A Practical Framework for Executing Complex
Queries over Encrypted Multimedia Data

Fahad Shaon and Murat Kantarcioglu

The University of Texas at Dallas, Richardson, TX 75080, USA
{fahad.shaon,muratk}@utdallas.edu

Abstract. Over the last few years, data storage in cloud based services
has been very popular due to easy management and monetary advan-
tages of cloud computing. Recent developments showed that such data
could be leaked due to various attacks. To address some of these attacks,
encrypting sensitive data before sending to cloud emerged as an im-
portant protection mechanism. If the data is encrypted with traditional
techniques, selective retrieval of encrypted data becomes challenging. To
address this challenge, efficient searchable encryption schemes have been
developed over the years. Almost all of the existing searchable encryption
schemes are developed for keyword searches and require running some
code on the cloud servers. However, many of the existing cloud storage
services (e.g., Dropboxﬂ BoxEI, Google DriV(fl, etc.) only allow simple
data object retrieval and do not provide computational support needed
to realize most of the searchable encryption schemes.

In this paper, we address the problem of efficient execution of com-
plex search queries over wide range of encrypted data types (e.g., im-
age files) without requiring customized computational support from the
cloud servers. To this end, we provide an extensible framework for sup-
porting complex search queries over encrypted multimedia data. Before
any data is uploaded to the cloud, important features are extracted to
support different query types (e.g., extracting facial features to support
face recognition queries) and complex queries are converted to series of
object retrieval tasks for cloud service. Our results show that this frame-
work may support wide range of image retrieval queries on encrypted
data with little overhead and without any change to underlying data
storage services.

1 Introduction

Cloud computing is being adopted by organizations and individuals to address
various types of computation needs including file storage, archiving, etc. How-
ever, there have been several incidents of data leak in popular cloud storage
service providers [II32]. To ensure the security of the sensitive data and pre-
vent any unauthorized access, users may need to encrypt data before uploading

! nttps://wuw.dropbox.com
2 https://www.box.com/
3 http://drive.google.com/

https://www.dropbox.com
https://www.box.com/
http://drive.google.com/

to cloud. If data uploaded to cloud is encrypted using traditional encryption
techniques, executing search queries on the stored data become infeasible. To
alleviate this situation many searchable encryption techniques have been pro-
posed [T22006IT6/72425IT4I5]. Among those approaches, searchable symmetric
encryption (SSE) [T2I2006IT6U7I245] emerges as an efficient alternative for cloud
based storage systems due to minimal storage overhead, low performance over-
head, and relatively good security.

However, almost all searchable encryption techniques require executing some
code on the cloud servers to enable efficient processing. On the other hand, pop-
ular commercial personal cloud storage providersl28 only support basic file op-
erations like read and write file that makes it infeasible to apply traditional SSE
techniques. Furthermore, complex queries on multimedia data may require run-
ning different and expensive cryptographic operations. These limitations create
a significant problem for wide adoption of SSE techniques. Therefore, developing
SSE schemes that can run on the existing cloud storage systems without requir-
ing the cloud service providers cooperation emerges as an important and urgent
need. To our knowledge, only [24] considered a setup without computational sup-
port from the cloud storage but the proposed solution does not support efficient
complex querying over encrypted data.

Even though, one can wish that an alternative SSE as a service could be
offered in the near future by the cloud service providers, due to network effects,
many of the existing users may not want to switch their cloud service providers.
Therefore, any new “secure” cloud storage with SSE providers may have a hard
time in getting significant traction. So supporting SSE on the existing cloud
storage platforms without requiring any support from the cloud storage service
providers is a critical need.

In addition, adoption of multimedia (e.g., image, music, video, etc.) data for
social communication is increasing day by day. KPCB analyst Mary Meeker’s
2014 annual Internet Trends reporﬁ states 1.8 billion photos shared each day.
However, indexing multimedia data is harder compared to text data. A signifi-
cant pre-processing is required to convert raw multimedia data to a searchable
format and queries made on multimedia data are complex as well. So building
efficient cryptographic storage system that can easily handle multimedia content
is a very important problem.

To address these challenges, in this paper, we propose an efficient searchable
encryption scheme framework that can work on existing cloud storage services
and can easily handle multimedia data. Our proposed framework only requires
file storage and retrieval support from cloud storage services. Furthermore, by
leveraging the extensible extract, transform and load operations provided by
our framework, very complex queries can be executed on the encrypted data. As
an example, we show how our framework could be used to run face recognition
queries on encrypted images. To our knowledge, this is the first system that
can support complex queries on encrypted multimedia data without significant
computational support from the cloud service provider (i.e., without running cus-

4 http://www.kpcb.com/blog/2014- internet-trends

http://www.kpcb.com/blog/2014-internet-trends

tomized code in the cloud). Main contributions of this work can be summarized
as follows:

— We propose a generic outsourcing framework that enables secure and efficient
querying on any data. Our framework supports complex querying on any en-
crypted data by allowing queries to be represented as series of simple equality
queries using the features extracted from the data. Later on, these extracted
features are transformed into encrypted indexes and these indexes are loaded
to cloud and leveraged for efficient encrypted query processing.

— We prove that our system satisfies adaptive semantic security for dynamic
SSE.

— We show the applicability of our framework by applying it to state-of-the-art
image querying algorithms (e.g., face recognition) on encrypted data.

— We implement a prototype of our system and empirically evaluate the effi-
ciency under various query types using real world cloud services. Our results
show that our system introduces very little overhead, which makes it remark-
ably efficient and applicable to real-world problems.

The rest of the paper is organized as follows: Section [2] discusses previous
related works, Section [3] provides the general setup and threat model of our
system, Section [] describes internal details of each phases, Section [f] extends
our initial framework making it dynamic, in Section [6] we formally prove the
security of our system, Section[7]shows an application of our proposed framework,
Section [§] shows the experimentations, and in Section [9] we conclude our work.

2 Related Work

Currently there are few ways to build encrypted cloud storage with content based
search. Searchable symmetric encryption(SSE) is one of those, which allows users
to encrypt data in a fashion that can be searched later on. Different aspects of
SSE has been studied extensively as shown in an extensive survey of provably
secure searchable encryption by Bosch at el. in [5]. Curtmola at el. [I2] provided
simple construction for SSE with practical security definitions, which was then
adopted and extended by several others in subsequent work. Few works also
looked into dynamic construction of SSE [2006/T6/T7] so that new documents
can be added after SSE construction.

Another branch of study related to SSE is supporting conjunctive boolean
query. Cash at el. [7] proposed such a construction, where authors used multi-
round protocol for doing boolean query with reasonable information leakage.
In the process they also claimed to build the most efficient SSE in terms of
time and storage. Kuzu at el. [I8] proposed an efficient SSE construction for
similarity search, where they used locality sensitive hashing to convert similarity
search to equality search. There are also work towards supporting efficient range
query, substring matching query, etc. [13], where a rich query is converted to an
exact matching query. However, these constructions require specialized server.
Importantly, we can easily adopt such a conversion technique in our framework.

Naveed at el. [24] proposed a dynamic searchable encryption schema with
simple storage server similar to our setup. The system also hides certain level
of access pattern. However, authors did not consider complex query problem in
their work, which is one of the major challenges that we solved in this work.

Another way of querying encrypted database is oblivious RAM (ORAM)
described by Ostrovsky [25] and Goldreich at el. [14], which also hides search
access pattern and much secure. Despite recent developments [28/34133], tradi-
tional ORAM remains inefficient for practical usage in cloud storage system as
described in [4123]. Furthermore, our proposed system converts complex opera-
tions into sequence of key value read and write operations, which can easily be
combined with ORAM technique to hide the access pattern.

Qin at el. [29] proposed an efficient privacy preserving cloud based secure
image feature extraction and comparison technique. Similar construction for
ranked image retrieval is proposed by [392130]. These systems depend on highly
capable cloud server for preforming image similarity query.

Finally, there are few commercial secure cloud storage systems, e.g., Spi-
derOakEL BoxCryptorﬂWualaEl, etc. Even though these systems are easy to use
and provide reliable security, these systems provide neither server based search
nor complex query support. All these systems depend on either operating system
or local indices to provide search functionalities. As a result, to provide search
functionalities these systems need to download and decrypt all the data stored
in cloud server, which might not be efficient solution in all circumstances.

