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Abstract

Many pairing-based protocols require the computation of the product
and/or of a quotient of n pairings where n > 1 is a natural integer.
Zhang et al.[1] recently showed that the Kachisa-Schafer and Scott family
of elliptic curves with embedding degree 16 denoted KSS16 at the 192-bit
security level is suitable for such protocols comparatively to the Baretto-
Lynn and Scott family of elliptic curves of embedding degree 12 (BLS12).
In this work, we provide important corrections and improvements to their
work based on the computation of the optimal Ate pairing. We focus on
the computation of the final exponentiation which represent an important
part of the overall computation of this pairing. Our results improve by
864 multiplications in Fp the computations of Zhang et al.[1]. We prove
that for computing the product or the quotient of 2 pairings, BLS12 curves
are the best solution. In other cases, specially when n > 2 as mentioned in
[1], KSS16 curves are recommended for computing product of n pairings.
Furthermore, we prove that the curve presented by Zhang et al.[1] is not
resistant against small subgroup attacks. We provide an example of KSS16
curve protected against such attacks.

Keywords: BN curves, KSS16 curves, BLS curves, optimal Ate pair-
ing, product of n pairings, subgroup attacks.

1 Introduction

Pairing-based cryptography is another way of building cryptographic protocols.
Thanks to the various and steady improvements for the computation of pairings
on elliptic curves together with their implementation, several protocols have
been published [2, 3, 4, 5, 6]. The BN [7] family of elliptic curves are the most
suitable for implementing pairing-based cryptography at the 128-bit security
level. At the 192-bit security level, the BLS12 [8] curves are recommended for
computing the optimal Ate pairing according to the results presented in [9, 10].
Many pairing-based protocols require the computation of products or quotients
of pairings. Some of them require the computation of two pairings [11], others
require three pairings [12] and even more than three pairings as in [13, 14]. The
few works that studied an efficient computation of products of pairings are
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those of Granger and Smart [15, 1]. In particular, Zhang et al. [1] have recently
shown that the KSS16 [16] elliptic curves are more suitable when computing
products or quotients of optimal Ate pairings at the 192-bit security level.
In their work they gave explicit formulas and cost evaluation for the Miller
loop and developed interesting ways of computing the hard part of the final
exponentiation. Unfortunately their results contain several forgotten operations
costing 1422 multiplications in the base field Fp. In this work we study the
computation of the optimal Ate pairing on KSS16 curves. We present also
a new multiple of the hard part of the final exponentiation of the optimal Ate
pairing. This new multiple enabled us to improve the cost of the computation of
the hard part of the final exponentiation with respect to the work of Zhang et al.
[1]. We also compare the efficiency of KSS16 curves when computing product
of pairings with respect to other common curves at the same security level. We
also analyzed the resistance of the KSS16 curves to the small subgroup attack
following the approach described in [17]. More precisely, the contribution of this
work is as follows:

1. We first pointed out ignored operations in the computation of the optimal
Ate pairing (final exponentiation) on KSS16 curves by Zhang et al.[1]
and give detailed cost of operations with a magma code to verify the
formulas [18]. Despite the improvement we obtained for the computation
of the final exponentiation in this case and based on the fastest known
result to date to our knowledge, we show that BLS12 curves are suitable
for the computation of products of two pairings at the 192-bit security
level and not KSS16 curves as recommended in [1]. We also proved that
for computing n pairings where n > 2 then KSS16 curves are the best
solution.

2. In [17], Barreto et al. recently studied the resistance of BN, BLS and
KSS18 curves to small subgroup attacks. We extend the same analysis to
KSS16 curves. In particular we show that the parameters used in [1] do
not ensure protection of these curves to such attacks and we provide an
example of KSS16 curve resistant to this attack.

The rest of this work is organized as follows: the section 2 recalls results
from [1] on optimal Ate pairing on KSS16 curves. We point out the forgotten
operations and bring corrections and improvements in the computation of the
final exponentiation. In Section 3, we present our new multiple of the hard part
of the final exponentiation d′. We prove that by using the new vector we saved
850M with respect to the corrected work of Zhang et al. in the computation
of the optimal Ate pairing over KSS16 curves. Section 4 defines products of
pairings and their efficient computation. Detailed costs of the calculation and
comparison are then done with commonly pairing-friendly curves at the 192-bit
security level. The Section 5 concerns the resistance of the KSS16 curves against
small subgroup attacks. We show that the curve used in [1] is not protected
against small subgroup attack and provide an adequate example. We conclude
our work in Section 6.
Notations:
In this paper we denote by:

• Mk a multiplication in Fpk .
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• Fk a Frobenius map in Fpk .

• Ik an inversion in Fpk .

• Sc a cyclotomic squaring in Fp16 .

• Cc a cyclotomic cube in Fp16 .

A multiplication, a square and an inversion in Fp are denoted respectively by
M , S and I.

