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Abstract

Homomorphic encryption scheme enables computation in the encrypted domain,
which is of great importance because of its wide and growing range of applications.
The main issue with the known fully (or partially) homomorphic encryption schemes is
the high computational complexity and large communication cost required for their ex-
ecution. In this work, we study symmetric partially homomorphic encryption schemes
over finite fields, establishing relationships between homomorphisms over finite fields
with q-ary functions. Our proposed partially homomorphic encryption schemes have
perfect secrecy and resist cipher-only attacks to some extent.
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1 Introduction

Homomorphic encryption schemes are cryptographic constructions which enable to securely
perform operations on encrypted data without ever decrypting them. More precisely, a
(group) homomorphic encryption scheme over a group (G, ∗) satisfies that given two en-
cryptions c1 = Ek(m1) and c2 = Ek(m2), where m1,m2 ∈ G and k is the encryption
key, one can efficiently compute Ek(m1 ∗ m2) without decrypting c1 and c2. Homomor-
phic encryption schemes are widely used in many interesting applications, such as private
information retrieval [6], electronic voting [2], multiparty computation [7], and cloud com-
puting etc. Generally, fully homomorphic encryption schemes that support two operations
over the underlying algebraic structure, i.e., addition and multiplication, will benefit more
problems with different notions of security and cost.

The possibilities of homomorphic encryption were first explored by Rivest, Adleman, and
Dertouzos in [18] shortly after the presentation of RSA, where homomorphic encryption was
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called “privacy homomorphism”. Multiplicative homomorphic encryption scheme based on
basic RSA [18] is an asymmetric encryption system, which is useful for many applications.
ElGamal [9] is also a multiplicative homomorphic encryption scheme which is asymmetric.
Some additive homomorphic encryption schemes exist, see e.g. [16,17]. The first candidate
for fully homomorphic encryption scheme was presented by Gentry [10]. After that, a
number of fully homomorphic encryption schemes were proposed [4, 5, 21]. The security
of these homomorphic encryption schemes (including partially and fully) relies on the
hardness of some problems. Most known homomorphic encryption schemes are bit-by-bit
encryption schemes, which makes them difficult to realize in practice, since it reduces the
storage and communication efficiency.

Homomorphic encryption schemes allow to securely delegate computation, which have
important significance in many client-server applications (e.g. cloud computing). In
a client-server framework, it is more preferable to select efficient symmetric encryption
schemes which are computationally “light” (e.g. over finite fields or rings), since the clients
have limited computation ability and want to make communication cost small. However,
such homomorphic encryption schemes are not easy to design, and the known construc-
tions cannot completely suffice the needs of practical applications. In [8], Domingo-Ferrer
proposed a symmetric fully homomorphic encryption scheme over polynomial rings, but
at each time we multiply the ciphertexts, the size of the ciphertexts grows. Domingo-
Ferrer’s scheme has been broken by using a small pool of known plaintexts (see e.g. [22]).
Armknecht and Sadeghi [1] also construct a symmetric additive homomorphic encryption
scheme based on Reed-Solomon code, which also allows few number of multiplications.
However, Armknecht’s scheme suffers from the weakness that at some point, the error may
become large enough to cause incorrect decryption (see [11]). In [4], there is a symmetric
fully homomorphic encryption scheme based on the ring learning with errors assumption.

In the previous work, it was proved by Boneh and Lipton [3] that under a number theo-
retic assumption, any fully homomorphic encryption scheme over a ring Zn can be broken
in sub-exponential time by cipher-only attacks. More explicitly, given any ciphertext, the
cryptanalyst who knows nothing about the secret key can find the encrypted plaintext in
sub-exponential time. Later, Maurer and Raub [15] extended Boneh et al’s work to finite
fields of small characteristic. Thus, fully homomorphic encryption schemes over finite fields
or rings would be vulnerable to cipher-only attacks. In this paper, we mainly consider sym-
metric partially homomorphic encryption schemes over finite fields, which are not based
on hardness assumptions. We propose two symmetric partially homomorphic encryption
schemes. After some security analyses, we show that the multiplicative homomorphic en-
cryption scheme and the additive homomorphic encryption scheme can achieve perfect
secrecy, i.e., given any ciphertext, the cryptanalyst who does not know the secret key can
determine nothing about the encrypted plaintext. Furthermore, we claim that even the
presented schemes are not in a one-time pad setting, they can resist against cipher-only
attacks to some extent (if the size of the finite field is large enough). In addition, it is
proved that over finite fields, non-zero multiplicative homomorphisms are equivalent to q-
ary power functions, and non-zero additive homomorphisms are equivalent to non-constant
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homogeneous q-ary affine functions.