3 Background and Threat Model

Searchable Symmetric Encryption (SSE) is one of the many mechanisms
to enable search over encrypted data. In a SSE schema, we not only encrypt the
input dataset, but also we create an encrypted inverted index. The index contains
mapping of encrypted version of keywords (called trapdoors) to list of document
ids that contains corresponding plain text keywords. Formally, a SSE schema
is defined as collection of 5 algorithms SSE = (Gen, Enc, Trpdr, Search, Dec)
Given security parameter Gen generates a master symmetric key, Enc generates
the encrypted inverted index and encrypted data sets from the input dataset.
Trpdr algorithm takes keywords as input and outputs the trapdoor, which is used
by Search algorithm to find list of documents associated with input keywords.
Finally, the Dec algorithm decrypts the encrypted document given the id and
proper key. We refer the reader to [12] for further discussion of SSE. Furthermore,
in a typical SSE settings, Gen, Enc, Trpdr, and Dec are performed in a client
device and the Search algorithm is performed in a cloud server. For this reason,
we need a server with custom computational support to run a SSE based system.
Here, we focus on building a framework that enables us to build SSE alike schema
with complex query processing capabilities using file storage servers that does
not have custom computation support.

® https://spideroak.com/
5 https://www.boxcryptor. com/
" https://www.wuala.com/

https://spideroak.com/
https://www.boxcryptor.com/
https://www.wuala.com/

Threat Model. In this study, we consider a setup, where a user owns a set
of documents, which includes multimedia documents. User wants to store these
documents into a cloud storage server in encrypted form. User also wants to
perform complex search queries over the encrypted data. Most importantly, user
wants to utilize existing cloud storage service, which is not capable of executing
any custom code provided by user. Formally cloud storage server Z can only
preform read and write operations. This simple requirement of cloud storage
server makes the system easily adoptable in several real world scenario. On the
other hand, user have devices with sufficient computation power that can perform
modern symmetric cryptography algorithms and are called clients.

In our system, the communication between server and client is done over
encrypted channel, such as https. So eavesdroppers can not learn any meaning
full information about the documents capturing the communication, apart form
existence of such communication. We also assume that the cloud storage server
Z is managed by Bob, who is semi-honest. As such, he follows the protocol as
it is define but he may try to infer private information about the document he
hosts. Furthermore, the system does not hide search access pattern, meaning Bob
can observe the trapdoors in search query. Based on the encrypted file accesses
after subsequent search queries Bob also can figure out trapdoor to document ids
assignments. However, Bob can not observe the plain text keyword of trapdoors.

4 The Proposed System

Our main motivation is to build encrypted cloud storage that can support com-
plex search query with support of simple file storage server. We generalize the
required computations into a five phase Eztract, Transform, Load, Query, Post-
Process (ETLQP) framework. These five phases represent chronological order
of operations required to create, store encrypted index, and perform complex
operations. Figure a) and (b) illustrates an overview of different phases in
our system.

4.1 Extract

In this phase we extract necessary features from a dataset. Let, D = {d,d>, ...,d, }
be a set of documents, id(d;) be the identifier of document d;, © = {01, 05, ..., 0., }
be a set of m feature extractor functions. Functions in © can extract set of
feature and value pairs (f,v) from documents. We build list U; with all the
feature value pairs extracted from d;. For all the feature extractors §; € O
we compute (f,v) < 60;(d;) and store (f,v) in U;. Finally we organize the re-
sult in P, such that Plid(d;)] < U;. Such an example P is illustrated in Fig-
ure [T{c). Here, we have four documents {D,..D4}. D; has feature value pairs
Uy :{(faa va)a(fba vﬁ)a (fb7 U’Y)}a etc.

To make the process more concrete, let us assume that, we want to build an
encrypted image storage application that can preform location based query over
the encrypted images. In other word, the system is capable of answering queries,
such as, find images taken in Italy. To support such a query, we implement a

Document Feature
D

Value pairs
Cloud File id(D1) (fmva>v(fb-,'”ﬁ)v(fb-,'l’q)
Extract HTransform Load Storage id(Ds) (fas Vo), (fo, vs)
sl e eypted W) | Uete) (v

id(Ds) | (fa,vs), (fo,v8), (fo,04)

(a) Index creation, encryption and upload [t
S1 id(D;),id(D3)

searc fetch relvant part
search Query of encrypted igdex
display result - - -
™ false negative 52 id(D1), id(Ds), id(Da)

User reduction (optional) 53 id(D,),d(Ds), id(Ds)

S4 id(Ds)
Post-Process S5 id(Dy)

(d) Inverted index, 7

S

) Extracted feature-values, P

Search

Document ID List

Cloud File
Storage

(b) Query and post-process phase to search content

Fig. 1. Overall workflow of our proposed system and important data structures. (a)
Index creation consists of extract, transform and load phases. (b) Search consists of
query and post-process phases. (¢) P, output of extract phase that maps document ids
to feature value pairs, (d) Inverted index Z, that maps search signatures to document
ids.

feature extractor function ;, where 0; extracts location information from image
meta data. Output of 6; is defined as a feature value pair (“LOCATION”, “lon-
gitude and latitude of image”). We define as many feature extractor necessary
based on application need. However, all feature extractor functions returns val-
ues in similar format. In Section [l we discuss in details how we defined more
feature extractors and use those to answer much more complicated queries.

4.2 Transform

In this phase we transform the extracted feature values into much simpler form so
that complex search operations can be expressed as series of equality searches.
We compute search signatures s form feature-value pairs and associate corre-
sponding documents with s. This association at query stage can be used to infer
existence of a feature-value pair in a document. Essentially here we define sets of
transform functions 7 = {t1, .., t, }, where each transform function is designed to
generate search signatures from a feature value pair (f,v) and 7; defines subset
of transformation functions that can be applied to feature f.

With these transform functions 7, we generate an inverted index Z that is
indexed by search signatures and contains list of document ids. For all the feature
value pairs in P, we generate search signature s? » < t(f,v) where t € T;. We
build document id list V; for all the unique search signature s that contains
id(D;) if and only if there exists a feature value pair (f,v) that is in U; and at
least one transformation function ¢ that generates search signature s. Finally we
fill the inverted index Z such that Z[s] + V;. In Figure [[d) we show such an
example Z, which is created from P of Figure c). Here, search signature si,
S2, S3, Sa, S5 are generated from feature value pairs (fq,va), (fo,v8), (fo,vy),
(Far Vo), (far vs) accordingly.

Similarly, in our encrypted image storage application example, we define a
transform function ¢; that takes geographic location and document id as input,

converts the location information to mailing address using reverse address lookup
service, takes the country information and document id to construct a search
signature using a collision resistant hash function.

Using such extract transform model has several benefits over adhoc model.
The proposed model helps us to organize the necessary computation into mod-
ules, which intern increase development efficiency. The feature extractor func-
tions can be reused in other project.

Algorithm [1] describes extract and transform phases for building inverted
index.

Algorithm 1 Extract and transform algorithm for building inverted index
1: Extract

2: Require: D = Document set, @ = Feature extractor function set.
3: P + empty hash table.
4: for all document d in D do
5 U + empty list
6 for all feature extractor 8 in @ do
7 (f,v) < 6(d) and add to list U
8 end for
9 Plid(d)] «+ U
0: end for
1: return P
1: Transform
2

3

4

5

6

7

8

9

0

1

: Require: P = Extracted feature-value hash table, 7 = Transform function set
: 7 < empty hash table
: for all document id id(d) in P do
for all feature-value pair (f,v) in P[id(d)] do
for all transformation function ¢ in 7y do
s < t(f,v) and add id(d) to Z]s]
end for
end for
: end for
: return 7

4.3 Load

In this phase we setup our encryption schema, encrypt the inverted index, and
upload the encrypted version into a file storage server Z. We initialize a master
encryption key K, three random constants C7, Cy, C3, a secure pseudo random
permutation function ¢, and a keyed pseudo random function H. Given a key, ¢
encrypts data, ¢! decrypts corresponding result, and H generates authentica-
tion code of messages. The pseudo random permutation ¢ takes an encryption
key and an arbitrary length binary string as input and outputs a cipher text.
Given output cipher text and corresponding encryption key the inverse !
will output the original message back. We are also assuming that, output of ¢

is indistinguishable under non-adaptive and adaptive chosen ciphertext attack
(IND-CCAL1, IND-CCAZ2). The keyed pseudo random function H also takes an
encryption key and an arbitrary length binary string as input and outputs a fixed
length binary string. In addition, we define a small synchronized cache C and
an encryption key K¢ for encrypting the cache. C is always synchronized with
storage server Z. Synchronization is achieved by updating the server’s version
after any change in client’s version and before updating the cache locally most
recent version is downloaded from the server first. In C, we store document id
list size of all search signatures of Z, which is notated by C.freq. Later, we also
use this cache to store information related to individual files to make the query
phase easier.

