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Abstract: ASCON is an authenticated encryption algorithm which is recently qualified for the second-round of the Com-
petition for Authenticated Encryption: Security, Applicability, and Robustness. So far, successful differential,
differential-linear, and cube-like attacks on the reduced-round ASCON are provided. In this work, we pro-
vide the inverse of ASCON’s linear layer in terms of rotations which can be used for constructing impossible
differentials. We show that ASCON’s S-box contains 35 undisturbed bits and we use them to construct 4 and 5-
round truncated, impossible, and improbable differential distinguishers. Our results include practical 4-round
truncated, impossible, and improbable differential attacks on ASCON. Our best attacks using these techniques
break 5 out of 12 rounds. These are the first successful truncated, impossible, and improbable differential
attacks on the reduced-round ASCON.

1 INTRODUCTION

The Competition for Authenticated Encryption: Se-
curity, Applicability, and Robustness (CAESAR) is
an ongoing cryptographic competition where authen-
ticated encryption schemes are challenging. The first
round of the competition had 56 ciphers and recently
on 07.07.2015 it was announced that 29 of them qual-
ified for the second round. It is expected that the third
round candidates will be announced around June 2016
and a final portfolio will be announced at the end
of 2017. However, these dates are tentative because
cryptanalysis effort required to analyze candidates is
unpredictable.

ASCON (Dobraunig et al., 2014) is one of the au-
thenticated encryption schemes that made it to the
second round of the CAESAR competition. Un-
til now, this cipher is successfully analyzed against
differential, differential-linear, and cube-like attacks.
Currently the best key recovery attack on this scheme
breaks 6 out of 12 rounds and the best forgery attack is
on 4 rounds. Although the designers analyze ASCON
for impossible differential attacks, they only achieve
a 5-round impossible differential for the permutation.
It can be used to distinguish the ASCON permutation
from a random permutation but it cannot be used di-
rectly in a key recovery or forgery attack.

In this work, we first analyze ASCON’s S-box and

provide its undisturbed bits which can be used to con-
struct longer truncated, impossible, or improbable dif-
ferentials. Then we analyze ASCON’s linear layer.
We prove that its invertible and provide its inverse
in terms of XOR of rotations of binary words. Then
we analyze the security of ASCON against truncated,
impossible, and improbable differential cryptanalysis
and provide the first attacks which use these tech-
niques. We provide truncated differential key recov-
ery attacks on 4 and 5 rounds, impossible differential
attacks on 4 rounds, and improbable differential at-
tacks on 5 rounds of ASCON. Moreover, we provide
5 round truncated, impossible, and improbable dif-
ferential distinguishers which requires much less data
when compared to the impossible differential distin-
guisher of the designers.

This paper is organized as follows: In Sect. 2, we
describe ASCON and summarize the previous crypt-
analysis results on this cipher. In Sect. 3, we analyze
ASCON’s S-box and provide its undisturbed bits. In
Sect. 4, we prove that the linear layer of ASCON is
invertible and provide its inverse in terms of rotations.
In Sect. 5, we provide the first truncated, impossible,
and improbable differential key recovery attacks on
ASCON. We conclude our paper in Sect. 6.



2 ASCON

2.1 Design

ASCON is an authenticated encryption scheme that
is submitted to ongoing CAESAR competition and it
qualified for the second-round. It is a substitution-
permutation network and it is based on a sponge-like
construction with a state size of 320 bits. ASCON’s
mode of operation is based on MonkeyDuplex (Dae-
men, 2012).

The initial design of ASCON, which is referred to
as v1.0, supported two key lengths, 96 and 128 bits.
However, the designers removed the 96-bit key sup-
port when tweaking for the second-round of the com-
petition. Since 80-bit security is not suggested today,
removing the 96-bit key variant is probably a good
call since it may not be secure in the close future. The
tweaked ASCON is referred to as v1.1 and we focus on
this latest version in this paper. The tweaked version
provides two recommended parameter sets referred to
as ASCON-128 and ASCON-128a.

