DE GRUYTER OPEN

Proceedings on Privacy Enhancing Technologies 2016; 2016 (4):1-43

Achieving Better Privacy for the 3GPP AKA Protocol

Abstract: Proposed by the 3rd Generation Partnership
Project (3GPP) as a standard for 3G and 4G mobile-network
communications, the AKA protocol is meant to provide
a mutually-authenticated key-exchange between clients and
associated network servers. As a result AKA must guar-
antee the indistinguishability from random of the session
keys (key-indistinguishability), as well as client- and server-
impersonation resistance. A paramount requirement is also
that of client privacy, which 3GPP defines in terms of: user
identity confidentiality, service untraceability, and location
untraceability. Moreover, since servers are sometimes un-
trusted (in the case of roaming), the AKA protocol must also
protect clients with respect to these third parties. Following
the description of client-tracking attacks e.g. by using error
messages or IMSI catchers, van den Broek et al. and respec-
tively Arapinis et al. each proposed a new variant of AKA, ad-
dressing such problems. In this paper we use the approach of
provable security to show that these variants still fail to guar-
antee the privacy of mobile clients. We propose an improve-
ment of AKA, which retains most of its structure and respects
practical necessities such as key-management, but which prov-
ably attains security with respect to servers and Man-in-the-
Middle (MiM) adversaries. Moreover, it is impossible to link
client sessions in the absence of client-corruptions. Finally, we
prove that any variant of AKA retaining its mutual authenti-
cation specificities cannot achieve client-unlinkability in the
presence of corruptions. In this sense, our proposed variant is
optimal.

Keywords: privacy, security proof, AKA protocol

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

1 Introduction

Authenticated key-exchange (AKE) protocols address a fun-
damental goal in cryptography, namely that of allowing two
parties to communicate securely over an insecure channel (like
the Internet, a radio-frequency channel, or a mobile telecom-
munications network). Such protocols are constructed in two
steps. First, the two parties exchange information that allows
them to establish several short-term session keys. These are

later used to secure and authenticate data exchanged between
the parties. AKE schemes ensure that sensitive data or services
are securely provided from a server to a legitimate client.

In the context of mobile networks, mobile services, such
as calls, SMS privileges, or Internet use, are granted to
clients over a secure channel, following an authenticated key-
exchange protocol called AKA!. This protocol was intro-
duced by the Third Generation Partnership Project (3GPP),
which wrote and has been maintaining the specifications of 3G
telecommunication systems. Note that mobile services must be
provided both in domestic, and in roaming scenarios, and only
to clients who are entitled to them. Moreover, the nature and
destination of such services should remain private.

The AKA protocol. The AKA scheme was developed at the
end of the previous century, and is symmetric-key only. The
mobile-network context imposes a peculiar architecture to the
AKA design. Thus, typical 3G and 4G networks involve three
types of participants. Mobile clients may subscribe to a sin-
gle operator, thus becoming entitled to mobile services. The
latter are provided across a secure channel, not by the opera-
tor, but by an intermediate local network operator that we call
a server. In domestic scenarios, the server and operator are
affiliated together, and can thus both be trusted. In the case
of roaming, the server is associated to a different operator and
only trusted to provided services, not to know the client’s long-
term secret values (known only to the client and the operator).
Servers do know the short-term secret values necessary for the
secure-channel establishment, in order to then provide the ser-
vice. The AKA setting requires three participants, unlike the
classical two-party AKE setting.

The AKA scheme relies on two long-term symmetric
keys. As a peculiarity of the subscriber-operator architecture,
clients are associated both with a unique client-key and with
their operator’s key. Since this key is shared between a po-
tentially very large number of users, the clients store a value
derived from both keys denoted Top,, and the subscriber key.
only a (one-way) function of this, and the client-key.

Three crucial constraints influenced the design of AKA
in the 1990s. At that time (and even to the present day)
SIM cards could not generate (pseudo)random numbers?. As

1 Despite the similarity of the acronyms, the AKA protocol is only an
example of an AKE scheme. Other examples are for instance TLS/SSL or
PACE/EAC.

2 However, the next-generation SIM cards are able — and in fact expected
— to be able to perform such computations [8].

[®) ov-ne-np |

a result of this limitation, the freshness of each session had
to be guaranteed without user-generated nonces. As a sec-
ond constraint, note that the communication between servers
and operators is financially expensive, thus to be minimized.
We note that some communication between these two par-
ties is inevitable, since the server is untrusted, but must still
be able to authenticate to the client as legitimate. In the case
of AKA, operators minimize costs by generating batches of
authentication vectors, containing short-term authentication
and key-establishment values, but hiding the client’s long-
term secrets. Finally, the protocol is run over notoriously-noisy
communication-channels, and it must thus be robust with re-
spect to noise. As a result, AKA was designed to be stateful,
allowing the two parties to authenticate to each other by means
of a sequence number, which can be updated at each execution.
Resistance to noise translates to a tolerance interval for the au-
thenticated sequence number, which allows some leeway for
each executions. Finally, in case the two parties become desyn-
chronized, a procedure is provided to re-synchronize them.

In order to preserve client privacy, client are associated
with several identifiers. Apart from the permanent, unique
identifier called an IMSI, the client is also associated (by the
servers) with temporary identifiers TMSI, which are unique
per server. In an initial identification phase, the server must as-
certain the IMSI of the client, which the operator must know to
generate the authenticated key-exchange data. However, since
IMSI values are permanent and recognizable, clients can use
their TMSI values instead. A new TMSI value is sent en-
crypted, but not authenticated, as part of the secure-channel
data. Servers must store the TMSI values for each client that
authenticates to them; moreover, the TMSI value that was last
associated with a given IMSI is kept for a longer time, since it
may be demanded by another server. Finally, as a backup, in
case a TMSI value is not found, or not recognized, the server
will also accept an identification by IMSI.

AKA Requirements. Apart from several security require-
ments, such as guaranteeing the secure delivery of services,
as well as client-to-server and server-to-client authentication,
an important additional concern for 3G/4G communication is
that of client privacy. The 3GPP specifications [3] specifically
demand: “user identity confidentiality”, *
and “user location confidentiality”, which are all formulated

with respect to passive third-party eavesdroppers. The first no-

user untraceability”,

tion requires that such an adversary may not learn the perma-
nent user identifier IMSI of a client; the second refers to an
adversary’s ability of learning whether a given client uses the

Achieving Better Privacy for the 3GPP AKA Protocol —— 2

same, or different services®; and finally the third requires that
adversaries cannot learn a client’s location (since the servers
running the protocol are area-specific).

These explicit requirements ensure a minimal amount of
client privacy. The AKA protocol was moreover designed to
guarantee a measure of security against corrupted, or mali-
cious servers. This requirement is particularly relevant in the
case of roaming, in which case the server may be untrusted or
more vulnerable. We consider the three-party architecture with
possible server corruptions and formulate security with respect
to servers in two properties, namely: (i) state-confidentiality:
the property that servers cannot learn the client’s secret key, the
operator’s secret key, nor the client’s state; (ii) soundness: that
servers cannot in fact successfully run a key-exchange proto-
col with the client unless aided by the operator.

Protocol vulnerabilities. In this paper we focus on the (prov-
able) privacy of AKA, but also consider its security. Three
attacks in the literature, namely IMSI catcher attacks [10],
IMSI paging attacks [14, 25], and impersonation by server-
corruption [19], already prove that AKA does not offer the de-
sired degree of client privacy. IMSI catchers allow passive and
active adversaries to track clients by exploiting the fact that
during the protocol run, the server will require clients to send
their permanent identifier IMSI if the TMSI value cannot be
traced back to an IMSI. IMSI paging attacks exploit the lack
of authentication in the TMSI-reallocation message.

Zhang et Fang [19] note than in the case of roaming, the
local server providing mobile services may be poorly secured
and corruptible. An immediate consequence is that the data
transmitted over the secure channel by this server can be com-
promised; however, Zhang et Fang also showed that the danger
persists even after the client has left the area serviced by the
corrupted network, since the latter can impersonate the legiti-
mate server in a new, uncorrupted, strongly-secured network.

An older work by Ateniese et al. [6] examines the prob-
lem of untraceable mobility, in particular noting an informal
paradigm: nobody but the client should know both the client’s
identity and location at the same time. In this context, they pro-
vide solutions to achieving better privacy in 3-party settings;
however, these solutions are extremely generic, which makes
them hard to immediately to AKA. Moreover, note that server-
operator communication takes place across a channel that is
implemented differently in practice by different operators. The
protocols proposed by [6] require this channel to be imple-

3 The exact 3GPP wording allows two interpretations. One is that an
adversary must not distinguish between two possible services used by
the same user; the other interpretation is that adversaries must not know
whether a single, known service is provided to two different clients or to
the same client. We formalized this property following the first meaning.

mented in a specific way. Finally, we note that, while highly
worthwhile, the goal of preventing operators from learning a
client’s operator is incompatible with the way authentication is
currently done in the AKA protocol (operators need to prepare
session information for servers, across a secure, and mutually
authenticated channel which forcibly reveals the identity — and
implicitly the location of the server).

Although the AKA protocol was designed to protect client
privacy, several attacks can be run on the physical layer or by
using side-channel information. Since we focus only on the
privacy of AKA at the protocol layer, this type of attacks are
out of scope. Another class of attacks that are out of scope
for our paper are those that exploit faults in TMSI realloca-
tion choices (for instance the fact that TMSIs are not updated
sufficiently fast, or according to protocol), denial-of-service
by jamming, or attacks enabled by version-shifting (forcing
the user to employ a weaker, more vulnerable version of the
protocol on 2G and 3G, rather than 4G) [25]. Such attacks,
however, indicate that the infrastructure and protocols existing
around the AKA handshake should be more closely examined;
if possible, backward compatibility should be discouraged in
order to guarantee better security and privacy.

We outline further vulnerabilities, e.g. [19, 26, 28]. in Ap-
pendix ??, and show that as a consequence, the AKA protocol
does not attain even the basic-most privacy requirements out-
lined by 3GPP. This suggests the need for stronger security.

Client indistinguishability. Motivated by a hightened con-
cern for client privacy, Arapinis et al. [21] were the first to
consider the notion of untraceability of clients with respect to
external adversaries. They exploited the fact that adversaries
can induce faulty behaviour (resynchronization) and then dis-
tinguish a client that is forced to perform this operation from a
fully synchronized one. They modified the protocol to address
this, and gave a formal-security proof using ProVerif. How-
ever, this proof idealizes the long-term state used in the pro-
tocol runs, making it unclear how far the guarantee holds for
the true scheme. As we show in this work, their variant does
not in fact guarantee user untraceability. The attack we present
breaks client-indistinguishability by exploiting the fact that an
adversary can forge the encrypted IMSI message proposed by
Arapinis et al. In work orthogonal to ours, Khan et al. [14] also
critically examined the modifications proposed by Arapinis et
al., pointing out that they fall short of providing adequate secu-
rity and privacy, whilst being impractical to implement. An im-
portant criticism addresses the PKI for clients and servers; as
we explain below, in our own variant, we minimize the modifi-
cations both in terms of computation and administration costs.

Lee et al. [17] consider the untraceability of the 4G LTE
(Long-term Evolution) protocol (similar to AKA, but with a
different identifier- and key-management), but do not focus on

Achieving Better Privacy for the 3GPP AKA Protocol =—— 3

the handshake itself. Their main result is that in the absence
of server corruptions, LTE is (weakly) untraceable against an
active MiM adversary. They focus on the security of TMSI
values, and their retransmission, but surprisingly their model
cannot capture IMSI-catcher attacks (which directly impact
privacy without server corruptions). The reason is that Lee et
al. assume that the TMSI reallocation and usage is perfect in
the sense that a TMSI value will always lead to the legiti-
mate IMSI value, and that once the TMSI allocation process
starts, the IMSI will never again be demanded. This is not true
for the AKA procedure, for which, if the active attacker re-
places the TMSI with a random message, the server will de-
mand the client’s IMSI in clear. Lee et al. do not capture the
attack by Arapinis, since they do not model desynchroniza-
tions, and they reduce the three-party setting to just two par-
ties, by assuming that the server and the operator are the same
entity®. Their security proofs rely on an assumption on the un-
derlying cryptographic functions used in the protocol, but they
did not study whether TUAK and MILENAGE (the two cur-
rent instantiations of the cryptographic cipher suites) actually
guarantee the required properties.

Finally, the AKA scenario is one use-case of the more
generic constructions of anonymous, secure and authenti-
cated channels presented by Alwen et al. [5]. Their security
model presents a slightly different scenario than we consider
here. For one thing, the constructed resources include one ad-
versarial (eavesdropping) interface, and interfaces to clients
and servers; in our setting, this does not capture the 3-party
scenario. Furthermore, while the constructive cryptography
(CC) framework enables the composability of the obtained re-
sources by design, our model also allows for adaptive client
corruptions (in the stronger models), which is problematic
in CC. Finally, we note that their constructions rely on key-
indistinguishable MACs (KI-MACs), which allow authentica-
tion, but prevent tags from leaking information about the keys
they were generated with. In our work, we tried to keep as
close as possible to the presently-used algorithm suites used in
AKA, namely TUAK and MILENAGE. This precludes the use
of KI-MACs. However, one of our main sub-results is giving a
sufficient security requirement which must be provided by the
cryptographic algorithms. It would be interesting to explore
whether KI-MACs could be used as an underlying condition
to modify existing suites or provide new ones.

Our contributions. We have two main contributions. The first
is to show that the AKA protocol and two more promising im-
provements in the literature do not guarantee client-privacy,

4 In the absence of corruption, this treatment is justified, but it is incom-
plete in terms of real-world implementations.

nor security with respect to the server. As a consequence, our

second main contribution is to present a variant of the AKA

which provably guarantees the following five properties:

— Key-indistinguishability: a BPR-like [15] guarantee
that the derived session keys are indistinguishable from
random values of equal length. The adversary here is an
active Man-in-the-Middle (MiM).

— Impersonation security: the guarantee that a MiM at-
tacker cannot impersonate either the server (to the client),
or the client (to the server).

— Wide-weak client-unlinkability: a property guaran-
teeing that two sessions run by the same client are not
linkable with respect to a MiM attacker which may learn
whether the server accepts the client’s authentication or
not, but which cannot corrupt clients to learn their keys.

— State-confidentiality: the demand that (malicious)
servers cannot learn the client’s secret key, the corre-
sponding operator’s secret key, nor the client’s state (in
particular, the sequence number). We assume that the
server interacts with both operators and with clients, but
we only guarantee security for the authenticated key-
exchange protocol (we do not address the record-layer
primitives).

— Soundness: the demand that (malicious) servers cannot
make the client accept the server’s authentication (thus
completing the key-derivation process), unless they are
explicitly given authenticating information by a legitimate
operator.

As an additional main result, we also prove that achieving a
stronger degree of client-unlinkability (see below) is impossi-
ble while the AKA protocol retains its current structure. Con-
sequently, the degree of unlinkability we achieve is in that
sense, optimal.

A precise formalization. As an implicit, but significant contri-
bution we formalize the five security and privacy properties
outlined above. Consequently, we are able to describe two at-
tacks against AKA, one against client-unlinkability, the other
against soundness; then we also proceed to show that the pro-
posed AKA improvements of Arapinis et al. [20] and van den
Broek et al. [11] are not client-unlinkable.

This precise formalization also allows us to find a gap
in an impossibility result regarding client-unlinkability in
the presence of corruptions for mutually authenticated proto-
cols [23]. We formulate a different impossibility result, which
is more precise, and also more generic in the case of the AKA
protocol. Another main contribution of this paper is to extend
the narrow-forward-privacy impossibility result for a broader
class of protocols including AKA and its variants.

Achieving Better Privacy for the 3GPP AKA Protocol =——— 4

Our improvement. Our improved variant of the protocol
mostly retains the symmetric character of the current version.
We allow TMSI values to be backed up by IMSIs; however, we
bypass IMSI catcher attacks by sending IMSls encrypted with
a public-key IND-CCA-secure encryption scheme. We assume
each operator has a PKE key-tuple, and each client stores the
public key of the operator; this minimizes key-management
problems. We note that, just as for the AKA protocol, we
only use the (encrypted) IMSI value as an alternative for the
randomly-chosen temporary identifier values TMSI. However,
we choose to update the current TMSI value by using authen-
ticated encryption (AES-GCM) as part of the server’s authen-
tication message. The PKE scheme is also used when mov-
ing from area to area: thus, if the client switches from one
server (in a given location) to another (in another location),
the TMSI is not used. This allows us to reveal only the cur-
rent area that the server is in, rather than the client’s past lo-
cation (as is the case for the current version of AKA); further-
more, we minimize the duration for which TMSI values must
be stored by servers. On the other hand, in order to preserve
client-unlinkability, we require that TMSI values are at least
as long (large) as the output of the PKE encryption.

We retain the structure of the authenticated key-exchange
part of AKA, using the client- and operator-state to authen-
ticate the two parties and the derived session keys. We show
that while this feature of the AKA protocol reamins in use, no
client-untraceability can be achieved in the presence of corrup-
tions. By removing the need for re-synchronization, we also
implicitly prevent attacks which link client sessions depending
on whether or not the re-synchronization procedure is used.

We note that our improvement follows guidelines by one
of the leading mobile service providers in Europe [22]. Table 1
compares our proposal to the AKA protocol and to the two
more promising variants we also analyze in this paper.

2 Privacy model

2.1 3GPP Privacy requirements

AKA Infrastructure. The mobile context for which the AKA
protocol was designed contains three entities: (1) clients,
which register with operators and are allowed to access a sub-
set of services; (2) operators, which know the secret parame-
ters of all their registered clients; and (3) local servers, which
are tasked with providing services to mobile clients, but are
not trusted to know the clients’ personal information. In the
AKA literature, opeators are usually called home local regis-
ters (HLR), while servers are known as VLR.

Achieving Better Privacy for the 3GPP AKA Protocol =—— 5

Defeating: Security:
| Atiack n°1 | Attack n°2 | Aftack n°3 | Prop. n°1 | Prop. n°3 [Prop.n°3 | Prop.n°d |~~~ Prop.n’s |
3G AKA x [11] x [21] X X X X ? ?
Arapinis v [21] v [21] X v X X ? v* [21]°
\Van Den Broek v [11] X v v X X ? ?
Our variant v v v v v X v v

Attack n°1: IMSI Catcher § 3.3.1.

Prop. n°1: Confidentiality of the previous location §2.

Attack n°2: Linkability of failure messages § 3.3.1.

Prop. n°2: ww-unlink §2.2.

Attack n°3 : Our traceability attack § 3.3.2.

Prop. n®3: nf-unlink §2.2.

Prop. n°4: State-confidentiality & soundness §2.2.

Prop. n°5: Key-indistinguishability & Client- and Server-impersonation §2.2.

Fig. 1. Comparison between several AKA variants. For attacks, a v' denotes the protocol resists the attack, while = denotes a vulnera-
bility; for properties, a = denotes the property is not achieved, while a v* indicates security with respect to that property.

The security demands of 3G/4G networks are client-
centric, revolving around the following parameters related to
mobile clients (users) C:

IMSI : a permanent identifier, unique per customer and highly
trackable;

TMSI : a temporary identifier, unique per server, and updated
after each successful protocol run;

LAl : a unique local-area identifier per server; client store

(TMSI, LAI) tuples whenever a server issues a new TMSI;

skc : the client’s unique client key;

skop : the key of the operator C subscribes to;

Sanc, Sanop,c : the client’s state Sqnc has an equivalent op-
erator state Sqnop,c, which should not be “too far” from
the client’s state. The state is updated by the client upon
authenticating the server (correct verification of the au-
thentication challenge); the server updates state upon au-
thenticating the challenge (verification of the authentica-
tion response).

We refer the reader to Section 3.2 for more details about the
protocol description.

The identifier and key-management schemes are as fol-
lows. Clients may know the permanent value IMSI, the
temporary identifiers TMSI and LAI, the keys skc,skop
and a function of skc and skop (they do not store skep
in clear, as discussed in section 3.2). Operators know
the tuple: (IMSI,skc,skop). Servers keep track of tuples
(TMSI, LAI, IMSI). Furthermore, both servers and operators
know the sequence number that the operator associated to each
client. The clients update their own sequence numbers, which
are highly related to the operator’s sequence number.

Very notably, servers must both authenticate and ex-
change session keys with mobile clients, despite not knowing
their secret material.

Client Privacy. The Third Generation Partnership Project
(3GPP), which designed the AKA protocol in the TS.33.102
specification [3], lists the following privacy requirements:

— user identity confidentiality: specifically, “the property
that the permanent user identity (IMSI) of a user [...] can-
not be eavesdropped on the radio access link.”

— user untraceability: namely, “the property that an in-
truder cannot deduce whether different services are de-
livered to the same user by eavesdropping on the radio
access link.”

— user location confidentiality: in particular, "the property
that the presence or the arrival of a user in a certain area
cannot be determined by eavesdropping on the radio ac-
cess link.”

The requirements quoted above are quite informal; moreover,
the nomenclature is confusing, since in the provable-security
literature, untraceability refers to adversaries tracing clients in
distinct protocol runs (rather than it being service-related). We
discuss the three requirements below, then formalize them into
cryptographic requirements.

User identity confidentiality concerns only the client’s
permanent IMSI value (not, e.g. the client’s sequence num-
ber) with respect to passive attackers (rather than active ones).
However, mobile networks are notoriously prone to Man-in-
the-Middle (MiM) active attacks like the IMSI catcher [10],
which allows a third party (the MiM) to recover a client’s
IMSI. Another highly-trackable client-specific parameter is the
sequence number Sqn, whose updating procedure is very sim-
plistic and its output, predictable even without a secrey key. As
a consequence we require the stronger property of provable
unlinkability, which ensures that even an active MiM cannot
link two AKA protocol runs to the same client.

For user untraceability, no attacker must know whether
the same service (i.e. any message-exchange over the secure
channel) is provided to a client multiple times. From the
point of view of provable security, this is equivalent to key-

indistinguishability if the authenticated-encryption algorithms
are assumed to be secure.

User location confidentaility demands that eavesdroppers
A cannot detect the presence of a client in a given area; how-
ever, the definition does not specify what information A links
to each client (e.g. the IMSI, the sequence number, etc.). At-
tackers are aware of the current LAI; the difficulty lies in learn-
ing which clients enter the area. Unfortunately the AKA proto-
col always reveals the past location of any arriving client, mak-
ing unique (or rare) itineraries stand out. We formalize a strong
degree of location privacy as a part of client-unlinkability.

Our formalizations of client unlinkability and key-indis-
tinguishability consequently guarantee 3GPP’s three privacy
requirements.

Implicit requirements. As discussed in Section 1, the AKA
protocol implicitly addresses security with respect to mali-
cious servers, which are restricted as follows: (1) the servers
have no access to the tuple (skc,skop); (2) the (hence nec-
essary) operator-server communication must be minimized in
order to minimize costs.
We formulate the following two implicit requirements:
— State-Confidentiality: Servers must not learn any client-
related long-term state.
— Soundness: Clients must reject authentication-challenges
not explicitly provided by the operator to the server.

2.2 Security models

Due to their orthogonality, it is hard to formalize the no-
tions of key-indistinguishability and client-unlinkability in the
same generic framework. One difficulty is the fact that the
unlinkability notion requires the adversary to have access
to clients without knowing their identities. Following estab-
lished approaches [13, 24], in the unlinkability model, we
associate clients with identifiers, or handles, denoted VC%
(Virtual Client), and this changes the syntax of the oracles
we use. Thus, we differentiate between the model for secu-
rity (including notions of key-indistinguishability, client- and
server-impersonation resistance against a MiM adversary, and
state-confidentiality and soundness with respect to malicious
servers), and that of client-unlinkability. We use similar ora-
cles, with a slightly different syntax, for the two types of def-
initions, and thus obtain security guarantees based on tradi-
tional Bellare, Pointcheval, and Rogaway models [15].

