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Abstract

A wide variety of objectively practical cryptographic schemes can be constructed using only
symmetric-key operations and linear operations. To formally study this restricted class of cryp-
tographic algorithms, we present a new model called Linicrypt. A Linicrypt program has access
to a random oracle whose inputs and outputs are field elements, and otherwise manipulates data
only via fixed linear combinations.

Our main technical result is that it is possible to decide in polynomial time whether two given
Linicrypt programs induce computationally indistinguishable distributions (against arbitrary
PPT adversaries, in the random oracle model).

We show also that indistinguishability of Linicrypt programs can be expressed as an exis-
tential formula, making the model amenable to automated program synthesis. In other words,
it is possible to use a SAT/SMT solver to automatically generate Linicrypt programs satisfying
a given security constraint. Interestingly, the properties of Linicrypt imply that this synthesis
approach is both sound and complete. We demonstrate this approach by synthesizing Linicrypt
constructions of garbled circuits.

1 Introduction

Throughout cryptography, we find many examples of objectively practical constructions that share
common features. In particular, they treat blocks of bits as atomic units, and manipulate these units
by calling a symmetric-key primitive or by interpreting them as elements in a field and applying
strictly linear operations to them. Below are just some examples:

• Standard block cipher modes like CBC, OFB, PCBC for privacy, and LRW modes [LRW02]
for tweakable block ciphers consist of calls to the underlying block cipher and xor, the linear
operation in GF (2n). (This ignores matters of padding/ciphertext stealing, where the input
is not an exact multiple of field elements.)

• Constructions in other settings also consist of calls to an underlying symmetric primitive
along with xor operations: the Davies-Meyer construction & its variants [PGV94, BRS02]
for collision-resistance; the Even-Mansour [EM93] and Feistel [LR86] constructions for PRPs;
NMAC, HMAC [KBC97], and VMAC [KD07] for authenticity; Naor’s commitment scheme [Nao91].

• Some constructions use GF (2n)-linear transformations with (fixed) coefficients other than
1 (i.e., these constructions use multiplication by fixed field elements). These include: OCB
mode [RBBK01] for authenticated encryption, CMC mode [HR03] for disk encryption, XE/XEX
modes [Rog04] for tweakable block ciphers, PMAC [BR02] for authentication.

∗Full version of a paper appearing in CRYPTO 2016.
†Oregon State University, {carmerb,rosulekm}@eecs.oregonstate.edu. Authors supported by NSF award

1149647.

1



• Signing algorithms for lightweight one-time signature schemes like those of Lamport [Lam79]
and Winternitz [Win83] consist purely of calls to a one-way or [target] collision-resistant hash
function. Variants like W-OTS+ [Hül13] incorporate xor operations. Few-time signature
schemes like HORS and variants [RR02, PWX04] also use only a random oracle. These
simple signature schemes can be composed to give many-use signature schemes using Merkle
trees [Mer90] and derivatives thereof [Gol87, NSW05, BHH+15, PPB15, BDK+07, BDH11,
BGD+06]. These extensions do not introduce any additional operations on the atomic field
elements.

• Practical constructions of garbled circuits [NPS99, KS08, KMR14, ZRE15, GLNP15] simply
use xor and calls to an underlying hash function/KDF, while the construction of [PSSW09]
uses polynomial interpolation (with fixed points of evaluation) over GF (2n), which is a linear
operation.

1.1 Overview of Our Results

Inspired by the constructions above, we introduce a restricted model of computation called Linicrypt.
Programs in the Linicrypt model have access to a random oracle (to model a symmetric-key prim-
itive), whose inputs and outputs are elements of a field F. The field F is public and its size should
be exponential in the security parameter.

Beyond calling a random oracle, Linicrypt programs can manipulate field elements only by uni-
formly sampling them or by applying fixed linear combinations. More formally, a (pure) Linicrypt
program is a fixed sequence of statements of the following form:

vi
$← F: sample a value uniformly from F.

vi :=
∑

j cjvj : apply a linear combination to existing variables, using fixed coefficients.

vi := H(t‖vj1‖vj2‖ · · · ‖vjk): call the random oracle on a set of existing variables, and optionally a
string t which is fixed with the program (useful for domain separation).

output (vj1 , . . . , vjk): output an ordered sequence of variables.

Linicrypt is expressive enough to capture cryptographic construction of interest, but still restrictive
enough that it provides several key benefits:

1. It is tractable to reason about cryptographic properties of Linicrypt programs. Our main
technical result is that it is possible to decide, in polynomial time, whether two Linicrypt
programs induce indistinguishable output distributions (in the random oracle model, against
arbitrary PPT adversaries).

We also point out that unforgeability properties (e.g., given the output of a program P, it
is hard to predict an internal value v∗) can be easily transformed into indistinguishability
properties, making many standard styles of security definition expressible (and efficiently
decidable) in Linicrypt.

2. Unlike in other restricted models, Linicrypt programs manipulate data as atomic units. This
makes it possible to prove fine-grained lower bounds to the level of optimal constant factors
(e.g., “this cryptographic task cannot be done in Linicrypt with keys smaller than 5λ bits”).
Such lower bounds for Linicrypt hold in the random oracle model, and hence they also imply
impossibility of a black-box construction from one-way functions.
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3. The question of finding a Linicrypt program whose output is indistinguishable from some
specification (e.g., its output is pseudorandom) can be expressed as an existential formula.
One can then use an SAT/SMT solver to find a witness — i.e., automatically synthesize a
secure Linicrypt construction. Additionally, if the formula is found to be unsatisfiable, it
implies that no secure Linicrypt construction exists for the task — i.e., this paradigm for
program synthesis is both sound and complete.

In Section 2 we formally define Linicrypt, develop techniques to reason about its algorithms,
and prove our main technical result. Later in Section 3 we give an example application of our
approach to program synthesis. We show how to use an SMT solver to synthesize secure Linicrypt
constructions of garbled circuits. Specifically, for a given boolean function f : {0, 1}k → {0, 1}`
(e.g., an adder, a multiplexer), we synthesize Linicrypt procedures to garble f (as an atomic unit)
in a way that is compatible with the Free XOR optimization of [KS08].

1.2 Related Work & Inspiration

Minicrypt. Linicrypt is inspired in name by Impagliazzo’s [Imp95] Minicrypt, which refers to
a hypothetical world in which one-way functions exist but no “fancier” cryptography is possible.
Minicrypt is formalized (as in [IR90]) by having a random oracle and allowing adversaries to be
computationally unbounded (but with only polynomially many queries to the oracle). In this way,
the random oracle becomes the only available source of computational cryptography.

The main distinction therefore between Linicrypt & Minicrypt is the additional constraint of lin-
earity. This restriction allows Linicrypt lower bounds to resolve optimal constant factors, whereas
optimal constant factors are not typically well-defined in Minicrypt. For example, imagine instan-
tiating a secure Minicrypt scheme with security parameter λ/c; as a function of λ, the resulting
construction would typically have constants reduced by a factor of c but still be secure.

Generic group model. Linicrypt has many similarities to the generic group model (GGM) of
Shoup [Sho97]. In the GGM, adversaries are restricted to manipulating elements of a cyclic group
in a black-box way using only the prescribed group operations. While the GGM was originally
proposed as a heuristic model for adversaries, one can also use GGM constructions to prove lower
bounds. Dodis et al. [DHT12] show that full-domain hashing from RSA cannot be proven secure
using techniques that treat the RSA group as a generic multiplicative group. Papakonstantinou
et al. [PRV12] show that identity-based encryption is impossible via a GGM construction (without
a bilinear pairing).

GGM lower bounds can identify optimal constant factors, which is one of the goals of Linicrypt.
A line of work by Abe et al. [AGHO11, AGOT14b, AGOT14a] considers the case of structure-
preserving digital signatures. They prove (among other things) that 3 group elements are optimal
for structure-preserving signatures implemented by GGM algorithms. More recently, synthesis has
been effectively applied [BFF+15] to generate novel and optimal structure-preserving schemes.

Despite these similarities, we point out some important technical differences:
(1) In the GGM, group elements are represented via a random encoding into bits, and adversaries

are allowed to “look at” these encodings. This is slightly less restricting than our compartmentalized
approach in which encodings don’t play a part (and hence Linicrypt programs cannot perform
equality tests). In that regard, our model is similar to the generic-group variant of Maurer [Mau05].
Since our goal is to place restrictions on constructions rather than adversaries, the distinction does
not seem to be very significant.
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(2) Linicrypt includes a random oracle, which has not yet been considered in GGM lower bound
results to the best of our knowledge. The random oracle is indeed a source of technical complications
in Linicrypt.

(3) Both Linicrypt and GGM allow only linear operations (e.g., in the GGM, a value “in the
exponent” can only be manipulated in linear ways). However, a Linicrypt program must apply
linear operations with fixed (i.e., known to the adversary) coefficients, while the GGM model allows
constructions to choose random (secret) coefficients. This difference is what allows Diffie-Hellman-
style constructions to be modeled in GGM but not in Linicrypt. Namely, a GGM algorithm can hide
a random value “in the exponent” by performing the generic operation g 7→ gx, but the analogous
operation in Linicrypt (v 7→ xv) hides nothing since x would always be considered fixed.

Algebraic cryptography model. Applebaum et al. [AAB15] define a model for arithmetic
cryptography, building on earlier work by Ishai et al. [IPS09]. Their model has some similarities to
Linicrypt but also fundamental differences. Compared to Linicrypt, the arithmetic model allows for
general field operations on its elements, not just linear combinations. More importantly, the defining
feature of the arithmetic model is that the construction is oblivious to the underlying field/ring —
the construction must work no matter what field/ring is used. In order to model cryptographic
practice, Linicrypt allows the ring to be specified by the construction. Additionally, their model
does not currently include random oracles, and hence it is only applicable to information-theoretic
constructions or computational assumptions that can be obtained from the algebraic structure in
a black-box way. The model is not equipped to consider standard assumptions like the existence
of pseudorandom functions or collision-resistant hash functions.

Linear Garbling. In this work we study Linicrypt programs in the context of garbled circuit
constructions. This is inspired in part by the lower bound of Zahur et al. [ZRE15]. They too
observe that practical garbled circuit constructions consist of only linear operations and calls to a
random oracle. They prove a lower bound, namely, that such “linear garbling schemes” require 2
field elements to garble a single and gate.

In concurrent and independent work, Pastro et al. [MPs16] extend the model of linear garbling
and characterize security in terms of linear-algebraic properties like span. They generalize the
garbling scheme of [ZRE15] to natively support low-degree polynomials (not just AND-gates).

Later in Section 3 we go into more detail about the ZRE lower bound in the context of Linicrypt.
For now, we simply point out the main differences between our work and the two above: (1) in this
work we present a full theory of Linicrypt, not constrained only to garbled circuits; (2) the above
models of linear garbling only consider “Linicrypt programs” that make non-adaptive calls to the
random oracle, whereas our general Linicrypt model has no such restriction (arguably, the ability
to reason about arbitrary oracle queries is the most important feature of Linicrypt). The difference
is important specifically in the context of garbled circuits since, in most schemes, adaptive oracle
queries result when composing several gates together in a larger circuit.