We divide all the document id lists in Z into b length blocks and add padding
to last block if needed. The value of b is determined by defining and minimizing
a cost function (described in Subsection . We generate trapdoors 17 <«
H(K,s || j || C1) and K$ < H(K,s || j || C2) for 4" block of document list
of Z[s]. We use K 7 to encrypt block contents and 77} as the key for encrypted
inverted index €. So E[TF] + (K3, j block of T[s]). To query the inverted
index later on, our system will regenerate these two trapdoors and perform
inverse operations to build the original document id list. In addition, we store
number of documents associated with a signature s in C.freq[s], then encrypt
and upload the cache. Algorithm [2| describes the operations necessary for load
phase.

4.4 Query

In previous phases we have created an encrypted inverted index and uploaded
into file storage server Z. Query and post-process phases are dedicated for query-
ing the index and returning proper output to user. First, given a user query g,
we extract and transform it to a set of search signatures Q. We use number of

Algorithm 2 Load encrypted index

1: Require: K = Master key, Z = Inverted index of search signatures, C = Synchro-
nized cache, K¢ = encryption key for cache, Z = File storage server.

2: b < optimize(T)

3: for all signature s in Z do

4: blockss < [L;”]

5: for j =1 — blockss do

6: T; — H(K.s || j || C), K} « H(K,s || j || C2)

7 sub + ZI[s].slice((j — 1) x b,j x b)

8: E[T}] « ¢(K;, pad(sub))

9: end for

10: C.freq[s] < |Z[s]|
11: end for

12: for all trapdoor ¢ in £ do
13: Z.write(t, E[t])

14: end for

15: Csig — H(Kc H 03, 1)

16: Z.write(Csig, (Kc,C))

document ids per block, stored in C.freq, to compute block counts, which in
turn used to compute trapdoors K7 and 77 for each block of search signatures.
Using these trapdoors we retrieve and decrypt document ids. Finally, the result
is organized into a hash table R such that R[s] = Z[s] for all s € Q. Algorithm 3]

contains the detail operations of query phase.

Algorithm 3 Query

: Require: K = Master key, ¢ = Query, b = block size, Z = File storage server
: Q + Extract and Transform ¢
: for all search signatures s in Q do
blockss < [%&1[3]1
for i = 1 — blockss do
T H(K,s || j 1| C1), K < H(K,s || j || C2)
L — Z.read(T5)
add ¢ (K}, L) in R[s]
end for
10: end for
11: return R

I S

©

4.5 Post-process

In this step we further process the result of query phase to remove false posi-
tive entries. Given result set R from query phase for query ¢, we remove id of
document that does not match the original query. Therefore, R.remove(id(d))
if ¢(d) # True. Query that only contains exact search features, this phase is
optional.

4.6 Optimal block size analysis

Block size has a direct impact on performance of our proposed system. Larger
block size implies waste of space for padding and smaller block size implies many
blocks to process. So we need to find an optimal value of block size b that keeps
the over all cost to minimal. In our construction for each block we have a fixed
cost and a dynamic cost that is related to block length. We define fixed cost
as « and co-efficient of dynamic cost 5. Cost can be in terms of time and size.
Both linearly depends on block size in our construction. So cost for a b length
block is (a+ 8 x b). Let, J(s) is |Z[s]| meaning document id list size for search
signature s and total cost G(b) for blocking and encrypting given inverted index
T for block length b then

Q(b)zzylﬂﬂ (a+ B x b)

sel

We want to minimize the above function for b. However, if contains a ceiling
function, which can not be minimize by taking derivatives and equating to zero.
So we approximate the probability distribution of 7, i.e., lengths of document id
list in Z. We assumed that, distribution is Pareto distribution [3], which is defined

10

by probability density function (PDF) f(z|vy,2m) = % , and cumulative
distribution function (CDF) F(z|vy,z,) = 1 — (¥=)7, where z is the random
variable, «y is distribution parameter, and ., is minimum value of x.

In our total cost analysis for each [J(s) smaller or equal b cost is exactly
(a4 xb) and number of elements where 7 (s) < b is equal to F'(b). For elements
where J(s) > b we can approximate the total cost using expected value of J(s)

. Finally, the cost function

a+ pBb

G(5) = (@ + BO)F() + ELT(5)] 00)

where F is expectation of probability distribution. Now we can compute the
expectation by integration.

g(b) = (Oé —i—ﬁb)(l — (me)'y) + (Oé‘i’ﬂb)/boo f}/x?nl’dx

b g+l

After preforming integration and several algebraic simplification we get the final
form N

T4+ «
G(b) = (a+ pb) — (+ o)z ,b™ " + (yzy, po—)5 +8)

And the first order derivative is

:
G/(b) = 6 — 3B + (o + BBaab ™ b (5 4 B) - 2T

Now we minimize b by setting G'(b) = 0 and solving the equation for b. In
experimentation we observe that method of moments estimation for x,, and ~y
gives almost correct value.

5 Dynamic Document Addition

Here we are going to improve our algorithms to support dynamic addition of
documents. Given a new document set D’ for addition, we first perform extract
and transform to build an inverted index Z’'. Now we download and decrypt the
cache C and compute number of blocks x, number of empty spaces in last block
y from C.freq information for signatures that are already in inverted index Z.
On the other hand assign zero to x and y for search signatures that we have not
seen yet. If there is empty space meaning y > 0 then we fill the last block with
new document ids. Rest of the document ids are divided into b length blocks
and encrypted with appropriate key. Algorithm [4] describes dynamic document
addition in details.

5.1 Bandwidth Requirement Analysis

One might argue that, since we are performing all the complex operations on
client side, so encrypt the inverted index Z like another document; then down-
load, decrypt, and search in the local inverted index in time of query to avoid all

11

Algorithm 4 Dynamic document addition

1: Require: D' — Documents to add, K — Master key, C1,Ca,C5 — Constants, b —
block size, K¢ = Encryption key for cache, Z = File storage server, @ = Feature
extractor function set, 7 = Transform function set.

2: T’ + Transform(Exztract(D’,0),T)

3: Csig (—H(Kc H 03,1)

4: C + ¢ Y (K¢, Z.read(Csiy)) // download and decrypt
5: for all signature s in Z' do

6: if sin C.freq then

7 me[%eq[s]],yexxbfc.freq[s]

8: else 2+ 0,y+0

9: end if

10: if y > 0 then

11: T, < HK,s ||z || C), Ki < H(K,s || z || C2)
12: L+ ¢ Y (K3, Z.read(T%))

13: Fill empty spaces in L

14: Zwrite(T,, p(Kg, L))

15: end if

16: forj=1— (%W do

17: k<7 + x

18: T+ H(K,s || k|| Cv), Ki + H(K,s || k|| C2)
19: sub « T'[s].slice((k — 1) x b+ y,j X b+ y)
20: Zwrite(Ty,, o(Ki, pad(sub)))

21: end for

22: C.freqls] < C.freq[s] + |T'[s]|

23: Z.write(Csig, o(Kc,C)) // encrypt and upload
24: end for

the complexities. However, such approach will increase bandwidth consumption
for dynamically updating index.