2 Preliminaries

Let (G, ∗) and (H, ·) be two groups. A mapping f of G into H is called a homomorphism
if it preserves the operation of G, i.e., for all x, y ∈ G, we have f(x ∗ y) = f(x) · f(y).

Let Fq be a finite field, where q is a power of a prime. A function F : Fq → Fq is called
a q-ary function, which admits a unique univariate polynomial representation over Fq:

F (x) =

q−1∑
i=0

δix
i, δi ∈ Fq, (1)

where the multiple sum is calculated in finite field Fq. The representation (1) of F can be
obtained by the interpolation formula below

F (x) =
∑
a∈Fq

F (a)
(
1− (x− a)q−1

)
.

In fact, denote by P and Q the set of all the polynomials in (1) and the set of all q-ary
functions respectively. Then, define a mapping L : P → Q, which maps any polynomial in
P to the corresponding q-ary function. Because of the interpolation formula, we know that
L is surjective. Since it is clear that |P| = |Q| = qq, then L is bijective. A q-ary function
F is called a power function if F (x) = xd for some d ∈ Zq, where Zq is the residue class
ring modulo q. Let q = ps for some positive integer s, where p is a prime. For i ∈ Zq, we

use wtp(i) to denote the sum of nonzero coefficients in the p-ary expansion i =
∑s−1

k=0 ikp
k,

i.e., wtp(i) =
∑s−1

k=0 ik. Then, for a non-zero q-ary function F (x) =
∑q−1

i=0 δix
i, the algebraic

degree of F is defined as AD(F ) = max{wtp(i) | δi 6= 0, i ∈ Zq}. In this paper, if all the
terms of F have the same algebraic degree, then F is called homogeneous. A function F is
called affine if AD(F ) 6 1.

A function G : Fq × Fq → Fq, where q is a power of a prime, can be represented as a
bivariate polynomial over Fq,

G(x, y) =
∑
i,j∈Zq

γi,jx
iyj , γi,j ∈ Fq, (2)

where the multiple sum is calculated in finite field Fq. All such polynomials form a vector
space over Fq which has dimension q2 and {xiyj | i, j ∈ Zq} as its basis. For i, j ∈ Zq,
the degree of xiyj , denoted by deg(xiyj), equals i + j, where the addition is calculated in
characteristic 0.

Let q be a power of a prime and n be a positive integer. The trace function from Fqn to
Fq is defined as

Trn1 (x) = x+ xq + xq
2

+ · · ·+ xq
n−1

, x ∈ Fqn .
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The trace function Trn1 (·) is a linear transformation from Fqn onto Fq, i.e., Trn1 (·) is sur-
jective, for any a, b ∈ Fqn , Trn1 (a+ b) = Trn1 (a) + Trn1 (b), and for any c ∈ Fq, any a ∈ Fqn ,
Trn1 (ca) = cTrn1 (a).

We consider that in a cryptosystem, a particular key is used for one encryption, then
perfect secrecy provides unconditional security.

Definition 2.1. Let P and C be the plaintext space and the ciphertext space respectively.
A cryptosystem has perfect secrecy if for any m ∈ P and any c ∈ C,

Pr(m = m | c = c) = Pr(m = m).

3 Relationships between homomorphisms over finite fields
with q-ary functions

In this section, we study q-ary functions which are homomorphisms over finite fields. These
functions preserve the multiplication and addition operations respectively. Despite of the
simplicity of the results, it is difficult to find explicit references in the books.

Theorem 3.1. A non-zero q-ary function F is a homomorphism preserving the multi-
plication operation if and only if F is a power function.

Proof The sufficiency is obvious since that for any x, y ∈ Fq, we have F (xy) = (xy)d =
xdyd = F (x)F (y). We prove the necessity below.