Synthesis of cryptographic constructions. Synthesis has been effectively used in the generic
group model to discover batching schemes for signature verification [AGHP12] and optimal structure-
preserving signatures [BFF+15]. Both of these results synthesize constructions involving bilinear
pairings.

Malozemoff et al. [MKG14] synthesized IND-CPA secure block cipher modes by expressing
the main loop of a mode as a directed graph. They defined typing rules for the vertices of this
graph and showed that if a valid assignment of types exists, then the resulting scheme is secure.
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Using a SAT solver, they were able to check for valid type assignments for candidate modes and
subsequently enumerate secure modes. In a followup work, Hoang et al. [HKM15] extended the
synthesis to authenticated encryption modes built from tweakable block ciphers.

Prior work of Gagné et al. [GLLS09, GLLS11] developed techniques for automated proofs of
security for (CPA-secure) block cipher modes. Akinyele et al. [AGH13] use an SMT solver to
automate transformations of pairing-based signature schemes.

In all of the works involving block cipher modes [GLLS09, GLLS11, MKG14, HKM15] the
techniques are developed for modes involving just xor operations and [tweakable] block cipher
calls. This corresponds to a natural special case of Linicrypt. We emphasize, however, that in
these works the methods are sound but not complete.1

2 Linicrypt

2.1 Basic Model

A pure Linicrypt program over field F is a tuple P = (in, out, cmds), where: in is a nonnegative
integer, out is an ordered sequence of indices from {1, . . . , |cmds|}, and cmds is an ordered sequence
of Linicrypt commands. The ith command in cmds must have one of the following forms:

• (inp, j), where 1 ≤ j ≤ in [retrieve a value from input]

• (samp) [sample an element of F]

• (lin, c1, . . . , ci−1), where each cj ∈ F [perform a linear combination of values]

• (hash, t, j1, . . . , jk), where t ∈ {0, 1}∗ and j1, . . . , jk < i [call the random oracle on a set of
variables, and additional (fixed) string t]

Intuitively, the program P takes as input a vector from Fin, then performs the operations specified
by cmds. Each of the internal values of P is assigned to a variable v[i]. Finally, the program outputs
the values whose indices are in the set out. More formally, we define the behavior of P as a process
via:

PH(~x ∈ Fin):

for i = 1 to |cmds|:
if cmds[i] = (inp, j): v[i] := ~x[j]

if cmds[i] = (samp): v[i]
$← F

if cmds[i] = (lin, c1, . . . , ci−1): v[i] :=
∑
cjv[j]

if cmds[i] = (hash, t, j1, . . . , jk): v[i] := H(t; v[j1], . . . , v[jk])
return

(
v[j]
)
j∈out

Note that H is an oracle with type H : {0, 1}∗ × F∗ → F. In informal discussions, we often omit
the first argument to H when it is an empty string.

1In [MKG14] the authors explicitly say, “we prevent a random value from both being output as ciphertext and
input into a PRF . . . This does not mean there do not exist secure schemes which have this property; however, our
tool does not allow such schemes.” In [GLLS09, GLLS11] the techniques involve a logic that uses only local invariants.
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sign(sk, x)

σ := sk
for i = 1 to x:
σ := H(σ)

return σ

=⇒

sign(sk, x)

if x = 1: v1 := H(sk)
return v1

else if x = 2: v1 := H(sk)
v2 := H(v1)
return v2

else if · · ·

Figure 1: The signing algorithm for one-time Winternitz signatures as a mixed Linicrypt program.
Each inner box on the right-hand side is a pure Linicrypt programs, sign(·, x), for fixed x.

2.2 Mixed Linicrypt Programs & Modelling Real-World Primitives

Most of the cryptographic primitives listed in the introduction cannot actually be implemented
strictly as pure Linicrypt programs. For example, consider the one-time Winternitz signature of
a single “digit” x ∈ [m]. The secret key sk ← F is chosen uniformly. The public key is then

pk := H(m)(sk). To sign x, release σ := H(x)(sk). Then to verify, check pk
?
= H(m−x)(σ).

The main operations in Winternitz are simply repeated calls to the hash/one-way function H,
which are certainly allowed in Linicrypt. However, the signing algorithm uses x in a non-linear
way — to choose how many Linicrypt commands to execute!

We therefore extend the scope of Linicrypt beyond pure Linicrypt programs. A mixed Linicrypt
program is one in which we designate some inputs to be non-linear and the others to be linear. For
instance, in the signing algorithm of Winternitz signatures there is a for-loop whose exit condition
is non-linear in x.

We can associate any mixed Linicrypt program with a collection of pure Linicrypt programs.
Think of any mixed Linicrypt program as a switch/case statement (based on its non-linear input)
selecting which pure Linicrypt program to run. See Figure 2.2 for the example of Winternitz
signatures. Each sign(·, x) is a pure Linicrypt program. Since x is public in the security definition
for signatures, we can express the security of the (mixed) signing algorithm in terms of the properties
of each (pure) program sign(·, x).

The way one decides to model some inputs as non-linear and other inputs as linear is highly
application-specific. In general, it makes the most sense to let the length of non-linear inputs to
be a constant c: First, the complexity of deciding security and synthesizing constructions grows
exponentially with c. Second, this implies that all of the security properties are a result of the
Linicrypt operations (the random oracle and linear operations over a field F, whose size is expo-
nential in the security parameter) and not the non-linear behavior. In other words, in a security
game an adversary could guess with constant probability the non-linear input, leaving a residual
pure Linicrypt program. So security is reduced to the security properties of the individual pure
Linicrypt programs in the collection.

Throughout the rest of this section we develop a general theory of Linicrypt, and restrict our
attention to pure Linicrypt programs. Later when discussing specific applications of Linicrypt to
garbled circuits, we explicitly discuss mixed Linicrypt programs and non-linear inputs, etc.

2.3 Algebraic Representation

Let P be a (pure) Linicrypt program with notation as above. Say that v[i] is a derived variable if
cmds[i] is of the form (lin, · · · ). Otherwise say that v[i] is a base variable. That is, a base variable
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is the result of a command with one of samp, hash, or inp. Let base denote the number of base
variables. The main idea behind manipulating Linicrypt programs in an algebraic way is to observe
that all values of importance can be expressed as linear functions of the base variables.

In more detail, fix an ordering of the base variables and denote them by the vector vbase. Then
for the ith command in cmds, define row(i) to be the vector in Fbase such that v[i] = row(i) · vbase,
where the · denotes dot product of vectors. More formally:

row(i)
def
=

[

j−1︷ ︸︸ ︷
0 0 · · · 0 1 0 · · · 0] if v[i] is the jth base variable∑
j cjrow(j) if cmds[i] = (lin, c1, . . . , ci−1)

.

We create a matrix to represent the output of a Linicrypt program:

M def
=

 — row(o1) —
...

— row(ok) —

 , where out = (o1, . . . , ok).

M therefore characterizes the direct correlations among the program’s output variables. Yet, it
contains no information about how these variables may be correlated via the random oracle! So,
our characterization of a Linicrypt program includes a set of oracle constraints. The idea behind
an oracle constraint 〈t,Q,a〉 is that if the random oracle is called on input (t;Q× vbase) then the
response will be a · vbase.

C def
=


〈
t,

 — row(j1) —
...

— row(jk) —

 , row(i)

〉 ∣∣∣∣∣∣∣ cmds[i] = (hash, t, j1, . . . , jk)


Without loss of generality, we can assume that no two constraints share (t,Q) in common. Under
that restriction, the set {a | 〈t,Q,a〉 ∈ C} is a linearly independent set — i.e., the results of distinct
random oracle queries are linearly independent.

Finally, we define the algebraic representation of a Linicrypt program P to be (M, C). We
refer to M as the output matrix and C as the set of oracle constraints.

To demonstrate the different ways of viewing a Linicrypt program, consider the following ex-
ample, with in = 0:

plain-language: Linicrypt cmds: var type: matrix representation:

v1 ← F 1: (samp) base
v2 ← F 2: (samp) base
v3 := v1 − v2 3: (lin, 1,−1) derived


v1
v2
v3
v4
v5

 =


1 0 0
0 1 0
1 −1 0
0 0 1
1 0 1


v1v2
v4


v4 := H(foo, v3, v2) 4: (hash, foo, 3, 2) base
v5 := v4 + v1 5: (lin, 1, 0, 0, 1) derived
return (v4, v5) // out = (4, 5)

algebraic representation:

M =

[
0 0 1
1 0 1

]
; C =

{
〈foo,

[
1 −1 0
0 1 0

]
, [0 0 1]〉

}
There are three base variables. With v4, v5 being output variables, the output matrix M consists
of row(4), row(5). There is one hash-command “v4 := H(foo, v3, v2),” leading to a single oracle

constraint 〈foo,
[
row(3)
row(2)

]
, row(4)〉.
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In the rest of this paper, we specialize to input-less (i.e., in = 0) Linicrypt programs. Restricting
our domain to input-less programs simplifies the definitions & proofs. This is justified by our main
application to garbled circuits. In the security definition for garbled circuits, the adversary chooses
an input x to the function, but since we model x as non-linear input, what is left over is a collection
of security experiments, one for each x, each involving an input-less (pure) Linicrypt program.

We hereafter overload notation and write P = (M, C). We claim that (M, C) completely
characterizes the behavior of P. In more detail, let P be an input-less Linicrypt program, let A be
an oracle machine, and consider the following canonical simulation of P.

SAP ():

1. vbase
$← Fbase

2. vout :=Mvbase

3. cache := empty associative array
4. return AH(vout), where H implemented as below:

H(t; q ∈ F∗):
// if the adversary found a collision among oracle constraints

5. if ∃〈t,Q,a〉, 〈t,Q′,a′〉 ∈ C with a 6= a′ and Qvbase = Q′vbase = q:
6. abort
// if there is an oracle constraint for the query q

7. if ∃〈t,Q,a〉 ∈ C with Qvbase = q:
8. return a · vbase

// honest simulation of a random oracle beyond this point

9. if cache[t; q] does not exist:

10. cache[t; q]
$← F

11.return cache[t; q]

(1)

The idea is to simply sample all of the base variables upfront, instead of deriving some of them
via calls to the random oracle. But then to make the simulation of the random oracle consistent,
we “patch” the random oracle so that when queried on (t,Qvbase), the consistent result a · vbase is
simulated (lines 7-8). The simulation aborts when two oracle constraints are in conflict (lines 5-6).

Lemma 1 (Canonical simulation). Let P be an input-less (i.e., in = 0) Linicrypt program that
executes n hash-commands. Then for all oracle machines A:

Pr
[
SAP () = 1

]
− Pr

H

[
AH(PH()) = 1

]
≤ n(n+ 1)

2|F|
.

We emphasize that A here is an arbitrary program. It need not be linear, it may be computa-
tionally unbounded, and (at least for this lemma) it is even unrestricted in the number of oracle
queries it makes.

