i

)
(i−

1), and it is invariant of the choice of irreducible polynomial and basis.



Proof. By Lemma 1, the row i of nonzero multiplication matrices is in bijection
with the set of nonzero n-tuple binary vectors over GF(2). Hence, summing the
number of XORs for the row i of all elements is

∑n
i=2

(
n
i

)
(i− 1). Since there are

n rows, we have n
∑n
i=2

(
n
i

)
(i− 1). ut

This proposition shows that there is no clear advantage in choosing some
particular irreducible polynomial and basis over another.

As the example in Section 2.3 shows that XOR count distribution may change
under different basis, therefore, one may think that varying over all possible
bases, the set of XOR count distributions might be different for GF(2n)/p(X)
and GF(2n)/q(X). However, our analysis shows that for a basis B in GF(2n)/p(X)
there will be a basis B′ in GF(2n)/q(X) such that XOR count distribution of
GF(2n)/p(X) under B will be equal to that of GF(2n)/q(X) under B′. The proof
is as follows.

For brevity, we call the set of all XOR count distributions for all possible
bases as the XOR count spectrum.

Lemma 2. Let ψ : GF(2n)/p(X) → GF(2n)/q(X) an isomorphism between
these two finite fields. If {α0, . . . , αn−1} is a basis of GF(2n)/p(X), then the set
{ψ(α0), . . . , ψ(αn−1)} is a basis of GF(2n)/q(X).

Theorem 1. The XOR count spectrum of GF(2n)/p(X) and GF(2n)/q(X) are
the same.

Proof. We show that for a basis of GF(2n)/p(X), there is a basis of GF(2n)/q(X),
where XOR count distribution will be the same. Let α and β be the primitive el-
ements of GF(2n)/p(X) and GF(2n)/q(X) respectively. Suppose {α0, . . . , αn−1}
is a basis of GF(2n)/p(X). Consider an arbitrary element of GF(2n)/p(X) as
b0α0 + . . .+ bn−1αn−1 and multiply with the element αi

αi(b0α0 + . . .+ bn−1αn−1) = L0α0 + . . .+ Ln−1αn−1, (3)

where Li’s are some linear combinations of {b0, . . . , bn−1}. If in the linear combi-

nation Li there are ci XORs, then XOR count is
∑n−1
i=0 ci. Notice that the value

of each Li ∈ {0, 1}.
Apply ψ on both sides of (3), and we get

ψ(α)i(b0ψ(α0) + . . .+ bn−1ψ(αn−1)) = L0ψ(α0) + . . .+ Ln−1ψ(αn−1).

From Lemma 2, we know that {ψ(α0), . . . , ψ(αn−1)} is a basis of GF(2n)/q(X),
and from the above we get that there is ψ(α)i in GF(2n)/q(X) such that its

XOR count under {ψ(α0), . . . , ψ(αn−1)} is
∑n−1
i=0 ci.

Thus the XOR count spectrum obtained for GF(2n)/p(X) will be the same
for GF(2n)/q(X). ut

Therefore, we see that there is no gain in considering GF(2n) under different
irreducible polynomials, as this will not generate any new XOR count spectrum.
Hence for the rest of the paper, we omit the irreducible polynomial of the cor-
responding field unless necessary.



3.3 Bases with similar XOR count distributions

Let us now check if there is any similar XOR count distribution within the XOR
count spectrum, more precisely saying that we would like to see if a given finite
field GF(2n)/p(X), there are bases whose corresponding XOR count distribu-
tions are equal (up to a permutation). In the following we present the results.

Lemma 3. If {αr0 , . . . , αrn−1} is a basis of GF(2n), then {αr0+1, . . . , αrn−1+1}
is also a basis of GF(2n).

Proposition 3. Given a finite field GF(2n) and bases B = {αr0 , . . . , αrn−1}
and B+t = {αr0+t, . . . , αrn−1+t}, for integer t > 0, the XOR count distribution
of GF(2n) under these bases are exactly the same.