Let, {¢1,...,¢o } be o consecutive queries that user like to perform on a dynam-
ically updating index, (i.e., new documents are added in between each query),
|gi] be the length of query ¢;, |E(g;)| be the size of blocks returned by query g;,
|Y| be the maximum among {|€(q1)],..., |€(¢,)|}, |Z| be the size of inverted index,
|C.freq| be the size of cache required for storing frequency of all the buckets.
Total bandwidth cost for preforming n queries ignoring the addition cost

olC.freql + > (1€(a)] + lail) < o(|C-freq) + V| + |ail)

i=1

On the other hand, if we keep a local inverted index the bandwidth cost would be
simply o|Z|. Since after each update index is updated and we need to download
the recent version. In practice |C.freq| + || + |¢:| < |Z|. Also if we consider
the addition cost, our system will out perform. Because during addition we are
only adding new blocks not updating the whole index. In contrast, complete local
inverted index needs to be sent to server after any addition. So building encrypted
inverted index always saves bandwidth. However, the amount of savings depends
on the dataset and query load.

12
6 Security

In this section, we formally prove the security of our proposed system. The
cloud service is managed by semi-honest Bob, who follows the defined protocol
but may try to infer private information about the document he hosts. Over the
years, many security definitions have been proposed for searchable encryption
for semi-honest model. Among those simulation based adaptive semantic secu-
rity definition by Curtmola, at el., [I2] is widely used in literature. Later it is
customized to work under random oracle model by Kamara, at el., in [I7]. We
adapt this definition to prove our security model.

In our proposed static model, we are leaking encrypted document size, block
length, number of total blocks, trapdoor of blocks related to a search query
information. In dynamic model, in addition to these information, we are leaking
length of newly added encrypted documents, and associated search signatures.
Also note that the cache C can be considered as a document that is updated
with a new length in every addition operation. This does not leak any additional
information because in the cache we are storing (1) document id lists length
information, which is some constant times number of search signatures and (2)
few internal information about documents, which is some constant times number
of documents. All of these atomic information are already leaked due to index.

We will first define necessary patterns, history, trace, and view for our schema
then prove this schema satisfies adaptive semantic security.

Search Signature Pattern (u,): Suppose {01,09,...,0,} is a set of i con-
secutive operations on the encryption collection such that o; is a search or addi-
tion request. Fach operation o; has a set of associated search signatures denoted
as of. Specifically, if o; is a search instance, it involves a single search signature
0 ={s;, }, If 0; is an addition, it involves a set of search signatures that are in-
cluded in the whole dataset of new documents such that of = {s;,, ..., s;_}. Then
pp is a function such that p,((i, p), (5,£)) = 1if s;, = 55, and p,((4, p), (4, €)) =0
otherwise, for 1 <4,j <n,1<p<|of],and 1 << |0;’3|

Search pattern (N,): Suppose o; is a search request, cnt(s;,) be the number
of times s;, occurs in the dataset. Then, N,(0;) = (ent(s;,)). Note that we are
assuming that adversary can infer this count. However, we are not disclosing this
information directly.

Addition Pattern (A,): Suppose o; is an addition request for a document
collection {D,,...,D,}, |Cy| denotes the bit-length for the encrypted form of
Dy, {sj,,...,s;.} is set of search signatures that are included in a new corpus,
and cnt(s;,) denotes the number of documents associated with s;, in modified
dataset. Then A,(0;) = ({|C.], ..., |C,l}, {ent(sj,), ...,ent(s;.)})

History (#,): Let D be the document collection and OP = {oy,...,0,}
be the consecutive search or addition requests that are issued by user. Then
M, = (D,OP) is defined as 1 query history.

Trace (A): Let C = {C4,...,C,} be the collection of encrypted data items,
|C;| be the size of Cj, pp(Hy), Np(Hy), Ap(H,), b be the search signature,
search, addition pattern for ,, length of each block in encrypted inverted index
respectively. Then A(H,) = {(|C1], --|Cnl)s tp(Hy), Ap(Hy), Np(Hy), b} is

13

defined as the trace of H,,. Trace can be considered as the maximum amount of
information that a data owner allows its leakage to an adversary.

View (v): Let C = {C4, ...,C,} be the collection of encrypted data items,
& be the encrypted inverted index, and Il = {II,,, ..., I, } be the trapdoors
and encrypted values for n consecutive requests in H,,. Then, v(H,) = {C,&, I}
is defined as the view of H,. View is the information that is accessible to an
adversary.

Adaptive Semantic Security for Dynamic SSE: SSE schema satisfies
adaptive semantic security in random oracle model, if there exists a probabilis-
tic polynomial time simulator S that can adaptively simulate the adversary’s
view of the history from the trace with probability negligibly close to 1 through
interaction with random oracle. Intuitively, this definition implies that all the in-
formation that is accessible to the adversary can be constructed from the trace.
Formally, let #,, be a random history from all possible history, v(#,,) be the
view, A(H,) be the trace of H,. Then, scheme satisfies the security definition
in random oracle model if one can define a simulator S such that for all the
polynomial size distinguishers Dist, for all polynomial ploy and a large A:

1
poly(A)

where probabilities are taken over H, and the internal coins of key generation
and encryption.

PriDist(v(H,)) = 1] — Pr[Dist(S(A\(Hy))) = 1] <

Theorem 1. Proposed scheme satisfies the adaptive semantic security.

Proof. We will show the existence of polynomial size simulator S such that the
simulated view vg(#,) and the real view vg(#,) of history #, are computa-
tionally indistinguishable. Let vr(H,) = {C,&,II} be the real view. Then S
adaptively generates the simulated view vg = {C*, £*, II*}

S chooses n random values {CY, ..., C*} such that |C5| = |C4], ..., |Cx| = |Chl.
In this setting, C; is output of a secure encryption scheme. By the pseudo-
randomness of the applied encryption, C; is computationally indistinguishable
from C}.

Given the documents per search signature (e.g., cnt(s)) and block length b,
S computes number of entries in £ and generates that many (kF,v}). Note that

7177
for every (k;,v;) in real encrypted inverted index &£ there exists a (kf,v}) in
simulated encrypted inverted index £*. Here length of k; and &} is equal to the
output length of pseudo random function H. Similarly, length of v; and v} is
equal to b. Here, encrypted keys and blocks are computationally indistinguishable
from random values by pseudo-randomness of the applied encryption.
S simulates requests Il , ..., I1,, according to their types

1) II,, is a search request: We define X; = {7 1, ...,7 (cm(%} be the
s b

trapdoors generated for search signature s. Suppose, Il,, = (X, ,cnt(s;,)) is a
search request. Then S copies cnt(s;,) from N, (0;) to ent(s;,)*. Then if u,((4, 1),
(J,0)) =1forany 1 <j <iand1</{<|o;| then XJ = X7, - Otherwise X7 is

set to [%;1)1 number of random row-key from simulated encrypted inverted

14

index £* such that those was not previously selected during the simulation.
In this setting, components of simulated and real requests are computationally
indistinguishable by the pseudo-randomness of the applied encryption. Hence
II,, and II;, are computationally indistinguishable.

2) Il,, is an addition request: Suppose, Il,, = ((Xs, ,cnt(sy)), -
(Xs,_,ent(s;,))) is an addition pattern, |I1,,| be the number of pairs.

For each of the pair individually (iterated with p, where 1 < p < |0f|) sim-
ulator S does the following. First copy cnt(s;,) from Ap(0;) to ent(s;,)*. Next,
if 1y ((7,p), (5,€)) = 0, for all 1 < j <4 and 1 < ¢ < [of| meaning new search

signature so copy (%f”)]

such that those was not used earlier. However, things get little complicated when
there is at least one p,((4, p), (4, £)) = 1 meaning this search signature has been
seen earlier. Note that during addition phase client only needs to update last
block and add more blocks if necessary. For this simulator S needs to search in
revers find the largest j that is smaller than ¢ where p,((4, p), (j,¢)) = 1 That
is the place where s;, was last used. Now find cnt(s;,) either from A,(o;) or
N, (0j) depending on the j* operation. Now cnt(s;,) — cnt(s;,) is the number of

new documents that have search signature s;, and S assigns LMJ

new k* from £x that are not already used and corresponding random v*. Also &
has to add one more row key-value pair (k*,v*) to for the last block that’s being
updated. S picks last element of X from so far generated IT* and randomly
generate a new value vx for that element too. In this setting, the constructed
11}, is computationally indistinguishable from I1,,.