Sketch. Conditioned on the simulation not aborting in line 6, the simulation is perfect. Essentially,
each query to H answered in lines 7-8 is answered with a randomly chosen base variable (since each
a is a canonical basis vector), exactly matching how queries are answered by an honest random
oracle. Hence, the error in the simulation is the probability that the condition in line 5 is true. This
happens if Qvbase = Q′vbase for some distinct constraints 〈t,Q,a〉, 〈t,Q′,a′〉 ∈ C. Since WLOG no
two constraints share (t,Q), we have that Q−Q′ is a nonzero matrix, and therefore that

Qvbase = Q′vbase ⇐⇒ (Q−Q′)vbase = 0⇐⇒ vbase ∈ kernel(Q−Q′).
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Note that kernel(Q−Q′) is a proper subspace of Fbase with maximum dimension (base−1). Then,
when vbase is chosen uniformly from Fbase, the probability that it is in a particular proper subspace
is at most |F|base−1/|F|base = 1/|F|. Recall that P executes n hash-commands. Then there are(
n
2

)
= n(n+ 1)/2 possible pairs of distinct oracle constraints. By the union bound, the probability

that there exist some pair of oracle constraints with Q and Q′ for which vbase ∈ kernel(Q−Q′) is
at most n(n+ 1)/2|F|.

2.4 Linear Transformations, Basis Changes & Composition

The algebraic representation for Linicrypt programs turns out to be convenient, as we can perform
linear-algebraic manipulations to Linicrypt programs.

For instance, consider applying a linear transformation to a Linicrypt program. Let P =
(M, C) be a Linicrypt program. Recall that the width of the vectors in M and C is base. Now let
B be a base× base matrix with entries in F and consider the Linicrypt representation (MB, CB),
where

CB def
= {〈t,QB,aB〉 | 〈t,Q,a〉 ∈ C}.

When B is an invertible matrix, we refer to (MB, CB) as a basis change of B applied to (M, C).
Such a basis change has no effect on the output distribution of the Linicrypt program. More
precisely:

Proposition 2. Let P = (M, C) be an input-less Linicrypt program, and let P ′ = (MB, CB) for
some invertible matrix B. Then for all oracle machines A, we have:

Pr
[
SAP () = 1

]
= Pr

[
SAP ′() = 1

]
.

Proof. A basis change by B is equivalent to adding a statement “vbase := Bvbase” between lines 1
& 2 in Equation 1. Since B is invertible, this additional statement has no effect on the distribution
of vbase.

Composition. We can use the idea of a linear transformation to reason algebraically about the
composition of two Linicrypt programs. Let P = (M, C) be a Linicrypt program with no input
and out outputs, and let P ′ = (M′, C′) be a Linicrypt program with out inputs, so that it makes
sense to feed the output of P as input to P ′. Without loss of generality, we make the following
assumptions:

• Both programs have the same number of base variables (so thatM,M′ have the same number
of columns and so on).

• The first out base variables of P ′ are identified with its input variables.

The algebraic representation of P ′ implicitly treats all of its input variables as linearly independent.
So the case when M has full rank is easiest. To compose the programs, one simply applies a basis
change to either program to align P’s output variables (M) and P ′’s input variables (expressed
as [I | 0], where I is the out × out identity matrix), and similarly align the oracle constraints of
the programs. If such a basis change has been applied, then the composed program’s output is
characterized by M′ and its oracle constraints are simply C ∪ C′.

However, in general the output of P may have linear correlations, and this can have a serious
effect on the behavior of P ′. Take for example the case where P ′ takes two input variables (v1, v2)
and outputs H(v1)−H(v2). Then the behavior of P ′ is qualitatively different when v1 and v2 are
linearly independent vs. when they are correlated as v1 = v2, for instance.
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In general, we consider applying a linear transformation to P ′ that “collapses” the appropriate
base variables (they become associated with the same vector in the algebraic representation). Col-
lapsing input base variables may result in the collapse of oracle queries that use these variables. In
the example above, H(v1) and H(v2) are themselves base variables which are linearly independent
in general; yet they collapse to the same base variable when v1 = v2.

Hence, to compose P with P ′ we consider a linear transformation Γ applied to P ′, with the
following properties:

1. Γ aligns the input variables of P ′ (the first out base variables) with the outputM of P. That
is, M = [I | 0]× Γ where I is the out× out identity matrix.

2. Γ consistently aligns the oracle queries of P ′ to those in P. That is, if 〈t,Q,a〉 ∈ C′Γ, and
〈t,Q,a′〉 ∈ C, then a = a′.

3. Γ collapses appropriate oracle constraints in P ′: that is, if Γ causes (previously distinct) oracle
constraints to now share the same t and Q components, then they must now also share the
same a component. More formally, the constraints in C′Γ should all have distinct t,Q values.
However, note that C′Γ may have fewer constraints than C′ due to collapses induced by Γ.

4. Γ should only collapse base variables that are absolutely required by the above conditions. In
other words, the rank of Γ should be as large as possible given the above constraints. Note
that ifM has full rank, then Γ will indeed be a basis change. However, in general Γ may not
be a basis change — this is consistent with the fact that feeding linearly correlated values into
P ′ may indeed fundamentally change its behavior. A basis change exactly preserves behavior.

Given such a transformation Γ, then (M′Γ, C ∪ C′Γ) is an algebraic representation for the compo-
sition of programs P ′ ◦ P.

2.5 Indistinguishability vs. Unpredictability

When we consider Linicrypt programs that implement cryptographic primitives, the most funda-
mental question is: when do two Linicrypt programs induce indistinguishable distributions (in the
random oracle model)?

Definition 3. Let P1 and P2 be two input-less Linicrypt programs over F. Let λ = log |F| be the
security parameter. We say that P1 and P2 are indistinguishable, and write P1 ∼= P2, if for every
(possibly computationally unbounded) oracle machine A that queries its oracle a polynomial (in λ)
number of times, we have

Pr[AH(PH1 ()) = 1]− Pr[AH(PH2 ()) = 1] is negligible in λ.

The probabilities are over the choice of random oracle H and the coins of P1, P2, and A.

We point out that indistinguishability can be used to reason about unforgeability properties as
well. Suppose P is a Linicrypt program that has some special internal variable v∗, and we wish to
formalize the idea that “v∗ is hard to predict (in the random oracle model) given the output of P.”
Now define the following two related programs:

• P1 runs P and outputs whatever P outputs, along with an additional output vextra = H(t∗; v∗),
where t∗ is a “tweak” that is not used in P.

• P2 runs P and outputs whatever P outputs, along with an additional output vextra
$← F.
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Note that P1 and P2 are a Linicrypt programs if P is. Now observe that the following statements
are equivalent:

1. Given the output of P, the probability that an adversary (with access to the random oracle)
outputs v∗ is negligible.

2. Given the output of P, the probability that an adversary queries the random oracle on
H(t∗; v∗) is negligible.

3. Given the output of P, the value H(t∗; v∗) is indistinguishable from uniform. This follows
simply from the definition of the random oracle model, and the fact that P itself does not
use any values of the form H(t∗; ·).

4. P1 ∼= P2.

Hence, standard unforgeability properties of a Linicrypt program can be expressed as the indistin-
guishability of two Linicrypt programs. From now on, we therefore focus on indistinguishability
only. And indeed, our main characterization theorem will include reasoning like that above, re-
garding which oracle queries can be made by an adversary with non-negligible probability.

2.6 Normalization

We now describe a procedure for “normalizing” a Linicrypt program. Specifically, normalizing
corresponds to removing “unnecessary” calls to the oracle. We illustrate the ideas with a brief
example, below:

plain language: Linicrypt cmds: matrix representation:

v1
$← F 1: (samp)

v2 := H(foo, v1) 2: (hash, foo, 1)
v3 := v1 − v2 3: (lin, 1,−1)


v1
v2
v3
v4
v5

 =


1 0 0 0
0 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1



v1
v2
v4
v5


v4 := H(bar, v3) 4: (hash, bar, 3)
v5 := H(baz, v3) 5: (hash, baz, 3)
output (v3, v5)

This program has 3 oracle queries, two of which are “unnecessary” in some sense.

• It is instructive to consider what information the adversary can collect about the base variables
vbase. From the output of P, one obtains v3 = [1 −1 0 0] · vbase and v5 = [0 0 0 1] · vbase.
Then one can call the oracle as H(bar, v3) to obtain v4 = [0 0 1 0] · vbase. However, it is hard
to predict v1 = [1 0 0 0] · vbase given just the output of P. More specifically, [1 0 0 0] is not
in the span of {[1 −1 0 0], [0 0 1 0], [0 0 0 1]}.
In other words, the probability of an adversary querying H on v1 is negligible, so we call
this oracle query unreachable. Conditioned on the adversary not querying H on v1, its
output v2 = H(foo, v1) looks uniformly random. Removing the corresponding oracle con-
straint therefore has negligible effect. Note that removing the oracle constraint corresponds

to replacing “v2 := H(foo, v1)” with “v2
$← F”; i.e., changing cmds[2] from (hash, foo, 1) to

(samp).

• Oracle query H(bar, v3) is reachable, since the output of P includes v3. However, its result
is v4 which is not used anywhere else in the program. This can be seen by observing that all
other row vectors in the algebraic representation have a zero in the position corresponding to
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normalize(P = (M, C)):
Reachable := rows(M)
C′ := ∅
until C′ reaches a fixed point:

for each 〈t,Q,a〉 ∈ C \ C′:
if rows(Q) ⊆ span(Reachable):

add a to Reachable
add 〈t,Q,a〉 to C′

Useless := ∅
until Useless reaches a fixed point:
V := (multiset of) all row vectors in M and C′ \ Useless
for each 〈t,Q,a〉 ∈ C′ \ Useless:

if a 6∈ span(V \ {a}):
add 〈t,Q,a〉 to Useless

C′′ := C′ \ Useless

return (M, C′′)

Figure 2: Procedure to normalize a Linicrypt program. Since V is a multiset, we clarify that
“V \ {a}” means to decrease the multiplicity of a in multiset V by only one. So V \ {a} may
yet include a. One reason for a to have high multiplicity in V is if a appears both in an oracle
constraint and as a row of M.

v4. Hence this oracle call can be replaced with “v4
$← F” with no effect on the adversary. We

call this query useless.

• Oracle query H(baz, v3) is similarly reachable, but it is useful. The result of this query is
H(baz, v3) = v5 which is included in the output of P and hence visible to the adversary. It
cannot be removed because an adversary could query H(baz, v3) and check that it matches
v5 from the output.

More generally, we normalize a Linicrypt program by computing which oracle queries / constraints
are reachable and which are useless in the above sense.

To compute which oracle queries are reachable, we perform the following procedure until it
reaches a fixed point: Given Linicrypt program P = (M, C), mark the rows of M as reachable.
Then, if any oracle constraint 〈t,Q,a〉 ∈ C has every row of Q in the span of reachable vectors,
then mark a as reachable.