Proof. For simplicity we prove it for t = 1, the rest follows by induction. For an
arbitrary element b = b0α

r0 + . . .+ bn−1α
rn−1 , we can express the multiplication

with αj under B as

αj(b0α
r0 + . . .+ bn−1α

rn−1) = L0α
r0 + . . .+ Ln−1α

rn−1 ,

where Li’s are some linear combinations of {b0, . . . , bn−1}. Suppose ci is the

number of XORs in Li, then XOR count of αj under B is
∑n−1
i=0 ci.

On the other hand, the multiplication with αj under B+1 can be expressed
as

αj(b0α
r0+1 + . . .+ bn−1α

rn−1+1) = αj(b0α
r0 + . . .+ bn−1α

rn−1)α

= (L0α
r0 + . . .+ Ln−1α

rn−1)α

= L0α
r0+1 + . . .+ Ln−1α

rn−1+1.

Clearly the XOR count in this case is
∑n−1
i=0 ci too.

Therefore, the XOR count distribution of GF(2n) under {αr0 , . . . , αrn−1} and
{αr0+1, . . . , αrn−1+1} are exactly the same. ut

Next we find that there is another set of bases where the corresponding XOR
count distributions are the same up to a permutation.

Lemma 4. If {αr0 , . . . , αrn−1} is a basis of GF(2n), then {α2r0 , . . . , α2rn−1} is
also a basis of GF(2n).

Proposition 4. Given a finite field GF(2n), the XOR count distribution under
the bases B = {αr0 , . . . , αrn−1} and B×2s = {α2sr0 , . . . , α2srn−1}, for integer
s > 0, are the same up to a permutation.

Proof. For simplicity, we prove for s = 1, the rest will follow by induction.
For an arbitrary element b = b0α

r0 , . . . , bn−1α
rn−1 , we can express the mul-

tiplication with αj under B as

αj(b0α
r0 + . . .+ bn−1α

rn−1) = L0α
r0 + . . .+ Ln−1α

rn−1 , (4)



where Li’s are linear combinations of {b0, . . . , bn−1}. If ci is the number of

XORs in Li, then the XOR count of αj under B is
∑n−1
i=0 ci.

To compute the XOR count for α2i under B×2, we square (4) to obtain

α2j(b0α
2r0 + . . .+ bn−1α

2rn−1) = L0α
2r0 + . . .+ Ln−1α

2rn−1 . (5)

Clearly the XOR count obtained from (5) is also
∑n−1
i=0 ci. Since gcd(2, 2n−1) =

1, the mapping from αj under B to α2i under B×2 is bijection. Therefore, XOR
count distribution under B and B×2 are just permutation of each other. ut

4 Equivalence Classes of Bases

In the previous section, we have seen the similarities in some of the XOR count
distributions generated by different bases. In this section, we formally introduce
the equivalence relation between bases whose XOR count distributions produce
the lightest MDS matrix with the same XOR count. Using this equivalence
relation, we construct the equivalence classes of bases.

From Proposition 3, it is clear that for any MDS diffusion matrix M =
[βi,j ]k×k has the same XOR count both under B and B+t. As for the other type
of basis B×2s , by Proposition 4, we know that the XOR count of M under B
will match with that of another matrix M ′ = [β2

i,j ]k×k under B×2, however, it is
unclear if M ′ is also an MDS matrix. Thus, we need the following lemma.

Lemma 5. Suppose M = [βi,j ]k×k is an MDS matrix over GF(2n), then M ′ =
[β2
i,j ]k×k is also an MDS matrix.

Proof. It is known that all square submatrices of an MDS matrix have nonzero
determinants. Since GF(2n) has characteristic 2, the determinants of the sub-
matrices of M ′ are square of the determinants of the corresponding submatrices
of M , which are also nonzero. ut

With Lemma 5, it is now clear that M ′ is also MDS. Therefore, we can say
that by Proposition 3 and 4, the XOR count distributions of GF(2n) under B,
B+t and B×2s are invariant for the MDS matrices over finite fields under these
bases. Because for every MDS matrix with some XOR count found under B,
there will be another MDS matrix having the same XOR count under B+t and
B×2s , and vice versa. With that said, we can partition the set of all bases of
GF(2n) into distinct equivalence classes.

