
Speeding up the Number Theoretic Transform
for Faster Ideal Lattice-Based Cryptography

Patrick Longa and Michael Naehrig

Microsoft Research, USA
{plonga,mnaehrig}@microsoft.com

Abstract. The Number Theoretic Transform (NTT) provides efficient
algorithms for cyclic and nega-cyclic convolutions, which have many ap-
plications in computer arithmetic, e.g., for multiplying large integers and
large degree polynomials. It is commonly used in cryptographic schemes
that are based on the hardness of the Ring Learning With Errors (R-
LWE) problem to efficiently implement modular polynomial multiplica-
tion.
We present a new modular reduction technique that is tailored for the
special moduli required by the NTT. Based on this reduction, we speed
up the NTT and propose faster, multi-purpose algorithms. We present
two implementations of these algorithms: a portable C implementation
and a high-speed implementation using assembly with AVX2 instruc-
tions. To demonstrate the improved efficiency in an application exam-
ple, we benchmarked the algorithms in the context of the R-LWE key
exchange protocol that has recently been proposed by Alkim, Ducas,
Pöppelmann and Schwabe. In this case, our C and assembly implemen-
tations compute the full key exchange 1.49 and 1.13 times faster, re-
spectively. These results are achieved with full protection against timing
attacks.

Keywords: Post-quantum cryptography, number theoretic transform
(NTT), ring learning with errors (R-LWE), fast modular reduction, effi-
cient implementation.

1 Introduction

Fast Fourier Transform (FFT) algorithms to compute the Discrete Fourier Trans-
form (DFT) have countless applications ranging from digital signal processing
to the fast multiplication of large integers. The cyclic convolution of two integer
sequences of length n can be computed by applying an FFT algorithm to both,
then multiplying the resulting DFT sequences of length n coefficient-wise and
transforming the result back via an inverse FFT. This operation corresponds to
the product of the corresponding polynomials modulo Xn − 1, and for large n,
a computation via FFTs as above was suggested to be used in the ring-based
encryption scheme NTRUEncrypt in [18].

When the sequence (or polynomial) coefficients are specialized to come from
a finite field, the DFT is called the Number Theoretic Transform (NTT) [9] and

can be computed with FFT algorithms that work over this specific finite field.
Polynomial multiplication over a finite field is one of the fundamental operations
required in cryptographic schemes based on the Ring Learning With Errors (R-
LWE) problem, and the NTT has shown to be a powerful tool that enables this
operation to be computed in quasi-polynomial complexity.

R-LWE-based cryptography. Since its introduction by Regev [32], the Learn-
ing With Errors (LWE) problem has been used as the foundation for many new
lattice-based constructions with a variety of cryptographic functionalities. It is
currently believed to be sufficiently hard, even for attackers running a large
scale quantum computer. Hence cryptographic schemes with security based on
the hardness of the LWE problem are promising candidates for post-quantum
cryptography.

The Ring LWE (R-LWE) problem, introduced by Lyubashevsky, Peikert and
Regev [23], is a special instance of the LWE problem that is essentially obtained
by adding a ring structure to the underlying lattice. R-LWE-based schemes have
been proposed for public-key encryption [35, 23, 28], digital signatures [22, 12],
and key exchange [11, 28, 36, 6, 2]. Furthermore, the most efficient proposals for
(fully) homomorphic encryption are also based on R-LWE, e.g., [7].

The advantage of R-LWE over LWE is a significant increase in efficiency.
When working with vectors of dimension n, it allows a factor n space reduction
and the possibility of using FFT algorithms to compute polynomial products in-
stead of matrix-vector or matrix-matrix operations; this leads to an improvement
from roughly n2 base ring multiplications to roughly n log n such multiplications.

One particularly efficient parameter instantiation in the context of R-LWE
is such that the dimension n is a power of 2 and polynomial products are taken
modulo the 2n-th cyclotomic polynomial Xn+1 with coefficients modulo a prime
q. Here, the polynomial product corresponds to a nega-cyclic convolution of the
coefficient sequences. In this setting, the NTT is usually computed with a special
type of FFT algorithm that can be used efficiently when q is a prime that satisfies
the congruence condition q ≡ 1 mod 2n (cf. [24, §2.1]), which in turn means that
the underlying finite field contains primitive 2n-th roots of unity. Many state-
of-the-art instantiations of R-LWE-based cryptography choose n and q as above
in order to harness the efficiency of the NTT; for example, the BLISS signature
implementations (I-IV) set n = 512 and q = 12289 [12] and the fastest R-LWE-
based key exchange implementation to date sets n = 1024 and q = 12289 [2].

Our contributions. We present a new modular reduction algorithm for the
special moduli that are required to invoke the NTT. While this new routine can
be used to replace existing modular reduction algorithms and give standalone
performance improvements, we further show that calling it inside a modified
NTT algorithm can give rise to additional speedups. We illustrate these improve-
ments by providing and benchmarking both our portable C and AVX2 assembly
implementations (see Section 4 for complete details). Our software is publicly
available as part of the LatticeCrypto library [21]. We remark that some of the

2

changes and optimizations described in this paper will appear in an upcoming
version of the library.

Given the ubiquity of the NTT in (both the existing and foreseeable) high-
speed instantiations of R-LWE-based primitives, we emphasize that an improved
NTT simultaneously improves a large portion of all lattice-based cryptographic
proposals. While our algorithm will give a solid speedup to signature schemes
like Lyubashevsky’s [22] and BLISS [12], it will give a more drastic overall im-
provement in common encryption and key exchange schemes. In these scenarios,
there are different ways of removing the need for obtaining high-precision samples
from a Gaussian distribution [25], for example, the number of R-LWE samples
per secret can be bounded, or one can use the Kullback-Leibler or Renyi diver-
gences [3]. Subsequently, the cost of sampling the error distribution decreases
dramatically, and the NTT becomes the bottleneck of the overall computation.