Since F is a homomorphism, we have F (0) = F (0)2, which implies F (0) = 1 or 0. If
F (0) = 1, then for any x ∈ Fq, F (x) = F (x)F (0) = F (0) = 1. Define 00 = 1, and thus
F (x) = x0 is a power function. In the following, we consider the case F (0) = 0.

From F (1) = F (1)2, one can deduce F (1) = 1, since if F (1) = 0, then for any x ∈ Fq,
F (x) = F (x)F (1) = 0, which contradicts that F is non-zero. Let α be a primitive element
of Fq. Note that F (α) 6= 0, since otherwise, we have 0 = F (αq−2)F (α) = F (αq−1) =
F (1) = 1, a contradiction. Thus, for any i ∈ Zq,

F (αi) = F (α)i = αlogα F (α)i = αi logα F (α). (3)

Combining F (0) = 0 with (3), we have that for any x ∈ Fq,

F (x) = xlogα F (α).

Therefore, F is a power function.

Theorem 3.2. A non-zero q-ary function F is a homomorphism preserving the addition
operation if and only if F is a non-constant homogeneous q-ary affine function.
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Proof Sufficiency. Let F (x) =
∑s−1

i=1 δix
pi , where δi ∈ Fq. Then, for any x, y ∈ Fq,

F (x+ y) =
s−1∑
i=1

δi(x+ y)p
i

=
s−1∑
i=1

δix
pi +

s−1∑
i=1

δiy
pi = F (x) + F (y).

Necessity. Let F (x) =
∑q−1

i=0 δix
i, where δi ∈ Fq. Define a function from Fq × Fq to Fq

as

∆(x, y) = F (x+ y)− F (x)− F (y), (x, y) ∈ Fq × Fq. (4)

Since for any integer k, (x+ y)p
k

= xp
k

+ yp
k
, then from (4), we have

∆(x, y) =
∑
i∈I

δi(x+ y)i −
∑
i∈I

δix
i −
∑
i∈I

δiy
i, (5)

where the set I satisfies for any i ∈ I, δi 6= 0 and wtp(i) > 2. Suppose that AD(F ) =

max{wtp(i) | δi 6= 0, i ∈ Zq} > 2, then it follows that I 6= ∅. Let j =
∑s−1

k=0 jkp
k ∈ I, then

we have

δj(x+ y)j = δj(x+ y)
∑s−1
k=0 jkp

k

= δj

s−1∏
k=0

(
xp

k
+ yp

k
)jk

= δj

s−1∏
k=0

(
jk∑
l=0

(
jk
l

)
xlp

k
y(jk−l)pk

)
.

If there exists k0 ∈ Zs such that 2 6 jk0 6 p − 1, then since p -
(jk0
l

)
, there must exist

a nonzero term with degree j in the expansion of δj(x + y)j , which can be divided by

xp
k0yp

k0 . Thus, combining (5) with the fact that xiyj , i, j ∈ Zq are linearly independent
over Fq, we have that ∆(x, y) is a nonzero function. On the other hand, if there exist
distinct k1, k2 ∈ Zs such that jk1 = jk2 = 1, then there must exist a nonzero term with

degree j in the expansion of δj(x + y)j , which can be divided by xp
k1yp

k2 . Similarly, it
follows that ∆(x, y) is a nonzero function. Hence, F (x+ y) 6= F (x) +F (y), a contradiction
to that F is an additive homomorphism. Therefore, since F (0) = F (0) + F (0), we have
AD(F ) = 1 with F (0) = 0.

Combining Theorem 3.1 with Theorem 3.2, one can obtain the following corollary im-
mediately.

Corollary 3.3. A non-zero q-ary function F is a homomorphism preserving both the
multiplication and the addition operations if and only if F (x) = xp

i
for some integer i > 0,

where p is the characteristic of the finite filed Fq.
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Remark 3.4. It is well known that the only automorphisms of a finite field Fps are

the Frobenius automorphisms x 7→ xp
i

for i = 0, . . . , s − 1, where p is a prime. In Corol-
lary 3.3, we claim that the only non-zero homomorphisms of Fps into itself are Frobenius
automorphisms.