Since each component of vg(H,) and vs(H,) are computationally indistin-
guishable, we can conclude that the proposed schema satisfies the security defi-
nition.

new random row keys and values from £* to &,
o

7 Application of ETLQP framework

As an application of our ETLQP framework we built an image storage system
that saves encrypted images in cloud storage and built an encrypted index to
search later on. Before going into further detail of our ETLQP framework imple-
mentation we briefly describe Fuzzy Color and Texture Histogram (FCTH) [§],
Eigenface [36], Locality Sensitive Hashing(LSH) [15], and range query to exact
query conversion mechanism [I3]. FCTH and Eigenface are used for image sim-
ilarity search and face recognition respectively and LSH is used for dimension
reduction. Finally, as the name suggests range query to exact query conversion
mechanism is used to convert a range query in a defined ranged to sequence of
matching query. These concepts are vital to the development of our system.
Fuzzy Color Texture Histogram (FCTH) [§] is an histogram of image
that combines texture and color information. It is widely used in content based
image retrieval systems (CBIR) [22J940/TO/TT]. In FCTH the texture information
is represented by an eight-bin histogram derived via the fuzzy system that uses
the high-frequency bands of the Haar Wavelet transform. The color is represented
by a 24-bin color histogram computed like in the CEDD descriptor. Overall, the

15

final histogram include 192 regions. Each of the 1600 image blocks is processed
and assigned to a region as in the CEDD. The final 192-bin histogram is also
normalized and quantized such that each bin value is an integer between 0 to 7
inclusive. FCTH of an image can be considered as a vector with 192 dimensions
and distance between FCTH vector of images can be used to determine similarity
among images.

Eigenface [36] is a very well studied, effective yet simple technique for face
recognition using static 2D face image. It consists of three major operations -
finding eigenvectors of faces, finding weights of each faces, and recognition tasks.

Finding Eigenvectors. We start with M face centered upright frontal im-
ages that are represented as N x N square matrices. Let, {I%, ... , Iy} are
N2 x 1 vector representation of these square matrices, ¥ = ﬁ Zf\il I; is the
average of these vectors, and @; = I; — ¥ is computed by subtracting average ¥
from ith image vector.

Now eigenvectors u; of co-variance matrix C = AAT, where A = [®; &5 ... D)),
can be used to approximate the faces. However, there are N? eigenvectors for C.
In practice N2 can be a very large number, thus computing eigenvectors of C
can be very difficult. So instead of AAT matrix we compute eigenvectors of AT A
and take top K vectors for approximating eigenvectors u;, where HU7H = 1. The
selection of these eigenvectors is done heuristically.

Finding Weights. &, can be represented as a linear combination of these
eigenvectors ¢; = Z]K:1 wju; and weights can be calculated as w; = uf@i. Each

normalized image is represented in this basis as a vector {2; = [wl wy ... wk] r
for ¢ = 1,2,... M. This is essentially projecting face images into new eigenspace
(the collection of eigenvectors).

Recognition Task. Given a probe image I, we first normalize ® = ' — ¥
then project into eigenspace such that 2 = [w; wsy ... wK]T, where w; = ul'®.
Now we need to find out nearest faces in this eigenspace by e, = min ||Q — £ ||
If e, < a threshold chosen heuristically, then we can say that the probe image
is recognized as the image with which it gives the lowest score.

In summary, face images are considered as a point in a high dimensional
space. An eigenspace consisting few significant eigen vectors are computed for ap-
proximating faces in a training face dataset. Next, test face images are projected
into the computed eigenspace. Distances of test face images and all training
faces images are computed. If any distance is bellow a pre-determined threshold
then those faces are considered a match for associated test face. A detail formal
explanation of eigen-face schema is presented in full version [31].

Locality sensitive hashing is a technique widely used to reduce dimen-
sions. Core concept of LSH is to define a family of hash functions such that
similar items belong to same bucket with high probability. More specifically we
utilized LSH in euclidean space and adopted widely accepted projection over
random line technique described in [2]. Let, r be a random projection vectors, v
be an input vector, o be a random number used as offset, and w be bucket length
parameter fixed by user. The bucket id is computed by Round(*<+2) function.
Finally, several such projection vectors are used to generate several bucket ids

16

for a single input vector. In this setting, nearby items will share at least a same
bucket with very high probability. In practice value of w and number of random
projections are controlled to achieve required success rate.

Range query to exact query conversion. We adopt the range query
mechanism described in [I3]. Let, a be a discrete feature that has value ranging
from 0 to 2°~!, meaning it requires ¢ bits to represent in binary. We first create
binary tree of ¢ depth representing the complete range. Each leaf node (at depth
t) represent an element in the range and we level all left edge as 0 and right
edge as 1. So, the path from the root to a leaf node essentially represent the
binary encoding of that leaf. In transform phase, we convert an input value of
the range to ¢ feature-value tuples, where the feature is concatenation of field
name, depth ¢ and value is binary encoding of inner node at depth i. During the
query phase given a range we first find the cover as described in [13], create the
corresponding search signatures and perform the query.

7.1 ETLQP for image storage

To build an application using ETLQP framework described system section, pro-
grammer has to define proper extract and transformation functions. Load, Query
and Post-Process phases remain the same. For our image storage software we
consider four features location - where the picture was take, time - when the
picture was taken, texture and color - for searching similar pictures, and faces -
for face recognition. In our implemented system queries of first two features are
equality search and later two are similarity search. Similarity searches are diffi-
cult to perform since result not only contains exact matches but also contains
results that are similar. So, we need to have a similarity measure for the fea-
ture in question. To accomplish such a similarity queries we utilize LSH, which
essentially helps us to convert the query to sequence of equality search. In addi-
tion, result of LSH can contain false positives. We need extra post processing to
remove those.

Extract. Location and time data are extracted from Exiff] meta-data. Exif
is a very popular standard for attaching image meta-data into image used by all
popular camera manufacturers. Camera with Global Positioning System (GPS)
module can store longitude and latitude of a picture taken into Exif data, which
can be extracted easily using available librariesﬂ We use FCTH for similarity
analysis and used a open source implementation of FCTH analyzer [22]. Finally,
for face recognition using Eigenface, we extract frontal faces from images using
haar cascade [37J19] frontal face pattern classifier.

Transform. Now we define appropriate transformations for extracted fea-
tures. Main idea behind the definition of transformation functions is to make the
query easier later on. So definition of transformation functions is mainly guided
by the query demand.

8 http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
9 https://drewnoakes.com/code/exif

http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
https://drewnoakes.com/code/exif

17

— Location. Location information in terms of longitude and latitude is difficult
to use in practice. We use OpenStreetMap’s reverse geolocation Servicﬂ to
determine address of latitude and longitude associated with the image. To
make query easier later, we generate search signatures of six sub-features of
the address - full address, city, county, country, state, and zip.

— Time. Similarly we break created date of an image into five sub-features
- complete date, year, month, day of month, and day of week. We generate
search signatures based on these sub-features. In addition, to support range
query based on date we convert the time into unix time stamp that essentially
represents seconds passed from 1 January 1970 without considering the leap
second. Then we divide the time stamp by number of seconds in a day (86400),
that gives us the number of days passed from epoch. Finally, we build the range
query binary tree with depth 20, which essentially is capable of covering dates
till year 4840. Then we create the feature value list as described earlier.

— Texture and Color. In the extract phase we extracted FCTH of provided
image, which is a 192 dimensional vector. We can treat each dimension as
different sub features but that will make it difficult to perform similarity search
later on. Instead we define an euclidean LSH schema that put near elements
into same bucket and use the bucket ids to generate search signatures.

— Face. We built an eigenface schema with extracted face images. Again to
preserve similarity we built an euclidean LSH schema with weight vectors of
faces and store the eigenspace related information into synchronized cache C.
In particular we store the average face, selected top eigenfaces, and weights of
all faces. Storing such information is the major reason of defining the cache C.