2 Pairings at the 192-bit Security Level

The 192-bit security level is one of the highest security level recommended
when implementing cryptographic protocols based on pairings. Aranha et al.[19]
recommended the implementation of optimal Ate pairing at this security level
over BLS12 curves. Their results on BLS12 curves have been improved by
Ghammam et al. in [10] and still confirm that BLS12 curves are a better
solution for implementation at the 192-bit security level. Recently, Zhang et al.
[1] considered the computation of the optimal Ate pairing over KSS16 curves at
the same security level. They proved in particular that this family of curves is
suitable for computing products or quotients of pairings generally involved in
many pairing-based protocols. In this section we review their computation of
the optimal Ate pairing and in particular we bring corrections to shortcomings
in their work and give improvements in the computation of the hard part of
the final exponentiation. The previous data on costs of computing optimal Ate
pairing from the literature at the 192-security level are given in Table 1.

Elliptic Complexity of Complexity of
Curves Miller loop the final exponentiation

BLS12 Curves [10] 10785 8116M+6I
BLS24 Curves [10] 14574 23864M+10I

BN Curves [19] 16553M 7218M+4I
KSS18 Curves [19] 13168M 23821M+8I

Table 1: Latest best costs of optimal Ate pairing at the 192-bit security level.

2.1 The KSS16 family of elliptic curves and optimal Ate
pairing

Kachisa, Schafer and Scott proposed in [16] a family of pairing-friendly elliptic
curves of embedding degree k ∈ {16, 18, 32, 36, 40}. The main idea of their
construction of these families of curves is to use the minimal polynomial of the
elements of the cyclotomic field rather than the cyclotomic polynomial φk(x)
to define the cyclotomic field.
The family of curve with k = 16 which is called KSS16 curves is parametrised
as follows: t = 1/35

(
2u5 + 41u+ 35

)
r = u8 + 48u4 + 625
p = 1

980

(
u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2 + 2398u+ 3125

) (1)

3



and the equation of the elliptic curve defined over Fp is of the form

y2 = x3 + ax

where t is the trace of the Frobenius endomorphism on E, p is the field size
and r presents the order the pairing-friendly subgroup. Let G1 = E(Fp)[r] be
the r-torsion subgroup of E(Fp) and G2 = E′(Fp4)[r]∩ Ker(πp − [p]) where E′

is the quartic twist of E. The subgroup of F?p16 consisting of r-th roots of unity

is denoted by G3 = µr. Consider the function fu,Q with divisor Div(fu,Q) =
u(Q)− ([u]Q)− (u−1)(O) and `R,S the straight line passing through the points
R and S of the elliptic curve.

Proposition 2.1 [1] The optimal Ate pairing on the KSS16 curves is the bi-
linear and non degenerated map:

eopt : G1 ×G2 → G3

(P,Q) 7−→
(

(fu,Q(P )l[u]Q,[p]Q(P ))p
3

lQ,Q(P )
) p16−1

r

The parameter u proposed by Zhang et al. [1] is

u = 249 + 226 + 215 − 27 − 1

which is a 49-bit integer of Hamming weight equal to 5 so that r has a prime
factor of 377 bits and p is a prime integer of 481 bits.

The computation of pairing involves two main steps: the Miller loop and
the final exponentiation.

2.2 The Miller loop

In our case, to compute the optimal Ate pairing in Proposition 2.1, the Miller
loop consists of the computation of (fu,Q(P ) · l[u]Q,[p]Q(P ))p

3 · lQ,Q(P ). Let
u = un2n + ... + u12 + u0 with ui ∈ {−1, 0, 1}. The computation of the func-
tion fu,Q(P ) is done thanks to the algorithm in Table 2 known as the Miller
algorithm.

Miller algorithm: Input: u,P ,Q, Output:(fu,Q(P ) · l[u]Q,[p]Q(P ))p
3 · lQ,Q(P )

n = log2u
1: Set f1 ← 1 and R← Q
2: For i = n− 1 down to 0 do
3: f1 ← f21 · `R,R(P ), R← 2R Doubling step
5: if ui = 1 then
6: f1 ← f1 · `R,Q(P ) R← R+Q, end if Addition step
7: if ui = −1 then
8: f1 ← f1 · `R,−Q(P ) R← R−Q, end for Addition step
9: return f1 = fu,Q(P )
10: end For

l

Table 2: Miller algorithm.
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The Miller loop consists of computing fu,Q(P ), l[u]Q,[p]Q(P ), lQ,Q(P ) and two
sparse multiplications in Fp16 to multiply terms together and one p3-Frobenius.
The computation of fu,Q(P ) costs 49 doubling steps with associated line evalu-
ation, 4 addition steps with line evaluations, 48 squarings in Fp16 and 52 sparse
multiplications in Fp16 . We then need an extra 2p-Frobenius maps for com-
puting [p]Q and [u]Q is obtained through the computation of fu,Q(P ). Thus
we have to perform 8 multiplications in Fp, a multiplication in Fp4 and one
squaring in Fp4 plus 2p−Frobenius to compute l[u]Q,[p]Q(P ). We need also 8
multiplications in Fp, 4 multiplications in Fp4 , and one squaring in Fp4 to com-
pute lQ,Q(P ) (see [1] for formulas and complete details on the costs).
Therefore, the overall cost of the computation of the Miller loop, as mentioned
in [1], is 49 doubling steps with associated line evaluations, 4 addition steps
with line evaluations, 48 squarings in Fp16 , 54 sparse multiplications in Fp16 , 2p,
p3 Frobenius maps in Fp16 , 16 multiplications in Fp, 5 multiplications in Fp4
and one squaring in Fp4 . From Table 4 of [1], the Miller loop of the optimal Ate
pairing on KSS16 curve costs about 10208 multiplications in Fp.