Remark 3.5. Corollary 3.3 essentially states that any non-zero homomorphism of finite
field Fq into itself is an automorphism. In fact, let F be a non-zero homomorphism of
Fq, then Ker(F ) = {x ∈ Fq | F (x) = 0} is an ideal of Fq, and thus Ker(F ) = {0} or
Ker(F ) = Fq. Since F is non-zero, then Ker(F ) = {0}, which implies that F is bijective.
Hence, F is an automorphism.

4 Partially homomorphic encryption schemes

In this section, we provide two partially homomorphic encryption schemes over finite fields
and give the security analysis. These encryption schemes are symmetric.

4.1 A multiplicative homomorphic encryption scheme

Let F∗q = Fq \ {0} and Z∗q−1 = {k ∈ Zq−1 | gcd(k, q − 1) = 1}, where q is a power of a

prime. For a positive integer n, let η be a primitive element of Fqn , then β = η(qn−1)/(q−1)

is a primitive element of Fq. For integers a and b such that a|b, we use a/b or a
b to denote

division of a by b. For a ring R, if a ∈ R is invertible, then we use a−1 to denote the inverse
of a.

• Key-Generation

Choose a positive integer d such that d|(qn − 1)/(q − 1) and gcd(d, q − 1) = 1, and
choose l ∈ Z∗q−1. The tuple (d, l) is the secret key.

• Encryption

Let α = η(qn−1)/d, which is a primitive d-th root of unity over Fq. To encrypt a
plaintext m ∈ F∗q , one randomly chooses r ∈ {0, 1, . . . , d − 1} and computes the
ciphertext as

c = γlogβmαr,

where γ = ηl(q
n−1)/d(q−1), the discrete logarithm logβm = a if βa = m.

• Decryption

For c ∈ F∗qn , one computes

m′ = cd·l
−1
,

where l−1 is the inverse of l in Z∗q−1.
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Remark 4.1. In the encryption phase, since d|(qn− 1)/(q− 1) implies d|(qn− 1), then
the splitting field of xd − 1 over Fq is a subfield of Fqn. Thus, {x ∈ Fqn | xd = 1} =
{1, α, α2, . . . , αd−1}. We also assume that the discrete logarithm over Fq is easy to find
(that is to say, the parameter q is much less than 21880, see Footnote 1 on Page 8).

Theorem 4.2. The multiplicative homomorphic encryption scheme described above is
correct, and it is multiplicative homomorphic.

Proof To show the correctness, we have to prove that the decryption of an encrypted
plaintext yields the same plaintext again. To decrypt a ciphertext c = γlogβmαr, one
computes

m′ = cd·l
−1

= (γlogβm)d·l
−1

(αr)d·l
−1

= (γd)l
−1·logβm(αd)r·l

−1

= βl·l
−1·logβm (6)

= m,

where Eq.(6) is due to the facts that γd = βl and αd = 1.
The multiplicative homomorphic property is an immediate consequence of Theorem 3.1.

More explicitly, let c1 and c2 be two encryptions of the plaintexts m1 and m2 respectively.
Since the decryption function F (x) = xd·l

−1
is a power function, then F is a multiplicative

homomorphism, i.e., decrypting c1 · c2 yields (c1 · c2)d·l
−1

= cd·l
−1

1 · cd·l−1

2 = m1 ·m2.

4.1.1 Security analysis

In this paper, we only consider ciphertext-only attacks. We argue that the multiplica-
tive homomorphic encryption scheme described above cannot be broken in general by
ciphertext-only attacks if the parameter q satisfies some restrictions.