The encryption consists of four steps: Initializa-
tion, processing associated data, processing the plain-
text, and finalization. The 320-bit state is represented
with five 64-bit words x0, . . . ,x4. The scheme uses
two permutations pa and pb which applies the round
transformation p iteratively a and b times. These
steps are illustrated in Figure 1.

For ASCON-128, we have a = 12 and b = 6. For
ASCON-128a we have a = 12 and b = 8. Both ver-
sions use 128-bit key, nonce and tag. However, data
block size is 64 for ASCON-128 and 128 for ASCON-
128a.

The round transformation of ASCON first adds a
constant to x2, applies a nonlinear substitution layer
and then applies a linear layer. The substitution layer
applies a 5-bit S-box 64 times in parallel. This S-box
is affine equivalent to the Keccak (Bertoni et al., 2011)
χ mapping and is provided in Table 1. The linear layer
is actually XOR of right rotations of the 64-bit words
x0, . . . ,x4. The linear layer can be described as fol-
lows:

Σ0(x0) = x0⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)
Σ1(x1) = x1⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)
Σ2(x2) = x2⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)
Σ3(x3) = x3⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)
Σ4(x4) = x4⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

2.2 Security

We can divide the attacks into two categories, forgery
and key recovery. Forgery attacks focus on the fi-
nalization and key recovery attacks focus on the ini-

tialization phases of ASCON. When analysing AS-
CON, we can target either the initialization in a nonce-
respecting scenario, or the processing of the plaintext
in a nonce-misuse scenario.

In case of an attack on the finalization of AS-
CON, suitable characteristics may contain differences
in stateword x0 at the input of the permutation. The
rest of the statewords have to be free of differences.
For the output of the finalization, the only require-
ment is that there is some fixed difference pattern in
x3 and x4. Knowledge about the expected differences
in x0, x1, and x2 at the output of the permutation is not
required. When we focus on the initialization, differ-
ences are allowed in the nonce x3, x4 and the output is
observed only for x0 (i.e. output difference should be
at x0).

The first analysis of ASCON is done by the de-
signers in the CAESAR competition submission doc-
ument (Dobraunig et al., 2014). They provided
collision-producing differentials and 5-round impos-
sible differential for the permutation. In (Dobraunig
et al., 2015), these observations are further improved
to obtain 6-round cube-like, 5-round differential-
linear key recovery attacks and 4-round differential
forgery attack. They also provided linear and differ-
ential bounds and 12-round zero-sum distinguishers
for the permutation that requires 2130 time complex-
ity.

Moreover, Todo provided integral distinguishers
for various numbers of rounds for the ASCON permu-
tation (Todo, 2015).

Finally, Jovanovic et al. proved that ASCON’s
sponge mode is secure even for higher rates (Jo-
vanovic et al., 2014).

3 ANALYSIS OF ASCON’S S-BOX

ASCON designers provide differential and linear
properties of ASCON’s S-box in (Dobraunig et al.,
2014). The maximum differential probability of the
S-box is 2−2 and its differential branch number is 3.
The maximum linear probability of the S-box is 2−2

and its linear branch number is 3. The algebraic de-
gree of the S-box is 2. A different 5× 5 S-box with
smaller maximum differential probability and linear
probability could easily be chosen by the designers.
However, this S-box was intentionally chosen because
it requires very small area in hardware and performs
very fast in software and hardware.

Definition 3.1. (Tezcan, 2014) For a specific input
difference of an S-box, if some bits of the output dif-
ference remain invariant, then we call such bits undis-
turbed.
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Figure 1: The encryption of ASCON. Figure is taken from the cipher’s official website http://ascon.iaik.tugraz.at/

Table 1: ASCON’s 5-bit s-box.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 4 11 31 20 26 21 9 2 27 5 8 18 29 3 6 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 30 19 7 14 0 13 17 24 16 12 1 25 22 10 15 23

Definition 3.2. (Evertse, 1987) An n×m S-Box S is
said to have a linear structure if there exists a nonzero
vector α ∈ Fn

2 together with a nonzero vector b ∈ Fm
2

such that b · S(x)⊕ b · S(x⊕α) takes the same value
c ∈ F2 for all x ∈ Fn

2.