Query and Post-Process. With previously defined extract and transform
functions client can perform time queries, such as find images that are taken
on specific year, month, day of week, day of moth, or in a rang of dates, etc.
Client can also perform location queries, such as find pictures taken in a coun-
try, state, city, etc. In both of these cases, we transform a query into encrypted
search signatures and retrieve associated encrypted document ids from the cloud
storage server. Finally we decrypt and display the result directly to the user. On
the other hand, for face recognition and image-similarity query, we extract ap-
propriate feature values from a query image and transform these values into LSH
bucket ids of previously defined LSH schema. We generate encrypted search sig-
nature, retrieve encrypted document ids, and decrypt the result like date and
time queries. However, before showing results to user we remove false positive
results introduced by the LSH schema.

8 Experimental Evaluation

Setup. In our proposed design we have two components client and server. Client
processes images, performs cryptographic operations, and produces encrypted
inverted index that is stored in server. In query phase client retrieves partial
index from the server based on user-query.

0 mttp://wiki.openstreetmap.org/wiki/Nominatim

http://wiki.openstreetmap.org/wiki/Nominatim

18

ETQLP client is written in Java using several other libraries for image
feature extraction. Cryptographic operations are performed using Java Crypto-
graphic Extension (JCE) implementation. During our experimentation, we exe-
cute the client program in a computer with Intel(R) Core(TM) i7-4770 3.40GHz
CPU, 16GB RAM running Ubuntu 14.04.4 LTS. Our implemented client can
store encrypted inverted index into different types of servers.

- File storage server in local network. We developed a very simple
web based storage service that has two end points file read and file write. Our
server is written in Python (v2.7.6) using Flask (v0.10.1) microframework and
files are stored in a MongoDB (v3.2.0). We deployed our local storage server in
a machine with Intel(R) Xeon(R) CPU E5420 2.50GHz CPU, 30GB of RAM
running CentOS 6.4. In addition, our client computer is also in the same network.
Here, file path is search signature of encrypted inverted index £ and file content
is encrypted document id list.

- Amazon Sﬂs very popular commercial object and file storage system,
which provides easy to use representational state transfer (REST) application
program interface (API) for storing, retrieving and managing arbitrary binary
data or file. Amazon also provides very extensive software development kit (SDK)
for building applications to utilize it’s services. In our implementation, search
signatures of encrypted inverted index &£ are keys of S3 objects and content of
the objects are associated encrypted document id list.

- Personal file storage services. Among the popular commercial personal
file storage services, we implemented capabilities to store inverted index into
DropboxL, BoxZ, and Google Drivéd because of available open source SKD on
these platforms. Here, each entry in encrypted inverted index &£ is saved as
separate file, where file name is encrypted search signature and file content is
encrypted document id list. Due to rate limitations EEE we could not perform
extensive analysis on these platforms. However, a typical user adding images time
to time will not have any trouble using any of these platforms as cloud file storage
server. We reached the rate limit due to repeated nature of our experiment.

In we illustrate the throughput of each of the servers. We compute the
system throughput by upload and downloading 100MB in the storage servers.
We observe that local server performs extremely well in case of download because
of MongoDB’s advanced cache management, which keeps the recently used data
in RAM to improved performance. In addition, in our smaller scale experiments
we observed that performance of personal storage server scales according to this
throughput ratio.

Dataset. Thomee at el. presented the Yahoo Flickr Creative Commons 100
Million Dataset (YFCC100M) in [35], which contains basic information of 100
million media objects, of which approximately 99.2 million are photos and 0.8
million are videos, all of which carry permissive creative commons licens We
have randomly selected 20109 images and downloaded the original version of

"' https://aws.amazon. com/s3/

12 https://www.dropbox.com/developers/core/bestpractices

13 https://developers.box.com/docs/#rate-1imiting

4 https://developers.google.com/drive/v3/web/handle-errors

https://aws.amazon.com/s3/
https://www.dropbox.com/developers/core/bestpractices
https://developers.box.com/docs/#rate-limiting
https://developers.google.com/drive/v3/web/handle-errors

19

45
40
35
30
25
20
15

Upload MB/S stz
Download MB/S

& Unencrypled upload
mEEsE Encrypted uploa

mmmEE Unencrypted download
= Encrypted download

Time (sec)
Time (sec)

Throughput (MB/S)

10

X

& & 5 5
VoS oy -1 11131811
w ’ 100200300400500600700800900 000 1002003004005006007008009001 000
File Storage Servers Number of files Number of files
(a) Server Throughput (b) Overhead Upload (c¢) Overhead Download

Fig. 2. Server throughput, overhead of encryption decryption upon upload and down-
load.

these images. Size of this random dataset is 42.3GB, average file size is 2.15MB,
number of faces detected 7027, and 4102 images have latitude and longitude
embedded in EXIF data.

Face Detection Accuracy. Our constructed dataset is randomly selected
and unlabeled. As a consequence the correctness of our face detection system
remains unmeasured. So we perform face detection on two know face datasets
Caltech Faces [38] and Color FERET [27126]. Caltech Faces dataset contains 450
frontal face images each containing picture of an individual. Our system detected
431 of those correctly, yielding a 95.78% accuracy. We also observed that most
of the failed images are too dark to detect any face. Color FERET dataset
contains a total of 11338 facial images, which were collected by photographing
994 subjects at various angles. Since our face detection system detects frontal
faces only, we extract frontal face images with fa and £b suffixes. We found that
there are total 2722 such images. Our face detection system successfully detected
2459 images, yielding 90.33% accuracy. Here, most of the failed cases has glass
or similar face obstructing additions.

Experiments. Before performing any experiment for the proposed ETLQP
framework, we first compare performance of an encrypted image storage system
with an unencrypted one to observe overhead of encryption. We randomly se-
lect few images, encrypt and upload those images. Then we download, decrypt
and save those files again and measure the performance. We perform this ex-
periment with local storage server and in the client we used a thread pool with
2 threads to parallelize the operations. Encrypted files are slightly larger than
the unencrypted version because we padded the input file and added a 256-bit
message authentication code. So overall size over head is very negligible. We
observe on average 10.09% increment in execution time for encrypted upload
compare to unencrypted upload, illustrated in Similarly we observe on av-
erage 13.06% increment in execution time for downloading encrypted file and
decrypt, compare to unencrypted download, illustrated in So we conclude
that encryption does not add significant overhead for an efficiently implemented
client.

Now, we measure performance of different phases of our framework for vary-
ing number of randomly selected images from above dataset. We measure per-
formance of different phases of our framework for varying number of randomly

!5 http://creativecommons.org/licenses/

http://creativecommons.org/licenses/

20

—+— Unencrypted index size
—e— Encrypted index size
—o— Cache size

Size (MB)
O~ NWA LA

1k 3k 5k 7k 9k 11k 13k 15k 17k 19k
Number of files

Fig. 3. Size of unencrypted index, encrypted index and cache vs. number of files

selected images from above dataset. Horizontal axis of most of the reported
graphs is number of randomly selected images used to build the index and ver-
tical axis is the observation. We repeat each experiment for at least 3 times and
report the average observation value.

We extracted four features of the images created date, location, FCTH vector,
and faces. For created date feature we generated search signatures of day of
week, day of month, month, year, week of week year, and a combination of year,
month, and date. Also we generated range query related signature to perform
arbitrary range query on date. For location feature, we first reverse looked up
the address of latitude, longitude extracted form images using open street map™®
Next we created search signatures based on city, state, county, country, zip code
and full address. FCTH vector is extracted from all the images with Lucene
image retrieval [22] implementation. We detected frontal faces using OpenCV
implementation of haar cascade classifier, converted all the face images to median
face size, built eigenface classifier on the detected faces, and store the computed
weight vector of all the faces as image feature. Figure 3] illustrates size growth of
unencrypted inverted index, encrypted inverted index, and synchronized cache.
The growth is linear, which implies index size increment is proportional to the
number of files added. Moreover, in our experiment we observed that for 20000
images encrypted inverted index size is only 7.06MB, which is about four average
size images in our dataset. So size over head of our proposed system is very low.