Set up and participants. We consider a set P of participants,
which are either a server S; or a mobile client C; of the type
respectively VLR or ME/USIM. By contrast operators Op are
not modeled as active parties. In all security games apart from
state-confidentiality and soundness with respect to the server,

Achieving Better Privacy for the 3GPP AKA Protocol =—— 6

the operators Op are black-box algorithms within the server S;
in those two games, the operators are oracles, which the ad-
versary (i.e. the server) may query. We assume the existence
of nc clients, ns servers, and nop operators. If the operators
are contained within the servers, we assume that all copies of
the same operator Op are synchronized at all times. We asso-
ciate each client with: a long-term, static secret state consist-
ing of a tuple (skc, skop), an ephemeral state stc consisting of
a sequence number Sqnc, a tuple of a static, permanent iden-
tifier IMSI and an ephemeral, temporary identifier TMSI, and
finally a tuple of a current, and a past local area identifier, de-
noted past.LAlp and curr.LAlp respectively. Servers are asso-
ciated with a permanent local area identifier LAl and a unique
network identifier I1Ds;; they also keep track of a list of tuples
(TMSI, IMSI) associated with clients. Each of the at most ng
servers has black-box access to algorithms (or oracles in the
-5 0Ppg,
which are initialized with long-term keys (skop,) and keep

case of state-confidentiality and soundness) Op,, ..

track of a list of tuples (IMSI, skc, Sqnop,c). In our model,
we also assume that the key space of all operators is identical
(otherwise it becomes easier to distinguish between clients of
different operators).

2.2.1 Client Unlinkability

Client-Unlinkability.

Informally, we call a protocol II client-unlinkable if no
adversary can know whether two executions of II were run
by the same, or by two different clients. Two sessions asso-
ciated with the same client are called linked. Following pre-
vious works of Vaudenay [24] and Hermans et al. [13], we
give the adversary access to a basic left-or-right oracle, which
associates an anonymized handle virtual client VC to one of
two possible clients (input by the adversary). We extend this
framework to account for client mobility, giving the adversary
access to a relocation oracle. Consequently, if an attacker can
distinguish between clients based on their location, they will
win the unlinkability game, which we detail below.

At the onset of this game, the set of clients is empty and
the challenger instantiates two lists Lgrawn and Leree. We ini-
tialize operators by choosing their secret keys. The adversary
can then initialise servers by choosing their locations, and it
can create clients to populate the system it attacks. For each
newly-created client, the past location past.LAl¢ is set to a
special symbol L and the current location is adversarially-
chosen.

The adversary then interacts with clients by means of sev-
eral oracles. The lists Lgrawn and Lgree correspond to the two
possible states of any one client. Clients can be “drawn” or

“free”; at creation, all clients are “free”, and they may become
“drawn” if used as input to a left-or-right Client-Drawing ora-
cle. In particular, we use a left-or-right Client-Drawing oracle
(similar to that in [13, 24]), which allows the adversary to in-
teract with one of two clients (the interacting client being cho-
sen depending on a secret bit b). Clients input to the Drawing
oracle are moved to the Lgrawn list; further Drawing queries
can then be made concurrently as long as the input clients are
in the Lfree list®. Upon drawing one of two possible clients, the
adversary is given a handle on the chosen entity; following the
notation of [24], we call this a virfual client and we associate
it with the handle VC. Virtual clients can then be freed by the
adversary (this would remove them from the Lgrawn list and
re-add them to the Ly list). Only free clients can be drawn.
This oracle associates a handle to either the left or the right
input client, depending on a secret bit b.

The client unlinkability property is defined in terms of the
(1), for a security

c.unlink

following security experiment Exp’;

parameter (in unary) 1.

— The challenger randomly chooses a bit b € {0, 1}.

— The adversary may use the oracles below (with restric-
tions depending on its adversarial class), and the chal-
lenger answers the queries.

— The adversary finally outputs a guess d of the bit b.

We say the adversary wins if and only if d = b, and we de-
fine the adversary’s advantage of winning this game against a
protocol II as:

A(ﬁun“nk(A) = |PI’[.A wins Expi‘Un“nk(l)\)] _ %|

Recalling the adversarial classes of [13, 24], we call an
adversary narrow if it may not use the Result oracle, permit-
ting it to know whether the server has authenticated the client
or not. The opposite of narrow are wide adversaries. Orthogoal
to the use of the Result oracle, we also classify adversaries in
terms of their use of the Corrupt oracle, which gives them ac-
cess to the client’s data. Thus, adversaries are weak if they can-
not use the corruption oracle; they are forward if any corrup-
tion query may only be followed by more corruption queries7.
Finally, adversaries are classified as strong if their access to
oracles is unrestricted.

We note that the 3GPP requirements outlined in Sec-
tion 2.1 restrict their adversaries to “eavesdroppers on the ra-

6 In particular, we want to avoid trivial attacks, in which an adversary can
distinguish a client simply because it is not in its original state (having
already started the protocol run beforehand).

7 In particular, the adversary may no longer free drawn clients, nor inter-
act with servers or clients

Achieving Better Privacy for the 3GPP AKA Protocol = 7

dio link”, which seems to indicate that they target weak adver-
saries that are either narrow or wide. Moreover, they restrict
their adversaries to being passive only; in this paper, we also
consider active weak attackers and thus obtain a better privacy
guarantee.

Formalization. We quantify adversaries in terms of the fol-
lowing parameters: the adversarial class, which we abbrevi-
ate to a-c.unlink, with « € {nw,ww, nf, wf} (for narrow-
and wide-weak, and narrow-, respectively wide-forward ad-
versaries); their execution time is ¢; the maximum number
Qexec Of sessions instantiated per client C; the maximum num-
ber ¢q of user identification per session; and the maximum
number g¢ of queries to the function GG. We formalize the fol-
lowing definitions.

Definition 1. [Weak Unlinkability] A
is (t, Qexec, Gid, 4G » €)-nWANVW-client-unlinkable if no

protocol 11

narrow/wide-weak-adversary running in time t, creating at
most Qexec Sessions and qq user identification per session,
and making at most qg queries to the function G, has an
advantage Adviy """ (A) > e.

Definition 2. [Forward Unlinkability]
is (t, Qexec Gid, 4G , €)-nf/wWf-client-unlinkable ~ if no

A protocol 11

narrow/wide-forward-adversary running in time t, creating
at most Qexec Sessions and ¢4 user identification per session,
and making at most qc queries to the function G, has an
advantage AdviE "™ (A) > e.

Oracles. The adversary interacts with the system by means
of the following oracles, in addition to a function G, which
we model as a PRF and which “encompasses” all the crypto-
graphic functions of the AKA protocol:

— CreateCl(Op, LAl) — (C;,IMSI,stc,): this oracle cre-
ates a new, legitimate, free client, labelled C; at a location
LAI for which a server is already defined (else the oracle
outputs _L). The client’s IMSI, its sequence number Sqnc;,
and its secret key skc, are chosen uniformly at random
from sets 1D, ST, and S respectively; the past location
and TMSI are set to a special symbol L. The client’s op-
erator key skop is set to the key of the operator Op. The
adversary is given the parameters IMSI, stc,, and the label
C; (used later to select clients).

— CreateS(LAI) — S;: this oracle generates a new server S;
at location LA, if this location is not already defined for
another server (else the oracle returns).

- Launch(VC,S;) — (s, m): this oracle instantiates a new
session (labelled by a unique identifier s) between the
client associated with VC and the server S;, and outputs

an initial protocol message m from S; to VC. This oracle
keeps track of tuples (s, VC,S;).

DrawCI(C;, Cj) — VC: on input a pair of client labels,
this oracle generates a handle VC, which is a mono-
tonic counter, if the following conditions are met: (a)
both clients were free when the query was made; (b) both
clients have the same current location value. If either con-
dition is not met, the oracle outputs _L. Else, depending on
the value of the secret bit b, the challenger associates the
handle VC either with C; (if b = 0) or with C; (if b = 1).
The challenger stores the triple (VC, C;, C;) in a table 7.
FreeVC(VC) — _L: on input the virtual handle VC, this
oracle retrieves the values C;, C; associated to VC in the
table T, aborting any ongoing protocol runs.
Relocate(VC, LAI*) — _L: this oracle modifies the cur-
rent location of the two clients C;, C; associated with VC
in 7, to LAI*. In particular, the challenger does the fol-
lowing for each of the clients: (1) it sets past.LAl :=
curr.LAl; (2) it sets curr.LAI := LAI*. Any protocol ses-
sions still running for VC are aborted.

Send(P,s,m) — m’: for the first input, the adversary
can input either a handle VC or a server identity S. In
the former case, the oracle simulates sending the message
m from the adversary to the client associated with VC in
session s, returning either the party’s message m’ or L if
either s is not associated with VC or if VC does not exist.
Parties may also return m’ = L as an error message. If
the first input of this oracle is set to S, the oracle simulates
sending the message from the adversary to the server S.
Execute(VC, S, s) — 7 this oracle simulates a complete
protocol run between the client associated with VC and
the server S. in the presence of a passive adversary. In par-
ticular, by alternating SendToCl and SendToS queries on
genuinely-output messages, this oracle generates and out-
puts the transcript 7 of the execution between the server S
and the client C for which session s was created.
Result(P,s) — {0,1}: if P = VC, this oracle returns a
bit indicating whether the client associated with VC has
accepted the server that VC ran session s with. If P = S,
then the bit indicates whether the server accepted the
client. For the AKA protocol, an acceptance bit is equiv-
alent to the confirmation of the key-exchange. If the ses-
sion is incomplete or session s is not associated with P,
the oracle returns L.

Corrupt(C) — {sk, stc, ID¢, (past.LAI, curr.LAl)}: For
a client C, this oracle returns the full state (static and
ephemeral), the identifiers and the location information of
client C.

Achieving Better Privacy for the 3GPP AKA Protocol =—— 8

2.2.2 Key-indistinguishability and Impersonation

The notion of key-indistinguishability refers to the session
keys computed as a result of authenticated key exchange, re-
quiring that they be indistinguishable from random bitstrings
of equal length. We use a subset of our previously-defined ora-
cles, this time without anonymizing clients by use of handles.
Additionally, the adversary may also know the ephemeral state
(in our case, the sequence number) of both clients and servers.
Since the state is updated in a probabilistic way, we give the
adversary a mean of always learning the updated state of a
party without necessarily corrupting it (the latter may rule out
certain interactions due to notions of freshness, see below).
Corruption results in adversarially controlled parties.

In this model, participants (clients and servers) may run
concurrent key-agreement executions; we denote the j-th exe-
cution of the protocol of party P as P;. Each client C is asso-
ciated with a unique identifier UID (which in the case of AKA
is the IMSI); the identity of the server is of the form S;. We
simplify the key-indistinguishability model by abstracting lo-
cation data (since it does not affect the security of the session
keys).

We associate each instance P; with a session ID sid, a
partner ID pid, and an accept/reject bit accept. The partner ID
pid is set to either the server S; or to a user identifier UID;
the session ID sid includes four values: the user ID given by
client UID (and implicity skyp), the server identifier IDs,, the
randomness generated by the server, and the sequence num-
ber used for the authentication. Finally, the accept/reject bit is
initialized to O and turns to 1 at the successful termination of
the key-agreement protocol. We call this ’terminating in an ac-
cepting state”. A successful termination of the protocol yields,
for each party, a session key K (which for the AKA protocol
consists of two keys), the session identifier sid, and the part-
ner identifier pid of the party identified as the interlocutor. We
allow adversaries to learn whether instances have terminated
(by sending Send queries) and whether they have accepted
or rejected their partners. We also assume that the adversary
will learn the session and partner identifiers for any session in
which the instance has terminated in an accepting state.

Partners. Each instance of each party keeps track of a ses-
sion ID string, denoted sid, consisting of the four values listed
above. We define partners as party instances that share the
same session ID. More formally:

Definition 3. [Partners.] Two instances P; and P’; are part-
nered if the following statements hold:
(i) One of the parties is a user and the other is the server.
(ii) The two instances terminate in an accepting state.
(iii) The instances share the same sid.

In this case, the partner ID of some party P denotes its (in-
tended) partner.

Formalization. In the key-indistinguishability game, we no
longer need to formalize the drawing and freeing of clients;
thus we do not use those oracles. We furthermore do not use
the Relocation oracle. Instead, we give the adversary access to
a Key-Reveal oracle, which returns session keys for an ongo-
ing session terminated in an accepting state. The central oracle
in this game is a real-or-random type of Testing oracle, which
allow the adversary to know either a tuple of real session keys
or a tuple or random keys of equal size. If the adversary can
tell whether the keys are real or random, then she is said to win
the key-indistinguishability game.

At the outset of the game, the challenger first generates
the keys of all the np, operators and instantiates a number ng
of servers. Each server can then access synchronized copies of
the nop operators internally. Each copy of an operator Op run
internally by a server S takes as input the identity of that spe-
cific server S (this models the fact that operators and servers
communicate via an unspecified secure channel). The adver-
sary is then allowed to query any of the oracles below. We im-

plicitly assume that the Test"-'"

oracle keeps state and, once
it is queried a first time, it will return L on all subsequent
queries (we only allow a single query). However, we do allow
the adversary to interact with other oracles after the Test!Ind
query as well.

Eventually, the adversary A outputs a bit d, which is a

Kind oracle. The

guess for the bit b used internally in the Test
adversary wins if and only if: b = d and A has queried a fresh
KInd oracle. We consider the following def-
inition of a fresh instance for the key-indistinguishability. We

note that this notion is classical in symmetric-key protocols.

instance to the Test

Definition 4.

instance P; is fresh if neither this instance, nor a partner of

[Freshness : key — indistinguishability.] An

P; is adversarially-controlled (its long-term key skp has not
been corrupted) and the following queries were not previously
executed:
(i) Reveal(.), either on the instance P;, or on of its part-
ners.
(ii) Corrupt(.) on any instance, either of P, or of their
partners.

The advantage of A in winning the key-indistinguishability
game is defined as:

AdVIS™™ (A) == | Pr[A wins] — 1/2].

Definition 5. [Key — indistinguishability.] A
agreement protocol 11 has (t, Qexec, Gid, @serv, §Op; 4G , €)-key-

key-

Achieving Better Privacy for the 3GPP AKA Protocol =—— 9

indistinguishability if no adversary running in time t, creating
at most Qexec party instances, with qq user identification per
instance, corrupting at most Gsery Servers, making at most qop
OpAccess queries per operator per corrupted server, and mak-
ing at most qg queries to the function G, has an advantage
AdvE™M(A) > e

We also define the related notions of client- and server-
impersonation security, which involves a slightly different no-
tion of freshness.

Definition 6. [Freshness : Imp.Sec.| An instance P;, with ses-
sion ID sid and partner ID pid, is fresh if: neither this in-
stance nor a partner of P; is adversarially-controlled; and if
there exists no instance P;- sharing session sid with the partner
pid = P; (the related transcript is denoted as (m,m’, m"))
such that the following events occur::

(i) The message m is sent by the adversary A to P; via a

Send(m) query at time clock = k, yielding message m’

at time clock = k + 1.

(ii) The message m’ is sent by A to P’ via a Send(m’)

query at time clock = k' > k + 1, yielding message m”

at time clock = k' + 1.

(iii) The message m" is sent by A to P; via a Send(m”")

query at time clock = k" > k' + 1.

We note that the messages need not be exactly sequential
(i.e. the adversary could query other oracles in different ses-
sions before returning to session sid). Furthermore, the notion
of freshness only refers to relays with respect to the partner
client pid. We do not restrict the adversary from forwarding
received messages to other server or client instances.

The goal of an impersonation adversary is to make a fresh
party instance terminate in an accepting state. In this case,
the Test<"
gins by generating the operator keys and servers as before;

oracle is not used. More formally, the game be-

then the adversary .4 gains access to all the oracles except
Test“"™ When A stops, she wins if there exists an instance
S; for client-impersonation (resp. an instance C; for the server-
impersonation) that ends in an accepting state and is fresh as
described above. The advantage of the adversary is defined as
her success probability, i.e.

AdvS'™ (A) := Pr[A wins], Advy; ™ (A) := Pr[.A wins]).

Definition 7. [Impersonation security.] A key-agreement pro-
tocol T is (t, Gexec, Gid, Gservs Op, 4G ; €)-impersonation-secure
if no adversary running in time t, creating at most Qexec party
instances, with g4 user identification per instance, corrupting
at most Gsery Servers, making at most qop, OpAccess queries
per operator per corrupted server, and making at most qg

queries to the function G, has an advantage Adv%‘lmp(A) > €
or Adv%‘lmp(A) > e

Oracles: K.Ind and Imp.Sec. The adversary interacts with
the system by means of the following oracles, in addition to a
function GG, which we model as a PRF.

— CreateCl(Op)— (UID, styip): This oracle creates a client
with unique identifier UID. Then the client’s secret key
skyip and the sequence number Sqnyp. The tuples
(UID, skyip, skep, Sqnuip) are associated with the client
UID and with the corresponding operator Op (i.e. each
“copy” of Op in each server does this). The operator sets
stop,uip := Sqnyip and then keeps track of stop yip. The
adversary is given UID and styp.

— Newlnstance(P) — (P;,m): this oracle instantiates the
new instance P;, of party P, which is either a client or
a server. Furthermore, the oracle also outputs a message
m, which is either the first message in an honest protocol
session (if P is a server) or _L (if P is a client). The state
st of this party is initiated to be the current state of P, and
it is initiated with the current value of TMSI, LAL.

— Execute(P,i,P’,j) — 7: creates (fresh) instances P; of
a server P and P'] of a client, then runs the protocol be-
tween them. The adversary A receives the transcript of the
protocol.

-~ Send(P,i,m) — m': simulates sending message m to
instance P; of P. The output is a response message m’
(which is set to L in case of an error or an abort).

— Reveal(P,i) — {K, L}: if the party has not terminated in
an accepting state, this oracle outputs _L; else, it outputs
the session keys computed by instance P;.

— Corrupt(P) — skp: if P is a client, this oracle returns
the long-term client key skp, but not skop (in this we keep
faithful to the implementation of the protocol, which pro-
tects the key even from the user himself). If P is corrupted,
then this party (and all its instances, past, present, or fu-
ture), are considered to be adversarially controlled. If P is
a server, then this oracle returns the identifier S;, giving
the adversary access to a special oracle OpAccess.

— OpAccess(S,C) — m: for a corrupted server S, this or-
acle gives the adversary one access to the server’s local
copy of all the operators, in particular returning the mes-
sage that the operator Op would have output to the server
on input a client C.

— StReveal(P, i, bits) — x: for a client P, if bits = 0, then
this oracle reveals the current state of P;; else, if bits = 1,
then the oracle returns the state the operator stores for P.

Achieving Better Privacy for the 3GPP AKA Protocol =—— 10

K""d(P,i) — K: this oracle is initialized with a secret

— Test
random bit b. It returns _L if the instance P; is unfresh or if
it has not terminated in an accepting state (with a session
key K). If b = 0, then the oracle returns K := K, else
it returns K := K’, which is a value drawn uniformly at
random from the same space as K. We assume that the ad-

KInd query (a standard hybrid

argument can extend the notion to multiple queries).

versary makes a single Test

2.2.3 Further security notions: Security
w.r.t. servers

In this section, we define two further notions, namely sound-

ness and state-confidentiality with respect to servers. In these

games the adversary is a malicious, but legitimate server S,

and this is the only server we consider. We note that 3GPP

specifications allow servers to communicate with each other,
but how they do this is not apparent. We use the OpAccess or-
acle to give the server access to operators on specific clients,
but change the syntax so that the oracle takes a single input,
namely a client identifier C. We also demand that the out-
put of this oracle represents material only for a single pro-
tocol session sid. The adversary uses the Send, CreateCl,

Newlnstance, Execute, and StReveal oracles as described

in the key-indistinguishability model. We additionally modify

the corruption oracle, as noted below:

— Corrupt(P) — skp: if P is a client, this oracle returns
the long-term client key skp, but not skop (in this we keep
faithful to the implementation of the protocol, which pro-
tects the key even from the user himself). If P is an op-
erator, then this oracle returns skop and the list of tuples
(UID, skyip, stop,c) for all clients C subscribing with that
operator.

State-Confidentiality. Unlike key-indistinguishability, which
guarantees that session keys are indistinguishable from ran-
dom with respect to MiM adversaries, the property of state
confidentiality demands that long-term client keys remain con-
fidential with respect to malicious servers

This game begins by generating the material for nop op-
erators and nc clients. The adversary can then interact ar-
bitrarily with these entities by using the oracles above. At
the end of the game, the adversary must output a tuple:
(P, sk{iip, Skops Stip, Stop,uip) such that UID is the long-
term identifier of P and P; is a fresh instance of P in the
sense formalized below. The adversary wins if at least one of
the values: skijp, Skop, Stiip, Stop,uip is respectively equal to
skuip, skop, StuiD, Stop,uiD, the real secret values of the fresh
instance P;.

Definition 8. [Freshness : St.conf] An instance P; is fresh
if neither this instance, nor a partner of P; is adversarially-
controlled (its long-term key skp has not been corrupted) and
the following queries were not previously executed:

(i) StReveal(.) on any instance of P.

(ii) Corrupt(.) on any instance of P or on the operator Op

to which P subscribes.

The advantage of the adversary is defined as:
AdveF " (A) := Pr[.A wins].

Definition 9. [State — Confidentiality.] A key-agreement
protocol I1 is (t, gexec, Gid, 4Op, 4G , €)-State-confidential if no
adversary running in time t, creating at most Qexec party
instances, with at most ¢ user identification per instance,
making at most qop queries to any operator Op, and mak-
ing at most qg queries to the function G, has an advantage
AdviFef(A) > e

In the Soundness game, we demand that no server is able
to make a fresh client instance terminate in an accepting
state without help from the operator. This game resembles
impersonation-security; however, this time the adversary is
a legitimate server (not a MiM) and it has access to opera-
tors. The adversary may interact with oracles in the soundness
game arbitrarily, but we only allow a maximum number of go,
queries to the OpAccess oracle per client. The adversary wins
if there exist (gop + 1) fresh client instances of a given client
which terminated in an accepting state. Freshness is defined as
in the impersonation game. The advantage of the adversary is
defined as:

Adv™"™(A) := Pr[A wins].

Definition 10.
protocol 11 is (L, Gexec, qid, qOp, 4G, €)-server-sound if no ad-

[Soundess w.r.t. server.] A key-agreement

versary running in time t, creating at most Qexec protocol in-
stances, with at most qq user identification per instance, mak-
ing at most qop queries to any operator Op, and making qc
queries to the function G, has an advantage Adv;*®"™ (A) >
€.

3 The AKA protocol

3.1 Notations

Notations. Throughout the rest of the document, we denote

the length of a bitstring x by |z|, while |z |;.; denotes bits ¢

Achieving Better Privacy for the 3GPP AKA Protocol =— 11

through j of x. If f is a function, then y < f(x) denotes that
y was the output of f on input x. Similarly, y & {0,1}"™ in-
dicates that y is chosen uniformly at random from the set of
bitstrings of length n, i.e. {0, 1}". For strings z, y, the string
||y is the concatenation of x and y, while &y denotes the ex-
clusive OR (XOR) of x and y. For a bit b, b™ denotes the string
bl . .. ||b of length n. We denote by L the error message and
by 1 the security parameter (in unary). The indistinguishabil-
ity property is considered against the chosen plaintext attacks
(ind — cpa). We denoted this property ind — cpa to lighten the
expressions.

3.2 Description of the AKA protocol

3G (and 4G) mobile networks use a variant of the AKA proto-
col, which is fully depicted in Appendix 3.2, in order to estab-
lish secure channels between mobile clients and servers. Ulti-
mately, the server uses the secure channel to transmit a specific
service to the mobile client.

Client

1) User Identification

‘ 2) Pre-computed batch of AV ‘

Server Operator

3) AKE

4) Re-synchronization ‘
5) TMSI Re-allocation

Fig. 2. The five phases of the AKA Procedure.