We further analyzed this S-box for other crypto-
graphic properties and observed that it has 91 lin-
ear structures. 35 of them corresponds to coordi-
nate functions, thus by (Makarim and Tezcan, 2014)
they are undisturbed bits in the forward direction and
they are provided in Table 2. Moreover, ASCON
has 2 undisturbed bits for the inverse S-box, namely
00010→???1? and 01000→?1???. Although the in-
verse S-box is not used in the encryption or decryp-
tion process, its undisturbed bits can be used when
constructing impossible differentials via the miss-in-
the-middle technique.

Definition 3.3. (Tezcan and Özbudak, 2014) Let S be
a function from Fn

2 to Fm
2 . For all x,y ∈ Fn

2 that satisfy
S(x)⊕S(y) = µ, if we also have S(x⊕λ)⊕S(y⊕λ) =
µ, then we say that S has a differential factor λ for the
output difference µ. (i.e. µ remains invariant for λ).

Recently, a new S-box property called differential
factor is introduced in (Tezcan and Özbudak, 2014)
which shows that some key bits may not be captured
in a differential attack or its variants. This observation
may be used to reduce the time complexity of the key
guess step of differential attacks. On the other hand,
it increases the time complexity of exhaustive search
for the remaining key bits phase. Differential factors
are used in (Tezcan and Özbudak, 2014) to reduce the
time complexity of differential-linear attacks on SER-
PENT (Biham et al., 1998). Although ASCON’s S-box

does not have the best cryptographic properties, sur-
prisingly it does not contain any differential factors.

Table 2: Undisturbed Bits of ASCON’s S-box

Input Output Input Output
Difference Difference Difference Difference

00001 ?1??? 10000 ?10??
00010 1???1 10001 10??1
00011 ???0? 10011 0???0
00100 ??110 10100 0?1??
00101 1???? 10101 ????1
00110 ????1 10110 1????
00111 0??1? 10111 ????0
01000 ??11? 11000 ??1??
01011 ???1? 11100 ??0??
01100 ??00? 11110 ?1???
01110 ?0??? 11111 ?0???
01111 ?1?0?

4 ANALYSIS OF ASCON’S
LINEAR LAYER

The inverse of ASCON’s linear layer is not provided in
(Dobraunig et al., 2014) because ASCON is a sponge
construction and the inverse of this layer is not re-
quired in the decryption process. However, in order
to obtain impossible differential distinguishers using
the miss-in-the-middle technique, we need the inverse
permutation to check differentials in the reverse order.
We will also use them as filtering conditions when
we are choosing plaintext-ciphertext pairs in our trun-
cated and improbable differential attacks.



The linear layer consists of XOR of right rotations
of the 64-bit words x0, . . . ,x4. Thus, the first thing to
check whether such an operation is invertible or not.
The following theorem shows when XOR of rotations
of binary words are invertible.

Theorem 4.1. (Rivest, 2011) If n is a power of 2,
v is an n-bit word, and r1, r2, . . ., rk are distinct
fixed integers modulo n, then the function R(v) =
R(v;r1,r2, . . . ,rk) = (v ≪ r1)⊕ (v ≪ r2)⊕ . . .(v ≪
rk) is invertible if and only if k is odd, where (v ≪ r)
denotes the n-bit word v rotated left by r positions,
and where ’⊕’ denotes the bit-wise ’exclusive-or’ of
n-bit words.

Theorem 4.1 shows that the linear layer of ASCON
is invertible since k = 3 for all of the five transfor-
mations Σ0, . . . ,Σ4. If we consider n-element vectors
over the finite field F2, one can obtain R(v) by multi-
plying v by an n× n circulant matrix over F2 having
k ones per row and per column. Thus, inverse of R(v)
can be obtained by finding the inverse of this circulant
matrix via reducing it to row-reduced echelon form by
means of row operations. This way we obtained the
inverse of the linear layer and the right rotations re-
quired to perform the inverse linear layer is provided
in Table 3.