To highlight the practical benefits of the new approach in an example of a
cryptographic protocol, we implemented the recent key exchange instantiation
due to Alkim, Ducas, Pöppelmann and Schwabe [2], and show that the overall
key exchange is approximately 1.49 times faster (portable C implementation) and
1.13 times faster (AVX2 assembly implementation) using our improved NTT.

Beyond the faster modular reduction itself, the specific improvements over
the approach in [2] that have led to this speedup are as follows:

– The new modular reduction algorithm allows coefficients to grow up to 32
bits in size, which eliminates the need for modular reductions after any
addition during the NTT. As a consequence, reductions are only carried out
after multiplications.

– The new modular reduction is very flexible and enables efficient implemen-
tations using either integer arithmetic or floating point arithmetic. Since it
minimizes the use of multiplications, using the higher throughput of floating
point instructions on the latest Intel processors does not have as big an im-
pact as for more multiplication-heavy methods like Montgomery reduction.
Hence, the method is especially attractive for implementations with a focus
on simplicity, particularly in plain C.

– Related to the previous point, our implementation uses signed integer arith-
metic in the NTT. This allows for signed integers to represent error poly-
nomials and secret keys, which saves conversions from negative to positive
integers (e.g., this reduces the number of additions during error sampling
and before modular reductions in the NTT).

– We show how to merge the scaling by n−1 with our conversion from redun-
dant to standard integer representation at the end of the inverse NTT. In
addition, by pulling this conversion into the last stage of the inverse NTT, we
eliminate n/2 multiplications and reductions, all at the cost of precomputing
only two integers.

Organization. Section 2 gives the background on R-LWE and the NTT. Sec-
tion 3 contains our two main contributions: the improved modular reduction
and NTT algorithms. Section 4 revises the details in the R-LWE key exchange

3

scheme from [2], which is used as a case study to give a practical instance where
our improved NTT gives rise to faster cryptography. Finally, Section 4 provides
a performance analysis and benchmarks.

2 Preliminaries

This section provides details about the ring structure in the R-LWE setting,
the NTT, and the FFT algorithm to compute the NTT and its inverse. The
original proposal of R-LWE [23] restricts to cyclotomic rings, i.e. rings generated
over the integers by primitive roots of unity. We immediately focus on 2-power
cyclotomic rings as this is the most commonly used case and seems to provide
the most efficient arithmetic. It is also the most natural application for the NTT
within the class of cyclotomic rings and we describe the NTT algorithm for this
specific choice. As is often done in the literature, in this paper we use the term
NTT simultaneously for naming the number theoretic transform as well as an
FFT algorithm to compute it.

2.1 The Ring Learning With Errors (R-LWE) setting

Let N = 2d, d > 1 be a power of two and let n = ϕ(N) = 2d−1 = N/2. Then the
N -th cyclotomic polynomial is given by ΦN (X) = Xn + 1. Let R be the ring of
cyclotomic integers, i.e. R = Z[X]/(ΦN (X)) = Z[X]/(Xn + 1). We identify the
elements of R with their representatives of minimal degree. Thus, any element
a ∈ R is a polynomial of degree at most n− 1 with integer coefficients, written
as a =

∑n−1
i=0 aiX

i, ai ∈ Z. Furthermore, let q ∈ Z be a positive integer modulus
such that q ≡ 1 (mod N). The quotient ring R/(q), obtained by taking the
elements of R modulo q, is isomorphic to the ring Rq = Zq[X]/(Xn+1). With the
above identification, the ring Rq consists of all polynomials of degree at most n−1

with coefficients from the ring Zq, i.e., for any a ∈ Rq, we write a =
∑n−1
i=0 aiX

i,
ai ∈ Zq. We use the same symbol a to also denote both the coefficient vector
a = (a0, a1, . . . , an−1) ∈ Znq and the sequence a = (a[0], a[1], . . . , a[n− 1]) ∈ Znq .

2.2 The Number Theoretic Transform (NTT)

The NTT is a specialized version of the discrete Fourier transform, in which the
coefficient ring is taken to be a finite field (or ring) containing the right roots of
unity. It can be viewed as an exact version of the complex DFT, avoiding round-
off errors for exact convolutions of integer sequences. While Gauss apparently
used similar techniques already in [14], laying the ground work for modern FFT
algorithms to compute the DFT, and therefore the NTT, is usually attributed
to Cooley and Tukey’s seminal paper [9].

Notation and background. With parameters as above, i.e. n being a power of
2 and q a prime with q ≡ 1 (mod 2n), let a = (a[0], ..., a[n−1]) ∈ Znq , and let ω be

4

a primitive n-th root of unity in Zq, which means that ωn ≡ 1 (mod q). The for-

ward transformation ã = NTT(a) is defined as ã[i] =
∑n−1
j=0 a[j]ωij mod q for i =

0, 1, ..., n− 1. The inverse transformation is given by b = INTT(ã), where b[i] =

n−1
∑n−1
j=0 ã[j]ω−ij mod q for i = 0, 1, ..., n−1, and we have INTT(NTT(a)) = a.