We first give some notations. Let n be an integer. For i|n, define

Oi(n) = {il mod n | l ∈ Z∗n},

where Z∗n = {k ∈ Zn | gcd(k, n) = 1}. Clearly, if i and j are distinct factors of n, then
Oi(n)

⋂
Oj(n) = ∅, and we have

⋃
i|nOi(n) = Zn. Hence, the sets Oi(n), i|n, form a

partition of Zn.
In the above multiplicative homomorphic encryption scheme, we know that α = η(qn−1)/d

is a primitive d-th root of unity over Fq, and γ = ηl(q
n−1)/d(q−1), where d|(qn − 1)/(q − 1),

gcd(d, q − 1) = 1, l ∈ Z∗q−1, and η is a primitive element of Fqn . Suppose that the
cryptanalyst gets c as a ciphertext. Then, there exists a plaintext m ∈ F∗q and an integer r ∈
{0, 1, . . . , d− 1} such that c = γlogβmαr, where β = η(qn−1)/(q−1). Hence, the cryptanalyst
has

c = η
qn−1
q−1
· 1
d

(l logβm+r(q−1))
,
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and thus x := 1
d(l logβm+ r(q− 1)) is known.1 The cryptanalyst will try to guess m from

x, but d, l, r are unknown to him. Let d0 := gcd(l logβm+ r(q − 1), d) and d1 := min{d′ |
cd
′(q−1) = 1} = d/d0 6 d. From the cryptanalyst’s point of view, he can compute d1 and

cd1 = η
qn−1
q−1
· 1
d0

(l logβm+r(q−1))
= β

1
d0

(l logβm+r(q−1))

= β
1
d0

(l′ logβm
′+r′(q−1))

(7)

where l′, r′ are the guessed parameters, m′ ∈ F∗q is the guessed plaintext, and d0 is unknown
to the cryptanalyst.

From the above discussion, we now prove the following lemma.

Lemma 4.3. For m,m′ ∈ F∗q, there exists l′ ∈ Z∗q−1 such that (7) holds if and only if
gcd(logβm, q−1) = gcd(logβm

′, q−1), i.e., logβm, logβm
′ ∈ Oi(q−1) for some i|(q−1).

Proof It is clear that (7) holds if and only if

1

d0
(l logβm+ r(q − 1)) ≡ 1

d0
(l′ logβm

′ + r′(q − 1)) (mod q − 1). (8)

Since gcd(d, q − 1) = 1, which implies gcd(d0, q − 1) = 1, and thus d0 is invertible modulo
q−1. Hence, (8) holds if and only if l logβm ≡ l′ logβm

′ (mod q−1). This is equivalent to
saying that gcd(l logβm, q−1) = gcd(l′ logβm

′, q−1), or equivalently, gcd(logβm, q−1) =
gcd(logβm

′, q − 1), because l and l′ are in Z∗q−1.

Theorem 4.4. In the above multiplicative homomorphic encryption scheme, if a crypt-
analyst gets a ciphertext c and knows nothing about the secret key, then he can only find a
factor i of q−1 such that the encrypted plaintext m satisfies logβm ∈ Oi(q−1). Moreover,
for any m such that logβm ∈ Oi(q − 1), the conditional probability of m given c is

Pr(m = m | c = c) =
1

|Oi(q − 1)|
,

which implies that the cryptanalyst will succeed in guessing which plaintext was encrypted
with probability 1/|Oi(q − 1)|.

Proof From the discussion above, we know that given a ciphertext c, a cryptanalyst
can compute d1 = min{d′ | cd′(q−1) = 1} and

cd1 = β
1
d0

(l logβm+r(q−1))
= βec , (9)

1Note that here we do not need to make a requirement on q such that the Discrete Logarithm problem
(DLP) in F∗qn is hard to solve. Indeed, it is suggested that qn needs to be at least 21880 to make known
discrete logarithm algorithms infeasible [20, Chapter 6]. Nowadays DLP can be solved for some special
fields (especially with small characteristic) of size larger than 1880 bits, e.g., discrete logarithm in F26168 is
solved [13].
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where ec := 1
d0

(l logβm + r(q − 1)) is known but d0 = gcd(l logβm + r(q − 1), d), l, r,

and m are unknown. Since gcd(d0, q − 1) = 1, then logβm ∈ Oi(q − 1) if and only if
gcd(ec, q − 1) = i. Therefore, the cryptanalyst determines the factor i of q − 1 such that
logβm ∈ Oi(q−1). Thanks to Lemma 4.3, there exists l′ ∈ Z∗q−1 such that (7) holds if and
only if logβm