5 TRUNCATED, IMPOSSIBLE,
AND IMPROBABLE
DIFFERENTIAL ANALYSIS

Statistical attacks on block ciphers make use of a
property of the cipher so that an event occurs with
different probabilities depending on whether the cor-
rect key is used or not. We represent these probabil-
ities with p0 for the correct key and p for the wrong
ones. For instance, differential cryptanalysis (Biham
and Shamir, 1991) considers characteristics or differ-
entials which show that a particular output difference
should be obtained with a relatively high probability
when a particular input difference is used. Hence,
when the correct key is used, the predicted differences
occur more frequently (i.e. p0 > p). In a classical dif-
ferential characteristic the differences are fully spec-
ified and in a truncated differential (Knudsen, 1994)
only parts of the differences are specified.

On the other hand, impossible differential crypt-
analysis (Biham et al., 2005) uses an impossible dif-
ferential which shows that a particular difference can-
not occur for the correct key (i.e. probability of this
event is exactly zero). Therefore, if these differences
are satisfied under a trial key, then it cannot be the
correct one (i.e. p0 = 0). Thus, the correct key can

Table 3: Linear layer of ASCON consists of XOR of rota-
tions of binary words. Since the inverses of these operations
are not required in the decryption process, they are not pro-
vided by the designers in the submission document. We
provide the inverse of the linear layer which can be used for
constructing impossible differentials. All of the rotations
are to the right.

Permutation Rotations Size
Σ0 0 19 28 3

Σ
−1
0

0 3 6 9 11 12 14 15 17

3118 19 21 22 24 25 27 30 33
36 38 39 41 42 44 45 47 50

53 57 60 63
Σ1 0 61 39 3

Σ
−1
1

0 1 2 3 4 8 11 13 14

3316 19 21 23 24 25 27 28 29
30 35 39 43 44 45 47 48 51

53 54 55 57 60 61
Σ2 0 1 6 3

Σ
−1
2

0 2 4 6 7 10 11 13 14

3315 17 18 20 23 26 27 28 32
34 35 36 37 40 42 46 47 52

58 59 60 61 62 63
Σ3 0 10 17 3

Σ
−1
3

1 2 4 6 7 9 12 17 18

3321 22 23 24 26 27 28 29 31
32 33 35 36 37 40 42 44 47

48 49 53 58 61 63
Σ4 0 7 41 3

Σ
−1
4

0 1 2 3 4 5 9 10 11

3513 16 20 21 22 24 25 28 29
30 31 35 36 40 41 44 45 46

47 48 50 53 55 60 61 63

be obtained by eliminating all or most of the wrong
keys.

Moreover, it is shown in (Tezcan, 2010) that it is
also possible to obtain differentials so that the pre-
dicted differences occur less frequently for the correct
key (i.e. p0 < p). This new cryptanalytic technique is
called the improbable differential attack and the im-
possible differential attack can be seen as a special
case of it where p0 = 0.

5.1 Truncated Differential Analysis

5.1.1 4-Round Truncated Differential
Distinguisher

Undisturbed bits of ASCON’s S-box allows us to ob-
tain long truncated differentials. We first focus on
probability 1 truncated differentials in order to con-
vert them to impossible differentials via the miss-in-
the-middle technique. The longest truncated differ-
ential we could find in the encryption direction with



probability 1 is on 3.5-rounds of ASCON and it is pro-
vided in Table 4. By adding the permutation layer to
the end, this differential can be used to distinguish 4
rounds of the permutation with only 2 chosen nonces.

Table 4: Truncated differential ∆1 with probability 1 that
covers 3.5 rounds of p in binary notation. Undisturbed bits
are shown in bold. Substitution and permutation layers are
denoted by S and P, respectively.