This protocol is actively run by clients and servers in the
(selectively-active) presence of an operator. Servers and opera-
tors communicate over a secure and private channel; however,
the server is considered only partially trusted. Section 2 de-
scribes in detail the setup of the three parties.

The AKA protocol consists of five phases. The first phase,
user identification, is run by a client C and a server S on the in-
secure channel and it allows S to associate C to an IMSI value.
A user ID request is first sent from the server to the client.
The client’s response is a tuple (TMSI, LAI), consisting of a
temporary identifier and the local area identifier in which C
received TMSI. If the LAI value corresponds to the LAl of S,
then the latter searches for a tuple (TMSI, IMSI) in its own
database; else S requests this tuple from the server S* asso-
ciated with LAI, over an unspecified channel. If no IMSI can
be found, then the server demands the IMSI in clear. This pro-
cedure is the essential vulnerability leading to IMSI catcher
attacks 3.3.

The second phase is run only optionally by the server S
and the client’s operator Op over a secure channel; its pur-
pose is to enable S to then run a batch of AKE sessions with
C. The server sends the client’s IMSI to Op, which gener-
ates a batch of vectors AV each providing material for one
out of a maximum of n sessions. For each vector, the oper-
ator’s state with respect to the client Sqns c is augmented,
and then the following values are generated: a fresh random
value R; an server-authentication value Macs (for the val-
ues Sqns ¢ and R); a client-authentication value Macc (for
R only); the session keys CK and IK; and an anonymity key
AK. Of these six values, the last five are computed by us-
ing each time a different cryptographic algorithm, denoted
Fi, ..
gorithms, but two of them, denoted Fi, Fz, are only used
in the re-synchronization procedure. The seven algorithms are

., F5. In fact, the AKA protocol uses seven such al-

generic, and can currently be instantiated in one of two ways,
one using AES (called MILENAGE), the other using Keccak
(called TUAK). Both F; and F7 take as input the keys skc
and skop, the random value R, and a sequence number Sqns c.
The other algorithms use the secret keys and the random value,
but not the sequence number. At the end of this phase, the
following values are sent to the server for each of the n ses-
sions: AV = (R, CK, IK, Macs, Macc, AMF, AK & Sqns ¢),
in which AMF is the Authentication Management Field is a
16-bit value used only in radio access specifications (for ex-
ample E-UTRAN or non-3GPP access to EPS).

The sequence number Sqns c is notably not sent in clear
to the server, but rather blinded by the value AK.

The third phase of the protocol, authenticated-key-
exchange, is a mutual authentication and key agreement be-
tween the server and the client over the insecure channel. The
server chooses the next vector available (if phase 2 was run,
then this is the first tuple; else, for returning clients phase 3 is
run directly, with the next authentication vector), and sends an
authentication challenge consisting of the random value R and
an authentication string Autn = (Sqns ¢ ® AK)||AMF||Macs.
The client uses R to compute AK, then it recovers Sqns ¢ and
verifies Macs. If the verification succeeds, and if the recovered
Sqn is within a distance of A (a pre-defined constant) of the
client’s own state Sqnc, then the client computes CK, IK, and
the response Macc, sending this latter value to S; else, if the
two sequence numbers are too far apart, then the client forces a
re-synchronization procedure, which is the fourth phase of the
protocol. If no re-synchronization is needed, then the client
updates Sqnc := Sqnop,c, and S verifies the received authen-
tication value with respect to the Macc sent by Op. If the ver-
ification succeeds, then the server sends an acknowledgement
to Op and goes directly to phase five. If the verification fails,
then the protocol is aborted.

Achieving Better Privacy for the 3GPP AKA Protocol —— 12

The fourth phase of the protocol, resynchronization, is run
by all three parties. The client essentially retraces the opera-
tor’s steps, using its own sequence number Sqnc and comput-
ing the values Macg and AK* & Sqnc by using algorithms F7
and F7 (rather than F; and F5), but keeping the same ran-
dom value R. If the authentication string Macg verifies for the
Sqgn value Op recovers, then Op resets its sequence number
to Sqnc and sends to the server another batch of authentica-
tion sessions. The protocol restarts. We note that this phase is
executed only optionally.

Finally, the fifth phase of AKA, TMSI re-allocation, is
run by the server and client. As the first message of the record
layer, the server sends an (unauthenticated) encryption of a
new TMSI value to the client C, using the session key CK
computed in phases 3 or 4. The encryption is done by means
of the A5/3 algorithm detailed in TS 43.020 [4], run in cipher
mode. The new TMSI value, called TMSlnew, is only perma-
nently saved by the server if the client acknowledges the re-
ceipt; else, both values TMSlney and the old TMSlyy are re-
tained and can be used in the next authentication procedure. In
appendix, the entire protocol is depicted in Figure 11.

3.3 Some Privacy breaches in AKA

To the best of our knowledge, the specifications do not detail
how the permanent user identifiers are generated, we consider
that all the user IDs are different.

We do not need to have a very formal/theoric analysis to
point out the pure AKA protocol cannot guarantee the user un-
linkability as defined previously. Indeed, the user identification
based on temporary identifiers independent to the permanent
identifier is not sufficient. As related to our introduction, we
clearly analyze the two main issues which restrict the AKA
protocol to guarantee the user unlinkability. The first one is fo-
cused on the linkability of the failure messages. The next one
is focused on the operational difficulties related to the TMSI.
These weaknesses have been partially described by Arapinis
and al. in [20, 21].

3.3.1 Linkability of failure messages

Arapinis and al [21] notably provides a novel practical attack
establishing the traceability of a user based on the study of
the failure messages. Considering a victim mobile client C',
an adversary can detect its presence in a specific area, only
considering the features of the failure messages, and replaying
one old legitimate authentication vector including (R, Autn).
This latter can be replayed to any client each time it wants
to check the presence or not of the victim client C',. In fact

Achieving Better Privacy for the 3GPP AKA Protocol =—— 13

User Request

TMSl,||ILAT
_—

Permanent User Request

User Request

TMSl, ||LAT

Rand||LAI
—_—

Permanent User Request

IMSI IMSI
If IMSI = IMS],,
then C, is found.
Principle of Traceability of
IMSI catcher a victim client C,,

Fig. 3. Attacks based on TMSI.

this replay always implies a failure message. If this replayed
authentication vector had been sent to C',, the answer will be a
"de-synchronization message". Indeed, the received MAC will
be successfully verified, but the sequence number will be not
in the correct range. Otherwise, the answer will be an "Mac
failure message", because the the Mac could not be correct,
except to a negligible probability of success (1/2(:2®)) (due to
the collision’s probability). This difference can permit to trace
a mobile client in a specific area just replaying a legitimate
authentication vector. That represents a breach of the user’s
untraceability.

3.3.2 Operational difficulties with TMSI

As we explained previously, 3GPP has standardized the use of
temporary values TMSI instead of the basic permanent identi-
fier IMSI. These temporary values are generated independently
to the permanent identifier. At first glance, this option could
guarantee at least the user identity confidentiality. However,
the permanent identity IMSI is not as private as the sequence
number. In fact, this value can be easily obtained by a weak ac-
tive adversary. In the identification of the user, when the VLR
cannot recognize the TMSI, the procedure is not aborted but
the permanent identifier of the user is requested to the client.
Thus, by a basic attack 3 an adversary can obtain the perma-
nent identifier of a user during a fresh session. Obviously that
represents a breach in the confidentiality of the user, that can
also imply a breach in the intraceability. This weakness is ex-
ploited by the well-known "IMSI catcher" [10], which is the
best known attack to mobile telephony users’ privacy. This at-
tack consists in forcing a mobile phone to reveal its permanent
identity.

The Temporary identifier of each user must be used, as
its name suggests, temporary. The specifications consider the
uniqueness of the TMSI’s use. As specified by the protocol,
a TMSI re-allocation is provided. However, a basic active ad-

versary can corrupt this uniqueness. Indeed, we note that the
VLR does not de-allocate the old value TMSI, without receiv-
ing the acknowledge message. So if an adversary drops this
latter, the VLR has the both allocated temporary values: the
old one TMSI, and the new one TMSI,,.

For the next identification, the VLR will accept the both
values to identify the user. So an adversary dropping the ac-
knowledge message can easily force the replay of the same
TMSI during different sessions. Moreover, we note that the
new temporary identifier TMSI, is only sent encrypted with
the session key CK and without any integrity service. The mo-
bile subscriber can not verify whether the received value is sent
by the VLR or any malicious entity. Thus, any adversary can
impose a false random value as new TMSI sending a random
value instead of the ciphered temporary identifier.

As specified previously, each TMSI is associated to a spe-
cific location area denoting the VLR having generated this
temporary identifier. The related LAl is sent in cleartext with
the TMSI. Due to the previous detailed failure, an adversary
can associated the IMSI with an LAI: that permits to know
where the subscriber with the permanent identifier IMSI was
located during the previous session.

Therefore, the use of temporary identifiers as specified by
the specifications can not assure any privacy as specified.

We proceed to describe two of the more promising im-
provements to the AKA protocol, and show that these variants
are vulnerable to client-unlinkability attacks.

The Arapinis variant. Arapinis et al. [21] propose an AKA
variant which is supposed to ensure client unlinkability by
avoiding failure-message-based linking, as described in the
previous section. To avoid this attack, they propose to replace
the both failure messages by two indistinguishable messages.
The failure message is now encrypted with a public key of
the network and includes the IMSI, a constant Fail, a random
value R and the current sequence number Sqnc. This latter is
specially encrypted with an unlinkability key UK = fu (R)

in order to authenticate the error message. After receiving this
generic error message, the network can deduce the cause of
the failure from the IMSI and the sequence number, and sends
the appropriate answer.

Moreover, they propose a fixed version of the identifica-
tion protocol avoiding to expose the IMSI (basically the IMSI
is sent in cleartext upon request by the network). It breaches
both user identity confidentiality and untraceability. Thus, the
IMSI is encrypted with an asymmetric-randomized-encryption
(the same one as this one of the error messages) and they do
not used any temporary value as usual. That permits to can-
cel the reallocation step. We suppose that if the VLR cannot
recover the IMSI, the protocol is aborted (and they do not use
a Permanent Identity Request). We note that this variant owns
different practical issues. Indeed, authors proposes a simply
representation of the network by concatening the VLR and
HLR as an unique entity. For the security analysis, it is not
an issue but it is the case for practical considerations. Con-
trary to their formal security proof, we consider that the fixed
version from Arapinis does not assure the untraceability of the
mobile subscriber. Indeed, we propose a new attack permitting
to trace a victim client based on the knowledge of a user per-
manent identity. Its knowledge is reasonable since we can not
consider this data as private. In a specific area, an adversary
can trace a victim client C,,, which has its permanent identifier
IMSI,, known by the adversary. This attack consists to replace
the answer of the user identity request by a response with the
permanent identifier of the victim client and analyze the be-
havior of the session. If the authentication data answer Res
contains a failure message, the attacker considers the tested
client as different from the victim client. Otherwise, the vic-
tim client has been found. This attack is detailed in the figure
4. We state the following result:

C A S

User Identity Request

[IMS]pke [IMSly ke

Rand, Autn

Res

If Res = Fail_Message|
Then C # C,
Else C, is found.

Fig. 4. Attack on the fixed version of Arapinis.

Lemma 1. Let 11 the protocol proposed by Arapinis and al.
in [21]. Considera (t,1,1,0)-adversary A against the weak-
privacy of the protocol 11 running in time t, creating at most

Achieving Better Privacy for the 3GPP AKA Protocol =—— 14

one party instance, running one user identification per each
instance and making no extra query to the related internal
cryptographic functions. The advantage of a such adversary

ww-unlink

is denoted Advry
the weak-privacy since there exists a such adversary A with a

(A). The protocol 11 cannot guarantee

no-negligeable advantage.

Proof. The attack we describe goes as follows:

1. Attime clock = 0, the challenger sets up the server.

2. At time clock = 1, the adversary creates two clients
Co, C1 from the oracles CreateCIient(IMSI{o}7 stgo}) and
CreateClient(IMSI{!} sti!).

3. Attime clock = 2 — 3, the adversary uses the oracle
DrawClient(Co, C1) which returns at time clock = 3 a
virtual client ve = C, following a chosen bit b.

4. Attime clock = 4 — 10, the adversary runs an instance
of the protocol 11 between the virtual client and the termi-
nal as follows: At time clock = 4, the terminal sends a
user identity request to the virtual client; at time clock =
5, the virtual client answers with the value UID such as:
ulD = [IMSI{b}]pkeb; at time clock = 6, the adversary
intercepts this message (before arriving to the terminal)
and forges a user identification UID = [IMSI{O}]pkeo for
the client Cy which will be sent to the terminal at time
clock = 7 (instead of the user identifier computed by the
virtual client); at time clock = 8, the terminal receives
the related user identifier and generates an authentication
challenge which is sent to the virtual client vc at time
clock = 9; this latter sends its authentication answer Res
at time clock = 10 which is eavesdropped by the adver-
sary.

5. At time clock = 11, since the eavesdropped authentica-
tion answer Res, the adversary tries to guess the bit b as
follows: if the message Res contains a failure message,
then the adversary considers the virtual client as the client
Co (that implies b’ = 0). Otherwise, it considers the vir-
tual client as the client C; (that implies b’ = 1).

6. Attime clock = 12, the adversary returns its guess b'.

This attack is detailed in the figure 4. It is clear that the ad-
vantage of a such adversary is 1. Thus, the protocol cannot
guarantee the weak-privacy. We note that in practice if the ad-
versary A cannot detect the de-synchronization, some "false
positive" can be appear: indeed, during the tested session, if
the victim client is de-synchronized, the adversary could not
trace it. But the frequency of a such event (i.e this one of a
synchronization procedure) is very weak. Moreover, we can
use this attack procedure at least twice to reduce the probabil-
ity to obtain a false positive.

O

The van den Broek variant. Van den Broek et al. [11] recently

proposed an IMSI catcher countermeasure; in this improved
variant, avoid sending the IMSI in clear by replacing (IMSI,
TMSI) tuples by an upgradeable pseudonym denoted PMSI.
Their modified identification phase is exclusively done by
means of these pseudonyms. The PMSI is chosen by the oper-
ator and sent with the authentication challenge in the prepara-
tion phase, encrypted together with the sequence number with
a new secret key that is assumed to be shared by clients and
their operators. The ciphertext is used as the random value R
in the authentication challenge. Indeed, a successful session of
the AKA protocol, ending in the establishment of new session
keys, can only be attained if the PMSI is correctly updated.
This variant is described in detail in [11].

From a practical point of view, using the operator at each
key-exchange session is costly, and something that the origi-
nal AKA design tries to avoid. Furthermore, though this vari-
ant successfully prevents IMSI catchers, it does not address
client unlinkability. The pseudonym PMSI can be intercepted
in one session; if this session is then aborted, the PMSI can be
replayed in a second session, thus leading to user linkability.
Furthermore, the protocol is vulnerable to the attack based on
linking failure messages, as presented by Arapinis et al. Thus,
if II denotes the protocol proposed by van den Broek et al., it
holds that:

Lemma 2. There exists a (t,2,1,0)-adversary A against the
narrow-weak-client-unlinkability of 11 running in time t, ini-
tiating two protocol sessions, and making no query to the
internal cryptographic function G, which has an advantage
Adviyruntink(4) = % (and a probability of 1) to win the game.

Proof. The attack we describe goes as the Arapinis attack

based on the linkability of failure messages:

1. Attime clock = 0, the challenger sets up the server.

2. At time clock = 1, the adversary creates two clients
Co, C1 from the oracles CreateCIient(IMSI{O}, st({,o}) and
CreateClient(IMSI{! st{!h).

3. At time clock = 2 — 3, the adversary uses the oracle
DrawClient(Co, C1) which returns at time clock = 3 a
virtual client ve = C;, following a chosen bit b.

4. Attime clock = 4 — 5, the adversary runs an instance of
the protocol II between the virtual client and the terminal
via the oracle Execute(vc, s) which returns the transcript
of an instance s at time clock = 5. This transcript in-
cludes the authentication challenge denoted (R, Autn).

5. Attime clock = 6 — 12, the adversary runs an instance
s + 1 of the protocol II between the virtual client and
the terminal as follows: at time clock = 6, the terminal
sends a user identity request to the virtual client; at time
clock = 7, the virtual client sends the user identifier UID

Achieving Better Privacy for the 3GPP AKA Protocol =—— 15

to the terminal; at time clock = 8, the terminal receives
the related user identifier and generates an authentication
challenge which is sent to the virtual client vc; at time
clock = 9, the adversary intercepts the fresh authentica-
tion challenge (before arriving to the virtual client) and
sends the previous authentication challenge (R, Autn) to
the virtual client at clock = 10 (obtains in a previous ses-
sion on the client Cyp := DrawClient(Co, Cp)); at time
clock = 11, the virtual client sends its authentication an-
swer Res at clock = 12 which is eavesdropped by the
adversary.

6. At time clock =
tication answer Res, the adversary tries to guess the

13, since the eavesdropped authen-

bit b as follows: if the message Res contains a "de-
synchronization message", then the adversary considers
the virtual client as the client Co (that implies b’ = 0).
Otherwise, it considers the virtual client as the client Cq
(that implies b’ = 1).

7. Attime clock = 14, the adversary returns its guess b’.

4 Our proposal: PrivAKA

In this section, we propose a new fixed variant of the
AKA protocol which respects the weak-unlinkability and key-
indistinguishability as defined in our privacy model 2. Ob-
viously, it also guarantees the client-, server-impersonation.
Moreover, our fixed variant takes into account practical re-
quirements of the VLR in addition to provide the security prop-
erties. The VLR is an interoperable server in a cellular net-
work that supports roaming functions for subscribers outside
the coverage area of their own HLR. The VLR needs to man-
age the generation of the temporary identifier to avoid colli-
sion between subscriber from different operators. Indeed, if the
HLR generates the new temporary identifiers, it cannot avoid
collision between identifiers of user from different HLR but
only avoids collision between its own subscribers. Then, the
VLR cannot store any secret data shared with any user due
to its interoperability feature, except the storage of the rela-
tion between the permanent and temporary identifiers for each
subscriber. Indeed, the VLR communicates with user from any
operator. So, this feature implies that the secret data also needs
to be inter-operable, i.e a same secret data common for all the
operators. We note that our fixed protocol does not increase
the number of exchanged between the USIM and ME and re-
spect the 3GPP’s desire to limit communication with the HLR.
Moreover, we are the first to seriously consider such practical
requirements.

4.1 Description of our variant

Instead of five phases, our variant only consists of three. Our
protocol is designed to not require re-synchronization (which
was phase 4 in AKA), and we include the TMSI realloca-
tion (which was phase 5 in AKA) as part of the key-exchange
phase (phase 3). In our construction, we use a public-key
encryption scheme PKE= (PKE.KGen,PKE.Enc,PKE.Dec),
such that each operator has a certified public and secret key-
pair denoted as (pkeg,,skeop). We assume that the client
stores only its own operator’s public key (and its certificate)
internally. In particular, we do not give encryption keys to
the servers in order to minimize key-management issues. We
also use a secure authenticated encryption scheme AE =
(AE.KGen, AE.Enc, AE.Dec). Though these can be instanti-
ated generically, we use AES-GCM [9] for the AE scheme
and (EC)IES [27] for the PKE scheme. We depict our vari-
ant in Figure 5, and indicate in the grey boxes the differences
to the classical AKA procedure. Just as the original protocol,
our variant starts with an identification phase, run by the client
and the server over the insecure channel. The server sends an
identification request which includes a random value that we
denote Ri4. The client forges an user identification answer fol-
lowing a flag flagTms) managed by the client: it uses either a
pre-exchanged fresh temporary identifier TMSI (if the previ-
ous protocol has been accepted and if the user stayed in the
same area: flagTms) = 1) or it sends a public-key encryption
of the concatenation of the received random value R;y and the
evaluation of the function F5 on input the client secret key,
the operator’s secret key, the random value Rjg and the client’s
IMSI (only if it does not own a fresh temporary identifier or if
the user is located in a new area: flagrms) = 0). We demand
that the output size of the PKE scheme for this input size is
always equal to the length of the TMSI. A such flag flagTus)
is only used to restrict the computation of an encrypted per-
manent identity and not for security reasons. In both cases, the
client also appends the identity of the operator Op it subscribes
to, to the message. Moreover, we assume that the client can de-
tect when it moves in a new area. In this case, it allocates the
flag at one.

Intuitively, if the client stayed in the same area
(flagTmsi = 0), then the TMSI the client stored came from the
server it is currently communicating with, hence the server can
find the (TMSI, IMSI) association in its database. Otherwise,
the client does not use its TMSI value, but rather encrypts a
function of the IMSI with the operator’s public key. The func-
tion is symmetric-key, requiring knowledge of the client- and
operator keys, and it is not replayable due to the fresh identi-
fication randomness Rjq. Upon receiving a string of the form
(m, Op), the server first checks whether the message m is a
TMSI present in its database; if so, it retrieves the IMSI to

Achieving Better Privacy for the 3GPP AKA Protocol =—— 16

which this value corresponds; else, it assumes that m is a ci-

phertext, and it sends it to the operator Op for decryption.
Phase 2, preparation, is run over a secure channel, be-

tween the server and the operator. If the server received a valid
TMSI in the previous phase, the preparation phase being with
the server sending the corresponding IMSI to the operator;
else, the server forwards the received ciphertext and the as-
sociated random value R4. The operator proceeds similarly to
the standard AKA preparation procedure, with the following
differences:

— We add as input to each cryptographic function a server-
specific value Ress for a server with identity S = VLR.
This is to prevent attacks in which the adversary replays
authentication vectors from one network to another, as
presented by Zhang [18]. We also use the constant AMF
which is sent in clear, as an additional input.

— We add the sequence number Sqnop, ¢ to each of the cryp-
tographic functions apart from F5. Since the sequence
number is an ephemeral value, which is updated, this
guarantees freshness even if the randomness R is re-
peated.

— We introduce an index value idxpp,c which essentially
prevents the repetition of a challenge using the same se-
quence number. This value is essential in preventing a
desynchronization of sequence number values. We note
that the client also keeps track of a similar index idxc,
which will play a role in the key-exchange phase, as de-
tailed below.

In the final phase, authenticated-key-exchange, which is run
between the client and the server, the server sends a random
value R, the authentication string Autn, an authenticated en-
cryption of the new TMSI, using the keys (CK, IK) derived
for this session. The client proceeds similarly to the original
AKA procedure, recovering AK by using the random value R,
then checking Macs. If the authentication cannot be verified,
the procedure is aborted, and the new TMSI is disregarded.
Else, the user computes CK, IK and decrypts the received au-
thenticated encryption string to find the TMSI value and the
operator’s index idxop,c. Then, C checks the freshness of the
sequence number, i.e. it verifies if one of the following two
conditions is correct:

- Sqnc = Sqn{i}.

- Sqnc = inc(Sqn{i}) and idxop,c = idxc + 1,

If the protocol is run normally, the first of these conditions
is the one that will hold. However, if the previous session is
aborted after receiving the server’s authentication challenge,
then the two sequence numbers may become desynchronized
by one step (the second condition). Further desynchronization
is prevented by the use of an index, which indicate whether

Achieving Better Privacy for the 3GPP AKA Protocol =—— 17

Client
(skc, skop, pke), (Sanc, idxc), (TMSl,, LAl,)

Operator
(skc, skop, ske), (Sanop,c; idxop,c)

Server
(TMSI)

User Identity Request
Rig
User Identity Answer
ID[|Op;g
Auth. Vectors Request
Val
Auth. Vec;ors Answer
{aviihn,
Auth. Challenge
R{ || Autnl} || AE Encex ik (TMSI, [lidx)
Auth. Response
Res
Update Sequence Number

@

Instructions:

Client

Server Operator

@: Compute the identifier:
If flagrmsi := 0 then ID = TMSL.
Else, ID = PKE.Encpye(f5(keys, Rig, IMSI, idxc)|Rig[[IMS][idxc)-

flagTms) == 1.