As mentioned above, the NTT can be used directly to perform the main
operation in R-LWE-based cryptography, that is, polynomial multiplication in
Rq = Zq[X]/(Xn+ 1). However, since applying the NTT transform as described
above provides a cyclic convolution, computing c = a · b mod (Xn + 1) with two
polynomials a and b would require applying the NTT of length 2n and thus
n zeros to be appended to each input; this effectively doubles the length of the
inputs and also requires the computation of an explicit reduction modulo Xn+1.
To avoid these issues, one can exploit the negative wrapped convolution [24]: let
ψ be a primitive 2n-th root of unity in Zq such that ψ2 = ω, and let a =
(a[0], ..., a[n − 1]), b = (b[0], ..., b[n − 1]) ∈ Znq be two vectors. Also, define â =

(a[0], ψa[1]..., ψn−1a[n − 1]) and b̂ = (b[0], ψb[1]..., ψn−1b[n − 1]). The negative
wrapped convolution of a and b is defined as c = (1, ψ−1, ψ−2, ..., ψ−(n−1)) ◦
INTT(NTT(â) ◦NTT(b̂)), where ◦ denotes component-wise multiplication. This
operation satisfies c = a · b in Rq, and thus it allows us to compute a full
polynomial multiplication that implicitly includes the reduction modulo Xn+1,
without increasing the length of the inputs.

Previous optimizations. Some additional optimizations are available to the
NTT-based polynomial multiplication. Previous works explain how to merge
multiplications by the powers of ω with the powers of ψ and ψ−1 inside the
NTT. Consequently, important savings can be achieved by precomputing and
storing in memory the values related to these parameters. In particular, Roy
et al. [33] showed how to merge the powers of ψ with the powers of ω in the
forward transformation. This merging did not pose any difficulty in the case of
the well-known decimation-in-time NTT, which is based on the Cooley-Tukey
butterfly [9] that was used in the first implementations of R-LWE-based schemes.
Similarly, Pöppelmann et al. [30] showed how to merge the powers of ψ−1 with
the powers of ω in the inverse transformation. In this case, however, it was
necessary to switch from a decimation-in-time NTT to a decimation-in-frequency
NTT [15], which is based on the Gentleman-Sande (GS) butterfly. In this work
we exploit the combination of both transformations for optimal performance.

Other optimizations focus on the NTT’s butterfly computation. Relevant ex-
amples are the use of precomputed quotients, as exploited in Shoup’s butterfly
algorithm [34], and the use of redundant representations that enable the elimi-
nation of several conditional modular corrections, as shown by Harvey [17]. In
particular, Harvey showed how to apply the latter technique on Shoup’s butter-
fly and on a butterfly variant based on Montgomery arithmetic. In Section 4, we
compare our improved NTT algorithms with the approaches by Melchor et al. [1]
and Alkim et al. [2], both of which adopted and specialized Harvey’s butterfly
algorithms.

5

Several works in the literature (e.g., [29, 33, 20, 2]) have applied a relatively
expensive reordering or bit-reversal step before or after the NTT computation.
This is due to the restrictive nature of certain forward and inverse algorithms
that only accept inputs in standard ordering and produce results in bit-reversed
ordering. However, Chu and George [8] showed how to also derive forward and
inverse FFT algorithms working for the reversed case, i.e., accepting inputs in
bit-reversed ordering and producing outputs in standard ordering. Accordingly,
[30] adapted and suitably combined the algorithms in the context of NTTs in
order to eliminate the need of the bit-reversal step.

From hereon, we denote by NTT := NTTCT,Ψrev an algorithm that computes
the forward transformation based on the Cooley-Tukey butterfly that absorbs the
powers of ψ in bit-reversed ordering. This function receives the inputs in standard
ordering and produces a result in bit-reversed ordering. Similarly, we denote by
INTT := INTTGS,Ψ−1

rev
an algorithm computing the inverse transformation based

on the Gentleman-Sande butterfly that absorbs the powers of ψ−1 in the bit-
reversed ordering. This function receives the inputs in bit-reversed ordering and
produces an output in standard ordering. Following Pöppelmann et al. [30],
the combination of these two functions eliminates any need for a bit-reversal
step. Optimized algorithms for the forward and inverse NTT are presented in
Algorithms 1 and 2, respectively. These algorithms are based on the ones detailed
in [30, App. A.1]. Note that we have applied a few modifications and corrected
some typos.

Algorithm 1 Function NTT based on the Cooley-Tukey (CT) butterfly.

Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Zn
q in standard ordering, where q is

a prime such that q ≡ 1 mod 2n and n is a power of two, and a precomputed table
Ψrev ∈ Zn

q storing powers of ψ in bit-reversed order.
Output: a← NTT(a) in bit-reversed ordering.

1: t = n
2: for (m = 1; m < n; m = 2m) do
3: t = t/2
4: for (i = 0; i < m; i++) do
5: j1 = 2 · i · t
6: j2 = j1 + t− 1
7: S = Ψrev[m+ i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + t] · S
11: a[j] = U + V mod q
12: a[j + t] = U − V mod q
13: end for
14: end for
15: end for
16: return a

6

Algorithm 2 Function INTT based on the Gentleman-Sande (GS) butterfly.

Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Zn
q in bit-reversed ordering, where q is

a prime such that q ≡ 1 mod 2n and n is a power of two, and a precomputed table
Ψ−1
rev ∈ Zn

q storing powers of ψ−1 in bit-reversed order.
Output: a← INTT(a) in standard ordering.