2.3 The final exponentiation

The second step in computing the optimal Ate pairing is the final exponentiation

which consists of raising the result f1 of the Miller loop to the power p16−1
r .

Thanks to the cyclotomic polynomial, this expression is simplified and presented
as follows:

d1 = (fp
8−1

1 )
p8+1

r .

First we have to compute M = fp
8−1

1 which is called the simple part of the final
exponentiation. This costs one p8- Frobenius, an inversion and a multiplication

in Fp16 . Raising M to the power p8+1
r is called the hard part of the final

exponentiation. In [1], Zhang et al. considered a multiple of the second part of
the final exponentiation. So instead of computing fd they computed f857500d

where d = p8+1
r . This choice enables them to only have integer coefficients in

the representation of d1 = 857500d in base p which is a simple way for computing
this hard part of the final exponentiation.

p8 + 1

r
=

φ(16)−1∑
i=0

cip
i = c0 + c1p+ c2p

2 + · · ·+ c7p
7

Where:

c0 = −11u9 − 22u8 − 55u7 − 278u5 − 1172u4 − 1390u3 + 1372
c1 = 15u8 + 30u7 + 75u6 + 220u4 + 1280u3 + 1100u2

c2 = 25u7 + 50u6 + 125u5 + 950u3 + 3300u2 + 4750u
c3 = −125u6 − 250u5 − 625u4 − 3000u2 − 13000u− 15000
c4 = −2u9 − 4u8 − 10u7 + 29u5 − 54u4 + 154u3 + 4704
c5 = −20u8 − 40u7 − 100u6 − 585u4 − 2290u3 − 2925u2

c6 = 50u7 + 100u6 + 250u5 + 1025u3 + 4850u2 + 5125u
c7 = 875u2 + 1750u+ 4375

(2)

Then Zhang et al. presented a very nice decomposition of ci where i ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
This representation enabled them to quickly compute the hard part of the final
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exponentiation. Let

A = u3.B + 56 and B = (u+ 1)2 + 4

then


c0 = −11(u4A+ 27u3B + 28) + 19A; c4 = −(2u4A+ 55u3B) + 84A
c1 = 5(3u3A+ 44u2B) = 5c′1; c5 = −5(4u3A+ 117u2B) = −5c′5
c2 = 25(u2A+ 38uB) = 25c′2; c6 = 25(2u2A+ 41uB) = 25c′6
c3 = −125(uA+ 24B) = −125c′3; c7 = 125.7B = 125c′7

The problem with this representation is that when we recomputed these ex-
pressions we discovered that there is a missing term in the expression of c0. In
fact{

c0 = −11u9 − 22u8 − 55u7 − 278u5 − 1172u4 − 1390u3 + 1372
= −11(u4A+ 27u3B + 28) + 19A+616

(3)

We verified also the algorithm presented in Appendix A of [1] where the term
M616 is missing in the computation of the final exponentiation. Fortunately, the
expression of c0 do not influence the rest of the expressions ci with 0 < i < 8.
Therefore, we have to add this term to the final result of the hard part of the
final exponentiation of the optimal Ate pairing. Using the square-and-multiply
algorithm, the additional step M616 costs 8 squarings and 3 multiplications in
Fp16 but we will not add this cost because they are terms precomputed in the
algorithm of Zhang et al.. We will add to their algorithm these operations after
the first line of the original algorithm:

A0 ← T38

A1 ← A0 · T3
A2 ← A1 · T2
A3 ← T12

A2 ← A3 ·A2

(4)

By adding these operations we got in A2 the missing term M616. At the end
of the algorithm presented by Zhang et al. we have to add this term to the final
result costing an extra multiplication. So the additional cost is 4 multiplications
and 4 squarings in Fp16 .
Other shortcomings with their algorithm that computed the hard part of the
final exponentiation concern the computation of c′5, c′0 and c′4. In fact, in the
expression of c′0, the output of their algorithm is −11(u4A+55u3B+28)+35A
instead of the result −11(u4A+ 55u3B + 28) + 19A. Also, the expression of c′4
computed in their algorithm is −(2u4A + 55u3B) + 148A not as mentioned in
the development which is −(2u4A+ 55u3B) + 84A.
The expression of c′5 is deduced by multiplying the term stocked in the tempo-
rary variable T11 by the term stocked in F14 and not by the one recorded in F25.
Also in the computation of c′7 we must perform the operation F5.T4 instead of
F5.T6.
Therefore we must perform some modifications in the original algorithm to have
the coherent result at the end. We presented the corrected algorithm in Ap-
pendix A, Table 9, and a magma code for the verification of formulas is available
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in [18]. The additional corrections cost 4 multiplications and 3 squarings in Fp16
instead of 3 multiplications and 4 squarings which is the cost of the operations
before our modifications. Furthermore Zhang et al. claimed that in the final
algorithm they used only 16 squarings, but it is not the case because by a simple
count we found that one is forced to perform 38 squarings in Fp16 .