@: Compute AK using R{?}
Recover Sqn{i} (from AK).
Check Macg value.
Compute: IK, CK;
Retrieve the received index and the new TMSI.

If abort caused or the AE does not verify, set flagrus := 1 and

increment: idxc := idxc + 1.

Else, check validity of Sqn %}, i.e if one of the following
conditions is correct:

- Sqnc = Sqnti}.

-~ Sanc = inc(Sqni®h) and idx " = idxc + 1.

If the first condition is accepted: reset the index idxc,
update the sequence number Sqnc = inc(Sqnc) .

If the second condition is accepted: idxc=idxc+1 .

Compute Res := F7 (keys, R{}, San{’}, Ress, AMF).
Update the internal index. Allocate the new TMSI.

flagrms) := 0.

@: Process the identifier ID:
If the identifier is @ TMSI then Val =
IMSI. Otherwise, Val = (ID, Rig).

@: Store {Aviit}n .

Choose AV1i} one by one in order.
Then, it sends the authentication
challenge and the new couple

(TMSL,,, idx{?}) encrypted and

authenticated by the session keys.

@: If the authentication of the

client is verified (Res = Macc), then
they ask to the server the update
of its sequence number. Otherwise,
the protocol is aborted.

(3): Verify the identity of the dlient with Val.

If this holds, retrieve idxc, set idxop,c := idxc

Generate (R1},...,R{"}). Denote: keys := (skc, skop)-
Foreachi =1,...,n, compute:
Macg +]-_1(keys.,R{l}?Sqn{?}7 Ress, AMF),

Macc + F (keys, R(}, Sqn{i}t Ress, AMF),

CK « F3(keys, Rt} Sqnii} Ress, AMF),

IK < Fa(keys, R{i}, Sqnii} Resg, AMF),

AK « Fs(keys, R} Ress),

Autni?} (Sqntt @ AK)||AMF||Macs,

Sqn it inc(Sqn{i_l}) s

AV} = (RU CK, IK, Autn % Macc, idx %), with
Santl} := Sqnop, ¢,

idx {1} = idxop.c , Vi# 1,idx{ =0 .

End for.

@ : Update the sequence number:

Sqnop,c + inc(Sqnpp,c). Reset the index idxop,c-

Fig. 5. Our fixed AKA Procedure.

the authentication string for a particular Sqnop ¢ has already
been used or not. If the first condition holds, then the client’s

internal index is reset; else, the index is incremented by 1.
The client updates the sequence number only upon success-

ful authentication. If none of these conditions are verified, the
procedure is aborted and does not use of a resynchronization
procedure.

Finally, the user computes a response Res :=
Fa(keys, Ri, Sqn‘m7 Ress, AMF), sends Res, then stores
the TMSI and the new index value. The server checks Res
against the prepared value Macc (else, if no response is re-
ceived, the procedure is aborted).

One notable exception to the original AKA protocol is
that whenever an abort occurs on the server’s side, the sec-
ond phase — preparation — is used instead of simply querying
the next vector in the prepared batch. Though this might seem
more inefficient, we note that an abort only occurs in the pres-
ence of an adversary, which is considered to be a rare event.
We detail the procedure upon aborts in Figure 6.

Server Operator
”Aborted Protocol Message”
\Vats
Recover the related sequence number
Sqnti}.
If Sanop,c = Sqnti} : idxop,c + +. If
Sqnop,c # Sqnii}: idxop,c = 1 and
Sqnop,c = Sqniih,
Then it forges a batch of n authentica-
tion vectors as usual.
{aviy,

Fig. 6. Procedure after an abort.

Internal cryptographic algorithms:

In our variant, we have modified the inputs of the inter-
nal cryptographic algorithms, notably to include the sequence
number and the new value Ress. Thus, we need to provide an
update of these algorithms to consider these modifications. As
specified in specifications, the AKA protocol can be based on
the different sets of algorithms: TUAK and MILENAGE.

To preserve backwards compatibility, we propose to keep
and update these both sets. Moreover, our variant requires an
algorithm of authenticated encryption. We require to use the
well-know standard AES-GCM [9]. It is denoted AE.

Considering our modifications, we do not use the function
Fi and F3 since we have dropped the resynchronization.

The seven internal cryptographic functions takes in inputs
the following values:

— keys: the couple of the both 128-bit (or 256-bit) keys: the
subscriber key sk and the operator key skop.

— Sqn (except for the function F5): a 48-bit sequence num-
ber.

— AMF (except for the function F5): a 16-bit authentication
field management.

— R:a128-bit random value.

Achieving Better Privacy for the 3GPP AKA Protocol =—— 18

— Ress: a 128-bit (public?) value characterizing the visited
network.

We note that the function F5 behaves differently because they
do not consider the sequence number in inputs (contrary to the
currently version, where F; and F; behave differently).

Update of the MILENAGE algorithms: MILENAGE is
the original set of algorithms which is currently implemented
as detailed the specification 35.206 [1].

R Sqn||AMF|[Sqn| |AMF
|
% Temp
Tope—>f} Top.—>(} Top.—>(} Top,
! TOPcéé
[Rot,] [Rot,] [Rot,] [ot]
o =D o —>é

Temp
Temp

e =D A —>é
D Temp e%

) Temp—>% Temp —>&

l [AESg,] AESgy, [AESg]
S
Top,

AE! T
ske Topca% —)% Tope —>$ Topc—)% OPe
Pe CK 1K

To Macg Mac,

skop
AESgy,

Fig. 7. Updated Milenage.

To assure a stronger security, we also modify the
MILENAGE algorithms to output 128-bit MAC and session
keys CK and IK.

Based on the Advanced Encryption Standard (AES), these
functions compute firstly the both values Top- and Temp as
follows:

Tope = skop @ AESk, (skop),

Temp = AES« (R @ Top @ Ress).

Then, we obtain the output of the seven functions as fol-

lows:

— Output Fi: Macs = AESq (Temp @
Rot:, (Sqn||AMF||Sqn||/AMF) @ c1) @ Top,

— Output Fo: Macc = AES (Temp @
Rotr, (San||AMF||Sqn||AMF) @ c2) @ Top,

— Output F3: CK = AESq (Temp &
Rot, (San|JAMF||Sqn||AMF) @ c3) & Topg,

— Output Fy: 1K = AESg (Temp &
Rot, (Sqn||AMF||Sqn||AMF) & c4) & Top.,

— Output F5: AK = |AES (Rotr, (Temp @ Topy) @
c5) @ Tope]o..47,

with the five integers r1 = 0, ro = 24, r3 = 48, ry = 64 and
rs = 96 in the range {0, 127}, which define the number of

positions the intermediate variables are cyclically rotated by

the right, and the five 128-bit constants c; such as:

- «afi] =0,vi € {0,127}.

- c2fi] = 0,Vi € {0,127}, except that c2[127]
csli] = 0, Vi € {0,127}, except that c3[126]

- «afi] = 0,Vi € {0,127}, except that c4[125]
cs[i] = 0,Vi € {0, 127}, except that c5[124]

This is also described in the Figure 7.

Update of the TUAK algorithms: TUAK is an alterna-
tive set of MILENAGE based on the internal permutation of
the Keccak [12]. The specification TS 35.231 [2] details the
internal algorithms of this set. We update these algorithms by

only modifying the inputs of the second permutation.
As the no-updated TUAK algorithms, we compute firstly
the value Top. as follows:

Tope = I.fKeccak(SkOP”InSt”AN”0192 HKeyHPadlllHO512)J 1..256;

We note that the values AN, Inst’, Inst, Pad are the same
as used in the no-updated TUAK algorithms and Key the
(padded) subscriber key.

At this point, the behavior of the functions F5 diverges
from that of the other functions. To generate the related out-
put, we compute the value Valy and for the others ones, we
compute the value Valz which differ as follows:

Vali = fieccak (Topc ||Inst’ || AN||R||0%4||Key || Ress || Pad||10512),

Valz = fieccak (Topc | Inst’[|AN||R [AMF||Sqn || Key||Ress |Pad[|10%2).

Then, we obtain the output of the seven functions truncating
the related value as follows:

— Output Fi: Macs = | Valzo..127,

— Output F»: Macc = |Valz]256..383,

— Output F3: CK = |Valz |512..639,

— Output Fy: IK = | Vala]76s..895,

— Output F5: AK = | Vali]o..47.

This is also depicted in Figure 8.

Init:
skop Inst AN 012 skc Pad 1 052

| S S S S N A
[fieccak]

Topc

Topc Inst AN R AMF Sqn skc Ress Pad 1 0°%2 Tope Inst AN R 0% skc Resg Pad 1 0912
N S S A N S A A S N A A

ficeccalc [fieccak

) 1 1
Macs Mace ck K AK

Fig. 8. Updated TUAK

We note that the multi-output property is, as the no-
updated version, not an issue for the security of the master
key, since during one session we can have as many as four
calls to the same function with similar inputs (and a different
truncation).

Achieving Better Privacy for the 3GPP AKA Protocol =—— 19

4.2 Privacy and Security Analysis
4.2.1 Weak Client Unlinkability of our fixed variant

In this section, we prove that our fixed variant of the AKA
protocol achieves weak client unlinkability if we assume
that the internal functions assures indistinguishability, pseu-
dorandomness and unforgeability properties. The weak-client-
unlinkability resistance of our fixed variant is proved as fol-
lows:

Theorem 1. [ww-unlink — Resistance.]

Let G.{0,1}" % {0,1}% {0,1}! % {0,1}' — {0,1}"
be our unitary function described in section 4.2.1 and 11 our
fixed variant of the AKA protocol specified in section 4. Con-
sider a (t, gexec, Gid; 4G , AE, QPKE)-adversary A against the
weak privacy ww-unlink-security of the protocol 11 running
in time t, creating at most Qexec party instance, with at most g4
user identification per instance and making at most qc, qaE,
QrKE queries to respectively the functions G, AE and PKE.
The advantage of this adversary is denoted Advii* "™ (A).
Then, there exist (' ~ O(t),q' = gexec + qg)-adversary
Aiand (' ~ O(t),q' = 2+ gexec + qc)-As2 against respec-
tively the unforgeability and pseudorandomness of the func-
tion G, an (t" ~ O(t),q" = exec + qag)-adversary As
O(t), q/// —
Qexec * Gid + qpPKE)-adversaries A4 against the indistinguisha-
bility of the function PKE, (t, Gexec, Gid, 0, 0, &, gAE, GPKE)-
adversary As against the key-secrecy of the protocol Ilsuch
that:

against the ae-security of the function AE, (t"" ~

1+ (Qexec . Qid)Z

Advi" "™ (A) < Advii™(As) + —— T

+

2 2
Qexec (Qexec . Qid) mac
ORI + T oRal +nc - (3-Advg™ (A1) +

AdVET (A2) 4 4 - AdvaE (As) + Advpie “ (A1)

Proof. Our proof has the following hops:

Game Go: This game works as the ww-unlink-game stip-
ulated in section 2.

Game Gi: We modify the original game Gg to ensure
that the random values R;q and R used by honest server in-
stances are always unique. The related security loss due to the
collisions between each respective random in two different in-
stances is given by the following expression:

(Qexec . Qid)2
Q\Rid|

2
QEXGC
2IR|

‘ Pr[Ag,wins| — Pr[AleinsH < +

Game G2: The game G2 behaves as the game G1 with the
restriction consisting to abort the protocol if one of the three
following events happen:

— Event 1: The adversary A has forged the user identifica-
tion answer.

— Event 2: The adversary A has forged the authentication
challenge.

— Event 3: The adversary A has forged the authentication
response.

Briefly, we modify the original game G to ensure that the ad-
versary cannot forge these three messages. Indeed, a classic
attack permits to recover the user identity of the client from
the ability to forge any of these three messages. A such adver-
sary behaves as follows: the adversary chooses one of the both
clients (Cy or C1) related to the virtual client VC and forges a
message x related to the current transcript. During the session,
it drops the related message from the honest server and sends
the forged message. If with a such modification the session
is accepted, then the chosen client is the client to this current
session. Otherwise, the other client is the good one.

Now, focus on each event. Firstly, if the adversary wants
to forge a fresh user identification response (event 1), she has
two options: either guess the fresh temporary identifier TMSI
or an encrypted version of the permanent identifier related to
the random value Ry included in the user identification re-
quest. To guess the fresh temporary value, either it guess the
fresh one from the old previous ones or it decrypts the au-
thenticated encryption of the fresh one from the previous ses-
sion. The TMSIS are independently chosen, so they are no
way to guess the fresh TMSI from the old one, except ran-
domly, or replaying one of these previous TMSI. The proba-
bility of a such success is at least (1 + (gexec - gia)?)/2/ ™™
The ability to recover the fresh TMSI from the encrypted ver-
sion is restricted by the security of the authenticated encryp-
tion and the key-indistinguishability of the session keys. In-
deed, the fresh TMSI is sent authenticated and encrypted by
the algorithm AE, which is based on session keys and not
long-term keys. Moreover, we note that the fresh TMSI is
encrypted with the index which is predictable. So, if an ad-
versary can forge a correct output of the authenticated en-
cryption AE (i.e the related input includes a correct index),
it can impose its own temporary value and uses it for the next
user identification. So the probability of a such recovery is at
most Advii"™ (A) 4+ nc - (2 - Advaz(A)). Then, the ability
to forge a correct encrypted permanent identity is restricted
by the ability to forge a correct output of the function G with
the IMSI and without the private key. The success probabil-
ity of a such ability is nc - Advg**(\A). So the security loss
due to the ability to forge an fresh identification response is
1 eeca)® | AQUI ™ (A) e (2 AdvE (A)+AdVE™ (A)).

Now, focus on the second event involving to forge an au-
thentication challenge. We recall that a such challenge is split
in four parts: the random value R, a masked value of the cur-

Achieving Better Privacy for the 3GPP AKA Protocol =—— 20

rent sequence number val = AK @ Sqn, a message authen-
tication code mac generated by the function G which takes
in inputs the private keys keys, the random value R and the
sequence number Sqn, and the couple of the next temporary
identifier and the current index encrypted by an authenticated
encryption AE. In a fresh instance, we have two options to
forge an authentication challenge: either the adversary guesses
a fresh authentication challenge based on the current sequence
number or it replays an old challenge based on a previous used
sequence number. For the first option, the complexity to forge
a such challenge is restricted by the unforgeability of the func-
tion G. Indeed even if the adversary knows the fresh sequence
number, which is in practice masked by one-time-pad, it can-
not forge a fresh message authentication code without the re-
lated message authentication code. Moreover, we note that the
index is only implied for the second condition of the freshness
verification and the new TMSI will be only used for the next
session. With the second condition, the best option for the ad-
versary consists to replay the three first parts of the previous
authentication challenge included in an aborted session and
tries to forge an authenticated and encrypted version of fresh
index and fresh TMSI. Indeed, when a protocol is aborted after
that the server has sent the authentication challenge, the next
authentication challenge is based on the same sequence num-
ber. To forge a fresh authenticated and encrypted value, the ad-
versary chooses any non-nil value for the index value. We note
that the adversary needs to know it because a such challenge
including the index idx is considered as fresh only if there are
exactly idx previous sessions aborted by a drop of the related
authentication response. Moreover, we do not need to the cho-
sen temporary value. The ability to forge a such challenge is
restricted by the security of the chosen algorithm of authenti-
cated encryption. So, considering both conditions, the success
probability is at most nc - (AdvE (A) + Advag(A)).
Finally, we focus on the third event involving to forge an
authentication response. This value is only composed by the
value Res, which is an output of the function GG. So the success
probability is at most 7. - Advz*“(\A). Thus, we obtain

14 (CIexec . q1d)2
oITMSI]

+AVE™(A) + 3 - nc - (AdVAE(A) 4+ AdvE*(A)).

| Pr[Ag, wins] — Pr[AGQWinsH <

Game Gg3: We modify the game G3 to replace outputs
to call to the functions by truly randoms, i.e consistent values
which are independent of the input, but the same input gives
same output. We argue that the security loss is precisely the
advantage of the adversary against the pseudorandomness of
the internal cryptographic functions and the related security of

PKEand AE. It holds that:

| Pr[Ag,wins] — Pr[.AGswinsH <nc- (Advgf(A)
+Advpke < (A) + AdVAE(A)).

Winning the game G3: At this point, the adversary plays
a game which consider to recover the bit b with a whole-
randomized protocol. Assume that the adversary cannot learn
any information about the related client in a such transcript.
Thus, the adversary has only one option: guess the bit b with-
out any specific information. So we obtain the following prob-
ability of winning the game G3:

Pr[Ag,wins] = 3.

Security Statement This yields the following result:

1+ (Qexec . Qid)Q

Advﬁw»unlink(A) < Advﬁ.lnd(As) —+ 9|TMSI|

+

2 2
Gexec (Qexec : Qid) mac
SIR] + T oRal +mnc - (3-Advg (A1) +

AV (As) + 4 - AdVAE(A3) + AdvpRe “2 (Ad)).

4.2.2 Key-Indistinguishability of our fixed variant

We consider the key-indistinguishability property, denoted
K.Ind, as the guarantee that the session keys of honest ses-
sions are indistinguishable from random. In the model previ-
ously detailed in section 2.2, we consider the session ID sid of
each instance as follows: UID, IDs,, R, R4, idxc and the value
Sqnc, that are agreed upon the session. As stipulated we can
prove the key secrecy of our fixed variant of the AKA protocol,
under indistuiguishability, unforgeability and pseudorandom-
ness properties of the different internal functions. This prop-
erty is defined as follows:

Theorem 2. [K.Ind — resistance.] Let G {0,1}" x
{0,1}% x {0,1}" x {0,1}' — {0,1}" be our specified
function specified in section 4.2.1 and 11 our fixed variant
of the AKA protocol specified in section 4.2.1. Consider
a (t, Gexec, Gid Gserv, GOp, 4G » GAE, GPKE)-adversary A against
the K.Ind-security of the protocol 11, running in time t and
creating at most Qexec party instance, with at most qiq user
identification per instance, corrupting at most (sery Servers,
making at most qo, OpAccess queries per operator per cor-
rupted server, and making at most qa, gag, QPKE queries to
respectively the functions G, AE and PKE. Denote the ad-
vantage of this adversary as Advﬁ"nd(A). Then there exist a
(t' =~ O(t),qd = qc + Qexec)-mac-adversary A1 on G, a
(t, =0(1), ¢ =qc + 2" Gexec+ 5 Gserv - qOP)'p’f'ad‘}ersary
A2 0n G, a (t' = O(t),q = qc + Gexec)-ind-cpa-adversary

Achieving Better Privacy for the 3GPP AKA Protocol —— 21

Az on Ga (t' = O(t),q" = Gexec + qag)-ae-adversary As
on AE, and a (t' = O(t),q' = Gexec * Gid + qpKE)-ind-cca2-
adversary As on PKE such that:

2 2
K.Ind (Qexec : Qid) (QExec + Gserv - qop)
Advy " (A) < nc - (SRal T SIR] +

AdvE (A1) + AdvE (A2) 4 Advis® P2 (A3)
+AdVAE (A1) + AdvPC(As5)).

Proof. Our proof has the following hops.

Game Go: This game works as the K.Ind-game stipu-
lated in our security model 2.2, but including the new oracles.
The goal of the adversary Ag, is to distinguish, for a fresh in-
stance that ends in an accepting state, the fresh session keys
from random ones.

Game Gi: We modify Go to only consider the new
query Corrupt(P, type) but both games have the same goal.
We note that this new query permits to consider the corrup-
tion of the key operator independently to the corruption of the
subscriber keys. This new query behaves as follows:

Corrupt(P, type): yields to the adversary the long-term keys
of party P # S (else, if the oracle takes as input P = S,
then it outputs 1). The output of the oracle depends on
the value type € {sub,op,all}. If type = sub, then
the returned value is skp. If type = op, then the oracle

all, we return the both
values skp, skop. If type € {sub,all}, then P (and all
its instances, past, present, or future), are considered to be

returns skop. Then, for type =

adversarially controlled.

We argue that given any adversary A playing the game G
and winning w.p €4 the same adversary wins the game Go
w.p at least € 4 (this is trivial since in game G1, .A has more
information).

Pr[Ag,wins] < Pr[Ag,wins].

Game G2: We modify G; to only allow interactions
with a single client (any future UReg calls for a client would
be answered with an error symbol _L). The challenger gener-
ates only a single operator key, which is associated with the
operator chosen for the registered client and chooses a bit
b € {0,1}. We proceed as follows: for any adversary Ag,
winning the game G with a no-negligible success probability
€, » We propose to construct a generic adversary Ag, winning
the game G2 with a black-box access to the adversary Ag, .

Adversary Ag, begins by choosing a single client C. For
every user registration request that Ag, sends to its challenger,
Ag, responds as follows: if the registered client is C, then it
forwards the exact UReg query that Ag, makes to its own
UReg oracle. Else, if Ag, registers any client C* # C, Ag,

simulates the registration, generating skc~ and Sqnc-, return-
ing the latter value. Adversary Ag, also generates nop, — 1 op-
erator keys rskop+ (for all operator Op* such that Op* # Op),
and associates them with the clients as follows: the target client
C is associated with the same operator given as input by Ag, to
the UReg query (thus with the operator key skop generated by
the challenger of game G2). Let this target operator be denoted
as Op. Adversary Ag, queries Corrupt(C, op) and stores skop.

We distinguish two types of clients: the brothers of the
target client (i.e the clients which have the same operator as
the target client) and the others ones. For these latter, denoted
C*, which are registered by Ag, with an operator Op* # Op,
adversary Ag, associates Op™ with one of its generated keys
rskop+. Recall that, since adversary Ag, plays the game in the
presence of nop operators, there are nop, — 1 keys which will
be used this way. We call all clients C* # C registered by Ag,
with the target operator Op the brothers of the target client C.
Adversary Ag, associates each brother of C with the corrupted
key skop it learns from its challenger.

In the rest of the simulation, whenever Ag, makes a query
to an instance of some party C*, not a brother of C, the adver-
sary Ag, simulates the response using the values skc-, rskop+,
and the current value of Sqn. For the brothers of C, the simula-
tion is done with skc+, skop, and the current Sqn. For the target
client C, any queries are forwarded by .Ag, to its challenger.

Any corruption or reveal queries are dealt with in a similar
way. Note that Ag, cannot query Corrupt to its adversary (this
is a condition of freshness). The simulation is thus perfect up
to the Test query.

In the Test query, Ag, chooses a fresh session and
sends it to Ag, (acting as a challenger). Note that Ag, will
be able to test whether this instance is fresh, as freshness is
defined in terms of Ag, ’s queries. If Ag, queries Test with a
client other than the target client C, then Ag, aborts the sim-
ulation, tests a random, fresh instance of the client C (creating
one if necessary), and guesses the bit d, winning with probabil-
ity % Else, if Ag, queried a fresh instance of C, Ag, forwards
this choice to its challenger and receives the challenger’s in-
put. The adversary Ag, forwards the input of the challenger
to Ag, and then receives A’s output d, which will be Ag,’s
own response to its own challenger.

Denote by E;1 the event that adversary tests C in game Gy,
while E; denotes the event that Ag, chooses to test C* # C.

It holds that:

Pr[Ag,wins] = Pr[Ag,wins|Ei]-Pr[Ei] +

Pr[Ag,wins | E1] - Pr[E1]

1 . 1 1
> v Pr[Ag, wins] + 3 (1- n—c)

1 . 1 1
Z nic PI'[AGOWII"IS] + 5 . (]. — ;C)

Achieving Better Privacy for the 3GPP AKA Protocol —— 22

Note that adversary Ag, makes one extra query with re-
spect to Ag, , since we need to learn the key of the target op-
erator.

Game G3: We modify G2 to ensure that the random
values sampled by honest server instances are always unique.