1: t = 1
2: for (m = n; m > 1; m = m/2) do
3: j1 = 0
4: h = m/2
5: for (i = 0; i < h; i++) do
6: j2 = j1 + t− 1
7: S = Ψ−1

rev[h+ i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + t]
11: a[j] = U + V mod q
12: a[j + t] = (U − V) · S mod q
13: end for
14: j1 = j1 + 2t
15: end for
16: t = 2t
17: end for
18: for (j = 0; j < n; j++) do
19: a[j] = a[j] · n−1 mod q
20: end for
21: return a

Pöppelmann et al. [30] avoid the final scaling by n−1 during the inverse NTT
by shifting the computation to a polynomial transformation that is (in their
target application of BLISS signatures) assumedly performed offline. In general,
however, that assumption does not necessarily hold; for example, in [2], all of the
polynomials to be multiplied are generated fresh per key exchange connection.
Accordingly, Algorithm 2 includes scaling by n−1.

3 Modular Reduction and Speeding up the NTT

Most FFT algorithms to compute the NTT over a finite field or ring need certain
roots of unity. In the specific setting discussed in the previous section, one needs
primitive 2n-th roots of unity to exist1 modulo q, which imposes a congruence
condition on q, namely q ≡ 1 (mod 2n). The parameters for R-LWE-based cryp-
tosystems tend to have relatively large dimension n and relatively small moduli
q, which means that moduli satisfying the congruence have the form q = k·2m+1,
where 2n | 2m and k ≥ 3 is a very small integer.

1 For an algorithm that does not require such roots, but has the disadvantage of
needing to pad the inputs to double length to compute nega-cyclic convolutions, see
Nussbaumers algorithm ([27] and [19, Exercise 4.6.4.59]).

7

Modular reduction. In this section, we introduce a new modular reduction
method for moduli of this special shape. We note that it works similarly for any
modulus of the form k · 2m ± l, where k and l are small positive integers such
that k ≥ 3 and l ≥ 1. However, for ease of exposition and to focus on the case
most relevant in the context of the NTT, we only treat the case q = k · 2m + 1.
When k is odd and 2m > k, these numbers are known as Proth numbers [31],
and a general algorithm for reduction modulo such integers is discussed in [10,
Section 9.2.3].

Let 0 ≤ a, b < q be two integers modulo q and let C = a · b be their
integer product. Then 0 ≤ C < q2 = k222m + k2m+1 + 1. The goal is to
reduce C modulo q using the special shape of q, namely using the fact that
k2m ≡ −1 (mod q). Write C = C0 + 2mC1, where 0 ≤ C0 < 2m. Then
0 ≤ C1 = (C − C0)/2m < k22m + 2k + 1/2m = kq + k + 1/2m. We have that
kC ≡ kC0 − C1 (mod q), and given the above bounds for C0 and C1, it follows
that the integer kC0−C1 has absolute value bounded by |kC0−C1| < (k+1/2m)q.
As k is a small integer, the value kC0 − C1 can be brought into the range [0, q)
by adding or subtracting a small multiple of q. The maximal value for C is
(q−1)2 = k222m, in which case C0 = 0 and C1 = k22m = k(q−1), meaning that
(k−1)q must be added to kC0−C1 to fully reduce the result. In our application
to the NTT, however, we do not intend to perform this final reduction into [0, q)
throughout the computation, but rather only at the very end of the algorithm.
We are therefore content with the output of the function K-RED defined as follows:

function K-RED(C)
C0 ← C mod 2m

C1 ← C/2m

return kC0 − C1

end function

The function K-RED can take any integer C as input. It then returns an integer
D such that D ≡ kC (mod q) and |D| < q + |C|/2m. Although this function
alone does not properly reduce the value C modulo q, we still call it a reduction
because it brings D close to the desired range; note that for |C| > (2m/(2m−1))q,
we have |D| < |K-RED(C)|, i.e. it reduces the size of C. As a specific example,
take q = 12289 = 3 · 212 + 1. Then k = 3 and K-RED returns 3C0 − C1 ≡ 3C
(mod q) using the equivalence 3 · 212 ≡ −1 (mod q).

In the context of a specific, longer computation, and depending on the param-
eter n and the target platform, we note that additional reductions might need to
be applied to a limited number of intermediate values, for which overflow may
occur. In this case, as an optimization, two successive reductions can be merged
as follows. Let the input operand C be decomposed as C = C0 +C1 ·2m+C222m

with 0 ≤ C0, C1 < 2m. Then we can reduce C via the following function K-RED-2x.

8

function K-RED-2x(C)
C0 ← C mod 2m

C1 ← C/2m mod 2m

C2 ← C/22m

return k2C0 − kC1 + C2

end function

A remark on residue classes. Note that K-RED outputs a value that is congru-
ent to a multiple of the input, i.e., it changes the input’s residue class modulo q.
This is reminiscent of Montgomery reduction [26]. Indeed, one way to deal with
this fact is to use a system of representatives for the residue classes, similar to the
Montgomery representation. Namely, define a system of representatives by set-
ting ĩ = i ·k−1 mod q for 0 ≤ i < q. Note that k is coprime to q by construction.
Then, modular multiplication proceeds as follows: given two integers x, y ∈ [0, p),
let x̃ = x ·k−1 mod p and ỹ = y ·k−1 mod p. After applying the reduction proce-
dure to the product of x̃ and ỹ, we obtain K-RED(x̃ · ỹ) ≡ x̃ỹk ≡ xy ·k−1 (mod q),
which is a representative of the product of x and y.

Speeding up the NTT. In the context of the NTT algorithm, we use a re-
dundant representation of integers modulo q by allowing them to grow up to 32
bits and, when necessary, apply the reduction function K-RED to reduce the sizes
of coefficients. We keep track of the factors of k that are implicitly multiplied
to the result by an invocation of K-RED. For the sake of illustration, consider
Algorithm 1. The main idea is to apply the function K-RED only after multipli-
cations, i.e., one reduction per iteration in the inner loop, letting intermediate
coefficient values grow such that the final coefficient values become congruent
to K · a[·] mod q for a fixed factor K. This factor can then be used at the end
of the NTT-based polynomial multiplication to correct the result to the desired
value.