Instead of computing which queries are useful, it is more straight-forward to compute which
queries are useless, one by one. Intuitively, a constraint 〈t,Q,a〉 is useless if a is linearly independent
of all other vectors appearing inM and C′ (either as rows ofM or rows of someQ′ or as an a′). After
removing one useless constraint, other constraints might become useless. For instance, consider a
Linicrypt program that outputs v but also internally computes H(H(H(v))). Only the outermost
call to H is initially useless. After it is removed, the “new” outermost call is marked useless, and
so on, until a fixed point is reached.

The details of the normalize procedure are given in Figure 2. In Appendix A.1 we prove the
following:
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Lemma 4. If P is an input-less Linicrypt program, then normalize(P) ∼= P (Figure 2).

2.7 Main Characterization

We can now present our main technical theorem about Linicrypt programs:

Theorem 5 (Linicrypt Characterization). Let P1 and P2 be two input-less Linicrypt programs over
F. Then P1 ∼= P2 if and only if normalize(P1) and normalize(P2) differ by a basis change.

Proof sketch. The full proof is given in Appendix A.2. The nontrivial case is to show the ⇒
direction. Without loss of generality assume that P1 and P2 are normalized, and suppose they do
not differ by a basis change. The idea is to first construct a “profile” for P1 and for P2. In the
code of normalize, we compute the reachable subspace of a program; the profile simply refers to the
order in which reachable oracle constraints are activated during this process.

We use the profile to construct a family of canonical distinguishers for P1. It processes oracle
constraints in the order determined by the profile. It maintains the invariant that at all stages of
the computation, if R is the set of currently reachable vectors, the distinguisher holds ~r = R×vbase,
where vbase refers to the base variables in the canonical simulation of P1.

A side-effect of normalization is that all oracle constraints are reachable and useful. Because of
this, the set of reachable vectors will eventually contain non-trivial linear relations — as a matrix,
the set of reachable vectors has a nontrivial kernel. A canonical distinguisher chooses some element
~z from this kernel and tests whether ~z>~r = 0. By construction, ~z>~r = ~z>Rvbase. Since ~z ∈ ker(R),
the distinguisher always outputs true in the presence of P1.

Now the challenge is to show that, for some choice of ~z ∈ ker(R), the distinguisher outputs
false with overwhelming probability in the presence of P2. To see why, we consider the first point
at which the profiles of P1 and P2 disagree (if the profiles agree fully, then it is easy to obtain a
basis change relating P1 to P2). The most nontrivial case is when P1 contains an oracle constraint
that no basis change can bring into alignment with P2. This implies that when the distinguisher
makes the query in the presence of P2, it will not trigger any oracle constraint and the result will
be random and independent of everything else in the system. But because this oracle constraint
was useful in P1, we can eventually choose a final kernel-test ~z that is “sensitive” to the result in
the following way: While in P1, the kernel-test always results in zero, in P2 the kernel test will be
independently random.

The actual proof is considerably more involved concerning the different cases for why the profiles
of P1 and P2 disagree.

Also in Appendix A.2 we discuss how indistinguishability of two Linicrypt programs can be
decided in polynomial time.

3 Synthesizing Linicrypt Garbled Circuits

In this section we describe how to express the security of garbled circuits in the language of
Linicrypt, culminating in a method to leverage an SMT solver to automatically synthesize secure
schemes. We assume some familiarity with the classical (textbook) Yao garbling scheme. Roughly
speaking, each wire in the circuit is associated with two labels (bitstrings) W 0 and W 1, encoding
false and true, respectively. The evaluator will learn exactly one of these two labels for each
wire. Then, for each gate in the circuit, the evaluator uses the labels for the input wires, along with
garbled gate information (classically, the garbled truth table), to compute the appropriate label on
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the output wire. We restrict our synthesis technique to the context of two basic garbled circuit
techniques: Free-XOR and Point-and-Permute.

Free-XOR. In the Free-XOR garbling technique of Kolesnikov and Schneider [KS08], the garbler
chooses a random ∆ that is global, and arranges for W 0 ⊕W 1 = ∆ on every wire. Hereafter, we
typically write the false label simply as W and the true wirelabel as W ⊕∆; more generally, the
wirelabel encoding b is W ⊕ b∆.

Using Free-XOR, no ciphertexts are necessary to garble an xor gate. For instance, let A and
B be the false input wirelabels. Set the false output wirelabel to C = A ⊕ B. Then when the
evaluator holds wirelabels A∗ = A ⊕ a∆ and B∗ = B ⊕ b∆ (encoding a and b, respectively), she
can compute A∗⊕B∗ = A⊕ a∆⊕B⊕ b∆ = C ⊕ (a⊕ b)∆. That is, the result will be the wirelabel
correctly encoding truth value a ⊕ b. We note that no garbled gate information is required in the
garbled circuit, nor must the evaluator perform any cryptographic operations to evaluate the gate
— just an xor of strings.

Free-XOR is ubiquitous in practical implementations of garbled circuits. For that reason (and
because it conveniently reduces degrees of freedom over choice of wirelabels), we restrict our atten-
tion to garbling schemes that are compatible with Free-XOR.

Point-and-permute and Non-Linearity The point-and-permute optimization of [BMR90] is
used in all practical garbling schemes. The idea is to append to each wirelabel a random bit χ
(which we call the “color bit”). The two labels on each wire have opposite (but random) color
bits.

Now consider the naive/classical garbling of an and gate, in which the garbler generates 4
ciphertexts. Because color bits are independent of truth values, the garbler can arrange the ci-
phertexts in order of the color bits of the input wirelabels. The evaluator selects and decrypts the
correct ciphertext indicated by the color bits of the input wirelabels she holds. Importantly, this
makes the color bits non-linear inputs with respect to Linicrypt! The color bits determine which
linear combination the evaluator will apply.

Similarly, the garbler’s behavior is non-linear in a complementary way. We refer to σ as the
“select bit” such that the wirelabel encoding truth value v has color χ = v⊕σ. Equivalently, σ is
the (random) color bit of the false wire. We emphasize that σ is known only to the garbler, and
χ is known only to the evaluator, effectively hiding the truth value v. In typical garbling schemes,
the garbler’s behavior depends non-linearly on σ but is otherwise within the Linicrypt model.

We treat garbling schemes as mixed Linicrypt programs, as in Section 2.2. Then, a mixed
Linicrypt garbling scheme is a collection of pure Linicrypt garbling programs indexed by color bits
and select bits.

Restricting to Linicrypt with xor as the linear operation. Technically speaking, a Linicrypt
program is an infinite family of programs, one for each value of the security parameter. Unfor-
tunately, we can only synthesize an object of finite size. Hence we restrict our focus to single
Linicrypt programs that are compatible with an infinite family of fields / security parameters, in
the following way.

Suppose a Linicrypt program uses field GF (p) for prime p. Then that Linicrypt program is
also compatible with field GF (pλ) for any λ, since GF (p) ⊆ GF (pλ) in a natural way. A very
natural special case is p = 2, which corresponds to Linicrypt programs that use GF (2λ) and use
only linear combinations with coefficients from {0, 1} — in other words, Linicrypt programs that

14



are restricted to using xor as their only linear operation. Hereafter we restrict our attention to
xor-only Linicrypt programs.

3.1 Gate-garbling

A garbling scheme for an entire circuit is a non-trivially large object — much too large to synthesize
using a SAT/SMT solver. We instead focus on techniques for garbling individual gates in a way
that allows them to be securely composed with other gates and the Free-XOR technique to yield a
garbling scheme for arbitrary circuits.

Notation. A wirelabel that carries the truth-value false is always signified W , a wirelabel that
carries true is always W ⊕ ∆, and a wirelabel carrying unknown truth-value is always W ∗. We
collect wirelabels into vectors notated as follows: ~W = W1, . . . ,Wn. Operations over vectors are
computed componentwise. For instance, ~A⊕ ~B = A1⊕B1, . . . , An⊕Bn. When ∆ ∈ GF (2λ) and x is
a string of n bits, we write x∆ to mean the vector x1∆, . . . , xn∆. For example, if ~W = W1, . . . ,Wn

are a vector of false wirelabels, then ~W ⊕ x∆ is a vector of wirelabels encoding truth values x.

Syntax. Let τ : {0, 1}m → {0, 1}n be the functionality of an m-ary boolean gate that we wish to
garble. Let σ = σ1 || . . . ||σm be a string of select bits and χ = χ1 || . . . ||χm be a string of color
bits. Then, a free-XOR compatible garbled gate consists of algorithms:

GateGb(σ; A1, . . . , Am,∆)→ (C1, . . . , Cn; G1, . . . , G`)

GateEv(χ; A∗1, . . . , A
∗
m, G1, . . . , G`)→ (C∗1 , . . . , C

∗
n)

The semantics are as follows. GateGb takes m false input wirelabels ~A = A1, . . . , Am, their select
bits σ, and global constant ∆. It returns the n false output wirelabels ~C = C1, . . . , Cm, and
garbled gate information ~G = G1, . . . , G`. The evaluator takes m input wirelabels with unknown
truth values ~A∗ = A∗1, . . . , A

∗
m, their color bits χ, and the garbled gate information ~G. It returns

output wirelabels with unknown truth values ~C∗ = C∗1 , . . . , C
∗
n.

We emphasize that when GateGb and GateEv are Linicrypt programs, all inputs and outputs
besides σ and χ are field elements in GF (2λ).

Correctness. If a gate garbling scheme is correct, then the evaluator can always produce the
correct output wirelabels according to τ . That is, when the evaluator holds wirelabels encoding x
on the input wires, the result of evaluating the gate is the wirelabels encoding τ(x) on the output
wires.

Definition 6. A Free-XOR-compatible garbled gate (GateGb,GateEv) correctly computes function-
ality τ : {0, 1}m → {0, 1}n if for all inputs x ∈ {0, 1}m, select bit strings σ ∈ {0, 1}m, and color
bit string χ ∈ {0, 1}m, with x = σ ⊕ χ, false input wirelabels ~A = A1, . . . , Am, global Free-XOR
constant ∆:

(~C, ~G)← GateGb(σ; ~A,∆) =⇒ GateEv(χ; ~A⊕ x∆, ~G) = ~C ⊕ τ(x)∆

Security. One important consideration is that in the free-XOR setting, the labels of different wires
can have linear correlations. The gate should be secure even for such correlated input wirelabels.2

2In fact, some natural garbled gate constructions are secure for independent input wirelabels but insecure when
they are correlated, as illustrated strikingly in [BHKR13].
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We define security in terms of the evaluator’s view in a typical garbling scenario. Then we
define ViewHR (χ, x) to encapsulate the information the evaluator sees for this gate, when the visible
color bits are χ, the logical gate inputs are x, and the input wirelabels have correlations described
by an m×m matrix R.

ViewHR (χ, x):

∆, r1, . . . , rm ← {0, 1}λ
~A = (A1, . . . , Am) := R× [r1, . . . , rm]

(~C, ~G)← GateGbH(χ⊕ x; ~A,∆)

return ( ~A⊕ x∆, ~G, ~C ⊕ τ(x)∆)

We call R non-degenerate if no row of R is all-zeroes, as that would lead to a zero wirelabel
(whose complementary wirelabel would immediately leak ∆). In particular, if R = I then the
wirelabels are independently distributed.