We also observe that feature extraction is the most time consuming phase
of our system. Figure illustrates required time for extracting features. We
observe that face detection and extraction time is the dominating factor in this
phase. It requires 464.54 minutes to detect and extract faces from 20000 images
in sequential manner, averaging about 1.39 seconds per image. In addition, other
three features takes 85.87 minutes for 20000 images, averaging 0.26 seconds per
images. Even though it looks like a long time for a lot of images but time required
for individual image is very little. Furthermore, these experiments are done in

21

—— Date, Location, and FCTH extract time —=e— Transform time —— Local server load time
—o— Face extract time —— Amazon S3 load time

4.5

400 4
35
300
2.
200

Time (ms)

1.

100
100 0.

8
Load Time (min)

Feature extract time (min)

chh—inwinw

0
Ik 3k 5k 7k 9k 11k 13k 15k 17k 19k 1k 3k Sk 7k 9k 11k 13k 15k 17k 19k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

Number of files Number of files Number of files

(a) Extract time (b) Transform time (c) Load time

Fig. 4. Time required in different phases of building and uploading the index for dif-
ferent number of images.

sequential manner. A multi-threaded implementation will certainly reduce the
over all time. In addition, in this prototype we implemented a separate program
to call native OpenCV API to detect faces and communicate the results back
to the main process, which added extra overhead. In contrast, transform phase
is one of the fastest phase in our implementation. Here, extracted feature values
are transformed into inverted index of search signatures and document ids. We
observed that the growth is almost linear and for 20000 images it only requires
696 milliseconds, shown in Figure

Next phase in our framework is load, where we encrypt and load the inverted
index into a cloud storage server. In our experiments, we load the encrypted
index into (1) Local server and (2) Amazon S3. Figure shows the time
required for encrypting and loading inverted index into local and Amazon S3
server. For 20000 images it requires 20.52 seconds to encrypt and load the entire
inverted index into local storage server and 5.65 minutes to complete in Amazon
S3 server. Furthermore, the time growth is linear due to the linear growth of
index size.

After loading the data into cloud storage server we perform queries on ex-
tracted features. For location feature we perform query with five randomly se-
lected states, cities, and full addresses. Figure shows the performance of lo-
cation queries on different number of randomly selected images from the dataset.
It is interesting to observer that query by full address performs fastest among all
three query categories. Query by state takes longest to finish and query by city
performs in between. This is because time require to finish a query is propor-
tional to the number to blocks fetched and processed. Very few images are like
to have same full address however more images likely to have common state or
city. As a consequence we observe the above performance. Similarly for date fea-
ture we randomly select five year, month, date(YMD) combinations, date range,
months, and weeks. Query by year, month, date combination and range query
by date takes smallest amount time. In contrast, query by month takes longest
and query by week in between. Figure and illustrates performance of
different types of date query vs number of files.

For FCTH feature, we randomly select five images among input images,
get FCTH vectors, then perform same euclidean LSH transformation defined
in transform phase to get the search signatures. For face feature we randomly
select five faces and compute weights with eigen vector information stored in
cache, then perform euclidean LSH transformation and get search signatures.

22

—— Location query by state —— Date query by YMD combination —+— Date query by year, month, and day combination
—e— Location query by city —e— Date query by date range —e— Date query by date range
—e— Location query by full address —&— Date query by week 1100
T w0 - —— Date query by month z i
g 70 £ T o800
£ 600 S 6000 £ 700
500 £ > 600
S 400 > 4000 g 500
2 300 g S 400
I 2 2 300
T 200 es et Beaa ittt g 8 2
g 100 8 = 100
= 2k 4k 6k Sk 10k 12k 14k 16k 18k 20k 2k 4k 6k 8k 10k 12k 14k 16k 18k20k 2k 4k 6k 8k 10k 12k 14k 16k 18k20k
Number of files Number of files Number of files
(a) Location Query (b) Date Query (c) Date Query with YMD

—+— FCTHquery ~—e— Face query —+— Query in Naive settings

45 >~ Daieand '“;:‘g:(ﬁ;‘f{g query S Query using ETLQP framework
40 ation, and FCTH query £ 200
g 3 —=— Date, location, face, and FCTH query <180
2 3 0 3 160
2 25 3 0 %
8 260 g
s 2 3 50 2100
5 15 E 10 g 80
s 30 Z 60
S 1 % E 40
b s WL
g
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k a 0 10 20 30 40 50

Number of files Number of files Number of queries

(d) FCTH and Face Query (e) Combination Queries (f) Naive Query Size

Fig. 5. Time required for different type of queries vs number of files.

Using these search signatures we get matching images. Finally we remove im-
ages that are too far from the query image. Determining the accuracy of our
proposed system for this two features is difficult since the dataset is unlabeled.
However, we can estimate performance with experimentation as shown in Fig-
ure[5(d)l FCTH and face query both takes significantly longer than location and
date query, this is due to the nature of these features, extra LSH transformations,
and result post processing. In our experiment we setup an euclidean LSH schema
with 4 random projections. For FCTH feature, each random projection line is
divided into 20 unit length buckets and during query time we search we query
for images that has distance less than 8 unites. For 20000 images we observed
78.4% precision and 16.6% recall. LSH parameters can be adjusted according to
the needs of application. Our experiments gives an general idea of performance
overhead of different types of complex queries.

We also perform four conjunctive combination of queries. We perform differ-
ent types of queries individually then intersects the result to get the final result.
First combination is date and location query combination, where we combine
location queries with date queries. Second combination is date, location, and
FCTH query, where we combine three types of queries together. Next combina-
tion is date, location, and face query, which is also three type queries. Fourth
combination is date, location, FCTH and face query, which combines all the fea-
tures our system can extract. As shown in Figure fourth combination takes
longer to preform and first combination takes the smallest amount of time. This
is because location and date queries are individually very fast compared to other
two types of queries.

Finally, we compared performance of our framework with a naive implemen-
tation. In the naive implementation the extract and transform phases remains
the same. However, the load and query phase is different. In naive implemen-
tation we encrypt and upload the inverted index as a single file. During query

23

phase we download and decrypt the whole encrypted index to preform queries.
Figure illustrates data transfer required to perform year-month-date(YMD)
query using our proposed framework and naive implementation. As the number
of query increases data transfer requirement increases liner to the index size. On
the other hand, in our framework initial index loading phase requires loading
the encrypted inverted index then on subsequent query the data transfer is very
little.

9 Conclusion

In this study, we addressed the problem of searchable encryption with sim-
ple server that can support complex queries with multimedia data type. We
made several contributions including an extensible general framework with se-
curity proof and its implementation. Our defined extract, transform, load, query
and post-process (ETLQP) framework can build efficient searchable encryption
scheme for complex data types (e.g, images). With this framework we can per-
form very sophisticated queries, such as face recognition, without needing cryp-
tographic computational support from the server. Our implementation shows
small overhead for building encrypted search index and performing such com-
plex queries. In addition, we also show that overhead of general cryptographic
operations is negligible compared to other necessary operations of a cloud based
file storage system.

Acknowledgments. The research reported herein was supported in part
by NIH awards 1R0-1LM009989 & 1R01HGO006844, NSF CNS-1111529, CNS-
1228198, & CICI-1547324.

References

1. Agarwal, A.: Web vulnerability affecting shared links. https://blogs.dropbox.
com/dropbox/2014/05/web-vulnerability-affecting-shared-links/

2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51(1), 117-122 (Jan 2008), http:
//doi.acm.org/10.1145/1327452.1327494

3. Arnold, B.C.: Pareto distribution. Wiley Online Library (1985)

4. Bindschaedler, V., Naveed, M., Pan, X., Wang, X., Huang, Y.: Practicing oblivious
access on cloud storage: the gap, the fallacy, and the new way forward. In: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. pp. 837-849. ACM (2015)

5. Bosch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable
encryption. ACM Computing Surveys (CSUR) 47(2), 18 (2015)

6. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.:
Dynamic searchable encryption in very-large databases: Data structures and im-
plementation. In: Network and Distributed System Security Symposium, NDSS.
vol. 14 (2014)

7. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. Cryp-
tology ePrint Archive, Report 2013/169 (2013), http://eprint.iacr.org/