Next, we specify the details of the method for n ∈ {256, 512, 1024} for the
prime q = 12289. We limit the analysis to platforms with native 32 (or higher)-
bit multipliers, but note that the presented algorithms can be easily modified to
cover other settings.

The case q = 12289. The modified NTT algorithms using K-RED and K-RED-2x
are shown in Algorithm 3 and Algorithm 4 for the modulus q = 12289, which
in practice is used with n = 512 (for BLISS signatures [12]) or 1024 (for key
exchange [2]). In Steps 7 of Algorithm 3 and Step 7 of Algorithm 4, we are
using the precomputed values scaled by k−1, i.e. we use precomputed tables
Ψrev,k−1 [·] = k−1 · Ψrev[·] and Ψ−1rev,k−1 [·] = k−1 · Ψ−1rev[·]. We denote these mod-

ified algorithms by NTTK := NTTKCT,ψrev,k−1
and INTTK := INTTK

GS,Ψ−1

rev,k−1
,

respectively.
Given two input vectors a and b, let c = INTT(NTT(a) ◦ NTT(b)) be computed

using Algorithms 1 and 2. It is easy to see that the resulting coefficients after

9

applying Algorithms 3 and 4, i.e., after computing INTTK(NTTK(a) ◦ NTTK(b)),
are congruent to K · c[·] modulo q for a certain fixed integer K = ks and an
integer s. Note that by scaling the precomputed twiddle factors by k−1 mod q,
we can limit the growth of the power of k introduced by the reduction steps.
For example in Line 7 of Algorithm 3 the value S carries a factor k−1 which
then cancels with the factor k introduced by K-RED in Step 15. Only additional
reductions such as those in Steps 12 and 13 increase the power of k in the final
result.

Algorithm 3 Modified function NTTK using K-RED and K-RED-2x for reduction
modulo q = 12289 (32 or 64-bit platform).

Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Zn
q in standard ordering, where n ∈

{256, 512, 1024}, and a precomputed table Ψrev,k−1 ∈ Zn
q of scaled powers of ψ in bit-

reversed order.
Output: a← NTTK(a) in bit-reversed ordering.

1: t = n
2: for (m = 1; m < n; m = 2m) do
3: t = t/2
4: for (i = 0; i < m; i++) do
5: j1 = 2 · i · t
6: j2 = j1 + t− 1
7: S = Ψrev,k−1 [m+ i]
8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + t] · S
11: if m = 128 then
12: U = K-RED(U)
13: V = K-RED-2x(V)
14: else
15: V = K-RED(V)
16: end if
17: a[j] = U + V
18: a[j + t] = U − V
19: end for
20: end for
21: end for
22: return a

At the end of the computation, the final results can be converted back to
the standard representation by multiplying with the inverse of the factor K.
Moreover, this conversion can be obtained for free if the computation is merged
with the scaling by n−1 during the inverse transformation, that is, if scaling is
performed by multiplying the resulting vector with the value n−1 ·K−1. However,
we can do even better: by merging the second entry of the table Ψrev,k−1 with

10

Algorithm 4 Modified function INTTK using K-RED and K-RED-2x for reduction
modulo q = 12289 (32 or 64-bit platform).

Input: A vector a = (a[0], a[1], ..., a[n − 1]) ∈ Zn
q in bit-reversed ordering, where

n ∈ {256, 512, 1024}, a precomputed table Ψ−1
rev,k−1 ∈ Zn

q of scaled powers of ψ−1 in

bit-reversed order, and constants n−1
K = n−1 ·k−11, Ψ−1

K = n−1 ·k−10 ·Ψ−1
rev,k−1 [1] ∈ Zq,

where k = 3.
Output: a← INTTK(a) in standard ordering.

1: t = 1
2: for (m = n; m > 2; m = m/2) do
3: j1 = 0
4: h = m/2
5: for (i = 0; i < h; i++) do
6: j2 = j1 + t− 1
7: S = Ψ−1

rev,k−1 [h+ i]

8: for (j = j1; j ≤ j2; j++) do
9: U = a[j]

10: V = a[j + t]
11: a[j] = U + V
12: a[j + t] = (U − V) · S
13: if m = 32 then
14: a[j] = K-RED(a[j])
15: a[j + t] = K-RED-2x(a[j + t])
16: else
17: a[j + t] = K-RED(a[j + t])
18: end if
19: end for
20: j1 = j1 + 2t
21: end for
22: t = 2t
23: end for
24: for (j = 0; j < t; j++) do
25: U = a[j]
26: V = a[j + t]
27: a[j] = K-RED((U + V) · n−1

K)
28: a[j + t] = K-RED((U − V) · Ψ−1

K)
29: end for
30: return a

the fixed value n−1 · K−1, we eliminate an additional n/2 multiplications and
modular reductions. This is shown in Steps 25–28 of Algorithm 4.