As a consequence to compute the final exponentiation we have to perform 7
exponentiations by u, 2 exponentiations by (u+1), one inversion, 44 cyclotomic
squarings in Gφ2(p8), 38 multiplications in Fp16 , 2 cyclotomic cubings in Fp16
and p, p2, p3, p4, p5, p6, p6, p7, p8-Frobenius maps.
In Table 3 we present the new cost of the final exponentiation of the optimal
Ate pairing after our correction of the result of the work in [1].

The Method
Complexity of Complexity of

Miller loop the final exponentiation
Method of [1] 10208 M 22330M+I
Our correction 10208 M 23662M+I

Table 3: Complexity of the optimal Ate pairing.

Hence, by adding some modifications to the original result the overall cost
of the optimal Ate pairing on KSS16 curve is 33870M+I. So we have extra 1332
multiplications in Fp than the cost presented in [1].

3 A New Multiple of the Hard Part of the Final
Exponentiation

An efficient method to compute the hard part is described by Scott et al. [20].

They suggested to write d = φk(p)
r in base p as d = d0+d1p+ ...+dφ(k)−1p

φ(k)−1

and find a short vector addition chain to compute fd much more efficiently than
the naive method. In [21], based on the fact that a fixed power of a pairing is
still a pairing, Fuentes et al.[21] suggested to apply Scott et al.’s method with a
power of any multiple d′ of d with r not dividing d′. This could lead to a more
efficient exponentiation than a direct computation of fd. Their idea of finding
the polynomial d′(x) is to apply the LLL-algorithm to the matrix formed by
Q-linear combinations of the elements d(x), xd(x), ..., xdegr−1d(x). In this paper
we tried to find a new multiple of d1 = 857500.d (with r not dividing d). We
use a lattice-based method to find d′ such that fd

′
can be computed in a more

efficient way than computing f857500.d.
Thanks to the LLL algorithm [22], the best vector that we found is given by:

d′(u) = m0 +m1p+m2p
2 +m3p

3 +m4p
4 +m5p

5 +m6p
6 +m7p

7 = s(u)d1

where
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

s(u) = u3/125
m0 = 2u8 + 4u7 + 10u6 + 55u4 + 222u3 + 275u2

m1 = −4u7 − 8u6 − 20u5 − 75u3 − 374u2 − 375u
m2 = −2u6 − 4u5 − 10u4 − 125u2 − 362u− 625
m3 = −u9 − 2u8 − 5u7 − 24u5 − 104u4 − 120u3 + 196
m4 = u8 + 2u7 + 5u6 + 10u4 + 76u3 + 50u2

m5 = 3u7 + 6u6 + 15u5 + 100u3 + 368u2 + 500u
m6 = −11u6 − 22u5 − 55u4 − 250u2 − 1116u− 1250
m7 = 7u5 + 14u4 + 35u3 + 392

(5)

Our aim in this section by presenting the new vector d′ is to reduce the com-
plexity of computing the hard part of the final exponentiation for the optimal
Ate pairing in KSS16 curves and then the complexity of computing the product
of n pairings. Let {

A = u3B + 56
B = (u+ 1)2 + 4

then we can write the expressions of mi where 0 < i < 8 more simply as follows:
m0 = 2u3A+ 55u2B; m4 = u3A+ 10u2B
m1 = −4u2A− 75uB; m5 = 3u2A+ 100uB
m2 = −2uA− 125B; m6 = −11uA− 250B
m3 = −u4A− 24u3B + 196; m7 = 7A

These new expressions enabled us to be faster than Zhang et al. in the
computation of the hard part of the final exponentiation. We detailed the com-
putation of the final exponentiation in the algorithm presented in Appendix A,
Table 8, and a magma code for the verification of formulas is available in [18].
The overall cost of this algorithm is then 7 exponentiations by u, 2 exponentia-
tions by (u+ 1), 34 cyclotomic squarings in Gφ2(p8), 32 multiplications in Fp16 ,
3 cyclotomic cubings in Fp16 and p, p2, p3, p4, p5, p6, p6, p7, p8-Frobenius maps.
Our result of computing the hard par of the final exponentiation is compared
with the corrected result presented in 2.3 in the following Table 4:

Method Algorithm
Complexity

S16 M16 F16 C16

Zhang et al. 1 44 37 8 1
Our development 2 34 32 8 3

Table 4: Comparison between Zhang et al. and our new development.