3.5-Round Truncated Differential

I

1000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1000000000000000000000000000000000000000000000000000000000000000
1000000000000000000000000000000000000000000000000000000000000000

S1

0000000000000000000000000000000000000000000000000000000000000000
?000000000000000000000000000000000000000000000000000000000000000
?000000000000000000000000000000000000000000000000000000000000000
?000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

P1

0000000000000000000000000000000000000000000000000000000000000000
?00000000000000000000000000000000000000?000000000000000000000?00
??0000?000000000000000000000000000000000000000000000000000000000
?000000000?000000?0000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

S2

??0000?000?000000?000000000000000000000?000000000000000000000?00
??0000?000?000000?000000000000000000000?000000000000000000000?00
??0000?000?000000?000000000000000000000?000000000000000000000?00
??0000?000?000000?000000000000000000000?000000000000000000000?00
?000000000?000000?000000000000000000000?000000000000000000000?00

P2

??0?00?000?00000??0??0000?00??0000?0?0??00000?000000000000?00?00
??0?00??00?000?00?000000000000000000?00??0000?000?000000?0?00??0
????00??00???000???0000?000000000000000??0000?000000000000000??0
??0000??00??00?0???0?00?000?000000?0000?000000000?000000?0000?00
?000?00?00?00000??000000?0000000000000??0?0000?0000?000000?00?00

S3

?????0??00???0?0?????00???0???0000?0?0????000??00?0?0000?0?00??0
?????0??00???0?0?????00???0???0000?0?0????000??00?0?0000?0?00??0
?????0??00???0?0???0?00??00?000000?0?0????000??00?0?0000?0?00??0
?????0??00???0?0?????00???0???0000?0?0????000??00?0?0000?0?00??0
??0??0??00??00?0?????00???0???0000?0?0????000??00?0?0000?0?00??0

P3

????????0?????????????????????????????????????????0???0????????0
?????0????????????????????????0?0???????????0??0????0?0?????0???
???????????????????????????????00??????????0????0????00?????0???
?????0??????????????????????????0??????????0???0????0?0?????0???
?????????0??0????????????????????????0????????????0???0?????????

S4

??????????????????????????????????????????????????????0?????????
??????????????????????????????????????????????????????0?????????
??????????????????????????????????????????????????????0?????????
??????????????????????????????????????????????????????0?????????
??????????????????????????????????????????????????????0?????????

5.1.2 4-Round Truncated Differential Attack

We cannot use our 3.5-round truncated differential ∆1
in a key recovery attack because we can only provide
input differences at the words x3 and x4. We observe
that if we provide the input difference 3x to a single
S-box, then the output difference is 1x with probabil-
ity 2−3. Then with probability 1, we have 54th S-
box with 0x output difference at the end of substitu-
tion layer of round 4. After the permutation layer we
focus on the word x0 because this is the only word
that we can work on in an attack to the initialization
phase. Thus, output differences that have the differ-
ence 0 corresponding to the most significant bit of
the 54th after the application of the inverse permu-
tation provided in Table 3 are the right pairs for our
attack. Since half of the output differences make that
bit have 0 difference, this filtering condition has prob-
ability 1/2. Details of this differential are provided in
Table 5. Since this is a probability 1 differential dis-

tinguisher, complementing the output differences pro-
vides a 4-round impossible differential distinguisher.

For a wrong key, this differential holds with prob-
ability p = 1/2. However, it holds with probability
p0 = 1 for the correct key. If we think ASCON as a
block cipher where the plaintext is XORed with the
key, then we can capture 2 bits of the key correspond-
ing to the active S-box with 211 data complexity and
negligible time and memory complexity. Due to the
symmetry of the cipher, remaining key bits can be
captured by applying the same attack with shifting the
input difference. However, key is not XORed with the
plaintext in ASCON and the S-box input difference 3x
gives the output difference 1x when the correspond-
ing two key bits are 1. Hence, this attack can be used
with the symmetry of the cipher to check if the two
key bits corresponding to the active S-boxes are 1.
Approximately 16 of them would be 1 and thus the
attack should work for them. And the remaining 48 of
them can be found via exhaustive search which would
require 348 4-round ASCON encryptions.

Table 5: 4-round truncated differential attack. Substitution
and permutation layers are denoted by S and P, respectively.