This gives us a security loss (related to the respective col-
lisions between the R and R;4 in two different instances) of

(Qexec . Qid)2
2|Ri|
(Qexec + Gserv - qu)2

2IR| ’

| Pr[Ag,wins| — Pr[AGBWinsH < +

Game G4: This game behaves as the game G3 with
the restriction to only interact with only one server (any fu-
ture UReg calls for a server would be answered with an error
symbol _L). The benefices lost is the ability to obtain some
authentication vectors from corrupted servers. Such authenti-
cation vectors can either give information about the used se-
quence number and the long term keys or forge a fresh chal-
lenge replaying some parts of these vectors. We recall that the
challenge is split in four parts: a random value, a masked ver-
sion of the fresh sequence number (an one-time-pad based on
an anonymity key generated by the function G), a mac com-
puted with the function G' and an authenticated and encrypted
version of the next temporary identifier and the current index.
Moreover, we note that all the call of the function G take in in-
put a specific value of the related server, denoted IDs;. The cor-
rupted servers permit to obtain vectors based on the fresh se-
quence number but different random and different server iden-
tifier. So the related security loss is given by the collision on
two outputs of the same function G' with two different inputs
(the only differences between the both inputs are at least the
value of the network identifier) and by the indistinguishability
of the function G. We recall that the Test Phase of the game
can be only focus on a network which is or was never cor-
rupted. This give us a security loss

| Pr[Ag, wins]—Pr[Ag,wins]| < Adviy ™ (A)+AdVE(A).

Game Gs: We modify G4 to replace outputs of the in-
ternal cryptographic functions by truly random, but consistent
values (they are independent of the input, but the same input
gives the same output). We argue that the security loss is pre-
cisely the advantage of the adversary A against the pseudoran-
domness of function GG, and the security of respectively PKE
and AE. Note that the total number of queries to the related
functions are at most 2 - g and one gag and one gpke per
honest instance(thus totaling at most i + (2 + exec) queries
to the function G, gexec queries to the function PKE and gexec
queries to the function AE).

| Pr[Ag,wins] — Pr[Ag,wins]| < Advige < (A) +

AdVET (A) 4 AdVAE(A).

Winning Gs: At this point, the adversary plays a game
in the presence of a single client C. The goal of this adversary
is to distinguish a random session key to a fresh session key.
But, in game Gs, queries to G return truly random, consis-
tent values. In this case, the adversary can do no better than
guessing. Thus, we have:

Pr[Ag,wins] = =

Security statement: This yields the following result:

2 2
K.Ind (Qexec : Qid) (Qexec + Gserv - QOp)
Advy ™ (Ag,) < nc - (SIRa] + O]

FAVE (A1) + AdVET (A2) + Advi P (As3)
+AdVAE (A4) + Advg',QE(A5)).

This concludes the proof. O

4.2.3 Impersonation of our fixed variant

We present first the client-impersonation resistance proof, then
the equivalent statement for server impersonations.

Theorem 3. [C.Imp — resistance.| Let G {0,1}" x
{0,1}% x {0,1}' x {0,1}% — {0,1}" be our specified
function specified in section 4.2.1 and 11 our fixed variant
of the AKA protocol specified in section 4.2.1. Consider a
(t, Gexec, Gids Gservs QOp; 4G > GAE, GPKE)-adversary A against
the C.Imp-security of the protocol 11, running in time t and
creating at most Qexec party instance, with at most qiq user
identification per instance, corrupting at most Qser, Servers,
making at most qo, OpAccess queries per operator per cor-
rupted server, and making at most qa, QAg, QPKE queries to
respectively the functions G, AE and PKE. Denote the ad-
vantage of this adversary as Adv%lmp(.A), Then, there exist a
(t' = O(t),q = qa + 2 gexec + 5 * Gserv - qop)-prf-adversary
A1 a (t' = O(t),qd = gexec + qae)-ae-adversary Az on AE
anda (t' = O(t),qd = Qexec - Gid + QPKE)-ind-cca2-adversary
As on PKE such that:

AdvS'™ (A) < nc - (AdVE (A1) + Adva(A2)

+Ad glc(]EccaQ(Ag) + (Qexec ’qid)

2IRid]
(Qexec)2 (exec 1 (exec * qid
R T oRel Tow T gy)

Achieving Better Privacy for the 3GPP AKA Protocol =—— 23

Proof. Our proof has the following hops:

Game Go: This game works as the C.Imp-game: When A
stops, she wins if there exists an instance S; that ends in an
accepting state with session ID sid and partner ID pid such
that: (a) pid is not adversarially controlled (skpig has not been
corrupted), (b) no other instance C; exists for pid = S; that
ends in an accepting state, with session ID sid.

Game G1: We modify the game to allow the new Corrupt(P,
type) query from the previous proof. It holds that:

Pr[Ag,wins] < Pr[Ag,wins].

Game G2: We modify G; to only interact with a single client,
as in the previous proof, giving a security loss of:

= Pr[Ag, wins] + % (1= i)

Pr[Ag,wins] >
nc nc

Game G3: We now restrict the adversary to using a single
server As detailed in the key-indistinguishability proof, the re-
lated security loss is given by: This give us a security loss

| Pr[Ag,wins] — Pr[Ag,wins]| < Advpy (A).

Game G4: We modify G4 to replace outputs to calls to all the
internal cryptographic functions by truly random, but consis-
tent values, and as before, we lose a term:

— Pr[Ag,wins]| < Adv%(A) + AdviE(A)
+AdVIE“2(A).

| Pr[Ag, wins]

Game Gs: We modify G4 to ensure that the random values
sampled by honest server instances are always unique. As in
the unlinkability proof, this yields a loss of:

< (‘Iexec (I\d)

[Rig]

+ qexec

| Pr[Ag,wins] Lo

— Pr[Ag,wins]|

Winning Gs: At this point, the adversary plays a game with
a single client and server. A server instance S; only accepts
Ag,, if the latter can generate a fresh identification response
ID and an authentication response Res for some session sid.
Assume that this happens against accepting instance S; of the
server, for some target session sid. Note that the values Res and
ID computed by C; are purely random, but consistent. Thus,
the adversary has three options for each of these values: (a)
forwarding a value already received from the honest client for
the same input values, of which skc is unknown; (b) guessing
the key skc; or (c) guessing the value. The first option yields
no result, since it implies there exists a previous client instance
with the same session id sid as the client. The second option
happens with a probability of 27 Iskel The third option occurs

with a probability of 27/Resl 4+ 27110l per session, thus a total
of Gexec - (27 IR 4 gig - 271, Thus,

Pr[Ag,wins] = 27| 4 goec - (271 4 gy - 2717).

Security statement: This yields the following result:
AdvS"™ (Ag,) < nc - (AVET (A1) + Advag(Az)

H . A 2
+AdV|Fr’1|iEccaZ(AS) + (Qexec q|d)

2[Rl
(qexec)2 Qexec 1 Qexec * Qid
R toRel Ton T gmor)

Theorem 4. [S.Imp — resistance.] Let G {0,1}" x
{0,1}% x {0,1}* x {0,1}' — {0,1}" be our specified
Sfunction specified in section 4.2.1 and 11 our fixed variant
of the AKA protocol specified in section 4.2.1. Consider a
(t, Gexec, Qid, Gserv, QOp, 4G ; GAE; GPKE)-adversary A against
the S.Imp-security of the protocol 11, running in time t and
creating at most Qexec party instance, with at most qiq user
identification per instance, corrupting at most Qsery Servers,
making at most qop, OpAccess queries per operator per cor-
rupted server, and making at most qg, qag, QPKE queries to
respectively the functions GG, AE and PKE. Denote the ad-
vantage of this adversary as AdeH‘ImP(A), Then, there exist a
(t/ ~ O(t)7 q/ =qGq + 2 Qexec + 5 Gserv - qOP)'p’f'adversary
A1, a (t' = O(t),q = gexec + qag)-ae-adversary Az on AE
and a (t' = O(t),q" = Gexec - Gid + qPKE)-ind-cca2-adversary
As on PKE such that:

Qexec

1 rf
Sivacs] T 3r T Advly (A1)
+AVAE (Az2) + AdvEgg “*(As)).

Adv%‘lmp(.A) <nc- (

Proof. Our proof has the following hops:

Game Go: This game works as the S.Imp-game. The adver-
sary A wins if there exists an instance C; that ends in an ac-
cepting state with session ID sid and partner ID and pid s.t.:
(a) pid = S, (b) no instance S; exists such as S; and C; has
the same session ID sid, (c¢) C; and these partners are not ad-
versarially controlled.

Game G1: We add the new query Corrupt(P, type) as in the

previous proof, such that:
Pr[Ag,wins] < Pr[Ag,wins].

Game G2: We modify G to only interact with a single client,
as in the previous proofs, and lose:

Achieving Better Privacy for the 3GPP AKA Protocol —— 24

(1-0)

nc

[N

= Pr[Ag, wins] +
nc

Pr[Ag,wins] >
Game G3: Again, we restrict the adversary to only one server.
This give us a security loss

| Pr[Ag,wins] — Pr[Ag,wins]| < Advl (A).

Game G4: We modify G3 to replace outputs to calls to all the
internal cryptographic functions by truly random, but consis-
tent values and as before, it holds that:

| Pr[Ag,wins] — Pr[Ag,wins]| < Adv(A) + AdvAE(A)
+AdvPE= 2 (A).

Winning G4: At this point, the adversary plays a game with a
single client C;, which only accepts Ag,, if the authentication
challenge is verified for some session sid. Assume that this
happens against accepting instance C; of the target client, for
some target session sid. Note that the Macs value computed
(for verification) by C; is purely random, but consistent. Thus,
the adversary has three options: (a) forwarding a value already
received from the honest server for the same input values R;
Sqn; skop; skc, of which skc is unknown; (b) guessing the
key skc; or (c) guessing the response. The first option yields
no result since there are no collision between the transcript
of two different servers since all the servers have a different
session ID. The second option happens with a probability of
27 Isk¢l The third option occurs with a probability of 2~ M|
per session, thus a total of Gexec 9~ IMacs| hys,

Pr[Ag, wins] = 27% 4+ gerec - 271Mo51.

Security statement: This yields the following result:

Gexec 1 prf
Sivacs] + 5w +AdVG (A1)

+AdVAE (Az2) + Advie “™(As)).

Adv%’lmp(AGO) <nc- (

4.2.4 Soundness and key-confidentiality of our
fixed variant.

Theorem 5. [St.conf — resistance.] Let G and G* be
our specified functions specified in section 4.2.1 and 11
our fixed variant of the AKA protocol specified in sec-
tion 4.2.1. Consider a (t, Gexec, id, Q0p, 4G » 4G+, AE; GPKE)-
adversary A against the St.conf-security of the protocol 11,

running in time t and executing Qexec Sessions of the protocol
IT, making at most qop queries to any operator, and making
qa, 9+, GAE, QPKE queries to respectively the functions G,
G*, AE and PKEresp. qg+) queries to the function G (resp.
G*). Denote the advantage of this adversary as Advit <™ (A).
Then there exist a (t' =~ O(t),q = qc + 5 qop + 2 * Gexec)-
prf-adversary A1 on G, a (t' = O(t),q = gexec + qag)-ae-
adversary Az on AE, a (t' = O(t),q = Gexec * Gid + GPKE)-
ind-cca2-adversary As on PKE, and (' =~ O(t),q = q¢~)-
prf-adversary Ay on G* a such that:

1 1 1
Qlske| " glskop| * 2[San|

+AAVET (A1) + AdVAE(A2)
+HAdVERE “2(As)) + AdVEL (As).

AdV%tconf(A) S ne - (

Proof. Our proof has the following hops.

Game Go: This game works as the St.conf-game stip-
ulated in our security model. The goal of the adversary Ag,
is to recover at least one secret value, i.e the subscriber key
skc, my operator key skop or the subscriber sequence number
Sqnc for a fresh instance.

Game G1: We modify Go to only allow interactions
with one operator. The challenger related to the game G1 only
generates a single operator key, which is associated with the
operator chosen for the registered client. We proceed as fol-
lows: for any adversary Ag, winning the game Go with a no-
negligible success probability €g,, we propose to construct a
generic adversary Ag, winning the game G with a black-box
access to the adversary Ag, .

Adversary Ag, begins by choosing a single operator Op.
It generates nop, — 1 operator keys, denoted rskop+. Then, for
every user registration request that Ag, sends to its challenger,
Ag, responds as follows: if the request CreateCl(.) takes in in-
put the operator Op, then it forwards the same query to its own
oracle. Else, if Ag, sends a registration request based on any
operator Op™ # Op, Ag, simulates the registration, generat-
ing a subscriber key skc+ and a sequence number Sqnc+, re-
turning the latter value. Moreover, each new client registered
with the operator Op (resp. any Op*) is associated with the
related operator key skop(resp. rskop=).

We distinguish two types of clients: the brothers of the
target client (i.e the clients which have the same operator as
the target client) and the others ones. For these latter, denoted
C*, which are registered by Ag, with an operator Op* # Op,
adversary Ag, associates Op™ with one of its generated keys
rskop=.

In the rest of the simulation, whenever A, makes a query
to an instance of some party C* (from any operator except
Op), the adversary Ag, simulates the response using the val-

Achieving Better Privacy for the 3GPP AKA Protocol =—— 25

ues skc-, rskop=, and the current value of Sqnc-. For the other
clients, the query is forwarded by Ag, to its own challenger.

Any corruption or reveal queries are dealt with in a similar
way. Note that Ag, cannot query Corrupt to its adversary (this
is a condition of freshness). The simulation is thus perfect up
to the Test query.

In the Test query, Ag, chooses a fresh instance and
sends it to Ag, (acting as a challenger). Note that Ag, will be
able to test whether this instance is fresh, as freshness is de-
fined in terms of Ag,’s queries. If Ag, queries an instance C;
for the Test query ,then Ag, aborts the simulation, tests a ran-

dom tuple about any fresh instance of the client C (creating one
1 1

2lskop| ' 21Sqnc|”

Else, if Ag, sends a tuple of a fresh instance of C;, Ag, for-

wards this choice to its challenger and receives the challenger’s
output which contains the result of this game.
Denote by E; the event that adversary Ag, tests an in-

if necessary), winning with probability 2‘Slkd +

stance C; (from the chosen operator Op), while E; denotes the
event that Ag, chooses to test C;.

It holds that:
Pr[Ag,wins] = Pr[Ag,wins |E;]-Pr[Ei] +

Pr[Ag,wins | E1] - Pr[E4]

1 . 1
> — Pr[Ag,wins] + (1 - —) -
Top Nop
(1 n 1 " 2)
2lskc| 2lskop] 2!Sgnc|”

Note that adversary .Ag, makes no query with respect to
Ag,-

Game G2: We modify G to only allow interactions
with a single client (any future CreateCl(Op) calls for a client
would be answered with an error symbol). We recall that
the two adversaries Ag, and Ag, interact with clients from a
single operator key, denoted Op, which is associated with the
operator key skop. We proceed as follows: for any adversary
Ag, winning the game G with a no-negligible success prob-
ability eg,, we propose to construct a generic adversary Ag,
winning the game G2 with a black-box access to the adversary
Ag, . Adversary Ag, begins by choosing a single client C. For
every user registration request that Ag, sends to its challenger,
Ag, responds as follows: for a new client C* # C it generates
skc+ and Sqnc-, returning the latter value.

In the rest of the simulation, whenever 4g, makes a query
to an instance of some party C*, the adversary Ag, simulates
the response using the oracle of the function G* and the values
skc+ and the current value of Sqnc-. Indeed, since the adver-
sary can corrupt any operator key, she requires the oracle of
G™ permitting to simulate all the queries of the brothers of the
target client.

For the target client C, any queries are forwarded by Ag,
to its challenger. Any corruption or reveal queries are dealt

with in a similar way. Note that .Ag, cannot query Corrupt to
its adversary (this is a condition of freshness). The simulation
is thus perfect up to the Test query.

In the Test query, Ag, chooses a fresh instance and
sends it to Ag, (acting as a challenger). Note that Ag, will
be able to test whether this instance is fresh, as freshness is
defined in terms of Ag, ’s queries. If Ag, queries Test with a
client other than the target client C, then Ag, aborts the simu-
lation, tests a random tuple as the previous reduction. Else, if
Ag, queried a fresh instance of C, Ag, forwards this choice
to its challenger and receives the challenger’s which contains
the result of this game. It holds that:

1
nc,op

1
nc,op

Pr[Ag,wins] > Pr[Ag, wins] + % . (1 _

, with at most nc o, clients by operator.
Note that adversary Ag, makes no extra query with re-
spect to Ag, .

Game G3: We modify G2 to replace outputs of the in-
ternal cryptographic functions by truly random, but consistent
values (they are independent of the input, but the same input
gives the same output). We argue that the security loss is pre-
cisely the advantage of the adversary .4 against the pseudo-
randomness of functions G and G*, and related security of the
functions PKE and AE.

| Pr[Ag,wins] — Pr[Ag,wins]| < Adv(A) + Advit (A)
+AdVAE(A) + Advie <2 (A).

Winning Game G3: At this point, the adversary plays
a game with an uncorruptible single client C; in a protocol in-
cluding truly but consistent values. She wins if she can output
a tuple (Cy, sk¢, skgp, Sanc™, Sqnop,c™) such as at least one
of these values corresponds to the real related secret value of
the instance C;. Thus, the adversary has only one choice to
win this game: guessing each value. So the probability that the
adversary Ag, wins is as follows:

1 2
koo | olSan|”

Pr[Ag,wins] = Sleke]

Security statement: This yields the following result:

1 1 n 2
2|skc| 2\skop\ 2|Sqn\

+AVE (A1) 4+ Advag (A2)
+AdVERE “2 (A3)) + AdvET (Ay).

AdVSHt.conf(AGO) S ne - (+

Achieving Better Privacy for the 3GPP AKA Protocol =—— 26

We provide the following theorem about the client-
impersonation, denoted S.sound-security, of the fixed variant
of the AKA protocol.

Theorem 6. [S.sound — resistance.] Let G : {0,1}" X
{0,1}* x {0,1}* x {0,1}* — {0,1}" be our specified
function specified in section 4.2.1 and 11 our fixed vari-
ant of the AKA protocol specified in section 4.2.1. Con-
sider a (t, gexec, QOp, 4G , AE, PKE)-adversary A against the
S.sound-security of the protocol 11, running in time t and
executing Qexec sessions of the protocol, making at most qop
queries to any operator, and making qc, qaE, QPKE queries to
respectively the functions G, AE and PKE. Denote the ad-
vantage of this adversary as Adv%sou"d(/\). Then there exist
a(t = O(),d = qc + gexec)-mac-adversary Ai on G,
(t' = O(t),qd = qc + 2 Gexec + 5 - qop)-prf-adversary Az
onG,a(t' = O(t),q = g + Gexec)-ind-cpa-adversary advs
onG,a(t' =0(t),q = gexec + qaE)-ae-adversary advy on
AE and a (t' = O(t), ¢’ = qexec + qpKE)-ind-cca2-adversary
As on PKE such that:

Qexec 1 mac
9[Macs| + 27 + Advg (Al)
FAAVET (A2) 4 Advis P2 (A3)
+AdVAE (As) 4+ Advpes “2(As5)).

Adv3iseund (A) <nc-(

Proof. Game Go: This game works as the game S.sound-
game stipulated in our security model. The goal of this ad-
versary Ag, is similar as the S.Imp-game but with a different
adversary; indeed in the S.Imp-game is a MiM adversary and
in the S.sound-game, we have a legitimate-but-malicious ad-
versary.

Game Gi: We consider the game G, as the S.Imp-
game (as previously detailed) but including the specific query
Corrupt(P, type), i.e with the presence of operator keys cor-
ruption. We have used a such query in some previous security
proofs. We proceed as follows: for any adversary Ag, win-
ning the game Go with a no-negligible success probability eg,,
we propose to construct a generic adversary Ag, winning the
game G with a black-box access to the adversary Ag,,.

Both adversaries play her related game with oracles.
The following oracles are similar in the two games: Send,
CreateCl, Newlnstance, Execute, Reveal, and StReveal. So
for each query related to these oracles from the adversary Ag,,
the adversary Ag, forwards these queries to its own chal-
lenger and sends to Ag, the related answers. Now focus on
the two last oracles which can be used by the adversary Ag,:
OpAccess and Corrupt.

At first, we recall that the OpAccess in the game Gog
takes in input a client identifier and outputs, for our proto-
col, an authentication vector composed by the tuple AV =
(R, Autn, Macc, CK, IK). Simulating the answer of the oracle
OpAccess(C;), the Ag, uses the query Execute(.S, C;) (with
the server related to the legitimate-but-malicious adversary)
and Reveal(C, 1).

Now, focus on the simulation of the Corrupt answer. We
recall that we have two possible inputs: a client or an opera-
tor. In the Corrupt oracle takes in input a client, the adversary
Ag, uses its own Corrupt oracle to obtain the related answer.
If the input is an operator, Ag, needs to forge the following
values: the operator key skop, and for each client of this op-
erator the tuple (UID, skyip, stop,c). To simulate a such an-
swer, Ag, uses its specific Corrupt(C) and StReveal(C, i, 1)
for each client Cof this operator.

So at this point, the adversary Ag, can simulate any query
from the adversary Ag,. At the end of the simulation, the ad-
versary Ag, replays the impersonation’s attempt from the ad-
versary Ag,. Thus, we have:

Pr[Ag,wins] < Pr[Ag, wins].

Winning game Gi: This game follows the game G de-
scribed in the reduction proof of the theorem S.Imp. Thus, we
have :

Qexec
2|Macs|

soun: 1 mac
Advii*™*"™ (Ag,) < nc - (g T AdVE (A1)

FAAVE (A2) 4 Advis P2 (A3)
+AdVAE (As) 4+ Advpes “2(As5)).

4.2.5 Updated TUAK algorithms security

In order to prove the pseudorandomess, unforgeability and in-
distinguishability of our updated TUAK algorithms, we as-
sume that the truncated keyed internal Keccak permutation is
a good pseudorandom function. We propose two generic con-
structions to model the updated TUAK algorithms: a first one,
denoted Gak When the secret is based on the subscriber key
sk and a second one, denoted Gy, When is only based on the
operator key.

It is worth noting that the construction of the TUAK
functions is reminiscent of the Merkle-Damgard construction,
where the output of the function f is an input of the next itera-
tion of the function f. This is in contradiction with the Sponge
construction used in the hash function Keccak given the inter-
nal permutation fieccak-

Achieving Better Privacy for the 3GPP AKA Protocol —— 27

We model the truncated keyed internal permutation of
Keccak by the function f and f*:

J(K zlly, i, 5) = |freccak (Z]| K]|Y) Ji. 55
SIE 2y, 4, 5) = [fkeceak (K (127 |y7) .5,
with z € {0,1}°", K, K* € {0,1}", y € {0,1}'0%",
z* € {0,137 y* € {0,1}'%*® and 4,5 € {0,1}
with logy(t — 1) < 1600 < log,(t). We note that
VK,z,x",y,y",i,j such as x = K*||2* and y* = K]y,
we have f(K, x|y, i,75) = f*(K*,z*||y*,,7). The input =
(resp.) can be viewed as the chaining variable of the cas-
cade construction of G,k given f (resp. f¥), y (resp. y™) is
an auxiliary input of the function, and ¢ and j define the size of

the truncation. The construction Gy,ak acts as a generalization
of the specific TUAK algorithms:

Fi(skop,skc,R,Sqn, Ress, AMF) = Gyyak
= (;:Lak

Fa(skop,skc, R,Sqn, Ress, AMF) = Gk
= (;:Lak

F3(skop,skc,R,Sqn, Ress, AMF) = Gyyak
= G:uak

Fa(skop,skc,R,Sqn, Ress, AMF) = Gk
= (;:Lak

Fs (Skop» skc, R, ReSS) = Ghrak
= G

skc, inpy,0,127)
skop, inp7, 0,127),
skc, inpy, 256, 383)
skop, inp7, 256, 383),
skc, inpy, 512, 639)
skop, inp7, 512,639),
skc, inp; , 768, 895)
skop, inp?, 768, 895),
skc, inpy, 0,47)
skc,inp3, 0,47),

o~ N~ O~ A~~~

*
tuak

with:

inp; = skopl|csti||csts,, inpy = skopl|cst1||csts,

inp] = cst1||keys||csts,, inp; = cst1||keys||csts,

cst1 = Inst||[AN||0'?||(Inst’|| AN||R||AMF||Sqn),

cst3 = Resg||Pad||1]|0%2,

We define the cascade constructions Giyak and Giay
based on the function f and f* as follows:

Grak (K, val, i,5) = f(K, f(K,val;|vals, 0, 256)||valy||vals, 2, 7),
Gk (K" val™ 4, 5) = f*(f*,vali||val3, 0,256), val3|lval3, i,),

tuak

with Guak and G, from {0, 1}%x{0,1}%x{0,1}*x {0, 1}
to {0,1}", val = (valy |valy)||vals € {0,1}5'2 x {0,1}?5¢ x
{0,1}33271) val* = (valf|val3)|val; e {0,1}*¢ x
{0,1}%6 x {0,1}1988=%) two known values with n = j — i,
d = 1600 — k, kK = | K| and log,(t — 1) < 1600 < log,(t),
K asecret value and 0 < 7 < 5 < 1600.