4 Case Study: R-LWE Key Exchange

This section explains how we apply our new modular reduction and the im-
proved NTT algorithms, together with a simplified message encoding, to the key
exchange implementation that was proposed by Alkim, Ducas, Pöppelmann and

11

Schwabe in [2]; the protocol is depicted in Figure 1. Accordingly, from hereon
we fix n = 1024 and q = 12289 and the error distribution is defined to be
the centered binomial distribution ψ16, from which one samples by computing∑16
i=1(bi − b′i), where the bi, b

′
i ∈ {0, 1} are uniform independent bits. The func-

tions HelpRec and Rec are modified instantiations of Peikert’s reconciliation
functions [28, §3] that essentially turn approximate key agreement into exact
key agreement – see [2]. The function SHAKE-128 is the extended output func-
tion (XOF) based on Keccak [5], which is also used to derive the 256-bit shared
secret key in both Alice’s and Bob’s final steps. Following [2], the random value
a is generated directly in the NTT domain.

Public parameters

n = 1024, q = 12289, error distribution ψ12

Alice (server) Bob (client)

seed
$← {0, 1}256

a← SHAKE-128(seed)

s, e
$← ψn

16 s′, e′, e′′
$← ψn

16

b← as+ e
mA=(b,seed)−→ a← SHAKE-128(seed)

u← as′ + e′

v ← bs′ + e′′

v′ ← us
mB=(u,r)←− r

$← HelpRec(v)
ν ← Rec(v′, r) ν ← Rec(v, r)

µ← SHA3-256(ν) µ← SHA3-256(ν)

Fig. 1. The key exchange instantiation from [2].

Viewing Figure 1, we identify the following NTT-based computations:

Alice Bob

b← a ◦NTT(s) + NTT(e) u← a ◦NTT(s′) + NTT(e′)
v′ ← INTT (u ◦NTT(s)) v ← INTT (b ◦NTT(s′) + NTT(e′′))

The sequence of NTT and INTT operations above are used to determine the
value of K that results from our target parameters; note that q = 3 · 212 + 1 and
thus k = 3. For determining K, Alice’s and Bob’s NTT/INTT computations
can be seen as two polynomial operations: (1) the first operation begins with
the computation of b on Alice’s side, who then transmits it in the NTT domain
to Bob for computing v and giving the result back in the standard domain; and
similarly (2) the second operation consists of the computation of u on Bob’s side
followed by the computation of v′ on Alice’s side.

12

We first point out that if we include two extra reductions at stage m = 128
and m = 32 of the NTT and INTT algorithms, respectively, then intermediate
values never grow beyond 32 bits during a full NTT or INTT computation (see
steps 11–13 of Algorithm 3 and steps 13–15 of Algorithm 4). Following Section 3,
the factor k introduced by every invocation of K-RED is canceled out by the
corresponding multiplication with an entry from the Ψrev,k−1 and Ψ−1rev,k−1 tables.
Hence, only the extra reductions above introduce a factor k to the intermediate
results of the NTT and INTT.

Secondly, we point out that after performing component-wise multiplications
of polynomials in the NTT domain, the individual factors get compounded.
The results after these multiplications require two additional reductions and
a conditional subtraction per coefficient to fully reduce them modulo q (this
is required to avoid overflows and, when applicable, to transmit messages and
derive shared keys in fully reduced form). It is important to keep track of these
factors and to (i) ensure that they are balanced (i.e., the same) before, e.g.,
adding two summands that are the result of different NTT operations, and (ii)
ensure that they are corrected at the end of the computation. Careful analysis
of the above sequence of NTT operations reveals that the final factor is K =
k10 = 310 for the two full polynomial operations mentioned before.

Message encoding and decoding. The messages exchanged between Alice
and Bob need to be encoded efficiently to minimize encoding/decoding costs and
network delays. In particular, we want to reduce the size of the messages in order
to alleviate the network overhead, which can often be expensive. Internally, poly-
nomials are encoded as 1024-element little-endian arrays, where each element or
coefficient is represented either by a 32-bit signed integer (for secret keys and
error polynomials) or a 32-bit unsigned integer (for everything else). Each coef-
ficient that is part of a message is fully reduced modulo q before transmission
and therefore only uses a fraction of the integer size (i.e., 14 bits). We simply
encode messages in little endian format as a concatenation of these 1024 14-bit
coefficients (for b and u; see Figure 1) immediately followed by the 256-bit seed
in Alice’s message and the 1024 2-bit array r in Bob’s message. Accordingly, mA

and mB consist of 1824 and 2048 bytes, respectively2.

5 Implementation Results

In this section, we present implementation results showcasing the perfor-
mance of the new NTT algorithms and, in particular, benchmark them in the
context of the Ring-LWE key exchange by Alkim et al. [2].

2 Adam Langley also mentions a compact encoding without giving the exact details
in a blog post, see https://www.imperialviolet.org/2015/12/24/rlwe.html. We
assume that the implied encoding is similar to the method described here, but seems
to differ for Bob’s message.

13

5.1 Performance benchmarks

To ease the comparison with the state-of-the-art NTT implementation, we fol-
lowed [2] and implemented two versions of the proposed NTT algorithms [21]:
a portable and compact implementation written in the C language, and a high-
speed implementation written in x64 assembly and exploiting AVX2 instructions.
For the AVX2 implementation we decided to use vector integer instructions,
which are easier to work with and, according to our theoretical analysis, are
expected to provide similar performance to a version using vector floating-point
instructions.

The benchmarking results of our implementations are shown at the top of Ta-
ble 1. These results were obtained by running the implementations on a 3.4GHz
Intel Core i7-4770 Haswell processor with TurboBoost disabled. We used clang
v3.8.0 for compilation.