′ ∈ Oi(q − 1). Hence, the cryptanalyst cannot find the exact plaintext m.
Suppose that the encrypted plaintext m satisfies logβm ∈ Oi(q−1), where i|(q−1). It is

easy to see that for any j ∈ Oi(q−1), the number of l ∈ Z∗q−1 such that lj mod (q−1) = j
is exactly φ(q−1)/|Oi(q−1)|, where φ is the Euler phi function. For a fixed d, let C be the
ciphertext space. For any c ∈ C, denote by ec the exponent of cd1 based on β defined in
(9). Hence, for any m ∈ F∗q and any c ∈ C, since r is randomly chosen from {0, . . . , d− 1},
then one can obtain

Pr(c = c |m = m) =
φ(q − 1)

|Oi(q − 1)|
· 1

d · φ(q − 1)
=

1

d · |Oi(q − 1)|

if logβm ∈ Oi(q − 1) and gcd(ec, q − 1) = i, and Pr(c = c | m = m) = 0 otherwise. Since
for any m ∈ F∗q , Pr(m = m) = 1/(q − 1), then for any c such that gcd(ec, q − 1) = i,

Pr(c = c) =
∑
m∈F∗q

Pr(m = m)Pr(c = c |m = m)

=
∑
m∈F∗q

logβm∈Oi(q−1)

1

q − 1
· 1

d · |Oi(q − 1)|
=

1

(q − 1)d
.

By using Bayes’ theorem, we have that for any m ∈ F∗q and any c ∈ C,

Pr(m = m | c = c) =
Pr(c = c |m = m)Pr(m = m)

Pr(c = c)

=

{ 1
|Oi(q−1)| , if logβm ∈ Oi(q − 1) and gcd(ec, q − 1) = i,

0, otherwise.

Therefore, the cryptanalyst will succeed in guessing the encrypted plaintext with proba-
bility 1/|Oi(q − 1)|.

Corollary 4.5. In the above multiplicative homomorphic encryption scheme, if the
plaintext space is restricted to F∗q \ {1}, then for a cryptanalyst, by cipher-only attacks,
the probability of success of guessing the plaintext from a known ciphertext is at most
1/mini|(q−1),i<q−1 |Oi(q − 1)|.

Proof From Theorem 4.4, it is known that for a plaintext m satisfying logβm ∈
Oi(q−1), where i|(q−1), a cryptanalyst will succeed in guessing m from the corresponding
ciphertext c with probability 1/|Oi(q − 1)|. Note that the set {Oi(q − 1) | i|(q − 1), i <
q − 1} forms a partition of Zq−1 \ {0}. Since the plaintext space is restricted to F∗q \ {1},
then for a cryptanalyst, the probability of success of guessing the plaintext m is at most
1/mini|(q−1),i<q−1 |Oi(q − 1)|.
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Table 1: All numbers 9 6 q 6 3100 satisfying q = 3s and (q − 1)/2 is a prime

q (q − 1)/2

33 13
37 1093
313 797161
371 3754733257489862401973357979128773

Remark 4.6. If q is odd, then mini|(q−1),i<q−1 |Oi(q − 1)| = |O(q−1)/2(q − 1)| = 1.
Thus, from Corollary 4.5, a cryptanalyst may succeed in guessing the plaintext from the
ciphertext with probability 1. In fact, if m = β(q−1)/2 is encrypted as c, where β is a
primitive element of Fq, then for a cryptanalyst, the probability of success of guessing m
from c is 1. To increase the security of the system, we can choose odd q such that (q−1)/2
is a prime, and then restrict the plaintext space to F∗q \{1, β(q−1)/2}. In this case, it is easy
to check that

min
i|(q−1),i<q−1,i 6=(q−1)/2

|Oi(q − 1)| = |O1(q − 1)| = φ(q − 1) = (q − 3)/2.

Hence, a cryptanalyst can succeed in guessing the plaintext with probability at most 2/(q−3).
In Table 1, we list some examples of q = 3s, where 2 6 s 6 100, which satisfy (q − 1)/2 is
a prime.

Corollary 4.7. Let the plaintext space be restricted to F∗q \{1}. Then, the multiplicative
homomorphic encryption scheme described above has perfect secrecy if and only if q − 1 is
a Mersenne prime (see e.g. [19]), i.e., q − 1 = 2s − 1 is a prime for some prime s.