Importantly, if GateGbH is a Linicrypt program and parameters χ and x are fixed, then
ViewHR (χ, x) is a input-less Linicrypt program. We can therefore apply the results of Section 2
to reason about the indistinguishability and unforgeability properties required of ViewH . The fact
that these properties can be expressed algebraically is the core of our synthesis technique.

We define the following security property for a Free-XOR compatible garbled gate scheme:

Definition 7. A Free-XOR compatible garbled gate is secure if:

1. for all χ, x ∈ {0, 1}m, all non-degenerate R ∈ {0, 1}m×m, and all polynomial-time oracle
algorithms A, the probability Pr[AH(ViewHR (χ, x)) = ∆ ] is negligible in λ,

2. for all χ, x, x′ ∈ {0, 1}m and all non-degenerate R ∈ {0, 1}m×m, we have ViewHR (χ, x) ∼=
ViewHR (χ, x′).

In other words, the garbled gate should not leak ∆ to the evaluator (this is important for
arguing that such garbled gates compose to yield a garbling scheme for circuits), and the garbled
gates should hide the truth value. Furthermore, this should hold for all ways that the input wire
labels could be correlated.

Composition. We now discuss how (free-XOR-compatible) gate-level garbling procedures can be
combined to yield a circuit garbling scheme. The details are given in Figure 3. Roughly speaking,
we follow the general approach of Free-XOR garbling, first choosing a global offset ∆. Recall that
for each wire i we associate a wirelabel Wi encoding false; Wi ⊕ ∆ will encode true. These
false wirelabels are chosen uniformly for input wires. Thereafter, we process gates in topological
order. Each gate-garbling operation determines the garbled-gate information ~G as well as the false
wirelabels of the gate’s output wires.

For each wire we choose a random select bit σi as described above. For each gate, the garbling
scheme must provide a way for the evaluator to learn the correct color bits for the output wires. In
many practical schemes, the random oracle calls used to evaluate the gate can serve double-duty
and also be made to convey the color bits. However, in our case, we aim for complete generality
so our scheme manually encrypts the color bits (the G′ values in Figure 3). In more detail, if the
evaluator has color bits χ on the input wires, then she should obtain color bits σ(out)⊕ τ(σ(in)⊕χ)
for the output wires, where σ(in) and σ(out) are the select bits for the input/output wires of this
gate, respectively. We use the wirelabels encoding truth value σ(in)⊕χ(in) as the key to a one-time
encryption that encodes the output color bits.
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We point out that these color-ciphertexts are of constant size — 2m of them, each n bits long
(e.g., for a traditional boolean gate with fan-in 2, the cost is 4 bits). As mentioned above, in
specific cases it may be possible to eliminate the extra random oracle calls used for these color-bit
encryptions.

One subtlety we point out is that each call to a gate-level garbling scheme is restriced to a disjoint
set of possible random oracle calls — the gth gate is instructed to use H(g; ·) as its random oracle.
This domain separation is crucially important in arguing that the gate-level security properties are
inherited by the circuit-level garbling scheme.

Lemma 8. Let B be a set of boolean functions. Suppose for each τ ∈ B, (GateGbτ ,GateEvτ ) is a
correct and secure free-XOR-compatible gate garbling scheme for gate functionality τ (according to
Definitions 6 & 7).

Then the garbling scheme in Figure 3 satisfies the prv, aut, and obv security definitions of
[BHR12] in the random oracle model, for circuits expressed in terms of B-gates.

Proof sketch. We sketch here the proof of prv-security; that is, if f(x) = f(x′) then (F,X, d)
collectively hide whether they were generated with X = En(e, x) or X = En(e, x′). The proofs of
the other security properties obv & aut follow using standard modifications.

We show a sequence of hybrids, beginning with an interaction in which (F,X, d) are generated
with X = En(e, x). In this initial hybrid, Gb is written in terms of what the garbler sees/knows.
The only “persistent” values maintained throughout the main loop are the false wirelabels Wi

and select bits σi. We rearrange Gb to instead be in terms of what the evaluator sees: the “visible”
wirelabels W ∗ and their color bits χi. We achieve this change by using x to compute the truth
value vi on each wire i. Then we replace all references to W vi

i with W ∗i ; references to W vi
i with

W ∗i ⊕∆; references to σi with χi ⊕ vi. The adversary’s view in this modified hybrid is unchanged.
After this change, each main loop is a Linicrypt program that takes the previously-computed

visible wirelabels, along with ∆, and computes the next garbled gate and output wirelabels (we
ignore the encryptions of color bits for now). In fact, such a computation is precisely ViewR(χ, v)
defined above, for some appropriate R that describes the correlations among previous input wire-
labels.

The security of the GateGb components (Definition 6) says that View(χ; v) and View(χ; v′) are
indistinguishable. But this statement only applies when ∆ is a local variable to these views, whereas
in the garbling scheme ∆ is shared among all gates. So first we must argue that this shared state is
not a problem. To do this, we prove a general composition lemma (Lemmas 9 & 10) which shows
that, if several programs individually satisfy Definition 6, and they use guaranteed disjoint calls
to the random oracle, then their composition also satisfies Definition 6. It is in this composition
lemma that we use the fact that the output of each View also hides ∆. We ensure disjointness of
oracle queries by using random oracle H(g; ·) when garbling gate g.

We use similar reasoning to handle the color bits, since they are not strictly within the scope
of Linicrypt (they use distinct oracle calls and do not leak ∆). Collectively the entire output given
to the adversary’s view hides the truth values vi which are used to select which View to run. The
only other place where the vi truth values are used is in the computation of the garbled decoding
information d. And in this case, vi are required only for the output wirelabels, which are the
same when garbling either x or x′. Hence, we can replace x with x′ with negligible effect on the
adversary’s view, and the proof is complete.
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GbH(1λ, f):

∆← {0, 1}λ
for each wire i of f :
σi ← {0, 1}

for each input wire i of f :
Wi ← F
e[i, 0] := (Wi, σi); e[i, 1] := (Wi ⊕∆, σi)

for each gate g in f , in topological order:
let g have input wires i1, . . . , im, output wires j1, . . . , jn, functionality τ
~W (in) := (Wi1 , . . . ,Wim)

σ(in) := σi1‖ · · · ‖σim ; σ(out) := σj1‖ · · · ‖σjn
( ~W (out); ~G)← GateGb

H(g,·)
τ (σ(in); ~W (in),∆)

(Wj1 , . . . ,Wjn) := ~W (out)

for χ in {0, 1}m:

v := σ(in) ⊕ χ
G′χ := H(color‖g‖χ; ~W (in) ⊕ v∆)⊕ (σ(out) ⊕ τ(v))

F [g] := (~G;G′0m , . . . , G
′
1m)

for each output wire i of f :
d[i, 0] := H(out‖i;Wi); d[i, 1] := H(out‖i;Wi ⊕∆)

return F, e, d

En(e, x):

for i = 1 to |x|:
Xi = e[i, xi]

return X

De(d, Y ):

for i = 1 to |Y |:
if Yi = d[i, 0] then yi = 0
elsif Yi = d[i, 1] then yi = 1
else return ⊥

return y

EvH(F,X):

for each input wire i of f :
(W ∗i , χi) := Xi

for each gate g in f , in topological order:
let g have input wires i1, . . . , im, output wires j1, . . . , jn, functionality τ

χ(in) := χi1‖ · · · ‖χim
(~G;G′0m , . . . , G

′
1m) := F [g]

(W ∗j1 , . . . ,W
∗
jn

)← GateEv
H(g,·)
τ (χ(in);W ∗i1 , . . . ,W

∗
im
, ~G)

χj1‖ · · · ‖χjn := H(color‖g‖χ(in);W ∗i1 , . . . ,W
∗
im

)⊕G′
χ(in)

for each output wire i of f :
Yi := H(out‖i;W ∗i )

return Y

Figure 3: Gate-level garbling composed into a circuit garbling scheme.

3.2 Synthesis Approach

One of our motivating goals for Linicrypt is the ability to synthesize secure cryptographic construc-
tions. We do precisely that for free-XOR-compatible gate garbling schemes.
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We have written a synthesis tool, Linisynth which takes as input the desired parameters of a
garbled gate construction. These parameters include:

• The gate functionality τ : {0, 1}m → {0, 1}n

• The arity of the random oracle arity ∈ N (e.g., whether the oracle is called with 1 or 2 field
elements, etc.)

• The number of oracle queries made by GateGb and GateEv: callsgb, callsev ∈ N

• The size (in field elements) of the garbled gate information size ∈ N

• Whether adaptive queries to the oracle are allowed adaptive ∈ {0, 1} (see below).

Given such parameters, Linisynth constructs an appropriate SMT formula encoding the required
security properties, invokes an SMT solver, and finally interprets the witness (if any) as a human-
readable garbled gate construction.

High-level outline. Gate garbling schemes as defined in Definitions 6 and 7 are meant to be
nonlinear in their use of inputs σ and χ. Hence, to synthesize a complete gate-garbling scheme, we
must actually synthesize a collection of GateGb(σ; · · · ) and GateEv(χ; · · · ) — one for each choice of
σ and χ — each of which is a pure Linicrypt program.

We now describe roughly how the gate-garbling search problem is expressed as an existential
SAT/SMT formula. Recall that pure Linicrypt programs can be represented algebraically as an
output matrix M and a set of oracle constraints C. When restricted to Free-XOR compatible
garbling, the entries in these matrices are single bits. These bits comprise the existentially quantified
variables of our SMT formula.

Not every bit in the oracle constraints C has to be an unconstrained variable. Specifically, if the
Linicrypt program in question has k input variables, then we identify these with the first k base
variables. This means that the first oracle query made by the program can be a linear combination
only of these first k base variables. For the corresponding oracle constraint 〈t,Q,a〉, this means
that each row of Q must end in a certain number of zeroes — say, i zeroes. Then we can associate
the output of this oracle query with the (k+ 1)th base variable, fixing a to be [0 · · · 0︸ ︷︷ ︸

k

1 0 · · · 0].

Then the next oracle query can be a linear combination of only the first k + 1 variables, and so
on. Overall, many of the existential variables comprising the oracle constraints can be fixed in this
way. Furthermore, we can seamlessly enforce non-adaptive oracle queries by forcing all constraints
〈t,Q,a〉 to have Q depending only on the input variables, and not on further base variables. This
is what is referred to by the adaptive parameter.

We then express the requirements of Definitions 6 & 7 as clauses over the variables that comprise
the programs themselves. The formula is satisfiable if and only if a secure gate-garbling scheme
exists with the given parameters.

Correctness. Correctness (Definition 6) can be expressed in terms of composing ViewR(χ, x)
(which generates input wirelabels along with the garbled gate information) with GateEv(χ, ·) in a
particular way. We can apply the concepts of Section 2.4 to reason about their composition.