For a full comparison, we consider the example presented in [1]. The exten-
sion tower is built as follows:

• Fp4 = Fp2 [u]/
(
u4 + 3)

)
• Fp8 = Fp4 [v]/

(
v2 − u

)
• Fp16 = Fp8 [z]/

(
z2 − v

)
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The cost of operations for computing the optimal Ate pairing on KSS16
curve are presented in Table 4 of [1].
In Table 5 we compared the complexity in Fp of our result using a new multiple
of the hard part of the final exponentiation and the corrected one of Zhang et
al.

The result
Complexity of Complexity of the hard part

Algorithm the final exponentiation
Corrected result of [1] 1 23537M

Our new algorithm 2 22673M

Table 5: Comparison betwen the two vectors d and d′.

In this table we remark that our computations are faster than those pre-
sented in [1] for computing the hard part of the final exponentiation. We saved
about 864 multiplications in Fp which is an interesting result if one is interested
in hardware or software implementations of the optimal Ate pairing at the 192-
security level.

4 On computing products of n Pairings

In some protocols, for example in the BBG HIBE scheme [23], the BBS short
group signature scheme [5], ABE scheme due to Waters [14], the non interac-
tive proof systems proposed by Groth and Sahai [24] and others [11, 13], it is
necessary to compute the product or the quotient of two or more pairings.
Scott in [25] and Granger et al. in [15] investigated the computation of the
product of n pairings.
Let

e : G1 ×G2 → G3

a bilinear non-degenerated map from two additive groups G1 and G2 to GT a
multiplicative group. The evaluation of a product of n pairings is of the form

en =

n∏
i=1

e(Pi, Qi).

In this section we are interested by the computation of n pairings. We give a
comparison of this computation for different category of curves at the 192-bits
security level.
For this security level it is recommended by Aranha et al. in [19] to use the
BLS12 curves to compute the optimal Ate pairing. In this section and in the
case where one computes the product of n optimal Ate pairings, we will prove
that this category of curves are not a solution for all n specially where n > 2. We
prove also that the KSS16 curves, proposed as the best solution for computing
the product of n pairings by Zhang et al. in [1] are not the best for n = 2.
Firstly we recall in Table ?? the different formulas for the optimal Ate pairing
over common families of pairing-friendly curves such as KSS16, KSS18, BN,
BLS12 and BLS24 curves:

For computing the optimal Ate pairing we have two steps: The Miller loop
and the final exponentiation. The computation of the product of n pairings
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Curve optimal Ate pairing: (P,Q)→

KSS16 [1]
(

(fu,Q(P )l[u]Q,[p]Q(P ))p
3

lQ,Q(P )
) p16−1

r

KSS18 [19]
(
fu,Q(P )fp3,Ql[u]Q,[3p]Q(P )

) p18−1
r

BN [19]
(
(f6u+2,Q(P )l[6u+2]Q,[p]Q(P )l[6u+2]Q,[−p2]Q(P ))

) p12−1
r

BLS12 [19] (fu,Q(P ))
p12−1

r

BLS24 [19] (fu,Q(P ))
p24−1

r

Table 6: Optimal Ate pairing on elliptic curves.

consists only of the computation of the product of n Miller loops followed by
the evaluation of the result of the final exponentiation. Recall that in the Miller
loop (see the algorithm in Table 2) we have to compute the following step:

f ← f2l(Q) (6)

where l is the tangent to the curve at a point depending on Q and depending
on the loop iteration in Miller’s algorithm. To compute the product of equation
(6), each doubling function-evaluation step becomes

f ← f2
∏n
i=1 li(Qi) (7)

Therefore one needs only to calculate a single squaring in the extension field
per doubling rather than n squarings using the naive method of the computation
of the product of n pairings.
So to evaluate the cost of the computation of the product of n optimal Ate
pairings we have to compute at first:

• Cost1: Full squarings in the Miller loop (squarings in Equation 7) .

• Cost2: Other operations in the Miller loop (point operations and line
evaluation).

• Cost3: Final exponentiation.

Then we have to sum Cost1, nCost2 and Cost3 to find the overall cost of the
product of n pairings.
In Table 7, we present the costs for computing the product of n pairings con-
sidering common curves in Table 6.