4-Round Truncated Differential Attack

I

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1000000000000000000000000000000000000000000000000000000000000000
1000000000000000000000000000000000000000000000000000000000000000

S1
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

2−3
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1000000000000000000000000000000000000000000000000000000000000000

P1

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1000000100000000000000000000000000000000010000000000000000000000

S2

?000000?000000000000000000000000000000000?0000000000000000000000
1000000100000000000000000000000000000000010000000000000000000000
?000000?000000000000000000000000000000000?0000000000000000000000
?000000?000000000000000000000000000000000?0000000000000000000000
?000000?000000000000000000000000000000000?0000000000000000000000

P2

?0000?0?00000000000?000000?0?000000?00000?000000000000000000?000
0000100000000000100000000000000000000011000000100000000000000100
??0000???0000?000000000000000000000000000??0000?0000000000000000
?000000?00?000000?000000?0000000000000000?000000000?000000?00000
?000000?000000?000?0000000000000000000000?000000?000000000000000

S3

??00?????0?00??0????0000?0?0?000000?00??0??000???00?000000?0??00
??00?????0?00??0????0000?0?0?000000?00??0??000???00?000000?0??00
??0010???0?00??01??00000?0000000000000110??0001??00?000000?00100
??001????0?00??01???0000?0?0?000000?00110??0001??00?000000?0?100
?000??0?00?000?0????0000?0?0?000000?00??0?0000?0?00?000000?0??00

P3

?????????0???????????0????????00????????0????????00??0?0???0??0?
?????????0??0???????0??????0?000??0??0????????????0???0????0????
???101???????????????01???0000?0000000011???110???0????00???0010
??00?????0??0????????1??????????01???0?00???0?0??10??0010?????01
??0???0?00???0??????0?0????0?00?0?0?0???0??00??0?00?0?0?0?????00

S4

??????????????????????????????????????????????????0?????????????
??????????????????????????????????????????????????0?????????????
??????????????????????????????????????????????????0?????????????
??????????????????????????????????????????????????0?????????????
?????????0????????????????????????????????????????0?????????????

5.1.3 5-Round Truncated Differential Attack

We can perform a 5-round attack on ASCON by giving
3x input difference to 35 S-boxes and check if all of
the output differences are 1x. Thus, we need to guess



2 ·35 = 70 bits of the key. To the bottom of these dif-
ferences, we add a 4-round truncated differential that
holds with probability 2−3 which is provided in Table
6. For a wrong key, this differential holds with prob-
ability p = 1/2. However, it holds with probability
p0 = 1/2+1/8 for the correct key.

If ASCON were a block cipher where the plain-
text is XORed with the key, then we could perform
a key recovery attack where knowledge of 2110 data
would be enough to distinguish 70 bits of the key
from the wrong ones and around 2101 5-round AS-
CON encryptions would be required. However, key is
not XORed with the plaintext in ASCON and the S-
box input difference 3x gives the output difference 1x
when the corresponding two key bits are 1. So the
attack works when the key bits corresponding to the
35 active S-boxes are all 1. So the attack works for
a weak key space of size 2128−2·35 = 258. The weak
key space becomes around 264 when we use the sym-
metry of the cipher but it is still very small compared
to 2128. Therefore, if the attacked key is in the weak
key space, then we capture its 70 bits with negligible
time complexity and recover the remaining bits with
exhaustive search that requires 258 5-round ASCON
encryptions. However, if the key is not in this weak
key space, then the attack only becomes slightly faster
than the exhaustive search, namely 2128−264 5-round
ASCON encryptions.

Note that the whole differential provided in Table
6 can be seen as a 5-round truncated differential dis-
tinguisher with probability 2−107. Hence, we can use
it with 2109 data to distinguish the 5-round ASCON
from a random permutation. Complementing the out-
put differences provides a 5-round improbable differ-
ential distinguisher that works similar to this 5-round
truncated differential.

5.2 Impossible Differentials

ASCON’s security against impossible differential at-
tacks is discussed in (Dobraunig et al., 2014) by the
designers and they obtained a 5-round impossible dif-
ferential via computer search. This differential can be
used to distinguish the permutation p and it is pro-
vided in Table 7. However, for a random permuta-
tion this impossible differential holds with probability
p = 2−320. Thus, one needs to use the whole code-
book to use it as a distinguisher. Moreover, since
the output differences are fully specified, it cannot be
used in a key recovery or forgery attack.