Definition 2. The bases B = {αri}n−1i=0 and B′ = {αui}n−1i=0 of GF(2n) are equiv-
alent if ui = (2sri + t) mod 2n − 1 for some s ≥ 0 and t ≥ 0. The collection of
these equivalent bases forms an equivalence class of bases.

With these equivalence classes of bases, it is sufficient to consider one basis
representative from each equivalence class in order to find one of the lightest
MDS matrices over all possible bases.



Next, we analyze the cardinality of the equivalence classes. Interestingly, the
bases are not uniformly partitioned into equivalence classes. For instance, for
GF(23), there are 28 bases and only 2 equivalence classes, where one consists of
21 bases while the other has 7. This complicates the counting of the number of
equivalence classes for a given field dimension. Therefore, instead of finding the
exact cardinality of the equivalence class, we give a bound to it.

Lemma 6. The cardinality of any equivalence classes of bases of GF(2n) is a
multiple of 2n − 1.

Proof. Consider basis of the form B+t = {αri+t}n−1i=0 , for positive integer t, which
is in the equivalence class of B = {αri}n−1i=0 . Then the proof is immediate if we
can show that the smallest positive integer t that satisfies B+t = B is t = 2n−1.

Since α2n−1 = 1, it is clear that B+t = B when t = 2n − 1. Suppose there
exists t0 < 2n − 1 such that B+t0 = B, taking the summation of the elements in
the basis, we have

αr0+t0 + . . .+ αrn−1+t0 = αr0 + . . .+ αrn−1 .

Since {αri}n−1i=0 is a basis, the summation,
∑n−1
i=0 α

ri , is nonzero and invertible.
Hence we can simplify the equation and obtain αt0 = 1, which is a contradiction
that α is a primitive element of the finite field. ut
Theorem 2. A lower bound and upper bound of the cardinality of any equiva-
lence classes of bases of GF(2n) is 2n − 1 and n · 2n − 1 respectively.

Proof. From Lemma 6, we know that the lower bound of the cardinality of
equivalence class is 2n− 1. Since α2n = α, it is clear that B×2s = B when s = n.
Therefore, the largest possible cardinality is n ·2n−1, when these n sets of bases,
{B+t}2

n−1
t=0 , {(B×2)+t}2

n−1
t=0 , {(B×22)+t}2

n−1
t=0 ,...,{(B×2n−1

)+t}2
n−1
t=0 , belong to the

same equivalence class and are pairwise distinct. ut
Lastly, we show that every equivalence class contains one certain kind of

basis. This allows us to find a representative basis from each equivalence classes
more efficiently.

Proposition 5. Every equivalence class always contains a basis of the form
{1, αu1 . . . , αun−1}.
Proof. Given a basis {αr0 , αr1 . . . , αrn−1} from an equivalence class, consider
t = 2n − 1− r0, then the equivalent basis {αri+t}n−1i=0 = {1, . . . , α2n−1−r0+rn−1}
also belongs to the same equivalence class. ut

5 Search Algorithms and Results

In this section, we first present our strategy to find all the equivalence classes of
bases, then it is sufficient for us to apply our search on one representative of each
equivalence classes for lightweight (in terms of low XOR count) MDS diffusion
matrices. Next, we adopt the similar strategy as described in [10, Sect5.2] and
extend the search to different bases for lightweight (involutory) MDS Hadamard
matrices of order 4.



5.1 Enumerating equivalence classes

Search algorithm. By Proposition 5, we know that the representative of an
equivalence class is of the form {1, αu1 , . . . , αun−1}. Therefore, all we need is to
start from {1, αu1 , . . . , αun−1}, if it is a basis then we can generate the equivalence
class by

{1, αu1 , . . . , αun−1} → {1, α2su1+t, . . . , α2sun−1+t}, s ≥ 0, t ≥ 0.

This way we need to test
(
2n−2
n−1

)
possible basis representatives in the worst

case. The pseudocode for enumerating the equivalence class is presented in Ap-
pendix A.