From Table 7, we can deduce that for n = 2, meaning when we would like to
compute the product of two parings, it is better to use BLS12 curves. In the case
of n > 2 as mentioned in [1] KSS16 curves can give the fastest computations
of products or quotients of n pairings.
Security of Cryptographic protocols is important in practice. That’s why, when
we compute optimal Ate pairing on KSS16 curves we have to verify the security
of the parameters of the elliptic curve. In the next section we will present a
detailed study of the security of the computation of the optimal Ate pairing
and more precisely the resistance against the subgroup attacks.
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Costs KSS16 Zhang et KSS16 BLS12 BN KSS18
al.(corrected) this work [10] [19] [19]

Full squarings 2592M 2592M 5892M 8837M 4158M
for DBL
Others in 7616M 7616M 10760M 16720M 9544M

Miller loop
Final 23662M 22888M 12574M 11145M 23821M

exponentiation +I +I +6I +6I +8I
Total cost 33870M 33096M 29226M 36702M 37523M
for n = 1 +I +I +6I +6I +8I
Total cost 41486M 40712M 39986M 53422M 47067M
for n = 2 +I +I +6I +6I +8I
Total cost 49102M 48328M 50746M 64567M 56611M
for n = 3 +I +I +6I +6I +8I
Total cost 79656M 78792M 93786M 109147M 94784M
for n = 7 +I +I +6I +6I +8I

Table 7: Costs comparison of product of n pairings at the 192-bit security levels.

5 Subgroup Security for KSS16 Pairing-friendly
Curves

A detailed study on subgroup security for pairing-friendly curves was recently
studied by Baretto et al.[17]. They focus on common families of elliptic curves
having twists of order six such as BN, BL12, BLS24 and KSS18 curves. In
particular they provided parameters that enable the aforementioned curves to be
resistant against subgroups attacks. In this section, we extend the same analysis
to the KSS family of elliptic curves having quartic twists and of embedding
degree 16. We first recall the definition of subgroup secure curves concept from
[17]

The subgroup security concept explicitly described on pairing-friendly curves
by Barreto et al.[17], is a property that strengthens the resistance of pairing-
friendly curves against subgroup attacks. Let E be an elliptic curve of em-
bedding degree k and parametrised by p(u), t(u), r(u) ∈ Q[u]. Let d be the
degree of the twist of the elliptic curve E and let E′(Fpk/d) its twists. Let

h1(u) =
| E(Fp)(u) |

r(u)
, h2(u) =

| E′(Fpk/d)(u) |
r(u)

and hT =
| Gφk

(p(u)) |
r(u)

be the

indices of the three groups on which a pairing is defined.

Definition 5.1 [17] The curve E is subgroup secure if all Q[u]-irreducible
factors of h1(u), h2(u), hT (u) that represent primes and that have degree at
least the degree of r(u), contain no prime factor smaller than r(u0) ∈ Z when
evaluated at u = u0.

In the case of KSS16, the indices are given in the following proposition.

Proposition 5.2 Let p(u), t(u), r(u) ∈ Q[u] be the parameters of the KSS16

pairing-friendly elliptic curve. The indice hT =
p(u)8 + 1

r(u)
is a polynomial in u

11



of degree 72. Also h1(u) = (125/2)(u2 + 2u + 5) and the order of the quartic
twist E′(Fp4) is | E′(Fp4) |= h2(u) · r(u) where
h2(u) = (1/15059072)(u32 + 8u31 + 44u30 + 152u29 + 550u28 + 2136u27 + 8780u26 +

28936u25+83108u24+236072u23+754020u22+2287480u21+5986066u20+14139064u19+

35932740u18 + 97017000u17 + 237924870u16 + 498534968u15 + 1023955620u14 +

2353482920u13+5383092978u12+10357467880u11+17391227652u10+31819075896u9+

65442538660u8+117077934360u7+162104974700u6+208762740168u5+338870825094u4+

552745197960u3 + 632358687500u2 + 414961135000u + 126854087873).

Proof 5.3 The order of the group E(Fp4) is | E(Fp4) |= p4 + 1 − t4 where
t4 = t4 − 4pt2 + 2p2 ( see [26, Theorem 4.12]). The order of the correct quartic
twist E′(Fp4) is given by | E′(Fp4) |= p4 + 1 + v4 where v24 = 4p4 − t24 ( see [27,

Proposition 2]). A direct calculation gives the cofactor as h2(u) = p4+1+v4
r(u) .

Remark 5.4 The value used in [1] for the computation of optimal pairing on
KSS16 curves is u0 = 249+226+215−27−1. With this value we see that h2(u0)
has the factorisation 2·1249·366593·c1515 where c1515 is still a composite integer
of 1515 bits. This means that the corresponding curve fails to satisfy the small
subgroup attack property. In the following section we search for a parameter u
to avoid subgroup attack on this curve.

For the 192-bit security level, the u0 which gives corresponding sizes of r and p
must be an integer of bit size at least 49. Also, the good u0 must be such
that p(u0), r(u0), h2(u0) and hT (u0) are simultaneously prime. Since u ≡
±25 mod 70 (for p to represent integers) one can easily see that h2(u) ≡ 0 mod 2
and hT (u) ≡ 0 mod 2. We will therefore search for u0 such that p(u0), r(u0),
h2(u0)/2 and hT (u0)/2 are simultaneously prime. One can have a chance to
obtain such a u0 if and only if those polynomials satisfy the Bunyakovsky’s
property. A quick verification enables to see that the prime number 17 divides
these polynomials when evaluated at n ∈ N. Therefore it is enough to search
for prime numbers with 2 and/or 17 as factors. The Batemann-Horn conjecture
then ensures that they are approximately 24500 values of u0 ∈ [249, 253] with
p(u0), r′(u0), h′2(u0) and h′T (u0) simultaneously prime, where r(u) = 17n1 ·r′(u),
h2(u) = 2 ·17n2 ·h′2(u) and hT = 2 ·17n3 ·h′T (u) for some positive or zero integers
n1, n2 and n3. A careful search enabled us, after several long tries starting with
x0 of Hamming weight 5, to obtain the following value