We consider truncated differentials in the decryp-
tion direction to obtain impossible differentials by
combining them with our 3.5-round truncated differ-
ential ∆1. We cannot find such long truncated differ-

Table 6: 5-round truncated differential attack. Substitution
and permutation layers are denoted by S and P, respectively.

5-Round Truncated Differential Attack

I

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1111110001110100100011101100111100011000110011111010010100001101
1111110001110100100011101100111100011000110011111010010100001101

S1
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

2−105
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1111110001110100100011101100111100011000110011111010010100001101

P1

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1000000000000000000000000000000000000000000000000000000000000000

S2
1000000000000000000000000000000000000000000000000000000000000000
1000000000000000000000000000000000000000000000000000000000000000

2−3
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

P2

1000000000000000000100000000100000000000000000000000000000000000
1000000000000000000000000000000000000001000000000000000000000100
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

S3

?000000000000000000?00000000?0000000000?000000000000000000000?00
?00000000000000000010000000010000000000?000000000000000000000?00
1000000000000000000000000000000000000001000000000000000000000100
?000000000000000000?00000000?00000000001000000000000000000000100
?000000000000000000?00000000?0000000000?000000000000000000000?00

P3

?00?000000000000?00?00000?00?000000000??0000000?00000000?0?00?00
?0010000000000?010000000010000000000?00?000000000000000000?00?00
0101001000000000000000000000000000000000100001000000000000000010
?000000100?000100?0?00000000??000000?0?000000?000100000010000000
?000??0?00000000?00?000000?0?000000?00??0?0000?0000000000000??00

S4

??0?????00?000?0??0?00000??0??00000??0????000???01000000?0?0???0
??0?????00?000?0??0?00000??0??00000??0????000???0?000000?0?0???0
?10???1?00?000?0??0?00000??0??00000??0??1?000??00?000000?0?0??10
?10???1?00?000?0??0?00000??0??00000??0??1?000???0?000000?0?0??10
?00???0?00?000?0??0?00000??0??00000??0??0?000???01000000?0?0??00

P4

????????0???0?????0??0?????0??0??????0?????0?????0000???????????
????????00??0?????0????????0??0???0?????????????0?000?0????????0
????????????1????????0??0????????0?????????0????0????00????????1
?0??????1???0?????1????1??????0?0????0??0???0?????1???0?????????
????????00??????????0??????0??00??0?????0????????00????????0??0?

S5
??????????????????????????????0?????????????????????????????????
??????????????????????????????0?????????????????????????????????

2−1
??????????????????????????????0?????????????????????????????????
??????????????????????????????0?????????????????????????????????
??????????????????????????????0?????????????????????????????????

Table 7: Impossible differential of (Dobraunig et al., 2014)
that covers 5 rounds of p in hexadecimal notation. It holds
with probability p = 2−320 for a random permutation.

Input difference Output Difference
x0 0000000000000000 0000000000100000
x1 0000000000000000 0000000000000000
x2 0000000000000000 9 0000000000000000
x3 0000000000000000 0000000000000000
x4 8000000000000000 0000000000000000

entials in the decryption direction because a single bit
difference to the permutation provides differences at
more than 30 bits because of the inverse linear trans-
formations. Moreover, the inverse of ASCON’s S-box
has only two undisturbed bits. The longest truncated
differentials we could find covers 1.5 rounds in the
decryption direction. Thus, we can use them to ob-
tain 5-round impossible differentials using the miss-
in-the-middle technique. An example of such an im-
possible differential is provided in Table 8. The dif-
ferences are fully specified in this impossible differ-
ential, too. However, note that since the contradiction



is obtained at a single bit, half of the differences given
only to x3 or x1 at P5 still make it miss in the middle
due to the undisturbed bits. Since we can give 263 dif-
ferent differences to the x3 or x1, we have p = 2−256

for this bundle of impossible differentials instead of
p = 2−320.