As one can see, for the C version, the new forward and inverse NTT imple-
mentations are 2.11 and 1.98 times faster than the corresponding implementa-
tions from Alkim et al. [2]. In contrast, for the AVX2 version, the new algorithms
appear to be slightly slower. However, this direct comparison does not account
for the additional benefits of our technique that are not observable at the NTT
level. This includes the efficient use of signed arithmetic and the elimination
of costly conversion routines required by the Montgomery arithmetic (as used
in [2]) that are performed outside of the NTT. As we show below, our algo-
rithms perform significantly better in practice when all this additional overhead
is considered in the cost.

There are several other works that also present efficient NTT implementa-
tions but using different parameters. For example, Güneysu et al. [16] includes
an NTT implementation using n = 512 and q = 8383489 that targets lattice-
based signatures. Unfortunately, comparisons with these works are very difficult
because the extrapolation of results for different parameters is prone to non-
negligible errors due to overheads.

To illustrate the overall performance benefits of the new reduction and NTT
algorithms, we implemented the full key-exchange instantiation proposed by
Alkim et al. [2]. To ease the comparison, we reuse the same implementation
of SHAKE-128 used in Alkim et al.’s software for the seed expansion during the
generation of a. Similarly, for the polynomial error sampling we use ChaCha20
and AES-256 in counter mode for the C and AVX2 implementations, respec-
tively.

Our results for the key exchange are summarized in Table 1. The C and AVX2
implementations are roughly 1.49x and 1.13x faster, respectively, than the cor-
responding C and AVX2 implementations by Alkim et al. These improvements
are mostly due to the new NTT algorithms which exhibit a faster reduction and
avoid the costly conversions that are required when working with Montgomery
arithmetic. The new reduction also motivates the use of signed arithmetic, which
makes computations more efficient because corrections from negative to positive
values are not required in several of the key exchange routines. In particular, the
effect of using signed arithmetic can be observed in the performance improve-

14

Table 1. Benchmarking results (in terms of 103 cycles) of our C and AVX2 implemen-
tations of the NTT and the key-exchange instantiation proposed by Alkim et al. [2] on
a 3.4GHz Intel Core i7-4770 Haswell processor with TurboBoost disabled. Results are
compared with Alkim et al.’s implementation results. At the bottom of the table, we
show the total cost of a key-exchange, including Alice’s and Bob’s computations.

C implementation AVX2 implementation

ADPS [2] This work ADPS [2] This work

NTT 55.4 26.3 8.4 9.1

INTT 59.9 30.3 9.5 9.7

Generating a † 43.6 36.1 36.9 36.3

Error sampling 32.7 28.9 5.9 4.6

HelpRec 14.6 19.7 3.4 2.5

Rec 10.1 7.5 2.8 1.2

Key gen (server) 259.0 166.8 89.1 80.5

Key gen + shared key (client) 385.1 275.6 111.2 98.5

Shared key (server) 86.3 46.9 19.4 15.9

Total (key exchange) 730.4 489.3 219.7 194.9

† Includes the cost of reading a 32-byte seed from /dev/urandom.

ment for the generation of a, and in the functions HelpRec and Rec. We remark
that these performance improvements are obtained with significantly simpler
integer arithmetic.

A different Ring-LWE based key-exchange implementation has been recently
reported by Aguilar-Melchor et al. [1]. Direct comparisons with this work are
especially difficult because they use different parameters and the most recent
version of their implementation appears not to be protected against timing and
cache attacks. As a point of reference, we mention that [1, Table2] reports that
their NTT implementation using n = 512 and a 30-bit modulus runs in 13K
cycles on a 2.9GHz Intel Haswell machine (scaled from 4.5 microseconds). This
is more than 1.4x slower than our NTT using n = 1024 and a 14-bit modulus.

6 Conclusion

We describe a new modular reduction technique and improved FFT algorithms to
compute the NTT. The improved NTT algorithms were applied to a recent key
exchange proposal and showed significant improvements in performance using
both a plain C implementation and a vectorized implementation that does not
require floating-point arithmetic.

Although both the modular reduction and the improved NTT were motivated
by (and are somewhat tailored towards) applications in R-LWE cryptography
that use power-of-2 cyclotomic fields, our improvements should be of independent
interest and might be applicable to other scenarios. Our method offers flexibility
for implementations with different design goals without sacrificing performance.

15

Likewise, we expect that the new algorithms offer similar performance im-
provements on platforms such as ARM processors. We leave this as future work,
as well as the evaluation of the proposed NTT algorithms in the implementation
and optimization of R-LWE signature schemes such as BLISS.

References

1. C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, M.-O. Killijian, and
T. Lepoint. NFLlib: NTT-based fast lattice library. In Kazue Sako, ed-
itor, Topics in Cryptology - CT-RSA 2016, volume 9610 of Lecture Notes
in Computer Science, pages 341–356. Springer, 2016. Software available at:
https://github.com/quarkslab/NFLlib, accessed on May 20, 2016.

2. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange
- a new hope. In Thorsten Holz and Stefan Savage, editors, 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages
327–343. USENIX Association, 2016.

3. S. Bai, A. Langlois, T. Lepoint, D. Stehlé, and R. Steinfeld. Improved security
proofs in lattice-based cryptography: Using the Rényi divergence rather than the
statistical distance. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in
Cryptology - ASIACRYPT 2015, volume 9452 of Lecture Notes in Computer Sci-
ence, pages 3–24. Springer, 2015.

4. P. Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In Andrew M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, volume 263 of Lecture Notes in Computer
Science, pages 311–323. Springer, 1987.

5. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak. In T. Johansson
and P. Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 313–314. Springer, 2013.

6. J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange
for the TLS protocol from the ring learning with errors problem. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, pages 553–570. IEEE Computer
Society, 2015.

7. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. TOCT, 6(3):13:1–13:36, 2014.