u0 = 250 + 247 − 238 + 232 + 225 − 215 − 25 − 1

which gives a prime p of 492 bits , r(u0) = r′(u0) prime of 386 bits, h2(u0) =
2·17·h′2(u0) and hT = 2·17·h′T (u0) where h′2(u0) and h′T (u0) are prime numbers
of 3544 bits and 1577 bits respectively. For the value of p obtained the extension
field Fp16 is built using the following tower of extensions:

• Fp2 = Fp[α]/(α2 − 11)

• Fp4 = Fp2 [β]/
(
β2 − α)

)
• Fp8 = Fp4 [γ]/

(
γ2 − β

)
• Fp16 = Fp8 [θ]/

(
θ2 − γ

)
An example of elliptic curve E over Fp that satisfies |E(Fp)| = p+ 1− t has the
equation E : y2 = x3 + 17x. The corresponding quartic twist E′ over Fp4 with
order |E′(Fp4)| = 2 · 17 · h′2(u0) · r(u0) is the curve E′ : y2 = x3 + 17/βx.
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6 Conclusion

In many pairing-based protocols the evaluation of the product or the quotient of
many pairings is required. In this paper we were interested in the computation
of the product of n optimal Ate pairings at the 192- security level.
This problem was first considered by Zhang et al.[1]. They suggested the KSS16
curves as a best choice for computing n pairings. We checked their results on
the computation of the hard part of the final exponentiation of the optimal
Ate pairing. We found that they missed 1422 multiplications in Fp in their
complexity calculation. We corrected their algorithm and we presented a new
algorithm for the computation of the final exponentiation based on a new multi-
ple of the hard part of the final exponentiation. With this new vector we saved
about 864 multiplications in the basic field which is an important result if one
thinks about hardware or software implementations. We implemented our new
algorithms in Magma to verify their correctness [18]. We computed also the
product of n pairings. We proved that for n = 2 it is better to use BLS12
curves and for n > 2 KSS16 curves are the best solution. Finally we proposed
a new parameter u for the KSS16 curves to ensure the resistance against the
small subgroup attacks.
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[21] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodŕıguez-
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van Emde Boas. The history of the lll-algorithm. In The LLL Algorithm -
Survey and Applications, pages 1–17. 2010.

[23] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based
encryption with constant size ciphertext. In Advances in Cryptology - EU-
ROCRYPT 2005, 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26,
2005, Proceedings, pages 440–456, 2005.

[24] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bi-
linear groups. In Advances in Cryptology - EUROCRYPT 2008, 27th An-
nual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, pages
415–432, 2008.

[25] Michael Scott. Computing the tate pairing. In Topics in Cryptology - CT-
RSA 2005, The Cryptographers’ Track at the RSA Conference 2005, San
Francisco, CA, USA, February 14-18, 2005, Proceedings, pages 293–304,
2005.

[26] L.C. Washington. Elliptic Curves, Number Theory and Cryptography. Dis-
crete Math .Aplli, Chapman and Hall, 2008.

[27] F. Hesse, N.P. Smart, and F. Vercauteren. The eta pairing revisited. IEEE
Transactions on Information Theory, 52(10):4595–4602, 2006.