We express the required security properties of the gener-
alization Gy,k (resp. Gt,.) under the prf-security of the func-
tion f (resp. f™). Since the construction of the two functions,
while we cannot prove the latter property, we can conjecture
that the advantage of a prf-adversary would be of the form:

Cq-t/Ty
2" 51600—m’

. . t/T
AT (A) = Adv?T(A) < a1 - W{ +c

for any adversary A running in time ¢ and making at most g
queries at its challenger. Here, m is the output’s size of our
function f and T is the time to do one f computation on the
fixed RAM model of computation and ¢; and c; are two con-
stants depending only on this model. In other words, we as-
sume that the best attacks are either a exhaustive key search
or a specific attack on this construction. This attack uses the
fact that the permutation is public and can be easily inverted.
Even if the protocol truncates the permutation, if the output
values are large, and an exhaustive search on the missing bits
is performed, it is possible to invert the permutation and re-
cover the inputs. Since the secret keys is one of the inputs as
well as some known values are also inputs, it is then possible
to determine which guesses of the exhaustive search are cor-
rect guess or incorrect ones. Finally, if the known inputs are
shorter than the truncation, false positives can happen due to
collisions and we have to filter the bad guesses. However, if
the number of queries is large enough, it is possible to filter
these bad guesses and uniquely recover the keys.

Pseudorandomness and Unforgeability of TUAK algo-
rithms. We begin by reducing the prf-security of Gyyak to the
prf-security of the function f. This implies the mac-security
of each TUAK algorithm. Recall that our main assumption is
that the function f is prf-secure if the Keccak permutation is
a good random permutation.

Theorem 7. [prf — security for Gy, ,..] Let G,k
{0,137 x {0,1}° x {0,1}%7° x {0,1}" x {0,1}* — {0,1}"
and f* : {0,1}% x {0,1}° x {0,1}% x {0,1}* x {0,1}' —
{0,1}™ be the two functions specified above. Consider a
(t,q)-adversary A against the prf-security of the function
Giyak running in time t and making at most q queries to
its challenger. Denote the advantage of this adversary as
Advartf*uak(A). Then there exists a (t' ~ O(t),qd = q)-
adversary A’ with an advantage Adv?rf(A') of winning
against the pseudorandomness of f* such that:

AdVEL (A) = AdvET(A'),

Proof. We construct the adversary A 7+ using a prf-adversary
Ag-. The latter uses Ay. as a challenger for a prf-game
Gprf(f~) and can only communicate with A ;. whereas A .
has access to a challenger for f*. To begin with, the challenger
C]’i',f chooses a bit b and a private skop € {0,1}". If b = 0, it
assigns f* to a random function and if b = 1, it assigns f* to
the specific internal function.

The adversary Ay~ waits for queries from Ag+ of the
form (m, a,b), with m = m®||m@|m® e {0,1}%, and
a,b € {0,1}" and responds as follows:

- It challenger C.?if for

(mM||m)0, 256) and receives the value Out;.

queries it inputs

Achieving Better Privacy for the 3GPP AKA Protocol =—— 28

— Then, it computes Outa = f*(Outr, m?||m® a,b).
— It returns the value Outo.

We note that the two first bullets permits to generate
G™(skop,m, a,b) = Outs. This step is repeated up to a to-
tal of q queries from A, with @ and b fixed.

At some point, A,- halts and outputs a guess d of the bit
b. The prf-adversary Ay« chooses its guess b’ as b’ = d and
forwards it to C?rf, which verifies if b = ¥'.

We analyze this simulation. Recall that the challenger
responded either with a random value (if its internal bit
b was set to 0) or with the output of the function
I*(skop, m™M||m 3,0, 256) (if its internal bit was set as 1).

Thus, the output Outs matches either the output of a ran-
dom function or the output of the function G*(sk,m, a, b). So
the prf-adversary Ay- simulates perfectly a prf-challenger of
G'. Thus, we have:

AdPT(Ape) = | PrlAp > 1[b=1]—Pr[Ap —>1[b=0]]
= |[Prp=0/[b=1]—Prlb="1'|b=0]|
= | Prb=dlb=1] - Prb=d|b=0]|
= |Prld =d|b=1] - Pr[d =d|b=0]|
= | PrlAg 5 1[b=1]=PrlAg« - 1[b=0]|
= |AdVEL (Ag-)|.
O
Theorem 8. [prf — security for Giak.] Let Gruak

{0,137 x {0,1}° x {0,1}%7¢ x {0,1}* x {0,1}* — {0,1}"
and f : {0,1}" x {0,1}¢ x {0,1}% x {0,1}' x {0,1}' —
{0,1}™ be the two functions specified above. Consider a (t,
q)-adversary A against the prf-security of the function G, run-
ning in time t and making at most q queries to its challenger:
Denote the advantage of this adversary as AdvpC;fuak (A). Then
there existsa (t' ~ 2 -t,q' = 2 - q)-adversary A’ with an ad-
vantage Adv?nc (A" of winning against the pseudorandomness
of f such that:

AdVE (A) = AdviT(A),

Proof. We construct the adversary A using a prf-adversary
A The latter uses A as a challenger for a prf-game G5
and can only communicate with A, whereas A has access to
a challenger for f. To begin with, the challenger C;rf chooses
a bit b and a private sk € {0,1}". If b = 0, it assigns f to
a random function and if b = 1, it assigns f to the specific
internal function.
The adversary A waits for queries from A of the form
(m, a,b), with m = mO|m@m® e {0,1}%, and a,b €
{0, 1}" and responds as follows:
- It challenger C?rf
(mM]m®,0,256) and receives the value Out;.

queries its for inputs

— Then, it queries CJ'Z”C for inputs (Out ||m®|m®, a,b)
and receives the value Outo.
— It returns the value Outs.

We note that the two first bullets permits to generate
G (sk,m, a, b) computing

f(sk, f(sk, mP[m®0,256)||m?||m) a, b). This step is
repeated up to a total of ¢ queries from A, with a and b fixed.

At some point, A, halts and outputs a guess d of the bit
b. The prf-adversary A chooses its guess b’ as b’ = d and
forwards it to C;rf, which verifies if b = b'.

We analyze this simulation. Recall that the challenger
responded either with a random value (if its internal bit
b was set to 0) or with the output of the function
f(sk m®M||m®,0,256) (if its internal bit was set as 1).

Thus, the output Outz matches either the output of a ran-
dom function or the output of the function G (sk,m, a,b). So

the prf-adversary Ay simulates perfectly a prf-challenger of
G. Thus, we have:

AdvPT(Ay) | PrlAf — 1|b=1] = PrlA; — 1| b=0]]
= |[Prp=0/[b=1]—Prlb=0'|b=0]|

= | Prb=db=1]—Prfp=dlb=0]|

= |Prld =d|b=1] - Pr[d =d|b=0]|

= |PrlAg > 1|b=1]-Pr[Ac - 1|b=0]|
= |AdvB ().

O

We use the generic result specified in A.1 to reduce the mac-
secure to the prf-secure of the function G.

Theorem 9. [Mac — security for Gyak.] Ler Gruak
{0,137 x {0,1}° x {0,1}%7° x {0,1}' x {0,1}* — {0,1}"
and f : {0,1}" x {0,1}¢ x {0,1}% x {0,1} x {0,1}} —
{0,1}™ be the two functions specified above. Consider a
(t,q)-adversary A against the Mac-security of the function
Ghruak, running in time t and making at most q queries to
its challenger. Denote the advantage of this adversary as
AV, (A). Then there exists a (t' ~ 2-(t+O0(n+d)),q =
2 - q)-adversary A’ with an advantage Adv?rf(A') of winning
against the pseudorandomness of f such that:

AV, (A) < A0V () + o
Indistinguishability of TUAK algorithms. We begin by re-
ducing the ind — cpa-security of Gyyak to the prf-security of
the function f. This implies the ind — cpa-security of each
TUAK algorithm. Recall that our main assumption is that the
function f is prf-secure if the Keccak permutation is a good
random permutation.

Achieving Better Privacy for the 3GPP AKA Protocol =—— 29

Theorem 10. [ind — cpa — securityofGyak.] Let Gruak :
{0,137 x {0,1}° x {0,1}%7¢ x {0,1}* x {0,1}* — {0,1}"
and f : {0,1}" x {0,1}% x {0,1}* x {0,1}' — {0,1}™
be the two functions specified in Section B. Consider a (¢,
q)-adversary A against the ind — cpa-security of the func-
tion G, running in time t and making at most q queries
to its challenger. Denote the advantage of this adversary as
Advgi::pa (A). Then there exists a (t' ~ 2 -t ¢ = 2.
q)-adversary A’ with an advantage Adv}pcrf(A’) of winning
against the pseudorandomness of f such that:

Advi— P (A) = AdvPT(A'),

Proof. To prove the ind — cpa-security of G, we reduce this
security to the prf-security of G which is defined in the proof
of the theorem 9. We show that a prf-adversary A of G
can simulate the ind — cpa-challenger Cigd_Cpa. A such prf-
adversary behaves as follows. At first, the challenger Cg'f
chooses a private key K and one random bit b € {0, 1}. If
b = 0, he assigns f to a random function and if b = 1, he as-
signs f to the specific function G. For each query (M G} a, b)
with a fixed (a,b) from the ind — cpa-adversary A’ to the
prf-adversary A the latter forwards each one to Cgf. The
answer f(K, MUY q, b) is sent to A which forwards it to
A’. Then, A’ sends a specific query containing two values
(Mo, M1) to AThe latter chooses randomly a bit d and for-
wards (Mg, a,b) to the prf-challenger. As usual, this chal-
lenger sends f(K, My, a,b) to A which forwards it to A’.

The goal of the ind — cpa-adversary is to find the bit d
chosen by the A. To do so, it can ask again some queries
(M1% a,b) as previously. Finally, it sends its guessing d’ to
A. Upon receiving this guessing, it chooses its guessing b’ of
b as follows: if d = d’, it chooses b’ = 1, else b’ = 0.

AV (A) = |Prp=V|f & G(K,.,.,.), K & {0,1}"]
—Prp=V|f & R)|
Pr[b=b'	b=1] — Pr[b=b'	b = 0]
Pr[t = 1]b = 1] — Pr[t/ = 0	b = 0]	
Pr[d’ = d	b = 1] — Pr[d’' # d	b = 0]
- AP () + 3~ 4
- |Adviad P2 ()]

In the last equality, Pr[d’ = d|b = 1] is the probability
that the ind — cpa-adversary correctly guess the bit d which
is Advii P (A’) +1/2 and Pr[d’ # d|b = 0] which is equal
to 1/2 since when b = 0, G is a random function, that is its
output is chosen independently from its inputs. Consequently,
it is not related to its inputs and the adversary cannot guess
correctly the bit d. O

4.2.6 Updated MILENAGE algorithms security

In order to prove the unforgeability and indistinguishability
properties of the MILENAGE algorithms, we assume that the
AES permutation is a good pseudo-random function.

We model the AES algorithm by the function f:

f(K,z,y) = AESk (z © v),

with =,y € {0,1}'*®, K € {0,1}". Contrary to the
TUAK algorithms, the MILENAGE algorithms do not behave
as the same way but as two different ways. Let the construc-
tion Gmji1, the generalization of the functions F1, 77, Fa, F3,
Fu and G i the generalization of the functions F5 and F3 as
follows:

Gumin (skc, inpy, 0,127
Gmili(skc, inpy, 0,127
Guii1 (ske, inps, 0,47

) = Fi(skop,skc,R,Sqn,Ress, AMF),

)

)
Gminn(ske,inpy, 0,127) =

)

)

)

= F{(skop,skc, R, San, Ress, AMF),
= Fa(skop,skc, R, Sqn, Ress, AMF),
F3(skop, skc, R, Sqn, Ress, AMF),
Fa(skop,skc, R, San, Ress, AMF),
= Fs(skop, skc, R, Ress),
= F5 (skop,skc, R, Ress),

G (ske, inps, 0, 127
Gmiiz2(skc, inpg, 0,47
Gm”g(skc, inp6, 647 111

with:

Vi € {1,...,5},inp; = skop||R||(Sqn||AMF)||Ress||c;|| s

inp = skoo||R[|Ress||cs I rs,

These both constructions are constructed as follows:
it (K, val) [a,b) = | Topg @ f(K,valy, f(K, Topg, val,)

©Rotyal, (Topc @ (valz|[valz)))a..b,
Gt (K, val® a,b) = [Tops @ f(K,valy, Rot.al_ (Topc

Of(K, Topc;valy)))a..bs
with Gminp = {0,1}%x{0,1}% x {0,1}* x {0, 1} — {0,1}",
Gmi : {0,1}" x {0,1}% x {0,1}" x {0,1}* — {0,1}",
and val = val® =
valy||valy||valy||vals, valy,valy,valy, € {0,1}'*8valy €
{0,1}%, val; € {0,1}" and Topy = val1 & f(K,val,0).

We express the security properties of the generalizations

Gminn and G 2 under the prf-security of the function f. While

va|1 Hva|2||va|3||va|4||va|5,

we cannot prove the latter property, we can conjecture that the
advantage of a prf-adversary would be of the form:

t/Ty
" 9128

s
2128’

AdV]pcrf(.A) <ca +co-

for any adversary A running in time ¢ and making at most g
queries at its challenger. Here, m is the output’s size of our
function f and T is the time to do one f computation on the
fixed RAM model of computation and c; and c» are two con-
stants depending only on this model. In other words, we as-
sume that the best attacks are either a exhaustive key search or
a linear cryptanalysis.

Achieving Better Privacy for the 3GPP AKA Protocol =—— 30

Pseudorandomness and Unforgeability of MILENAGE al-
gorithms. We begin by reducing the prf-security of G and
Gmiiz to the prf-security of the function f. This implies the
Mac-security of each MILENAGE algorithm.

Theorem 11. [prf — securityforGminandGuyp.] Let
Gmiit, Gmi2 = {0,1}%x{0,1}4x {0, 1} x {0, 1} — {0,1}"
and f: {0,1}* x {0,1}'*® x {0,1}'** — {0,1}'*® be the
two functions specified above. Consider a (t,q)-adversary
A against the prf-security of the function G (respectively
Gmiiz), running in time t and making at most q queries to
its challenger. Denote the advantage of this adversary as
AdvgfnHl (A) (respectively Advg:iI2 (A)). Then there exists a
t ~ 3-t,qd =
Adv?nc(.A/) of winning against the pseudorandomness of f
such that:

3 - q)-adversary A’ with an advantage

AdVET (A) = AdvET (A) = Advi(A)).
Proof. We construct the adversary A, using a prf-adversary
Ag, (respectively Ag,). The latter uses A, as a challenger
for a prf-game Gpf(y) and can only communicate with A,
whereas A, has access to a challenger for f. To begin with,
the challenger C}’.rf chooses a bit b and a private sk € {0, 1}".
If b = 0, it assigns f to a random function and if b = 1, it
assigns f to the specific internal function.
The adversary A waits for queries from .Ag of the form
(m, a,b), withm = m® |[m@[|[m®|m®||m® e {0,114,
and a, b € {0, 1}" and responds as follows:
— It queries its challenger C?rf for inputs (m™),02%) and
receives the value Out;.
— Then, it computes Top- = mY @ Outy and it queries
C;rf for inputs (Outy, m(®) and receives the value Outs.
— Ttqueries (m™®, Outa@rot(Out; & (m® |m®), m®))
(respectively (m™®, rot(Out; @ Outz, m®))) and re-
ceives the value Outs.
— Itreturns the value [Out; @ Outz]qp.

This step is repeated up to a total of ¢ queries from Ag, (re-
spectively A,), with a and b fixed.

At some point, Ag, (respectively Ag,) halts and outputs
a guess d of the bit b. The prf-adversary Ay chooses its guess
b as b’ = d and forwards it to C?rf, which verifies if b = b'.

We analyze this simulation. Recall that the challenger re-
sponded either with a random value (if its internal bit b was
set to 0) or with the output of the function f(sk,.,.,.) (if its

internal bit was set as 1).

Thus, the output Outs matches either the output of
the output of the function Gi(sk,m,a,b) (respectively
G2 (sk,m,a,b)) or a random function (indeed, the combina-
tion of two random functions by a boolean addition gives a
random function). So the prf-adversary A simulates perfectly

a prf-challenger of G1 (respectively G2). Thus, we have:

AV (Ag) = |PrlAs > 1[b=1]—PrlA; —1[b=0]|
= | Prb=blb=1]—-Pr[b=1¥b=0]
= | Prb=db=1]—Prfb=dlb=0]|
= | Pr[d =djb=1] - Pr[d' =d|b=0]|
= | Prldg, > 1[b=1]-PrlAg, — 1| b=0]|
= AdvE(A).

(similar computation for G2). O

We use the generic result specified in A.1 to reduce the mac-
secure to the prf-secure of the function G (resp. G2).

Theorem 12. [Mac — security for Gn,j; and Gniz.]

Let Gty Gz = {0,137 x{0,1}%% {0,1} x{0,1} —
{0,1}" and f: {0,1}" x {0, 1}'%® x {0,1}'*® — {0, 1}'*
be the two functions specified above. Consider a (t,q)-
adversary A against the Mac-security of the function G
(respectively Gi), running in time t and making at most q
queries to its challenger. Denote the advantage of this adver-
sary as Adv?s (A) (respectively Advs, (A)). Then there ex-
istsa(t' = 3-(t+O0Mn+d),qd = 3-q)-adversary A’
with an advantage Adv]pcrf(A/) of winning against the pseudo-
randomness of f such that: Advgs (A) = Advgs (A) <
AdVET(A) + .

Indistinguishability of MILENAGE algorithms. We begin by
reducing the ind — cpa-security of G i1 and G to the prf-
security of the function f. This implies the prf-security of each
MILENAGE algorithm.

Theorem 13. [ind — cpa — security of Gz and Gi.]

Let Giin, Gmitz = {0,117 x{0,1}4x{0,1}* x{0,1}* —
{0,1}" and f: {0,1}" x {0, 1}'%® x {0,1}'*® — {0, 1}'*
be the two functions specified in Section B. Consider a (t, q)-
adversary A against the ind — cpa-security of the function
Gmiin (resp. Guiz), running in time t and making at most q
queries to its challenger. Denote the advantage of this adver-
sary as Advgi;lea(A) (resp. Advgi;cPa(A)). Then there ex-
istsa (' ~ 3-t,¢ = 3-q)-adversary A’ with an advan-
tage Adv’}rf(A’) of winning against the pseudorandomness of
f such that:

Advi 2 (A) = Advgd 2 (A) = AdviT(A)),
Proof. To prove the ind — cpa-security of G (resp. G, we
reduce this security to the prf-security of G1 (resp. G2) and
then to the prf-security of the function f using the theorem 11

Achieving Better Privacy for the 3GPP AKA Protocol =—— 31

. The first reduction follows the exact lines of the proof of the
prf-security of the TUAK algorithms and we obtain:

Adv =2 (A) = Advid P (A) = Advi (A"),

4.3 Narrow-Forward Privacy is
Impossible

Our variant of AKA preserves the structure of the original pro-
tocol, but also provably attains wide-weak client unlinkability.
In this section we show that this degree of client-unlinkability
is optimal with respect to the structure of AKA. In particular,
narrow-forward privacy is impossible.

Our result covers similar ground as that by Paise and Vau-
denay [23], as we address protocols with mutual authentica-
tion. We extend the impossibility result to symmetric-key AKE
protocols which also use public-key primitives. We also ex-
plain why the original impossibility result in [23] is imprecise,
and presents some problems.

The result of [23]. Paise and Vaudenay showed an impossi-
bility result for authentication protocols — rather than AKE,;
the extension from one environment to the other is, however,
easy. In the terminology of our paper, [23] proved that server-
authentication essentially precludes narrow-forward client-
unlinkability. Their attack follows these steps: (1) the adver-
sary A creates two clients; (2) .A runs an honest protocol ses-
sion between one of them (chosen uniformly at random de-
pending on a secret bit b) and the server, but stops the last mes-
sage from the server to the client; (3) A corrupts both clients,
learning their long-term state; (4) A distinguishes between the
clients by simulating the protocol with the intercepted mes-
sage.

However, this attack makes a tacit assumption on the
client’s behaviour, namely that if a session is aborted, the state
is not updated or that it is updated in a consistent way, de-
pending on the client’s internal state. Say that upon an abort,
the client reverts to a random state; assumming that the ad-
versary cannot access the very short time-frame in which the
reversion to random is done, A only gets the random state in
response. Simulating the protocol with the received message
will not match that state, thus reducing the adversary’s success
probability to %

Another way to bypass this result is to update the client
state before the “last message” is sent to the client; if such an
update is done at every execution, the attack presented in [23]
fails. This is, however, a rather artificial twist: indeed, mutual
authentication implies that the prover must somehow identify
the server’s state as “valid” before it reaches a state which pre-
cludes it from verifying the server’s authentication.

Two new attacks. In the AKA protocol, it is the server which

first authenticates to the client. The values used in authenti-

cation are the sequence number Sqnop,c and the nonce R.

The value Sqnop,c is ephemeral, being updated at every ses-

sion; however, it is a long-term state, and compatible with the

client’s own state Sqnc. In particular, corrupting a client yields

Sqnc allowing the verifier to link the client with the corre-

sponding Sqnoy, ¢ value.

For a better comprehension of our attacks and their im-
pact, we define the following notations: we divide a party’s
state (for both clients and operators) into a static state stat.stp
and an ephemeral state eph.stp. Thus, an operator’s static state
may contain operator-specific information, such as the secret
key for a PKE scheme, but it will also include state shared
with clients, i.e. stat.stop,c for a client C. The same for the
ephemeral state eph.stg, ¢ which for the AKA protocol con-
sists of the sequence number Sqnop,c.

We propose the following attack:

— The adversary A creates two clients C and C’ with the
same operator Op and the same location LAL.

— Auses DrawCl on C, C’ and receives the handle VC, cor-
responding to either C (if the hidden bit b = 0), or C’
(otherwise).

— A runs an honest execution between the server S at LAl
and the client VC until A receives the message R, Autn =
(Sanop,c @ AK)||AMF||Macs from the server. Denote
Autn[l] := Sqnopc ¢ AK, Autn]2] = AMF, and
Autn[3] := Macs.

— Acorrupts C and learns Sqnc, skc, and skop.

— By using the values R, skc, and skep, the adversary com-
putes a value AKc and retrieves Sqn™ := Autn[1] ® AKc.
Note thatif b = 0, then AKc = AK and Sqn™ = Sqnop.c,
while if b = 1, then Sqn™ # Sqngp ¢/ with overwhelming
probability.