We make some simplifiying observations that lead us to synthesize only “minimal” gate garbling
schemes:

• Correctness needs to hold only for independently distributed input wirelabels (R = I). In
this setting, the wirelabel inputs to GateEv will have full rank.
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• We can assume the garbled gate information has full rank. If any linear dependencies existed,
then the same dependencies must exist in GateGb(σ, ·) for all σ, or else security is trivially
violated (malicious evaluator can obtain information about σ by detecting a linear dependency
among garbled gate info). Hence the correlations can be removed from all GateGb(σ, ·) and
reconstructed if needed in all GateGb(χ, ·). The result would be a smaller but equivalent &
secure scheme.

• The entire input to GateEv (garbled gate information and input wirelabels together) has full
rank. If there is a linear dependency between garbled gate information and input wirelabels,
then the same dependency must exist regardless of σ, or else security will be trivially violated.
Then again, the dependency could be removed from all GateGb(σ, ·) and reconstructed by all
GateGb(χ, ·), resulting in a smaller scheme.

We therefore consider a composition of ViewR(χ, x) and GateEv(χ, ·) in which the input to
GateEv is of full rank. This simplifies the task, since it now suffices to find a basis change to GateEv
that aligns it with the corresponding output of ViewR(χ, x).

Let MR,χ,x denote the output matrix of ViewR(χ, x). We split this matrix into a top and
bottom: Mtop

R,χ,x,Mbot
R,χ,x, where the top matrix corresponds to the input wirelabels for x along

with garbled gate information, while the bottom matrix corresponds to the output wirelabels for
the result τ(x).

Following Section 2.4, we seek a basis change B such thatMtop
R,χ,x = [I | 0]×B, which represents

the input base variables of GateEv(χ, ·). The basis change must also bring all oracle constraints
between the two programs into alignment. We assume that every oracle query made by GateEv is
also made by GateGb. This is without loss of generality if we assume that GateEv is “minimal”,
since such oracle queries can be removed with no effect (if not, it is easy to see that correctness or
security is violated). Hence, we check that for every oracle constraint in GateEv, the basis change
brings one of the constraints of GateGb into agreement.

Having identified the correct basis change, we simply check that the output matrix of GateEv
equals the output matrix Mbot

R,χ,x (under the basis change). In other words, the wirelabels that
GateEv outputs always coincide with the “correct” wirelabels specified by ViewR.

We also must ensure that B is invertible. To do so we simply guess its inverse B−1 and check
that B × B−1 is the identity matrix. We point out that multiplication of boolean matrices is
straight-forward to express in an SMT formula.

Putting it all together, the clause is as follows. Recall that the input x = σ⊕χ, and that we have
restricted R = I. We use (MR,χ,x, CR,χ,x) to refer to the algebraic representation of ViewR(χ, x),
and use (MGateEv,χ, CGateEv,χ) to denote the algebraic representation of GateEv(χ, ·).

∀σ, χ ∈ {0, 1}m : ∃B,B−1 : B ×B−1 = I

∧
[
∀〈t,Q,a〉 ∈ CGateEv,χ : 〈t,Q×B,a×B〉 ∈ CR,χ,x

]
∧MGateEv,χ ×B =Mbot

R,χ,x ∧ [I | 0]×B =Mtop
R,χ,x

We point out that the universal quantifiers are over a constant number of terms (22m choices of
(σ, χ) and callsev constraints) and are explicitly expanded in the formula we pass to the SMT solver.
Likewise, the test for 〈t,Q×B,a×B〉 ∈ CR,χ,x is expressed as a logical-OR of callsgb equality checks.

Security, condition 1. The first condition of Definition 7 is that row(∆) is unreachable (in the
sense of Figure 2). If the SAT solver could discover the linear subspace R of reachable vectors,
it could simply test whether this subspace includes row(∆). However, to do this iteratively as in
Figure 2 is impractical in a SAT formula, so we employ a trick.
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Our idea is to guess a basis change B that maps the reachable space to some canonical form
that is easily testable by the SAT solver. In particular, consider a basis change B under which the
reachable vectors are exactly those that have zero in their rightmost several positions. The SAT
formula can easily check for such a condition. To check that our guess for B indeed maps the reach-
able subspace to the desired canonical form, we observe that the reachable space is characterized
by the following properties:

• Every row of the output matrix M is contained in the reachable space

• For every oracle constraint 〈t,Q,a〉 ∈ C, if every row of Q is in the reachable space, then so
is a.

For the reachable space after the basis change, the membership condition is simply that the vector
ends in the correct number of zeroes.

We note that from the input parameters, we can compute the dimension of the reachable space
(and from that derive the required number of trailing zeroes in the vectors) as d = m+callsev+size,
where m is the number of inputs, callsev is the number of oracle queries allowed the evaluator, and
size is the size of the garbled gate information. This assumes that each oracle query of GateEv
increases the dimension of the reachable space — an assumption that is without loss of generality
for “minimal” schemes since oracle queries not of this kind are superfluous.

Putting everything together, the formula is as follows. We write (MR,χ,x, CR,χ,x) to denote
the algebraic representation of ViewR(χ, x), which can be obtained in a systematic way from the
algebraic representation of GateGb(χ; ·) (which comprise the existentially quantified variables of the
SAT formula). We use row(∆) to refer to the appropriate vector in this representation.

∀σ, χ ∈ {0, 1}m, non-degenerate R : ∃B,B−1 :
B ×B−1 = I ∧¬RightZeroes(row(∆)×B) ∧ RightZeroes(MR,χ,x ×B)

∧
[
∀〈t,Q,a〉 ∈ CR,χ,x : RightZeroes(Q×B)⇒ RightZeroes(a×B)

]
Here RightZeroes simply means that the argument vector/matrix has the appropriate number of
zeroes in its rightmost columns. The universal quantifiers are over a constant number of terms
(22m choices of (σ, χ), 2m

2
choices of R, and callsgb constraints) and are explicitly expanded in the

formula we pass to the SMT solver.

Security, condition 2. The second condition of Definition 7 is that ViewR(χ, x) and ViewR(χ, x0)
are indistinguishable. Here we fix x0 and show indistinguishability with respect to this fixed
ViewR(χ, x0). Since the programs involved are inputless Linicrypt programs, from Theorem 5
it suffices to show that they differ by a basis change after normalization (unreachable and useless
oracle queries removed).

We make an assumption that all reachable oracle constraints in ViewR(χ, x) are in fact useful,
and hence we can only synthesize gate-garbling schemes with this property. However, if a secure
scheme has reachable and useless constraints in some ViewR(χ, x = χ⊕σ), then the same constraint
must be also reachable and useless in all ViewR(χ, x′ = χ⊕σ′) by security. Hence it can be removed
from every GateGb(σ; ·) resulting in an even less expensive yet equivalent and secure gate-garbling
scheme.

To show that ViewR(χ, x) and ViewR(χ, x0) are indistinguishable, we therefore only need to
find a basis change aligning their output matrices and their reachable oracle constraints. Note that
from the previous clause, the SAT solver has already obtained a basis B that maps the reachable
subspace of ViewR(χ, x) to a canonical form (vectors ending in some number of zeroes). Hence we
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can easily check whether a given oracle constraint is reachable. Also note that B is not constrained
in how it operates within the reachable subspace. Hence we can let this B basis serve double-duty
and ask for it to also align the reachable subspace of ViewR(χ, x) to that of ViewR(χ, x0).

In more detail, let BR,χ,x be the basis matrix that is already quantified corresponding to
ViewR(χ, x) from security condition 1. We want MR,χ,x × BR,χ,x and MR,χ,x0 × BR,χ,x0 to co-
incide, and we want CR,χ,xBR,χ,x and CR,χ,x0BR,χ,x0 to coincide, but only for reachable constraints.
Hence:

MR,χ,x ×BR,χ,x =MR,χ,x0 ×BR,χ,x0 ∧[
∀〈t,Q,a〉 ∈ CR,χ,x : RightZeroes(Q×BR,χ,x)

⇒ 〈t,Q×BR,χ,x ×B−1R,χ,x0 ,a×BR,χ,x ×B
−1
R,χ,x0

〉 ∈ CR,χ,x0
]

Note that 〈t,Q×BR,χ,x×B−1R,χ,x0 ,a×BR,χ,x×B
−1
R,χ,x0

〉 ∈ CR,χ,x0 is equivalent to saying 〈t,QBR,χ,x,aBR,χ,x〉 ∈
CR,χ,x0BR,χ,x0 . Hence the bracketed expression captures the requirement that CR,χ,xBR,χ,x and
CR,χ,x0BR,χ,x0 coincide for reachable constraints.

As usual, the quantifications over constraints are expanded within the formula.

3.3 Implementation Results

We implemented Linisynth using Python and the SMT solver Z33. Linisynth extracts the resulting
witness and prints it as a human-readable garbling scheme. We used Linisynth to successfully
synthesize variants of known gate garbling schemes as well as some of our own creations (i.e.,
garbled LT gates and garbled EQ gates). Linicrypt can also enumerate constructions that satisfy
given parameters. We present a sampling of synthesized schemes in Appendix C.2. Our code is
available at https://github.com/osu-crypto/linisynth.

Linisynth works as follows. For each value in the algebraic representation of GateGb and GateEv,
it creates a boolean variable. After it has created all the variables, it makes a formula that constrains
them in the following way. For each combination of σ and χ, the invertiblity, correctness, and
security conditions from Section 3.2 hold (expressed as boolean formulas over the variables). This
often results in rather large formulas (see Figure 4). Linisynth then hands the formula over to Z3.
If Z3 finds a solution, it maps the satisfying assignment back to the garbling scheme and prints it.

Synthesis results. We rediscovered known constructions. For example, our tool was able to
discover that xor gates can be garbled for free. It also rediscovered many garbled and-gate
constructions that are equivalent to the half-gates construction of Zahur et al. [ZRE15] (costing 2
ciphertexts). We synthesized garbling schemes for a number of different gates (garbled<, garbled =,
garbled mux, etc), but they all had comparable performance to and, explained below. A summary
is presented in Figure 4, with examples of synthesized constructions given in Appendix C.2.

We were not able to synthesize a garbling scheme better than 2 ciphertexts per and gate. We
suspect that this may be a hard limit (if compatibility with free-XOR is required), in support of the
half-gates lower-bound presented in [ZRE15]. We formalize that hypothesis here. First, note that
B = {and,not,xor } is a universal basis for boolean circuits. Then take any boolean gate τ and
decompose it into some combination of and, not, and xor. Let circ-minand(τ) be the minimum
number of and gates necessary to construct τ with basis B. Our hypothesis is this: for all gates τ ,
the minimum number of ciphertexts to garble τ with full security and compatibility with free-XOR
is 2× circ-minand(τ). Verification of this hypothesis is left as future work.