8. E. Chu and A. George. Inside the FFT Black Box Serial and Parallel Fast Fourier
Transform Algorithms. CRC Press, Boca Raton, FL, USA, 2000.

9. J. W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 19(90):297–301, 1965.

10. R. Crandall and C. Pomerance. Prime numbers: a computational perspective.
Springer, second edition, 2005.

11. J. Ding, X. Xie, and X. Lin. A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688,
2012. http://eprint.iacr.org/2012/688.

12. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal Gaussians. In R. Canetti and J. A. Garay, editors, Advances in Cryptology
- CRYPTO 2013, volume 8042 of Lecture Notes in Computer Science, pages 40–56.
Springer, 2013.

13. A. Fog. Instruction tables: lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs, accessed on 03/04/2016.
http://www.agner.org/optimize/.

16

14. C. F. Gauss. Nachlass, Theoria Interpolationis Methodo Nova Tractata. Carl
Friedrich Gauss Werke, Band 3, pages 265–330, 1866.

15. W. M. Gentleman and G. Sande. Fast Fourier transforms: For fun and profit. In
Fall Joint Computer Conference, AFIPS ’66, pages 563–578, New York, NY, USA,
1966. ACM.

16. Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Soft-
ware speed records for lattice-based signatures. In Philippe Gaborit, editor, Post-
Quantum Cryptography - PQCrypto 2013, volume 7932 of Lecture Notes in Com-
puter Science, pages 67–82. Springer, 2013.

17. D. Harvey. Faster arithmetic for number-theoretic transforms. J. Symb. Comput.,
60:113–119, 2014.

18. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key
cryptosystem. In J. Buhler, editor, Algorithmic Number Theory, ANTS-III, volume
1423 of Lecture Notes in Computer Science, pages 267–288. Springer, 1998.

19. D. E. Knuth. Seminumerical Algorithms. The Art of Computer Programming.
Addison-Wesley, Reading, Massachusetts, USA, 3rd edition, 1997.

20. Z. Liu, H. Seo, S. S. Roy, J. Großschädl, H. Kim, and I. Verbauwhede. Efficient
Ring-LWE encryption on 8-bit AVR processors. In Tim Güneysu and Helena
Handschuh, editors, Cryptographic Hardware and Embedded Systems - CHES 2015,
volume 9293 of Lecture Notes in Computer Science, pages 663–682. Springer, 2015.

21. P. Longa and M. Naehrig. LatticeCrypto. https://www.microsoft.com/en-us/
research/project/lattice-cryptography-library/, 2016.

22. V. Lyubashevsky. Lattice signatures without trapdoors. In D. Pointcheval and
T. Johansson, editors, Advances in Cryptology - EUROCRYPT 2012, volume 7237
of Lecture Notes in Computer Science, pages 738–755. Springer, 2012.

23. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages 1–23. Springer,
2010.

24. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
SWIFFT: A modest proposal for FFT hashing. In Kaisa Nyberg, editor, Fast
Software Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzer-
land, February 10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes
in Computer Science, pages 54–72. Springer, 2008.

25. D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters.
In R. Canetti and J. A. Garay, editors, Advances in Cryptology - CRYPTO 2013,
volume 8042 of Lecture Notes in Computer Science, pages 21–39. Springer, 2013.

26. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
computation, 44(170):519–521, 1985.

27. H. J. Nussbaumer. Fast polynomial transform algorithms for digital convolution.
Acoustics, Speech and Signal Processing, IEEE Transactions on, 28(2):205–215,
1980.

28. C. Peikert. Lattice cryptography for the internet. In M. Mosca, editor, Post-
Quantum Cryptography - PQCrypto 2014, volume 8772 of Lecture Notes in Com-
puter Science, pages 197–219. Springer, 2014.

29. T. Pöppelmann and T. Güneysu. Towards practical lattice-based public-key en-
cryption on reconfigurable hardware. In Tanja Lange, Kristin E. Lauter, and Petr
Lisonek, editors, Selected Areas in Cryptography - SAC 2013, volume 8282 of Lec-
ture Notes in Computer Science, pages 68–85. Springer, 2014.

17

30. T. Pöppelmann, T. Oder, and T. Güneysu. High-performance ideal lattice-based
cryptography on 8-bit ATxmega microcontrollers. In Kristin E. Lauter and Fran-
cisco Rodŕıguez-Henŕıquez, editors, Progress in Cryptology - LATINCRYPT 2015,
volume 9230 of Lecture Notes in Computer Science, pages 346–365. Springer, 2015.

31. F. Proth. Théorèmes sur les nombres premiers. Comptes Rendus des Séances de
l’Académie des Sciences, Paris, 87:926, 1878.

32. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages
84–93, 2005.

33. S. Sinha Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Com-
pact Ring-LWE cryptoprocessor. In Lejla Batina and Matthew Robshaw, editors,
Cryptographic Hardware and Embedded Systems - CHES 2014, volume 8731 of
Lecture Notes in Computer Science, pages 371–391. Springer, 2014.

34. V. Shoup. Number Theory Library (NTL). 1996-2016. http://www.shoup.net/

ntl.
35. D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over

ideal lattices. In K. G. Paterson, editor, Advances in Cryptology - EUROCRYPT
2011, volume 6632 of Lecture Notes in Computer Science, pages 27–47. Springer,
2011.

36. J. Zhang, Z. Zhang, J., M. Snook, and Özgür Dagdelen. Authenticated key ex-
change from ideal lattices. In E. Oswald and M. Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015, volume 9057 of Lecture Notes in Computer Sci-
ence, pages 719–751. Springer, 2015.

18