— The adversary verifies Macs, on input (skc, skop, Sqn™).
If this verification succeeds, the adversary outputs a guess
d = 0 for the bit b; else, it outputs 1.

For the analysis note that with overwhelming prob-
ability Macs will not verify if it was computed
for C, ie. fi(skc,skop, R, AMF,Sqnop,.cr) +
f1(skc, skop, R, AMF,Sqn™). The key vulnerability here is
that, while Sqnop,c is never sent in clear, the masking authen-
tication key AK only depends on the client’s static state. We
also use the fact that the validity of the sequence number is
confirmed by the value Macs.

While the latter factor, namely the validity of Macs cer-
tainly helps an attacker, our second attack (a variation of the
first one) does not use the MAC value at all. The attack is run
exactly in the same way, until we reach the final step. At that
point:

Achieving Better Privacy for the 3GPP AKA Protocol =—— 32

— A compares the obtained value Sqn™ with the recovered
sequence number of C, namely Sqnc, verifying if |Sqn™ —
Sqnop,c| < A. Note that in the actual attack presented
above, the client’s state Sqnc should be exactly equal to
the operator’s state with respect to that client; however,
our attack is even stronger in the sense that we do not
need to control the executions of the protocol in order to
obtain exact equality.

Analysis and Impact. Since the original AKA protocol is not
even weak-client-unlinkable, it is not surprising that this pro-
tocol is not narrow-forward unlinkable either. However, the
same attack works on our variant of the protocol and indeed,
on any other extension or improvement of the original proce-
dure which retains the characteristic of exchanging a message

of the type f(eph.sto, ¢, stat.stop,c, X) in the presence of a

function Match; or exchanging that same message together

with a message g(eph.stq, ¢, stat.stop,c,), such that:

— fisreversible and takes as input eph.stg, ¢, stat.stop,c =
stat.stc, and a set X of publicly-known variables, giving
arbitrary values in the set {0, 1}*5;

— Match takes as input two ephemeral state values eph.stc,
and eph.stg,, ¢ and it outputs a boolean value: 1if C = (o4
and 0 otherwiseg;

— g takes as input the state values eph.stg, ¢, stat.stc and
a set Y of public values, and which has the property
that, for randomly chosen x and stat.stcs it holds that
g(,stat.stop,c/, Y) # g(eph.sto, ¢, stat.stop,c, y)to

5 Practical considerations

In this section, we discuss some of our design choices for the
improvement we propose of the AKA protocol. We also pro-
vide a detailed analysis of our countermeasures and their intu-
itive effects in Appendix C.

As opposed to the proposal of van den Broek et al. [11],
we opted to continue using (TMSI, LAI) tuples for the iden-
tification phase of the protocol. This infrastructure is main-
tained strictly by servers, with no operator contribution; thus
it is efficient and inexpensive. Moreover, TMSI values and
their correspondence to the client’s IMSI is easy to find. In our

8 In our previous example, this is the string Autnl, which depends on
eph.sto, ¢ = Sqnop,c, on stat.stop c = (skc, skop), and on the ran-
dom value R which is public.

9 In our case, the Match function returns 1 if and only if |Sqnop,c —
Sanc/| < A.

10 In our example, this function is f1, and the output value is Macs.

proposal, we bypass IMSI catchers attacks by never sending
IMSIs in clear, and we add a symmetric authentication step
in the encryption, thus precluding the client-unlinkability at-
tack we found against the AKA variant of Arapinis et al. [21].
For the encryption, we use an IND-CCA public-key encryp-
tion scheme, we require a minimum PKI, only for operators.
A client only stores the public key (and certificate) of the oper-
ator it subscribes to, thus minimizing key-management prob-
lems. In the TMSI reallocation step, we add an implicit au-
thentication step, preventing Denial-of-Service-based linkabil-
ity. We also add a freshness index, which prevents replays of
challenges based on old sequence numbers.

We do specify, however, that our variant can only guar-
antee client-unlinkability if the size of the TMSI is equal to
the length of the output of the PKE scheme. This is a non-
trivial requirement, since servers are expected to keep track
of all the TMSlIs they issue; while using a shorter TMSI does
not leak anything about the IMSI value, it does allow mass-
surveillance organisms to track users down by distinguishing
between the length of the encrypted IMSI as opposed to the
TMSI length. On the positive side, servers may store TMSI
values for a shorter while, since as soon as the user leaves the
area, the TMSI is no longer useful.

Moreover, we recommend using a field of 32 bits for the
index values idxc, idxop,c. In fact, every time a session is
aborted, the index(s) is (are) increased. The only way to replay
a challenge is to previously drop 232 successive authentication
challenges, which is in our opinion hard to do. We require that
the size of all the variables (except the network variables Opjy
and Ress) is: 96 bits for a 64-bit security bound, 128 bits for
96-bit security bound and 154 bits for 128-bit security bound.

We make the assumption that clients are aware of their
current LAI, and thus avoid client-tracking by means of an
itinerary. This is not a very strong assumption, since mobile
devices are often equipped to detect their LAI. Finally, we by-
pass distinguishing attacks that exploit the re-synchronization
phase by ensuring that sequence numbers cannot be desyn-
chronized (and replays of challenges using old sequence num-
bers are prevented). Keeping in mind the practical requirement
of minimizing the communication between servers and oper-
ators, our variant ensures that operators are contacted only in
case the protocol is abnormally run or an adversary is detected.
We also simplify the rather complex AKA structure, including
only three communication phases rather than five. We depict
our countermeasures and discuss them more in detail in Ap-
pendix C.

Finally, we require to restrict the batch of authentica-
tion vectors at only one vector if the last message (sent from
the server to update the operator sequence number) can be
dropped.

Achieving Better Privacy for the 3GPP AKA Protocol

— 33

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

9]

[10]

(1]

[12]

[13]

[14]

3GPP. 3G Security; Specification of the MILENAGE algo-
rithm set: An example algorithm set for the 3GPP authenti-
cation and key generation functions 1, f1*, {2, {3, {4, f5 and
5*; Document 2: Algorithm specification. TS 35.206, 3rd
Generation Partnership Project (3GPP), June 2007.

3GPP. 3G Security; Specification of the TUAK algorithm set:
A 2nd example for the 3GPP authentication and key gener-
ation functions f1, f1*, f2, 13, f4, f5 and f5* — Document 1:
Algorithm specification. TS 35.231, 3rd Generation Partner-
ship Project (3GPP), June 2013.

3GPP. 3G Security; Technical Specification Group (TSG) SA;
3G Security; Security Architecture. TS 33.102, 3rd Genera-
tion Partnership Project (3GPP), June 2013.

3GPP. 3rd Generation Partnership Project; Technical Specifi-
cation Group Services ans System Aspects; Security related
network functions (Release 12). TS 43.020, 3rd Generation
Partnership Project (3GPP), June 2014.

J. Alwen, M. Hirt, U. Maurer, A. Patra, and P. Raykov. Anony-
mous authentication with shared secrets. In Proceedings of
LatinCrypt, volume 8895 of LNCS, pages 219—236. Springer-
Verlag, 1999.

G. Ateniese, A. Herzberg, H. Krawczyk, and G. Tsudik. Un-
traceable mobility or how to travel incognito. In Elsevier
Computer Networks, volume 31, pages 871-884. Elsevier,
1999.

C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tack-
mann. Augmented secure channels and the goal of the TLS
1.3 record layer. In Provable Security - 9th International Con-
ference, ProvSec 2015, Kanazawa, Japan, November 24-26,
2015, Proceedings, pages 85-104, 2015.

BSI. A Proposal for: Functionality classes for random number
generators. AIS 20/ AlS 31. Version 2.0 , Bundesamt fur
Sichercheit in der Informationstechnik (BSI), 2011.

David A. McGrew and John Viega. The Security and Per-
formance of the Galois/Counter Mode of Operation (Full
Version). IACR Cryptology ePrint Archive, 2004:193, 2004.
D.Strobel. IMSI Catcher. In 2007, Seminar Work, Ruhr-
Universitat Bochum, 2007.

Fabian van den Broek and Roel Verdult and Joeri de Ruiter.
Defeating IMSI Catchers. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, USA, October 12-6, 2015, pages 340-351, 2015.
Guido Bertoni and Joan Daemen and Michaél Peeters and
Gilles Van Assche. Keccak. In Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, pages 313—
314, 2013.

Jens Hermans and Andreas Pashalidis and Frederik Ver-
cauteren and Bart Preneel. A New RFID Privacy Model.

In Computer Security - ESORICS 2011 - 16th European
Symposium on Research in Computer Security, Leuven, Bel-
gium, September 12-14, 2011. Proceedings, pages 568-587,
2011.

M. S. A. Khan and C. J. Mitchell. Another look at privacy
threats in 3G mobile telephony. In Proceedings of ACISP,
volume 8544 of Lecture Notes in Computer Science, pages

(18]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

386-396. Springer, 2014.

Mihir Bellare and David Pointcheval and Phillip Rogaway.
Authenticated Key Exchange Secure against Dictionary At-
tacks. In Advances in Cryptology - EUROCRYPT 2000,
International Conference on the Theory and Application of
Cryptographic Techniques, pages 139-155, 2000.

Mihir Bellare and Joe Kilian and Phillip Rogaway. The Se-
curity of the Cipher Block Chaining Message Authentication
Code. J. Comput. Syst. Sci., 61(3):362-399, 2000.
Ming-Feng Lee and Nigel P. Smart and Bogdan Warin-

schi and Gaven J. Watson. Anonymity guarantees of the
UMTS/LTE authentication and connection protocol. Int. J. Inf.
Sec., 13(6):513-527, 2014.

Muxiang Zhang. Provably-Secure Enhancement on 3GPP
Authentication and Key Agreement Protocol. IACR Cryptol-
ogy ePrint Archive, 2003:92, 2003.

Muxiang Zhang and Yuguang Fang. Security analysis and
enhancements of 3gpp authentication and key agreement
protocol. /EEE Transactions on Wireless Communications,
4(2):734-742, 2005.

Myrto Arapinis and Loretta llaria Mancini and Eike Ritter

and Mark Ryan. Privacy through Pseudonymity in Mobile
Telephony Systems. In 21st Annual Network and Distributed
System Security Symposium, NDSS, 2014.

Myrto Arapinis and Loretta llaria Mancini and Eike Ritter and
Mark Ryan and Nico Golde and Kevin Redon and Ravis-
hankar Borgaonkar. New privacy issues in mobile telephony:
fix and verification. In the ACM Conference on Computer
and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, pages 205-216, 2012.

S. provider. Personal communication with one of europe’s
largest service providers, 2015.

Radu-loan Paise and Serge Vaudenay. Mutual Authentica-
tion in RFID: Security and Privacy. In Proc. on the 3™ ACM
Symposium on Information, Computer and Communications
Security (ASIACCS), pages 292—299. ACM, 2008.

Serge Vaudenay. On Privacy Models for RFID. In ASI-
ACRYPT '07, volume 4883, pages 68-87, 2007.

A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and J.-P.
Seifert. Practical attacks against privacy and availability in
4g/lte mobile communication systems. In Proceedings of
NDSS. Internet Society, 2016.

Ulrike Meyer and Susanne Wetzel. A man-in-the-middle
attack on UMTS. In Proceedings of the 2004 ACM Workshop
on Wireless Security, Philadelphia, PA, USA, October 1,
2004, pages 90-97, 2004.

Victor Shoup. A Proposal for an ISO Standard for Public Key
Encryption. Cryptology ePrint Archive, Report 2001/112,
2001. http://eprint.iacr.org/.

Zahra Ahmadian and Somayeh Salimi and Ahmad Salahi.
New attacks on UMTS network access. In 2009 Wireless
Telecommunications Symposium, WTS 2009, Prague, Czech
Republic, April 22-24, 2009, pages 1-6, 2009.

Achieving Better Privacy for the 3GPP AKA Protocol —— 34

A Security notions

A.1 Security notions

The security notions can be proved under known or chosen
message attacks, denoted respectively kma and cma. In this
paper, we define the security notions under the chosen mes-
sages attacks.

Pseudo-random function. A pseudo-random function (prf) is

a family of functions with the property that the input-output

behavior of a random instance of the family is computation-

ally indistinguishable from that of a random function. This
property is defined in terms of the following security game

GP:

1. The challenger C?rf chooses a bit b € {0,1}. If b = 0,
it assigns f to a random function Rand : {0,1}% —
{0,1}™. Else if b = 1, it chooses a key K € {0,1}"
and assigns f to the function f(K,.).

2. The adversary A sends one by one g messages r; €
{0, 1} to the challenger and receives f(z;).

3. Finally, A outputs a guess d of the bit b to the C;er.

We can evaluate the prf-advantage of an adversary against f,
denoted Adv?rf(A) as follows, for a random function denoted
Rand : {0,1}¢ — {0,1}™

AV (A) = | PriA — 11f & F(K), K & {0,1)7]
—Pr[A — 1|f & Rand]|,

Definition 11. ([Pseudo-Random Function.]) A family f of
functions from {0, 1}* x {0, 1}% t0 {0, 1}™ is said to be (t, q)-
prf-secure if any adversary A running in time t and making at
most q queries to its challenger C Pt cannot distinguish f from
a random function Rand with a non-negligible advantage.

IND-CPA security. A scheme is considered secure in terms
of indistinguishability (against chosen message attacks) if no
adversary can learn any information on the input of the scheme
given the output. This is formalized in terms of the following
security game (denoted G™4~P?):
1. The challenger Cif"d*pa chooses a key K € {0,1}".
2. The adversary A chooses and sends ¢1 messages x to the
challenger, which returns f(K, z).
3. A chooses two messages zo and x1 and sends them to
Cindfcpa.
f
4. The challenger chooses a bit b and returns (K, z) to the
adversary.

http://eprint.iacr.org/

5. Upon receiving f(K,xp), the adversary can adaptively
query the challenger with at most g2 messages © &
{0, z1}, to which the challenger responds with f(K, x).

6. Finally, the adversary halts and outputs a guess d of the

bit b used by the challenger.

Definition 12. (/General security of ind-cpa-scheme.]) A
scheme f is considered as ind — cpa-cpa-secure by indistin-
guishability if any adversary A running in time t and making
at most q queries to its challenger Ci]?dfc"a, given an encryp-
tion of a message randomly chosen from a two-element mes-
sage space, cannot distinguish efficiently the encryption of one
of both messages. We can evaluate the ind — cpa-advantage of
a such adversary, denoted Advi;d*Cpa (A):

AdVIT P (A) = Pr[A — 1]b + {0, 1},
K+ {0,1}", (z0,21) € {0,1}" x {0,1}%,
C — f(K,).

MAC security. A scheme is considered secure in terms of un-
forgeability (against chosen message attacks) if no adversary
can forge an acceptable message authentication code for any
chosen message. This is formalized in terms of the following
security game (denoted GM2¢):

1. The challenger C;‘c/'ac chooses akey K € {0,1}".

2. The adversary A chooses and sends ¢ messages x to the

challenger, which returns f(K, x).

3. The adversary tries to forge an acceptable output o for a
chosen input which was no a previous query and sends
the couple (z, o) to the challenger.

4. The challenger verifies if the message « was not previ-

ously requested and if f(K,z) = o. The adversary wins
this game if the both conditions are accepted. Otherwise,
the adversary loses the game.

We define the adversary’s advantage with respect to this game
as:
Adv}*(A) = PrAwins].

Definition 13. ([General security of mac-scheme.]) A MAC
construction (f,9) is considered as mac-secure by unforge-

ability if any adversary A running in time t and making

mac

at most q queries to its challenger C7*, cannot forge effi-

mac

ciently any couple (message, mac) no-forged by C*. We can

evaluate the mac-advantage We can evaluate the ind — cpa-

(A):

mac

advantage of a such adversary, denoted Advy

Adv?ac(A) = Pr[ﬁ(xq+1,7-q+1) =]_|K ﬁ {0,].}h,
Vie{l,..,q},C— (25, 75), A = (Tgt1, Tg+1)]-

Achieving Better Privacy for the 3GPP AKA Protocol =—— 35

Generic Results. As mentioned in [16], pseudorandom func-
tions make good message authentication codes. The authors
have determined the exact security of a such reduction by the
following proposal:

Proposition 1. Ler f : {0,1}" % {0,1}% — {0,1}* be a
Samily of functions. Consider a (t, q)-adversary A against the
prf-security of the function f running in time t and mak-
ing at most q queries to its challenger. Denote the advan-
tage of a such adversary Adv';rf(.A). then, there are a (t' ~
t+ O(s +d),q = q)-adversary A’ against the mac-security

of the function f with an advantage Adv7**(A") such as:

mac r 1
AdVF*(A) < AdVRT(A') + o

IND-CCAZ2 security. A cryptosystem is indistinguishable un-
der an adaptive chosen cyphertext attack if every probabilis-
tic polynomial time adversary has only a negligible advantage
over random guessing, i.e it wins the above game with a proba-
bility 1/2+ €(k), where ¢(k) is a negligible function in the se-
curity parameter k. Although the adversary knows o, 1 and
pke the probabilistic nature of the encryption function means
that the encryption of x; will be only one of many valid ci-
phertexts, and therefore encrypting xo, 1, and comparing the
resulting ciphertexts with the challenge ciphertext does not af-
ford any advantage to the adversary. The game G™9~°2 pe-
haves as follows:
1. The challenger C;{‘d_cca2 chooses a key pair (pke, ske) and
returns pke.

2. The adversary .A may perform ¢; number of encryption
oracle or decryption oracle to the challenger.

3. A submits two distinct chosen messages z¢ and x; and
sends them to C;{‘d*“az.

4. The challenger uniformly chooses a bit b € {0,1}, and
returns f(pke, zp) to the adversary.

5. Upon receiving C' = f(pke, xp), the adversary may make
further calls to the decryption oracle, but may not submit
the challenge ciphertext C'.

6. Finally, the adversary halts and outputs a guess d of the

bit b used by the challenger.

Definition 14. ([General security of ind-cca2-scheme.]) A
scheme f is considered as ind — cca2-secure by indistin-
guishability under an adaptative chosen ciphertext attack if
any adversary A running in time t and making at most q

queries to its challenger Ci]?d_cca2

, given an encryption of a
message randomly chosen from a two-element message space,
cannot distinguish efficiently the encryption of one of both
messages. We can evaluate the ind — cca2-advantage of a

such adversary, denoted Advi}‘dfcca2(./4):

Adv (A7) = Pr{Adv(AT %) - 1]b « {0, 1},
(pke, ske) < {0,1}", (zo,z1) € {0,1}% x {0,1},
C — f(pke, zp)].

AE security. An AEAD-scheme II = (K, £, D) is ae-secure
if every probabilistic polynomial time adversary has only
a negligible advantage of the following indistinguishability
game using the all-in-one formulation from [7]:

Real Idealpy
Initialization Initialization
K+ K K+ K
Oracle AE.Enc Oracle AE.Enc

Input: (N, A, M) € (N, A, M)
C « E(K,N, A, M)

Input: (N, A, M) € (N, A, M)
¢« E(K,N, A, M)

return C C + {0,1}I¢l
return C'
Oracle AE.Dec Oracle AE.Dec
Input: (N, A,C) € (N, A,C) Input: (N, A,C) € (N, A,C)
M + D(K,N,A,C) return L

return M

Fig. 9. Real and Ideal security game for AEAD-schemes.

1. The challenger Cif chooses a key K <« K and a bit
b€ {0,1}.If b = 0, it uses the encryption and decryption
functions of the model Realn. Otherwise, it uses the func-
tions of the model ldealn. These models are described in
the figure 9.

2. The adversary A may perform ¢ queries £ and D such
as for any tuples (N, A, M, A’, M), if the query C =
E(K, N, A, M) has been required, then the two queries
E(K,N,A’, M') and D(N, A, C) cannot be required.

3. The adversary A outputs its guess d of the bit b used by
the challenger.

Definition 15. ([General security of ae-scheme.]) An AEAD-
scheme 11 is a triple of algorithms 11 = (K, E, D) where K
is a randomized algorithm that samples a key K € {0,1}",
& is a deterministic algorithm that maps the key K, a nonce
N, additional data A, and a message M to a ciphertext
C, and D is a deterministic algorithm that (K, N, A, C) to
M. We assume that for all K, N, A, M € {0,1}", we have
D(K,N,AE(K,N,A,M)) = M. We consider that a such
scheme is ae-secure if any adversary A running in time t and
making at most q queries to its challenger CiT cannot success
with a non-negligible advantage. A such advantage, denoted
Advi; (A), is defined as follows:

Achieving Better Privacy for the 3GPP AKA Protocol =—— 36

Advif (A) = | Pr(A — 1|Realn) — Pr(A — 1[ldealn)|.

B Full protocol description

In the AKA protocol [3], mutual client-backend authentication
is provided using Message Authentication Codes (MAC) com-
puted by three of the TUAK algorithms, while the secret keys
are derived from a random value and a shared secret key with
a key derivation function (KDF), by means of the rest of the
TUAK functions.

The basic framework is a challenge-response stateful pro-
tocol between two main actors: the HLR (Home Network
Register) and the ME/USIM (Mobile Equipment/User Sub-
scriber Identity Module). This protocol needs an intermedi-
ate entity, the VLR (Visited Network Register), as specified
in Section 3.2. Both the ME/USIM and the HLR keep track
of counters, denoted respectively Sqnc and SqnpR; these se-
quence numbers are meant to provide entropy and enable net-
work authentication (from HLR to ME/USIM). Technically,
one can view the user’s sequence number as an increasing
counter, while the latter keeps track of the highest authenti-
cated counter the user has accepted.

The AKA protocol uses a set of seven functions: Fi, F2,
Fs, Fa, Fs, Fi, Fi. The first two are used to authenticate
a MAC answer, proving that both participants know the same
subscriber key skc and the same operator key skop. Algorithm
J1 is called the network authentication function. As its name
implies, it allows the subscriber to authenticate the network.
Furthermore, this function provides the data integrity used to
derive keys (in particular authenticating the random, session-
specific value R). Algorithm F> is called the subscriber au-
thentication function, and it allows the network to authenticate
the subscriber C by proving that the entity owns the subscriber
key skc and the operator key skop.

The following three algorithms, F3, ..., F5, are used as
key derivation functions, outputting respectively a cipher key
(CK), an integrity key (IK), and an anonymity key (AK), all
derived on input the subscriber key skc, the operator key skop,
and the session-specific random value R. Notice that the mas-
ter key skc is only known by HLR and ME/USIM, but not by
the intermediate entity VLR.

The last key, AK, is used to mask the sequence number
Sqn, but it is not part of the session keys. Its function is to
blind the value of Sqn since the latter may leak some infor-
mation about the subscriber. In order to ensure that no long-
term desynchronization occurs, the AKA protocol provides a
re-synchronization procedure between the two participants, in
which the user forces a new sequence number on the back-

end home network, using the F; and F7 to authenticate this
value much in the same way that the server has authenticated
its own sequence number and random value. Figure 10 details
the challenge-response of AKA procedure.

The operator key.. Subscribers to the same operator all share
the operator’s own secret key, in practice a 256-bit integer.
This value is not directly stored on the phone, but rather an
intermediate value, obtained by running the internal Keccak
permutation on input skep and several constants, is embedded
in the SIM card. Thus, whereas this value enters in all future
runs of the cryptographic algorithms, it is never stored in clear
on the user’s mobile.