Proof Sufficiency. Since q − 1 is a prime, then Zq−1 \ {0} = O1(q − 1). Let β be a
primitive element of Fq, then for any m ∈ F∗q \{1}, we have logβm ∈ Zq−1\{0} = O1(q−1).
According to Theorem 4.4, we have that for every m ∈ F∗q \ {1} and every c ∈ C, the
conditional probability of m given a ciphertext c, is

Pr(m = m | c = c) =
1

|O1(q − 1)|
= Pr(m = m).

Therefore, from Definition 2.1, the multiplicative homomorphic encryption scheme has
perfect secrecy.

Necessity. It is known that for every m ∈ F∗q \ {1} and every c ∈ C,

Pr(m = m | c = c) = Pr(m = m) =
1

q − 2
.
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From Theorem 4.4, we have that Pr(m = m | c = c) = 1/|Oi(q − 1)| for some i|(q − 1).
Therefore, for every integer i satisfying i|(q− 1) and i < q− 1, we have |Oi(q− 1)| = q− 2,
which implies that q − 1 is a prime. Note that q is a power of a prime. If q is odd, then
q− 1 is even which cannot be a prime. Hence, q is a power of 2 such that q− 1 is a prime,
i.e., q − 1 is a Mersenne prime.

Remark 4.8. From Corollary 4.7, we know that to achieve perfect secrecy, the parameter
q chosen in the multiplicative homomorphic encryption scheme should satisfy q − 1 is a
Mersenne prime. In practice, it would be suitable to choose some prime power q such that
mini|(q−1),i 6∈A |Oi(q − 1)| takes a high value, where A ⊆ {1, 2, . . . , q − 1}, and the plaintext

space is restricted to m ∈ F∗q \ {βi | i ∈ A}. See Remark 4.6 for example.

Remark 4.9. In the multiplicative homomorphic encryption scheme with constraints
in Corollary 4.7, we have proved that for only one encryption, the scheme has perfect se-
crecy. In fact, homomorphic encryption schemes cannot in a one-time pad setting, and
a reuse of the secret key could lead to a break of the scheme. However, if the size of
the finite field is chosen to be large enough, we can show that the proposed multiplicative
homomorphic encryption scheme can resist cipher-only attacks to some extent. Suppose
that the cryptanalyst gets a sequence of ciphertexts c1, . . . , cs encrypted by the secret key

(d, l). Then, he can compute d̄ = max16i6s
{

min
{
d′ | cd

′(q−1)
i = 1

}}
and get the multiset

C = {∗ cd̄1, . . . , cd̄s ∗}. In the case d̄ = d, the cryptanalyst can only guess the encrypted
plaintext sequence m1, . . . ,ms correctly with probability 1/(q − 2), since he knows nothing
about the parameter l. Thus, when q is large enough (but much less than 21880, see Re-
mark 4.1), the probability of success of guessing the correct plaintext sequence is still very
small.

4.2 An additive homomorphic encryption scheme

Let q be a power of a prime and n be a positive integer, and F (x) =
∑n−1

i=0 δix
qi − α be a

qn-ary affine function, where α ∈ Fqn and δi ∈ Fqn , i = 0, . . . , n− 1. An element β ∈ Fqn is
a root of F (x) if and only if F (β) = α. For a qn-ary affine function F , the determination
of all the roots of F in Fqn is an easy task (see e.g. [14, Chapter 3]).

• Key-Generation

Choose α ∈ F∗qn as the secret key. Define a qn-ary function F (x) = Trn1 (αx).

• Encryption

To encrypt a plaintext m ∈ Fq, one randomly chooses a root c ∈ Fqn of the affine
q-polynomial F (x)−m. Then, c is the ciphertext.

• Decryption

For c ∈ Fqn , one computes m′ = F (c).
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Theorem 4.10. The additive homomorphic encryption scheme described above is cor-
rect, and it is additive homomorphic.

Proof The correctness of the scheme is obvious. The additive homomorphic property is
an immediate consequence of the fact that the trace function is linear, i.e., decrypting c1+c2

yields F (c1 + c2) = Trn1 (α(c1 + c2)) = Trn1 (αc1) + Trn1 (αc2) = F (c1) +F (c2) = m1 +m2.