8. Chatzichristofis, S., Boutalis, Y.: Fcth: Fuzzy color and texture histogram - a low
level feature for accurate image retrieval. In: Image Analysis for Multimedia Inter-
active Services, 2008. WIAMIS ’08. Ninth International Workshop on. pp. 191-196
(May 2008)

https://blogs.dropbox.com/dropbox/2014/05/web-vulnerability-affecting-shared-links/
https://blogs.dropbox.com/dropbox/2014/05/web-vulnerability-affecting-shared-links/
http://doi.acm.org/10.1145/1327452.1327494
http://doi.acm.org/10.1145/1327452.1327494
http://eprint.iacr.org/

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Chatzichristofis, S., Boutalis, Y., Lux, M.: Img(rummager): An interactive content
based image retrieval system. In: Similarity Search and Applications, 2009. SISAP
’09. Second International Workshop on. pp. 151-153 (Aug 2009)

Chatzichristofis, S.A., Zagoris, K., Boutalis, Y.S., Papamarkos, N.: Accurate im-
age retrieval based on compact composite descriptors and relevance feedback in-
formation. International Journal of Pattern Recognition and Artificial Intelligence
24(02), 207—244 (2010)

Chatzichristofis, S., Boutalis, Y.: Content based radiology image retrieval using a
fuzzy rule based scalable composite descriptor. Multimedia Tools and Applications
46(2-3), 493-519 (2010), http://dx.doi.org/10.1007/s11042-009-0349-x
Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Proceedings of the
13th ACM conference on Computer and communications security. pp. 79-88. ACM
(2006)

Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Com-
puter Security — ESORICS 2015: 20th European Symposium on Research in Com-
puter Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part II,
chap. Rich Queries on Encrypted Data: Beyond Exact Matches, pp. 123-145.
Springer International Publishing, Cham (2015), http://dx.doi.org/10.1007/
978-3-319-24177-7_7

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
rams. J. ACM 43(3), 431-473 (May 1996), http://doi.acm.org/10.1145/233551.
233553

Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing. pp. 604-613. STOC ’98, ACM, New York, NY, USA
(1998), http://doi.acm.org/10.1145/276698.276876

Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric en-
cryption. In: Financial Cryptography and Data Security, pp. 258-274. Springer
(2013)

Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric en-
cryption. In: Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security. pp. 965-976. CCS ’12, ACM, New York, NY, USA (2012),
http://doi.acm.org/10.1145/2382196.2382298

Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted
data. In: Data Engineering (ICDE), 2012 IEEE 28th International Conference on.
pp. 1156-1167. IEEE (2012)

Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object
detection. In: Image Processing. 2002. Proceedings. 2002 International Conference
on. vol. 1, pp. I-900. IEEE (2002)

van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computa-
tionally efficient searchable symmetric encryption. In: Jonker, W., PetkoviAG,
M. (eds.) Secure Data Management, Lecture Notes in Computer Science, vol.
6358, pp. 87-100. Springer Berlin Heidelberg (2010), http://dx.doi.org/10.
1007/978-3-642-15546-8_7

Lu, W., Swaminathan, A., Varna, A.L., Wu, M.: Enabling search over encrypted
multimedia databases. In: IS&T /SPIE Electronic Imaging. pp. 725418-725418. In-
ternational Society for Optics and Photonics (2009)

Lux, M., Chatzichristofis, S.A.: Lire: Lucene image retrieval: An extensible java cbir
library. In: Proceedings of the 16th ACM International Conference on Multimedia.

http://dx.doi.org/10.1007/s11042-009-0349-x
http://dx.doi.org/10.1007/978-3-319-24177-7_7
http://dx.doi.org/10.1007/978-3-319-24177-7_7
http://doi.acm.org/10.1145/233551.233553
http://doi.acm.org/10.1145/233551.233553
http://doi.acm.org/10.1145/276698.276876
http://doi.acm.org/10.1145/2382196.2382298
http://dx.doi.org/10.1007/978-3-642-15546-8_7
http://dx.doi.org/10.1007/978-3-642-15546-8_7

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

25

pp. 1085-1088. MM ’08, ACM, New York, NY, USA (2008), http://doi.acm.org/
10.1145/1459359.1459577

Naveed, M.: The fallacy of composition of oblivious ram and searchable encryption.
Tech. rep., Cryptology ePrint Archive, Report 2015/668 (2015)

Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via
blind storage. In: Security and Privacy (SP), 2014 IEEE Symposium on. pp. 639-
654. IEEE (2014)

Ostrovsky, R.: Efficient computation on oblivious rams. In: Proceedings of the
Twenty-second Annual ACM Symposium on Theory of Computing. pp. 514-523.
STOC ’90, ACM, New York, NY, USA (1990), http://doi.acm.org/10.1145/
100216.100289

Phillips, P.J., Moon, H., Rizvi, S., Rauss, P.J., et al.: The feret evaluation method-
ology for face-recognition algorithms. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 22(10), 1090-1104 (2000)

Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The feret database and evalua-
tion procedure for face-recognition algorithms. Image and vision computing 16(5),
295-306 (1998)

Pinkas, B., Reinman, T.: Oblivious ram revisited. In: Advances in Cryptology—
CRYPTO 2010, pp. 502-519. Springer (2010)

Qin, Z., Yan, J., Ren, K., Chen, C.W., Wang, C.: Towards efficient privacy-
preserving image feature extraction in cloud computing. In: Proceedings of the
ACM International Conference on Multimedia. pp. 497-506. ACM (2014)

Raval, N., Pillutla, M.R., Bansal, P.; Srinathan, K., Jawahar, C.: Efficient content
similarity search on encrypted data using hierarchical index structures

Shaon, F., Kantarcioglu, M.: A Practical Framework for Executing Complex
Queries over Encrypted Multimedia Data. https://www.utdallas.edu/ fahad.
shaon/complex-query-framework-full.pdf

Stadmeyer, K.: Google drive update to protect to shared links. https://security.
googleblog.com/2014/06/google-drive-update-to-protect-to.html (2014)
Stefanov, E., Shi, E.: Oblivistore: High performance oblivious cloud storage. In:
Security and Privacy (SP), 2013 IEEE Symposium on. pp. 253-267. IEEE (2013)
Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path oram: an extremely simple oblivious ram protocol. In: Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security. pp. 299—
310. ACM (2013)

Thomee, B., Shamma, D.A.| Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth,
D., Li, L.J.: The new data and new challenges in multimedia research. arXiv
preprint arXiv:1503.01817 (2015)

Turk, M., Pentland, A.: Eigenfaces for recognition. Cognitive Neuroscience, Journal
of 3(1), 71-86 (Jan 1991)

Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Pro-
ceedings of the 2001 IEEE Computer Society Conference on. vol. 1, pp. I-511.
IEEE (2001)

Weber, M.: Frontal face dataset. http://www.vision.caltech.edu/html-files/
archive.html

Xia, Z., Zhu, Y., Sun, X., Wang, J.: A similarity search scheme over encrypted cloud
images based on secure transformation. International Journal of Future Generation
Communication and Networking 6(6), 71-80 (2013)

Yang, Z., Kamata, S., Ahrary, A.: Nir: Content based image retrieval on cloud
computing. In: Intelligent Computing and Intelligent Systems, 2009. ICIS 2009.
IEEE International Conference on. vol. 3, pp. 556-559 (Nov 2009)

http://doi.acm.org/10.1145/1459359.1459577
http://doi.acm.org/10.1145/1459359.1459577
http://doi.acm.org/10.1145/100216.100289
http://doi.acm.org/10.1145/100216.100289
https://www.utdallas.edu/~fahad.shaon/complex-query-framework-full.pdf
https://www.utdallas.edu/~fahad.shaon/complex-query-framework-full.pdf
https://security.googleblog.com/2014/06/google-drive-update-to-protect-to.html
https://security.googleblog.com/2014/06/google-drive-update-to-protect-to.html
http://www.vision.caltech.edu/html-files/archive.html
http://www.vision.caltech.edu/html-files/archive.html

	A Practical Framework for Executing Complex Queries over Encrypted Multimedia Data
	Introduction
	Related Work
	Background and Threat Model
	The Proposed System
	Extract
	Transform
	Load
	Query
	Post-process
	Optimal block size analysis

	Dynamic Document Addition
	Bandwidth Requirement Analysis

	Security
	Application of ETLQP framework
	ETLQP for image storage

	Experimental Evaluation
	Conclusion