A Algorithms

15



Operations Terms computed Cost

E1 = fp
8

E2 = E1 · f−1 M = fp
8−1

T0 = M2;T1 = T02 M2;M4 2S16

T2 = Mu+1;T3 = T2u+1 Mu+1;M (u+1)2 2Eu
T4 = T3 · T1 M (u+1)2+4 = MB 1M16

T5 = T4u;T6 = T45 MuB ;M5B 1Eu + 1M16 + 2S16

T7 = T18;T8 = T72 M32;M64 4S16

T9 = T7 · T1−1;T10 = T92 M28;M56 1M16 + 1S16

T11 = T5u;T12 = T11u Mu2B ;Mu3B 2Eu
T01 = T12 · T10 Mu3B+56 = MA 1M16

T14 = T01u;T13 = T14−2 MuA;M−2uA 1Eu + 1S16

T00 = T65;T15 = T005 M25B ;M125B 2M16 + 4S16

T0 = T13 · T15−1 M−2uA−125B = M c2 1M16

T16 = T02;T17 = T134 M2c2 ;M−8uA 3S16

T18 = T17 · T14 M−7uA 1M16

T2 = T16 · T18 M2c2−7uA = M c6 1M16

T19 = T14u;T20 = T19u Mu2A;Mu3A 2Eu
T21 = T20u;T22 = T192 Mu4

;M2u2A 1Eu + 1S16

T23 = T55;T24 = T235 M5uB ;M25uB 2M16 + 4S16

T25 = T243;T26 = T24 · T25 M75uB ;M100uB 1C16 + 1M16

T27 = T222 M4u2A 1S16

T37 = (T27 · T25)−1 M−4u
2A−75uB = M c1 1M16

T28 = T27 · T19−1 M3u2A 1M16

T3 = T28 · T26 M3u2A+100xB = M c5 1M16

T29 = T115;T30 = T292 M5u2B ;M10u2B 1M16 + 3S16

T4 = T20 · T30 Mu3A+10u2B = M c4 1M16

S0 = T202;S1 = T305 M2u3A;M50u2B 1M16 + 3S16

S2 = S1 · T29;S3 = S0 · S2 M55u2B ;M2u3A−55u2B = M c0 2M16

T31 = T1224 M24u3B 1C16 + 3S16

T5 = T21−1 · T31−1 M−u
4A−24u3B 1M16

T6 = T83 · T1 M196 1M16 + 1C16

T7 = T5 · T6 M−u
4A−24u3B+196 = M c3 1M16

T8 = T17 M7A = M c7 2M16 + 2S16

T32 = T37p · T7p
3 · T3p

5 · T8p
7

M c1p+c3p
3+c5p

5+c7p
7

3M16 + 4(15M)

T33 = T0p
2 · T2p

6

M c2p
2+c6p

6

1M16 + 2(12M)

T = S3 · T32 · T33 · T4p
4

M
p8+1

r 3M16 + 1(8M)

Table 8: Final exponentiation with a new exponent. See [18] for the magma
code for the verification.
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Operations Terms computed Cost

E1 = fp
8

E2 = E1 · f−1 M = fp
8−1

T1 = E24;T2 = T18;T3 = T22 6S16

A0 = T38;A1 = A0 · T3 1M16 + 3S16

A2 = A1 · T2;A3 = T12 1M16 + 1S16

A2 = A3 ·A2 1M16

F1 = T2 · T1−1;F2 = F12 1M16 + 1S16

F3 = E2u+1;F4 = F3u+1 2Eu+1

F5 = F4 · T1;T4 = F58 F5 = MB 1M16 + 3S16

F6 = F5u;F7 = F5−1 · T4 F7 = M c
′
7 1Eu + 1M16

F8 = T43;T5 = F68 1C16 + 3S16

F9 = F6u;F10 = T5 · F6−1 1Eu + 1M16

F11 = F102;T6 = F98 4S16

F12 = F9u;F13 = T6 · F9−1 1Eu + 1M16

F14 = F132;F15 = F12 · F2 F15 = MA 1S16 + 1M16

T7 = F152;T8 = T74 3S16

S1 = T82;S2 = T72 2S16

S3 = S2 · S1;S4 = S3 · F15−1 2M16

T9 = S14;S5 = S3 · T9 1M16 + 2S16

S6 = F142;F16 = F15u 1Eu + 1S16

F22 = F16 · F8 F22 = M c′3 1M16

F23 = F22u;F24 = F23 · F11 F24 = M c′2 1Eu + 1M16

T10 = F232;F25 = F23u 1Eu + 1S16

F26 = T10 · F10−1;T11 = F254 F26 = M c′6 1M16 + 2S16

F27 = F25u;F28 = T11 · F25−1 1Eu + 1M16

F29 = F13 · F14;F30 = T11 · F29 F30 = M c′5 2M16

F31 = F28 · S6−1;F32 = F122 1M16 + 1S16

F33 = F32 · F12;F34 = F27 · F33 2M16

F35 = F342;F36 = F35 · F12 1M16 + 1S16

F37 = F36−1 · S5;F38 = F34 · F1 F37 = M c′4 2M16

F39 = F382;F40 = F392 2S16

F41 = F402;F42 = F39 · F38 1M16 + 1S16

F43 = F41 · F42;F44 = F43−1 · S4 2M16

H1 = F7p
7

;H2 = F22p
3

2(14M)

H3 = F24p
2

;H4 = F26p
6

2(12M)

H5 = F30p
5

;H6 = F31p 2(14M)

H7 = F37p
4

;H8 = H1 ·H2−1 1M16 + 1(8M)
H9 = H82;H10 = H92 2S16

H11 = H10 ·H8;H12 = H11 ·H3 2M16

H13 = H12 ·H4;H14 = H132 1M16 + 1S16

H15 = H142;H16 = H15 ·H13 1M16 + 1S16

H17 = H16 ·H6;H18 = H17 ·H5−1 2M16

H19 = H182;H20 = H192 2S16

H21 = H20 ·H18;H22 = H21 ·H7 2M16

H23 = H22 · F44 H23 = Md′ 1M16

Table 9: Corrected version of the final exponentiation in [1]. See [18] for the
magma code for the verification. 17