4.2.1 Security analysis

In this paper, we only consider ciphertext-only attacks. In the above additive homomorphic
encryption scheme, if a ciphertext c = 0, then the encrypted plaintext m must be 0.
Therefore, we always assume that m = 0 is encrypted as a nonzero element in Fqn .

Theorem 4.11. The additive homomorphic encryption scheme described above has per-
fect secrecy.

Proof Let {β1, . . . , βn} be a basis of Fqn over Fq. For a ciphertext c ∈ F∗qn , there
must exist j ∈ {1, . . . , n} such that Trn1 (βjc) 6= 0. For any m ∈ Fq and any ai ∈ Fq,
i ∈ {1, . . . , n} \ {j}, define

aj =

m− ∑
i∈{1,...,n}\{j}

aiTrn1 (βic)

 (Trn1 (βjc))
−1 .

Then, we have
∑n

i=1 aiTrn1 (βic) = m, i.e., Trn1 (
∑n

i=1 aiβic) = m. Define α =
∑n

i=1 aiβi,
then Trn1 (αc) = m. For m ∈ F∗q , there are qn−1 possible α ∈ F∗qn such that Trn1 (αc) = m. If
m = 0 and ai = 0 for i ∈ {1, . . . , n}\{j}, then aj = 0, which leads to α = 0. So, for m = 0,
there are only qn−1 − 1 possible α ∈ F∗qn such that Trn1 (αc) = m. Note that we always
assume that m = 0 is encrypted as a nonzero element in Fqn . Hence, for any m ∈ Fq and
any c ∈ F∗qn , since a root c ∈ F∗qn is randomly chosen from the solution space of dimension
n− 1, then we have

Pr(c = c |m = m) =

{
qn−1

qn−1 ·
1

qn−1 = 1
qn−1 , if m ∈ F∗q ,

qn−1−1
qn−1 ·

1
qn−1−1

= 1
qn−1 , if m = 0.

Since for any m ∈ Fq, Pr(m = m) = 1/q, then for any c ∈ F∗qn ,

Pr(c = c) =
∑
m∈Fq

Pr(m = m)Pr(c = c |m = m) =
1

qn − 1
.

By using Bayes’ theorem, we have that for any m ∈ Fq and any c ∈ F∗qn ,

Pr(m = m | c = c) =
Pr(c = c |m = m)Pr(m = m)

Pr(c = c)
=

1

q
= Pr(m = m).

Therefore, from Definition 2.1, the additive homomorphic encryption scheme has perfect
secrecy.

12



Remark 4.12. In the additive homomorphic encryption scheme described above, we
have proved that for only one encryption, the scheme has perfect secrecy. Similar to the
discussion in Remark 4.9, we will show that if the size of the finite field is chosen to
be large enough, the proposed additive homomorphic encryption scheme can resist cipher-
only attacks to some extent. Suppose that the cryptanalyst gets a sequence of ciphertexts
c1, . . . , cs encrypted by the secret key α. If c1, . . . , cs span a t-dimensional vector space
over Fq, then the cryptanalyst can only guess the encrypted plaintext sequence m1, . . . ,ms

correctly with probability 1/qt if t < n, and 1/(qn − 1) otherwise, since he knows nothing
about the parameter α. Thus, when q is large enough, the probability of success of guessing
the correct plaintext sequence is still very small.

5 Concluding remarks

In this paper, we studied symmetric partially homomorphic encryption schemes over finite
fields. We showed that non-zero multiplicative (or additive) homomorphisms over finite
fields are equivalent to q-ary power functions (or non-constant homogeneous q-ary affine
functions). We proposed two homomorphic encryption schemes with reasonable computa-
tion and communication costs, and discussed security of our schemes in terms of cipher-
only attacks. Since our schemes are not based on hardness assumptions, semantic security
(see [12]) is not considered here (this concept is mainly discussed under a given hardness
assumption). In [3] and [15], it is proved that any fully homomorphic encryption scheme
over finite fields (or rings) cannot resist against cipher-only attacks. As an extended work,
we find two partially homomorphic encryption schemes which have perfect secrecy and can
resist against cipher-only attacks to some extent.
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