Results. Due to memory issue, we are unable to compute the exact number
of equivalence classes of bases for n ≥ 6. However, by Theorem 2, we are able
to estimate the number of equivalence classes as we know the lower bound and
upper bound of the cardinality of an equivalence class to be 2n−1 and n ·2n−1
respectively.

In Table 1, the second column shows the number of irreducible polynomials
for each dimension which can be computed from (1). By Theorem 1, we only
need to consider one arbitrary irreducible polynomial. The total number of bases
which can be computed using (2) is given in the third column, while the number
of equivalence classes of bases for each dimension is given in the last column.

Table 1. Number of equivalence classes of bases

dimension of number of number of number of

finite field irreducible polynomial bases equivalence classes

n = 3 2 28 2

n = 4 3 840 16

n = 5 6 83328 540

n = 6 7 224.74 216.18 ∼ 218.76

n = 7 18 234.92 225.12 ∼ 227.93

n = 8 30 246.91 235.92 ∼ 238.92

5.2 Finding lightweight (involutory) MDS matrices under different
bases

Search algorithm. The authors of [10] analyzed the structure of Hadamard
matrices and presented the equivalence classes of Hadamard matrices and a
simplified check for MDS property on Hadamard matrices. In this paper, we
focus on Hadamard matrices of order 4 as 4 × 4 matrices are commonly used



in diffusion layer of a block cipher, for instance in AES. In addition, involutory
MDS Hadamard matrices can be easily constructed, as a Hadamard matrix is
involution iff the XOR-sum of the first row is 1. Based on these results, we only
need to choose a set of lightweight coefficients and test for MDS, the arrangement
of the entries is invariant as there is only one equivalence class of Hadamard
matrices for order 4 [10].

From Section 4, we see that bases within an equivalence class of bases have
the same (w.r.t. XOR count) collection of MDS matrices. Hence, it is sufficient to
check one representative from each equivalence class. To search for lightweight
MDS matrices over a given basis, we set some threshold value as the upper
bound for the total XOR count of the coefficients. If the sum of the XOR count
of the candidate is lower than the threshold, then we check if it forms an MDS
Hadamard matrix. In order to search for lightweight involutory MDS Hadamard
matrices, an additional condition that the XOR-sum of the candidates equals to
1 is required. For GF(24) and GF(28), we set the threshold value to be the XOR
count of the lightest MDS matrices found in [10]. For other order of finite fields,
we set the threshold value to some arbitrary large value. The threshold value
will be updated whenever we find a new (involutory) MDS Hadamard matrix
with lesser total XOR count. The pseudocode for finding lightweight (involutory)
MDS Hadamard matrices is presented in Appendix B.

Results. For n = 3, 4, 5, we search through all the equivalence classes of bases.
For n = 8, we consider the polynomial and normal bases because these are the
two most commonly used bases. The outcome is that the lightest MDS and
involutory MDS Hadamard matrices are found for the bases that belong to the
equivalence class containing the polynomial basis. And naturally for n = 4, 8,
the XOR count of the lightest MDS and involutory MDS Hadamard matrices
match with the results from [10].

5.3 Recommended choice of basis

Although we do not find MDS diffusion matrices with XOR count lesser than
the existing ones, it is interesting to see that the lightest diffusion matrices are
found under the polynomial basis. From Proposition 2, it seems that there is no
clear implication that one basis is strictly better than another, as the mean XOR
count is the same for any basis. However, the XOR count distribution may vary
for different bases, that is quantified by the standard deviation. A high standard
deviation implies that the distribution of XOR count is far apart from the mean,
thus there will be more elements with relatively lower/higher XOR count. As
pointed out in [10], in general the order of the finite field is much larger than
the order of the diffusion matrix, since only a few elements of the finite field are
used, there is a better chance of finding lightweight diffusion matrix under XOR
distributions with higher standard deviation.