Table 8: An impossible differential that covers 5 rounds of p
in binary notation. Substitution and permutation layers are
denoted by S and P, respectively. The miss-in-the-middle
is obtained by combining the 3.5-round ∆1 in the forward
direction with the 1.5-round differential in the backward di-
rection that is provided below.

5-Round Impossible Differential
3.5-round truncated differential ∆1

S4

??????????????????????????????????????????????????????0?????????
??????????????????????????????????????????????????????0?????????
??????????????????????????????????????????????????????0?????????
??????????????????????????????????????????????????????0?????????
??????????????????????????????????????????????????????0?????????

Impossible

S4

????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
????????????????????????????????????????????????????????????????
1110000101100010110011111011111101010100101000110100011010100101
????????????????????????????????????????????????????????????????

P4

0??0?0??0?00?0000??00????0????0???0???00?0?0?00???000?0000?00?0?
0??0?0??0?00?0000??00????0????0???0???00?0?0?00???000?0000?00?0?
0??0?0??0?00?0000??00????0????0???0???00?0?0?00???000?0000?00?0?
0110101101001000011001111011110111011100101010011100010000100101
0??0?0??0?00?0000??00????0????0???0???00?0?0?00???000?0000?00?0?

S5

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0110101101001000011001111011110111011100101010011100010000100101
0000000000000000000000000000000000000000000000000000000000000000

P5

0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
1000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000

6 CONCLUSIONS

ASCON’s S-box contains many undisturbed bits and
in this study we used them to construct truncated, im-
possible, and improbable differentials. We provide
the results of our distinguishers in Table 9. Our best
attacks break 5 out of 12 rounds of ASCON and they
are provided in Table 10. These attacks can be pre-
vented by replacing ASCON’s S-box with a crypto-
graphically more secure one. However, ASCON’s S-
box is deliberately chosen this way mainly because of
its bit-sliced implementation with few, well pipelined
instructions.

Our attacks show that further analysis may pro-
vide truncated, impossible or improbable differential
distinguishers or attacks on 6 or more rounds of AS-
CON. However, the full scheme looks resistant to
these type of attacks. Thus, we conclude that the se-
curity/performance trade-off due to the choice of the
S-box is well justified and the full cipher is secure
against truncated, impossible, and improbable differ-
ential attacks. However, our analysis and differentials

Table 9: Summary of impossible, improbable, and truncated
differential distinguishers on ASCON

Rounds Data Method Source
5/12 2109 Improbable Diff. Sect. 5.1.3
5/12 2109 Truncated Diff. Sect. 5.1.3
5/12 2256 Impossible Diff. Sect. 5.2
5/12 2320 Impossible Diff. (Dobraunig et al., 2014)
4/12 22 Impossible Diff. Sect. 5.1.1
4/12 22 Truncated Diff. Sect. 5.1.1

can be used to obtain better attacks when combined
with other cryptanalysis techniques.
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Table 10: Summary of attacks on ASCON

Type Rounds Time Method Source
Key Recovery 6/12 266 Cube-like (Dobraunig et al., 2015)
Key Recovery 5/12 235 Cube-like (Dobraunig et al., 2015)
Key Recovery 5/12 236 Differential-Linear (Dobraunig et al., 2015)
Key Recovery 5/12 258 or 2127.99 Truncated/Improbable Sect. 5.1.3
Key Recovery 4/12 218 Differential-Linear (Dobraunig et al., 2015)
Key Recovery 4/12 348 Truncated/Impossible Sect. 5.1.2

Forgery 4/12 2101 Differential (Dobraunig et al., 2015)
Forgery 3/12 233 Differential (Dobraunig et al., 2015)
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M. (2015). Cryptanalysis of Ascon. In Nyberg, K., ed-
itor, Topics in Cryptology - CT-RSA 2015, The Cryp-
tographer’s Track at the RSA Conference 2015, San
Francisco, CA, USA, April 20-24, 2015. Proceedings,
volume 9048 of Lecture Notes in Computer Science,
pages 371–387. Springer.
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