3https://github.com/Z3Prover/z3
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Enumeration of solutions. Linisynth can also enumerate schemes. Let p be a formula generated
according to Section 3.2 and let w be a satisfying assignment with p(w) = 1. When Linisynth gets
w from the solver, it prints the corresponding scheme, sets p := ¬w ∧ p, and asks the solver to find
a new solution. Since pysmt provides access to an active instance of Z3, we can use Z3’s push/pop
functionality to add an assertion without causing the solver to restart. Each new scheme is found
in a fraction of the time it takes to find the first one. Using enumeration, we found thousands of
schemes equivalent to half-gates (with parameters size = 4, arity = 1, callsgb = 4, callsev = 2, and
adaptive = 0).

name τ size arity callsgb callsev adaptive vars p-size time sat
free-xor ⊕ : 2→ 1 0 1 0 0 0 224 5,102 1s 1
half-gate ∧ : 2→ 1 2 1 4 2 0 1,972 117,586 5s 1
half-gate-cheaper ∧ : 2→ 1 2 1 4 1 1 1,960 92,690 6.2h 0
half-gate-h2 ∧ : 2→ 1 2 2 4 2 0 2,000 114,397 2h 0
one-third-gate ∧ : 2→ 1 1 1 4 2 1 4,104 716,454 74s 0
1-out-of-2-mux mux : 3→ 1 2 1 4 2 1 9,416 654,433 29s 1
2-bit-eq = : 4→ 1 2 1 4 2 1 44,144 3,497,286 6m 1
2-bit-eq-small = : 4→ 1 1 1 4 2 1 39,248 3,535,942 6m 0
2-bit-leq ≤ : 4→ 1 1 1 2 1 1 23,296 1,155,686 77s 0
2-bit-lt < : 4→ 1 2 1 4 2 1 44,144 3,502,425 3.5h 0

Figure 4: Selection of our synthesis results on an Intel Xeon 3.4GHz processor with 16GB memory.
Satisfiable schemes are listed in Appendix C.2. Notation: “f : m→ n” is shorthand for a function
with m bits of input and n bits of output that performs the operation f on the input, “vars” and
“p-size” refer to the number of variables and nodes in the security & correctness formula. “sat”
refers to whether the formula was satisfiable.

Scalability issues. One limitation of our approach is that it cannot synthesize certain construc-
tions used in current garbling schemes. We elaborate: Consider an and gate with fan-in 3. To
garble this gate using the half-gates construction, we write it as a ∧ (b ∧ c) and use 2 ciphertexts
per and gate, a total of 4 ciphertexts.

Despite the fact that Linicrypt allows for nested calls to the oracle (which this garbling approach
uses), our synthesis approach will not discover it. The reason is that in half-gates, the intermediate
value z = b∧c also has a color bit. So the subsequent processing of a∧z depends on that additional
color bit non-linearly (for both the evaulator and garbler). Using Linisynth, we were able to confirm
that an additional color bit is in fact necessary to garble a 3-ary and gate with 4 ciphertexts (and
free-XOR compatibility).

To account for this, our approach must be modified. We augmented Linisynth to allow for extra
“helper bits” σ′, χ′ beyond the color bits and select bits of the input wires. Then the correctness of
the garbling scheme must be modified so that (roughly speaking) for every χ, x, there exists a 1-to-1
mapping of garbler to evaluator helper bits4 such that for all garbler-helper bits σ′, GateGb(σ‖σ′, ·)
and the appropriate GateEv(χ‖χ′, ·) compose to give the correct answer. Unfortunately, this ad-
ditional search space rendered the synthesis task unusable. When trying to synthesize the nested
half-gates construction of a fan-in-3 and gate, Z3 ran out of memory after weeks of computation.

4For example, the helper bits for the fan-in-3 and gate satisfy χ′ ⊕ σ′ = b ∧ c, so the association between χ′ and
σ′ is different for different χ, σ.
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A Proofs of Linicrypt Technical Lemmas

A.1 Proof of Lemma 4

Proof. We break the proof into two steps. We let P ′′ = normalize(P) = (M, C′′) and we also
define P ′ = (M, C′), where C′ is the intermediate value defined in the program. Note that the only
difference among P, P ′, and P ′′ is that C′′ ⊆ C′ ⊆ C. We will show P ∼= P ′ and P ′ ∼= P ′′ separately.
More precisely, we will compare the canonical simulations (Equation 1) of P, P ′, and P ′′.

(P ∼= P ′) The logic within the normalize procedure uses only the concept of linear span; as such,
the behavior of normalize is invariant under a basis change to (M, C). Since span(Reachable) is a
linear subspace of Fbase, consider a basis change under which span(Reachable) = {0}d×Fbase−d. We
now argue that the removal of oracle constraints in C \ C′ has no effect on an adversary.

Consider the following sequence of hybrid experiments: In hybrid #h we run the canonical
simulation for P = (M, C) but use C′ in place of C in line 7 for the first h calls to the oracle (using
C thereafter). Consider hybrid h at the moment when the adversary makes query number h + 1
to its oracle. What information does the adversary have about vbase? The adversary has seen
vout = M× vbase from line 4. Since rows(M) ⊆ Reachable by construction, M has zeroes in its
first d columns so the expression does not depend on the first d base variables. The adversary is
also given a · vbase in line 8, but by the definition of the hybrids this line is reached on a constraint
in C′. Hence a ∈ span(Reachable), and so again the expression does not depend on the first d
base variables. Summarizing, at the time of query number h + 1, the adversary’s view of vbase is
syntactically independent of the first d base variables.

The adversary’s advantage in distinguishing hybrid #h from #h + 1 is bounded by the prob-
ability that it can reach line 8 by triggering a constraint 〈t,Q,a〉 ∈ C \ C′. For such a constraint,
Q has a nonzero entry in its first d columns, so the adversary can query the oracle on Qvbase with
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probability at most 1/|F|. By a union bound, the adversaries bias distinguishing hybrids #h and
#h+ 1 is at most |C \ C′|/|F|.

If the adversary makes n queries to its oracle, then hybrid #0 is the canonical simulation of P
and hybrid #n is the canonical simulation of P ′. They can therefore be distinguished with bias at
most |C|n/|F|.

(P ′ ∼= P ′′) Consider the first constraint 〈t∗,Q∗,a∗〉 that is added to Useless. This happens when
a∗ is linearly independent of all other vectors in M and C′. Consider a basis change under which
a∗ = (1, 0, . . . , 0) and V \ {a∗} ⊆ {0} × Fbase−1; this is possible since a∗ 6∈ span(V \ {a∗}).

Under this basis change, let us determine where the first base variable v1 is used syntactically in
the canonical simulation (of P ′, so that only constraints in C′ are used). Since rows(M) ⊆ V \{a∗},
the first column of M is all zeroes and so v1 is not used in line 4. Similarly, every expression
Qvbase or a · vbase (for a 6= a∗) in the simulation does not depend on v1. Indeed, the only place v1
is used is when line 8 is reached because of the constraint 〈t∗,Q∗,a∗〉. In that case, the result is
a∗ · vbase = v1.

Removing the constraint 〈t∗,Q∗,a∗〉 causes the corresponding oracle query to be answered
by lines 9-11 instead of lines 7-8. But since v1 is chosen uniformly in line 1, this is in fact the
same behavior. Removing the constraint therefore has no effect on the adversary’s view. We can
repeatedly apply the same logic starting with (M, C′ \ {〈t∗,Q∗,a∗〉}) to complete the proof.

A.2 Proof of Theorem 5

Proof. (⇐) From the earlier discussion about basis changes, if normalize(P1) and normalize(P2)
differ by a basis change, then surely normalize(P1) ∼= normalize(P2). Then P1 ∼= P2 by Lemma 4.

(⇒) Without loss of generality, assume both P1 and P2 are already normalized (i.e., Pi =
normalize(Pi)). We will show that if no basis change relates P1 and P2, then we can construct a
distinguisher (using the fact that P1 and P2 are normalized).

We first assume (without loss of generality) that both programs have the same number of base
variables. If not, then unused base variables can be added with no effect. As a result, the algebraic
representations of both programs include vectors of the same width.

Consider the oracle machine A below, along with a helper function profile.

profile(P = (M, C)):
R :=M
output R
seen := ∅
until R reaches a fixed point:

for each 〈t,Q,a〉 ∈ C \ seen:
if rows(Q) ⊆ rowspace(R):

append row a to R
output t, Q, R
add 〈t,Q,a〉 to seen

// canonical distinguisher for P1

AH(x):

(R0, t1,Q1,R1, . . . , tn,Qn,Rn)
:= profile(P1)

r0 := x
for i = 1 to n:

choose matrix Li s.t. Qi = Li ×Ri−1
ri := ri−1‖H(ti;Li × ri−1)

choose a vector z s.t. z ×Rn = 0

return z · rn
?
= 0

When this adversary is run in the canonical simulation of P1, it is easy to see that the invariant
ri = Ri × vbase holds with respect to the internal vbase variable in the simulation. This holds no
matter how the “choose” statements are instantiated. Hence, A outputs true with overwhelming
probability (the canonical simulation itself may abort with negligible probability).

We now show that (for suitable choice of Li matrices and z vector) A outputs true with only
negligible probability when run in the canonical simulation of P2.
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Note that the code of profile (and hence A) may depend on the relative order of oracle con-
straints. Choose a reordering of constraints of P1 and P2 and a basis change to apply to P2 so that
profile(P1) and profile(P2) agree in the longest possible prefix. We consider several different cases.

1. The profiles disagree already in R0. This can only happen if ker(M1) 6= ker(M2) since
otherwise a better choice of basis change to P2 could achieve M1 = M2 (= R0). One of
ker(M1), ker(M2) must be nonempty; by symmetry suppose ker(M1) is nonempty. Then
choose z of the form [z′ | 0] where z′ ∈ ker(M1) \ ker(M2). This z is a suitable choice in the
penultimate line of A.

But when A is executed in the canonical simulation of P2, its output is

0
?
= z · rn = z′ · x = z′(M2vbase)

Since z′M2 6= 0 and vbase is chosen uniformly, the result is false with overwhelming proba-
bility.

2. The profiles first disagree on some Ri (i > 0). Because the profiles agree up until this point,
P1 must have an oracle constraint 〈ti,Qi,a(2)〉 and P2 must have a constraint 〈ti,Qi,a(2)〉,
with a(1) 6= a(2).

(a) Case: a(1) 6∈ span(Ri−1) and a(2) 6∈ span(Ri−1). Then a better choice of basis change
could achieve a(1) = a(2) without affecting the prior agreement of profiles up to Ri−1.
This contradicts the assumption that we are considering the longest possible agreement
between profiles.

(b) Case (exhaustive by symmetry): a(1) ∈ span(Ri−1). Let R(b)
i denote Ri−1 concatenated

with row a(b). Then ker(R(0)
i ) 6= ker(R(1)

i ) and ker(R(0)
i ) is nontrivial. Just as in case

1, we can choose a z of the form [z′ | 0] where z′ ∈ ker(R(0)
i ) \ ker(R(1)

i ). When exe-
cuted in the canonical simulation of P2, the adversary outputs false with overwhelming
probability.

3. The profiles first disagree on some ti or Qi. Then (by symmetry) there is an oracle constraint
〈ti,Qi,ai〉 in P1 but no constraint of the form 〈ti,Qi, ·〉 in P2 (otherwise a reordering of
constraints would have caused the profiles to agree for a longer prefix).