To illustrate this concept, consider taking the two XOR count distributions,
D1 = {0, 1, 2, 4, 4, 3, 1} and D2 = {0, 3, 3, 2, 3, 2, 2}, from Section 2.3 as an ex-
ample. One can observe that the standard deviations of D1 and D2 are 1.57



and 1.07 respectively. Suppose we want to construct an MDS matrix of order 2,
we need to pick 2 distinct nonzero elements. Under D1, we can pick 2 elements
corresponding to XOR count 0 and 1, which is lower than any choice that we
make under D2. The main reason being that the XOR counts in D2 are much
closer to the mean, while under D1 we are able to pick elements with relatively
lower XOR count and check if they form an MDS matrix. Therefore, we look
into the standard deviation of the XOR count distribution of the bases.

By computing the standard deviation for all representation bases of the equiv-
alence classes of bases, we observe that the standard deviation of the polynomial
bases are significantly larger than the highest standard deviation of the non-
polynomial bases. The results are summarized in Table 2.

Table 2. Highest standard deviation of various bases

dimension of finite field polynomial basis other basis

n = 3 1.46 0.99

n = 4 2.68 1.71

n = 5 4.09 3.55

dimension of finite field polynomial basis normal basis

n = 8 7.53 4.48

For any finite field GF(2n), we conjecture that the XOR distribution under a
polynomial basis tends to have a higher standard deviation as compared to other
bases. Therefore, we think that considering the polynomial basis, or its equivalent
bases, is the preferable choice for finding lightweight diffusion matrices.

5.4 Conclusion

In this paper, we study the behavior of the XOR count distribution under differ-
ent bases and irreducible polynomials. We show that for all irreducible polyno-
mials, the XOR count spectrum is the same. Hence, we only need to consider one
irreducible polynomial when all bases are considered. Under a fixed irreducible
polynomial, the bases can be partitioned into equivalence classes, where the
XOR count distribution is invariant under these bases. In addition, we provide
a search algorithm for finding all the equivalence classes of bases. Using these
equivalence classes of bases, we complete the search for lightweight MDS and in-
volutory MDS Hadamard matrix of order 4 for finite field dimension n = 3, 4, 5.
Our result suggests that the bases from the equivalence class of polynomial basis
are the recommended choice for constructing lightweight MDS diffusion matrices.
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A Pseudocode for finding equivalent bases of GF(2n)

Algorithm 1 Finding equivalent bases for GF(2n).

INPUT: GF(2n) generated by a primitive element α, S = ∅.
OUTPUT: B the set of basis representatives of distinct equivalence classes of bases.

set B = ∅ and counter = 0
for each set {(0, i1, . . . , in−1) : ij ∈ [1, 2n − 2]} chosen from

(
2n−2
n−1

)
possible combi-

nations do
generate E = {α2si1+t mod 2n−1, . . . , α2sin+t mod 2n−1 : s ∈ [0, n−1], t ∈ [0, 2n−

2]}
store every member of E in S that has 1 and is new to S, and update counter++
if {1, αi1 , . . . , αin−1} is a basis then

store {1, αi1 , . . . , αin−1} in B
if counter=

(
2n−2
n−1

)
then

return B as the set of bases that are representatives to all distinct equiv-
alence classes

end if
end if

end for



B Pseudocode for finding lightweight (involutory) MDS
Hadamard matrices over GF(2n)

Algorithm 2 Finding lightweight (involutory) MDS Hadamard matrices for
GF(2n).

INPUT: MDS threshold, IMDS threshold, nonzero elements of GF (2n), XOR count
of the field elements.

OUTPUT: XOR count of the lightest MDS and involutory MDS Hadamard matrices
of order 4.
sort the elements in ascending order according to their XOR counts
for each set S of 4 elements chosen from

(
2n−1

4

)
possible combinations do

if XOR-sum of elements = 1 then
if sum of XOR count < IMDS threshold then

construct Hadamard matrix H from S
if H is MDS then

update IMDS threshold = sum of XOR count
end if

end if
else if sum of XOR count < MDS threshold then

construct Hadamard matrix H from S
if H is MDS then

update MDS threshold = sum of XOR count
end if

end if
end for
return MDS threshold and IMDS threshold