Identification. Globally, the procedure starts with the identi-
fication of the ME/USIM to VLR when the user equipment
switches on. At first, the mobile equipment receives a user
request from the VLR and then responds in cleartext, with
a temporary identity, called TMSI, which is known by the
ME/USIM and VLR. A TMSlis a local number and its con-
struction is specified in the technical specification 23.003 [ref].
This value can be used only in a specific given area: the TMSI
is always accompanied by the Location Area Identification
(LAI) to avoid ambiguities. The VLR (globally the network)
manages suitable data based which keeps the relation between
the IMSIs and the TMSIs. A new TMSI must be allocated at
least in each location updating procedure, i.e when you use
a TMSI we need to replace it by a fresh value. So the mo-
bile station de-allocates the old value and allocates the fresh
temporary identity from the VLR. We note that this value
need to be store in a non volatile memory with its LAI in
order to they are not lost when the ME/USIM switches off.
When the ME /USIM receives a user identity request from the
VLR, it sends its TMSI, ||[LAI. When it receives its value, the
ME/USIM verifies if the LAI matches the current ME/USIM.
If it is not the case, it starts a Local TMSI| Unknown Proce-
dure. Otherwise, it tries to recover the corresponding perma-
nent identity using its suitable data based to accept the identi-
fication. If a such value cannot be recover, it sends a Perma-
nent Identity Request to the ME /USIM which answers with its
IMSI. All these flows are exchanged in cleartext.

Local TMSI Unknown Procedure: As we said previ-
ously, if the LAI does not match the VLR, a Local TMSI Un-
known Procedure has been engaged. Globally, it askes to the
previous VLR the relation with its TMSI. Then, either its re-
ceived the corresponding IMSI or a "error message" implying
a Permanent Identity Request to the mobile station.

Permanent Identity Request: In some cases, notably
when the user cannot be identified with any temporary iden-
tity, the identification of a user on the radio path by means
of the permanent subscriber identity, called IMSI. This basic
procedure is sum up in the following figure:

Achieving Better Privacy for the 3GPP AKA Protocol =—— 37

The request and its answer are sent in cleartext. The pro-
cedure is used too when the user registers for the first time in
a serving network.

Challenge-Response. After receiving the IMSI the HLR gen-
erates a fresh sequence number Sqn and an unpredictable vari-
able R. By using the subscriber’s key skc and the correspond-
ing operator key skop, it then generates a list of n unique au-
thentication vectors AV composed of five strings: R, Macc,
CK, IK, Autn. For every authentication vector, the sequence
number is updated. The update procedure depends on the cho-
sen method. The specifications feature a first method which
does not take into account the notion of time, and which ba-
sically increments by 1 the most significant 32-first value of
the sequence number. A second and third subsequent methods
feature a time-based sequence number update based on a clock
giving universal time [3]. The authentication vector is gener-
ated as follows:

Macs <+ Fi(skc,skop, R,Sqn, AMF),
Macc <+ Fa(ske,skop, R),

CK <+ F3(skc,skop, R),

IK <« Fa(skc,skop, R),

AK «+ Fs(skc,skop, R),
Autn <+ (Sqn @ AK)||AMF||Macs,

where Macs is the message authentication code of the network
by the subscriber, Macc is the message authentication code of
the subscriber by the network and AMF the authentication and
key management field (which is a known, public constant).

The HLR sends the list of the authentication vectors AV
to the VLR. This list may also contain only a single authenti-
cation vector. Upon the reception and storage of these vectors,
when the VLR initiates an authentication and key agreement,
it selects the next authentication vector from the ordered ar-
ray and stores Macc and the session keys CK and IK. Then, it
forwards (R, Autn) to ME/USIM.

The ME/USIM verifies the freshness of the received au-
thentication token. To this end, it recovers the sequence num-
ber by computing the anonymity key AK which in its own
turn depends on three values: skc , skop, and the received R,
Then, the user verifies the received Macs computing 1 (skc ,
skop, R, Sqn , AMF) with the received value R and the Sqn.
If they are different, the user sends authentication failure mes-
sage back to the VLR and the user abandons the procedure. In
case the execution is not aborted, the ME /USIM verifies if the
received Sqn value is in a correct range relatively to a stored

Achieving Better Privacy for the 3GPP AKA Protocol

— 38

Client
(skc, skop, Sqnc)

VLR

HLR
(skc, skop, Sanop,c)

User identity request

User identity answer

TMSI,|[LAI

@

Auth. vectors request

Auth. vectors
{aviyr

Auth challenge
R{i}”Autn{i}

@

Auth response

e

®

Instructions:

Client

VLR

HLR

@: Compute AK using R{7}.
Recover Sqn %} (from AK).
Check Macs value.

@: Verify if the LAl matches the VLR. Otherwise Local
TMSI Unknown Procedure. Then, if it retrieves the IMSI
corresponding to the T'M S1,,. Otherwise, it sends a Per-
manent Identity Request.

®:Foreachi:1,...,

Generate R{}. Compute: Sqn{#} « inc(Sqnop,c)
Macl™ « F1 (skc, skop, RUY, Sqn {1}, AMF),
} Fp(ske, skop, RTIY),

{
Macg

n, compute:

If Sqn € (Sanc, Sanc + A):
Compute:
CK « F3(skc, skop, R}, Sqn it AMF),
IK « Fa(skc, skop, R11}, SqntH, AMF),
Set Res := Fa(skc, skop, RU71).
Update Sqnc := Sqntil,

Else re-synchronization

@: Res 2 Macc.

@: Store {AV{iH}n .

Choose AV{i} one by one in order.
Then it sends the related challenge.

ekl F3(ske, skop, R{i}),

KT}« Fa(ske, skop, RUD),

AKU} Fy (ske, skop, RTD),

Autn{} (Sqn{i} @ AK{), AMF, Macl’.
AV} = RU}, K} 1KY, Autn (i}, Mact™, with
Sqnop,c = Sqn“).

End For.

Fig. 10. The AKA Procedure.

ME/USIM VLR, /SGSN VLR,/SGSN

User identity request
TMSIo LAY

Thst,

Resp

If Resp contains an IMSI, it accepts
the identification. Otherwise, Resp con-
tains an "error message” and it sends a
Permanent Identity request.

Permanent idenity request

st

ACCEPT.

Fig. 11. Local TMSI Unknown Procedure

ME/USIM VLR/SGSN

Permanent identity request
st

ACCEPT.

Fig. 12. Identification by the permanent identity.

value Sqnc L. If the Sqn is out of range, the user sends a syn-

11 The sequence number Sqn is considered to be in the correct range
relatively to Sqnc if and only if Sqn € (Sqnc, Sqnc + A), where A is
defined by the operator.

chronization failure message back to the VLR, which triggers
a re-synchronization procedure, depicted further in Figure 13.
The Macg value does not only ensure integrity, but also
the authentication of the network by ME/USIM. If the two
previous verifications are successful i.e if the received au-
thentication token is fresh, the network is authenticated by
the ME/USIM. Then, the ME/USIM computes CK, IK and
Res + F2(skc, skop, R). To improve efficiency, Res, CK, and
IK could also be computed earlier, at the same time that AK is
computed. Finally, the user sends Res to VLR. If Res = Macc,
the VLR successfully authenticates the ME /USIM. Otherwise,
the VLR will initiate an authentication failure report procedure
with the HLR. Note that the verification of the sequence num-
ber by the ME/USIM will cause the rejection of any attempt
to re-use an authentication token more than once.
Re-synchronizing. The re-synchronization procedure is
used when the subscriber detects that the received sequence
number is not in the correct range, but that it has been cor-
rectly authenticated. The single goal of this procedure is the re-

initialization of the sequence number, and does not imply im-
mediately any mutual authentication or key agreement (rather
it triggers a new authentication attempt).

Indeed, the ME/USIM sends an synchronization failure
message, consisting of a parameter Auts, with

Auts = (Sqnc @ AK™)||Mac™,

where the key is computed as AK* = F3 (skop, skc, R) and
Mac™ = F7 (skop, skc, R, Sqnc, AMF).

The F7 algorithm is a MAC function with the additional
property that no valuable information can be inferred from
Mac”* (in particular this function acts as a PRF). Though simi-
lar to F7i, the F7 algorithm is designed so that the value Auts
cannot be replayed relying on the output of 7. Furthermore,
the anonymity key generated by the client in the resynchro-
nization is obtained via the F7 algorithm rather than by Fs,
even if the same random value R is used.

Upon receiving a re-synchronization failure message, the
VLR does not immediately send a new user authentication re-
quest to the ME/USIM, but rather notifies the HLR of the
re-synchronization failure, sending the parameter Auts and
the session-specific R, When the HLR receives this answer,
it creates a new batch of authentication vectors. Depending
on whether the retrieved, authenticated Sqn indicates that the
HLR’s sequence number is out of range or not, the back-
end home network either starts from the last authenticated se-
quence number, or updates the latter to the user’s sequence
number.

More precisely, the HLR retrieves the Sqnc by comput-
ing F3 (skc, skop, R) @ [Auts]4s. Then, it verifies if the incre-
mented Sqny g is in the correct range relatively to Sqnc. If
the Sqnyr verifies this property, it sends a new list of authen-
tication data vectors initiated with Sqny_r else HLR verifies
the value of Mac*If this step is successful, it resets the value
of SqnyLr to SqnyLr := Sqnc and sends a new list of au-
thentication data vectors initiated with this updated Sqngg.
This list may also contain only a single authentication vector.
Figure 13 details this re-synchronization procedure.

Re-allocation of the TMSI. At the end of the key derivation,
the both entities (ME/USIM and VLR) need to be update with
a fresh value. To allocate a fresh value, denoted TMSI,,, the
VLR generates this value in the same LAI 2. Only after a suc-
cessful identification based on the old TMSI, and a successful
key setting permitting to share the ciphering key CK (by the
AKA protocol). The VLR forges the new TMSI,, and sends

12 They are not recommended methods to generate the TMSI as the spec
23.003 ("the structure and coding of it can be chosen by agreement be-
tween operator and manufacter in order to meet local needs"). They pro-
vide only one advice (some parts of the TMSI may be related to the time)

Achieving Better Privacy for the 3GPP AKA Protocol =—— 39

it to the ME/USIM in a ciphered mode by A5/3 algorithm

(globally an encryption with KASUMI more details in annex

C and section 4.2 in TS 43.020) based the derived key CK.

The ME/USIM recovers with the key CK the new TMSlI,, and

stored it and de-allocate TMSI,. Then the ME/USIM sends

an "acknowledge message" in cleartext to prevent its alloca-
tion. After receiving this message, the VLR de-allocates the

TMSI, and stores TMSI,,. If the VLR does not receive a such

message, the network shall maintain the association between

the old TMSI and the IMSI and between the new TMSI and
the IMSI. For the next identification, the mobile station can
used the both TMSI (TMSI, and TMSI,,). This will allow the
network to determine the TMSI stored in the ME/USIM; the
association between the other TMSI and the IMSI shall then be
deleted, to allow the unused TMSI to be allocated to another

ME/USIM.

Milenage algorithms: MILENAGE [1] is a set of algo-
rithms which aims to achieve authentication and key gener-
ation properties. As opposed to TUAK which is based on
Keccak’s internal permutation, the MILENAGE algorithms
are based on the Advanced Standard Protocol (AES).

The functions F;" and F5 must provide authentication
while the functions F3, F;i and JFi are used to derive
key material in order to achieve confidentiality, integrity and
anonymity. The different parameters of these functions are:

— Inputs: skop a 128-bit long term credential key that is fixed
by the operator, a 128-bit random value R , a 48-bit se-
quence number Sqn and a 16-bit authentication field man-
agement AMF chosen by the operator (the last two values
are only used for the MAC generation). We denote that
the subscriber key skop is a private key shared by all the
subscriber of the same operator. Consequently, we do not
consider skop as a private key.

— A 128-bit subscriber key skc shared out of band between
the HLR and ME/USIM.

— Five 128-bit constants cy,c2,c3,c4,¢5 Which are Xored
onto intermediate variables and are defined as follows:

- «ali =0,vi € {0,127}.

- c2[i] = 0,Vi € {0,127}, except that c2[127] = 1.

- c3[i] = 0,Vi € {0,127}, except that c3[126] = 1.

- c4li] = 0,Vi € {0,127}, except that c4[125] = 1.

- csli] = 0,Vi € {0,127}, except that c5[124] = 1.

— Fiveintegers ri,ra,r3,ra,rs in the range {0, 127} which de-
fine amounts by which intermediate variables are cycli-
cally rotated and are defined as follows: ri = 64;ry =
0; r3 = 32; rqg = 64; rs = 96.

The generation of MAC’s or derived key starts similarly by
initializing a value Top.. To do so, one applies a first called
of the well-known function AES on inputs the operator and

Achieving Better Privacy for the 3GPP AKA Protocol =—— 40

Client VLR HLR
(skc, skop, Sanc) (skc, skop, SANHLR,C)
Auth. Challenge
R||Autn
Resynchro. Request
Auts
Resynchro. Request
R||Auts
Auth. Vectors
R{} || Autnli}
Instructions:
Client VLR HLR

@3 Compute the value AK with the value R. @: Compute the value AK* with the value R.
Recover Sqn with AK. Recover Sqnc with AK*.
Check if the received Macs is correct.
Check if Sqn is in the correct range related to the stored Check if the incremented Sqnyir.c is in the correct
Sqnc. @: Add the R value. range related to Sqnc.
Re-synchronization Procedure: If it is not the case and if only the received Mac* is cor-

rect, then Sqnyir,c + Sqnc. Otherwise, it aborts the
Compute AK* < F7 (skop, skc, R) and procedure. It sends a new list of authentication data vec-
Mac* < F(skop; skc, R, Sanc, AMF). tors initiated with Sqnr,c.
Forge Auts = (Sqnc & AK*)|[Mac*).

Fig. 13. The re-synchronization procedure of AKA protocol.
subscriber keys such as: This is also described in figure 14

Tope = skop @ AESek. (skop)

. We recall that, AES i (M) denotes the result of applying the
Advanced Encryption Standard encryption algorithm to the

128-bit value M under the 128-bit key K. Then, we compute T . T Topr_ijp Topr_T:mp

the following values taking as input Sqn, R, AMF and others]

constants: [Fotwe] [fotws] [Fotns] [Rotes]

— Temp = AESq (R & Top,), . R S o =8

— Out; = AESg. (Temp®Rot,, (Sqn||AMF||Sqn||/AMF)4 [AESSkC] [AEsskc] [AEs%] [AESskc]
c1) @ Tope,

— Outz = AES«.(Rot,, (Temp & Top) @ c2) & Top,
— Outs = AES« (Roty, (Temp & Top) @ c3) & Top,
— Outy = AES« (Roty, (Temp & Top) @ ca) & Top,
— Outs = AES« (Rotr, (Temp@® Tope, r5) B ¢s) ® Top.

'l'opc—)é TopCA% Topcq% TDPCA,%

CK 1K AK*

All the outputs of the MILENAGE algorithms are computed as Fig. 14. MILENAGE diagram.

follows:

— Output F1: Macc = |Outi]o..63, TUAK algorithms:

— Output F7': Mac™ = |Outi]64..127, TUAK [2] is a set of algorithms which aims to achieve
— Output F3: Macs = [Outz]64..127, secure mutual authentication and key generation properties.
— Output F3: CK = Outs, The TUAK algorithms are based on the TUAK permutation,
— Output 74: IK = Outy, which in turn relies on a truncation of the internal permu-
— Output F5: AK = |Outz]o. 47, tation function of Keccak. Moreover, for efficiency reasons,

— Output F3: AK* = |Outs]o. 47,

only one or two iterations of the internal TUAK permutation,

fKeccak[1600], is used.

The functions F (respectively F7) and F> must provide
authentication while the functions F3, F4 and F5 (respectively
F%) are used to derive key material in order to achieve confi-
dentiality, integrity and anonymity. The different parameters
of these functions are:

— Inputs: skep a 256-bit long term credential key that is
fixed by the operator, a 128-bit random value R, a 48-bit
sequence number Sqn, and a 16-bit authentication fie'
management AMF chosen by the operator (the last ty
values are only used for the MAC generation). We denc
that the subscriber key skop is a private key shared by
the subscriber of the same operator.

— A subscriber key skc shared out of band between the Hl
and ME/USIM allows to initialize the value Key:

— If |skc| = 128 bits, then Key + skc[127..0]||0"%%.

— If |skc| = 256 bits, then Key < skc[255..0].

— Several public constants:

— AN: a fixed 56-bit value 0x5455414B312E30.

— Inst and Inst’ are fixed binary variables of 8 bits,

specified in [2] and different depends on the func-
tions and the output sizes.

The generation of MAC’s or derived key starts similarly by
initializing a value Top. To do so, one applies a first fkeccak
permutation on a 1600-bit state Val; as follows:

Val; = skop||Inst||AN||0'%2||Key]||Pad||1]|0°*?,

where Pad is a bitstring output by a padding function. The
value Top corresponds at the first 256 bits of this output.

At this point, the behavior of the functions F; and F7 di-
verges from that of the other functions. To generate the MAC
value of F1 and F7, we take as input Sqn , AMF and R, three
values chosen by the HLR and some constants. After the gen-
eration of Top., we initialize a second state, namely,

Valy = Top,||Inst’[| AN||R||AMF||Sqn ||Key||Pad||1[0°"2.

Then, one applies the TUAK permutation on Vals. Next
only the first 64 bits are used to compute the Macs value. To
generate derived keys and the response of 2, one initializes a
second state for this function, too, namely,

Valy = Top,||Inst’[AN[|R||0%||Key||Pad||1]|0°*%.

Then, the TUAK permutation is applied on Valz and one
obtains the value Out. Finally, one derives the response Macc
and the derived keys from the resulting Out:

Achieving Better Privacy for the 3GPP AKA Protocol =—— 41

Macc = [Out]jg_1.0,¢ € {16,32,64,128},
cK |Out|256..384 and |CK| = 128,
IK = |Out]s12.640 and |IK| = 128,
AK = [Out]7es.s16 and |AK| = 48.

This is also depicted in Figure 15.

Topc Inst’ AN R AMF Sqn skc Pad 1 0% Topc Inst AN R 0% sk¢ Pad 1 0512
N Y S A A A S S S S A A A A

freccak])

fiteccak

Macg Macg CK 1K AK

Fig. 15. TUAK diagram.

The way the output of the functions is truncated and used
is the reason why TUAK is called a multi-output function. This
notion is one of the main differences with MILENAGE and
has a no-negligible impact on the efficiency of TUAK, as it
saves a few calls of the internal function. However, this multi-
output function property can be an issue for the security of the
master key. Indeed, during one session we can have four calls
of the same function with similar inputs but with a different
truncation. Having different chunks of the same global 1600-
state (called Out in our description)) can permit to recover
the long-term key skc by the reversibility of the TUAK per-
mutation. The union of all the different chunks provided dur-
ing one session, gives at most only 432 bits on the 1600 bits.
Thus, having multiple ooutputs may be hazardous in general,
the Keccak based construction of TUAK allows this without
compromising the long-term parameters.

C Evaluation

In proposing our variant of AKA we explicitly or implicitly
addressed several attacks. We discuss these below, referring
the reader to Figure 16 for a better overview.

Server Corruptions : The original AKA protocol only offers
a degree of key-indistinguishability and impersonation se-
curity, only in the absence of server corruptions. Since
servers are trusted to run the authenticated key-exchange
step, corrupting a server compromises any security of a
channel this server establishes; however, in the AKA rou-
tine, this flaw is exacerbated, since the corruption results
can be re-used later in non-vulnerable areas. This is an

Achieving Better Privacy for the 3GPP AKA Protocol —— 42

Client sends encrypted IMSI

Added countermeasures Cost Attacks it Prevents Attack Impact
- Needs IND-CCA PKE Cliont Comfidontint Trace many users
. ient Confidentiality:
S_ﬂi;g”g&?r‘(om on - Parallelizable
- Si y op- .)
- Passive/Active
erators) (IMSI Catchers)

Large TMSI size

Distinguish TMSI/IMSI msg.

Trace 1 user:
- Non-parallelizable
- Active only

Client unlinkability:

Authenticate TMSI realloca-

.) New reallocation alg.
tion (see also: index) 9

Client unlinkability: Trace many users
- Parallelizable

(Denial-of-Service) - Active only

Trace 1 user
- Non-parallelizable
- Active only

Client unlinkability:

Distinguish TMSI/IMSI

Index idxc, idxg New 1-bit state variable

Prompt resynch, distinguish

Trace 1 user
- Non-parallelizable
- Active only

Client unlinkability:

Challege is un-replayable

S.Imp-resistance: Impersonate servers
- Parallelizable

- Active only

- New server identifier

Introducing Ress - Changed crypto algs.

S.Imp-resistance

k.ind-security

Break sec. channel

- Parallelizable
- Needs corruptions
- Active only

S.sound-security

(Server Corruptions)

- Clients must know LAI

Use only current LAI .
y - Clients store Resg

Trace 1 user per LAI
- Non-Parallelizable
- Passive

Location privacy:

(Track past LAI)

active, and rather complex attack, but it is highly paral-
lelizable and has a great security impact. To mitigate this
risk, we added a server-specific, unique, publicly-known
identifier Ress, which is now given as input to all the cryp-
tographic functions.

Client Confidentiality : IMSI catcher attacks compromise

the client’s identity in a direct way (the adversary learns
a static identifier). This attack can be run (with a re-
duced success probability) even by passive attackers, and
it is highly parallelizable. The consequence is that mul-
tiple clients can be tracked simultaneously in a mass-
surveillance operation. We mitigate such risks by ensur-
ing that no static identifier is leaked through, by using a
PKE scheme, in which only the operators have secret and
public keys.

Fig. 16. Assessment of our AKA variant: cost and effect of coutermeasures.

Client Unlinkability : Even if the adversary cannot track a

user back to a permanent identifier, she can still try to dis-
tinguish between two chosen users, e.g. by causing some
unusual protocol steps. Attacks like distinguishing be-
tween two different failure messages (which are actively
triggered by the adversary), injecting a message and then
seeing its effect in a protocol run (which is accepted if
the chosen client is compatible with the injected message,
and rejected otherwise), or distinguishing between mes-
sages of distinct lengths allow client linkability. While not
as versatile, nor as parallelizable as client confidentiality
attacks, these threat nevertheless allow an insidious ad-
versary to track a user that is singled-out for mass surveil-
lance. In our variant, we make protocol executions for dif-
ferent users indistinguishable from one another, at the cost

Achieving Better Privacy for the 3GPP AKA Protocol =—— 43

of larger TMSI values, a new index variable, using IND-
CCA PKE encryption, and making the operator intervene
in the case of an error.

Denial of Service : Apart from being a mean of breaking
client-unlinkability, DoS attacks can also facilitate IMSI
catchers, and add to the complexity of the AKA proce-
dure. One way of causing a DoS in the original protocol
is to send a random string as a replacement for the TMSI
reallocation message. The client will parse this as a differ-
ent TMSI than the intended one, and thus the server will
need to request the user’s IMSI in clear. We mitigate DoS
attacks by using authenticated encryption for the TMSI
reallocation and ensuring that no desynchronizations can
occur.

Itinerary tracking : One disadvantage of AKA is that the
client’s past location is revealed during the protocol, al-
lowing to track up to 1 user per LAl at any one time. We
bypass this difficulty by only using current LAI values.

	Achieving Better Privacy for the 3GPP AKA Protocol
	1 Introduction
	2 Privacy model
	2.1 3GPP Privacy requirements
	2.2 Security models
	2.2.1 Client Unlinkability
	2.2.2 Key-indistinguishability and Impersonation
	2.2.3 Further security notions: Security w.r.t. servers

	3 The AKA protocol
	3.1 Notations
	3.2 Description of the AKA protocol
	3.3 Some Privacy breaches in AKA
	3.3.1 Linkability of failure messages
	3.3.2 Operational difficulties with TMSI

	4 Our proposal: PrivAKA
	4.1 Description of our variant
	4.2 Privacy and Security Analysis
	4.2.1 Weak Client Unlinkability of our fixed variant
	4.2.2 Key-Indistinguishability of our fixed variant
	4.2.3 Impersonation of our fixed variant
	4.2.4 Soundness and key-confidentiality of our fixed variant.
	4.2.5 Updated TUAK algorithms security
	4.2.6 Updated MILENAGE algorithms security

	4.3 Narrow-Forward Privacy is Impossible

	5 Practical considerations
	A Security notions
	A.1 Security notions

	B Full protocol description
	C Evaluation