Consider what happens when A is executed in the canonical simulation for P2. Even though
A is “designed for” P1, the invariant rj = Rj×vbase still holds for j < i because of the profiles’
agreement. In the ith time through the main loop, A calls the oracle on H(ti,Qi×vbase). With
overwhelming probability this query does not match any constraint in P2, so the response
is chosen independently of everything else in the system. Let ρ∗ denote the response of this
oracle query.

(a) If ai ∈ span(Ri−1) then ker(Ri) is nonzero. In fact, we can choose a vector z′ ∈ ker(Ri)
with last component nonzero, and then set z = [z′ | 0]. This is a valid choice of z for
A. But when executed in the canonical simulation of P2, the expression z · rn contains
a term involving ρ∗ which is independent of everything else in the system. Hence A
returns false with overwhelming probability.

(b) Otherwise, ai 6∈ span(Ri−1). Since the profiles of P1 and P2 eventually disagree, let Rj
and Qj refer to the profiles of P1 for j ≥ i.
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Since P1 is normalized, every constraint is useful. Hence, ai is in the span of all of the
Qj ’s and Rj ’s in the profile of P1. In other words, there is eventually a Qk such that
we can write Qk = Lk ×Rk−1 for some Lk that assigns nonzero coefficient to row ai of
Rk−1. Consider the smallest such k for which this holds, and ensure that A uses this
value of Lk when appropriate.

When running A in the simulation of P2, we see that syntactically the value ρ∗ is not
used between the ith and (k − 1)th oracle query. Then on the kth oracle query, A calls
H(tk;Lk × rk−1). Since the expression Lk × rk−1 involves the special value ρ∗ which is
independent of everything else so far, it is only with negligible probability that this oracle
query triggers a constraint. Instead, with overwhelming probability the result is chosen
uniformly, independent of everything else so far. We take the response to this oracle
query to be the new “special position” ρ∗ and proceed by induction. The important
invariant is simply that we have a value which is chosen independent of everything else
in the system. Eventually this case (3b) becomes impossible — at the very least, at the
final (nth) oracle query; hence, we eventually hit case (3a).

4. The profiles agree completely. But this cannot happen, since it implies P1 and P2 (after basis
change) are equal — their M matrices are identical and their sets of oracle constraints are
identical. Note that all constraints will be considered because the programs are normalized:
all oracle constraints are reachable.

On the computational complexity of determining indistinguishability of Linicrypt pro-
grams. We claim that it is possible to determine whether two Linicrypt programs P1 = (M1, C1),
P2 = (M2, C2) are indistinguishable, taking only polynomial time (in the size of their algebraic rep-
resentations).

The main idea is to first normalize both programs, then iteratively try to construct a basis
change relating the programs, as follows. The process mirrors the execution of profile(P1). First,
(using any linear-algebraic procedure) determine whether their output matrices M1 and M2 have
the same rowspace/kernel. If so, obtain a (partial) change of basis relatingM1 andM2; otherwise
conclude that the programs are distinguishable.

Then for each 〈ti,Qi,ai〉 ∈ C1, check whether a corresponding constraint 〈ti,Qi,a′i〉 ∈ C2 (under
the partial basis change computed so far). If not, then conclude the programs are distinguishable.
If ai = a′i then continue. If neither ai,a

′
i ∈ Ri−1 (where Ri−1 is the matrix from profile), then

extend the basis change to bring ai and a′i into agreement. Otherwise, conclude that the programs
are distinguishable.

At the end of this process, either a suitable basis change will have been obtained, or else it will
be clear that the programs are distinguishable.

B Composing Gate-Level Garbling into Circuit Garbling

B.1 Composing Linicrypt Programs with Joint State

The security properties of a single gate-garbling (Definition 7) consider the behavior of GateGb
in isolation. In particular, the free-XOR offset value ∆ is local to the View program that defines
security. However, in our circuit garbling scheme the same ∆ is used across all gates. An important
part of the proof is to argue why this is safe.
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Definition 7 includes two conditions; we first deal with the condition of not leaking ∆. Towards
a general shorthand notation, suppose an input-less Linicrypt program P has an internal variable
∆. Then we say that ∆ is unreachable from [the output of] P if Pr[AH(PH()) = ∆] is negligible
for all adversaries A. As pointed out in Section 2.5, this property can be expressed in terms of
indistinguishability of Linicrypt programs.

Recall that we consider oracles whose first argument is a string/tweak. If P is an oracle program,
and T is a set of strings, then we write PH(T ;·) to mean that all of P’s oracle queries have first
argument in T .

Lemma 9. Let PH(T1,·)
1 , PH(T2,·)

2 be pure Linicrypt programs, where the number of inputs to P2 is
one more than the number of outputs of P1, and where T1 ∩ T2 = ∅.

Define the following input-less Linicrypt programs:

exp
H(T1;·)
1 ():

∆, ~U ← F
~V ← PH(T1;·)

1 (∆, ~U)

return ~V

exp
H(T2;·)
2 ():

∆, ~V ← F
~W ← PH(T2;·)

2 (∆, ~V )

return ~V , ~W

exp
H(T1∪T2;·)
3 ():

∆, ~U ← F
~V ← PH(T1;·)

1 (∆, ~U)
~W ← PH(T2;·)

2 (∆, ~V )

return ~V , ~W

Then if ∆ is unreachable from exp1 and unreachable from exp2, then ∆ is unreachable from exp3.
In other words, composing P1 with P2 using the same ∆ preserves their properties of individually
not leaking ∆, as long as P1 and P2 use distinct oracle tweaks.

Proof. We start by modifying P1 and P2 without loss of generality. For i ∈ {1, 2}, let Ri denote
the reachable space (as defined in Lemma 4) given the output of expi. Now modify Pi so that its
output matrix is a basis for all of Ri. These modifications certainly do not increase what vectors are
reachable given expi, so they maintain the fact that ∆ is unreachable in expi. Furthermore, they
do not compromise the ability to compose P1 with P2. The original output of P1 is contained in its
reachable space, so P2 can be modified to reconstruct this original output via linear combinations
to P1’s modified output.

Next, we transform P1 and P2 into a common basis. Fix an algebraic representation (M3, C3)
for exp3. Then we observe exp1 and exp2 can be obtained from the following algebraic modifications
to exp3:

• Removing the last several rows from the output matrix exp3 results in the program exp1 —
i.e., only P1’s output ~V is given.

• Removing all of the oracle constraints in C3 corresponding to P1 effectively removes all oracle
calls in P1 and makes its internal base variables all uniform. Since P1’s output matrix has
full rank (by the modifications above, it is a basis for R1), this modification causes ~V to
be uniform in exp3. Furthermore ~V is linearly independent of ∆, since otherwise ∆ is in
the simple linear-algebraic span of exp1’s output, contradicting our assumption. Hence, this
modification to exp3 results in program exp2.

In what follows we will consider algebraic representations for exp1 and exp2 obtained in this way
from exp3, so that all three of these programs are “in the same basis.”

Now suppose for contradiction that ∆ is reachable in exp3. This means there is a sequence of
Linicrypt operations, starting with the output of exp3, and making oracle calls that were also made
in exp3, finally resulting in ∆ with probability 1. Since P1 and P2 each output a basis for their
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individual reachable spaces, it is not necessary to ever make an oracle query that is reachable in
exp1 or in exp2 individually. So without loss of generality, we can assume that in the Linicrypt
sequence that culminates in ∆, the first oracle query is one that is unreachable in both exp1 and
exp2. Let 〈t,Q,a〉 denote the corresponding oracle constraint. We consider the following cases:

• There is no first oracle query. In other words, ∆ can be obtained without making any oracle
queries. But if ∆’s reachability does not depend on any oracle queries, ∆ still remains reach-
able if we remove all of the oracle constraints corresponding to P1. But such a modification
gives us exp2 and contradicts the fact that ∆ is unreachable in exp2.

• t ∈ T2, meaning that the first query “belongs to” P2. But since no oracle queries in P1
have been used so far, this implies that the same constraint 〈t,Q,a〉 would have been also
reachable in exp2. This contradicts the fact that the constraint is unreachable in exp2.

• t ∈ T1, meaning that the first query is one belonging to P1. Let R+
1 denote the span of all base

variables (reachable or not) used in P1. In particular row(∆) is inR+
1 . Similarly, letR+

2 denote
the span of all base variables used in P2. We claim that R+

2 ∩ R
+
1 ⊆ span(R1 ∪ {row(∆)}).

Intuitively, the only common values used in P1 and P2 are ∆ and those values explicitly
passed as output of P1 (via its output R1). Any other values used in P2 are the result of
oracle queries, made after P1 is finished, and so they are linearly independent of ∆ and any
value used in P1.
Now, back to the oracle constraint 〈t,Q,a〉 in question. This constraint is unreachable in
exp1, so Q contains a row q that is unreachable in exp1; i.e., q ∈ R+

1 \R1. Yet q is reachable
in exp3, and without making any previous oracle queries, so q ∈ R+

2 . The only vectors in
(R+

1 \ R1) ∩R+
2 are vectors of the form q = q′ + c · row(∆) where q′ ∈ R1 and c 6= 0.

Yet, if such a q is reachable, then so is row(∆) = c−1(q − q′), since q′ is reachable (q′ ∈ R1).
Hence, ∆ is already reachable before the first oracle query is made. By the same reasoning
as in the first case, ∆ is reachable in exp2 — a contradiction.

Intuitively, the additional output of P2 must have helped to make q reachable when it was
not reachable in the absence of P2’s output. But the only way P2’s output can help is by
leaking ∆ since ∆ is the only unreachable variable in P1 that is also available in P2.

In each case we obtain a contradiction to the assumption that ∆ is reachable from exp3.

Now we deal with the other condition in Definition 7. Suppose P̃1 and P̃2 are Linicrypt pro-
grams. For i ∈ {1, 2, 3} define ẽxpi to be identical to expi except that P̃1 and P̃2 are used in place
of P1 and P2.
Lemma 10. If exp1

∼= ẽxp1 and exp2
∼= ẽxp2, and ∆ is unreachable from all four of these programs,

then exp3
∼= ẽxp3.

Proof. In the previous proof, we showed that the reachable oracle queries in exp3 are exactly the
union of reachable oracle queries in exp1 and exp2 individually — i.e., their composition introduces
no new reachable oracle queries.

The same is true of the useful queries, since the oracle query responses are isolated to either P1
or P2, both syntactically and in terms of linear independence.

Altogether, this implies that normalizing exp1 and exp2 and then composing them gives the
same result as first composing them and normalizing the resulting exp3. Without loss of generality,
assume exp1, exp2, ẽxp1, ẽxp2 are normalized. Then exp1 and ẽxp1 differ only by a basis change, as
do exp2 and ẽxp2. This implies that exp3 and ẽxp3 differ by a basis change (importantly, the basis
changes can be applied to the P1 and P2 parts independently). Thus exp3

∼= ẽxp3, as desired.
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B.2 Security Proof for Circuit Garbling (Lemma 8)

Proof. We start with the proof of prv security. That is, the distribution of (F,X, d) — induced by
(F, e, d)← Gb(1λ, f) — does not leak whether X was generated as X ← En(e, x) or X ← En(e, x′),
when f(x) = f(x′). We proceed in a sequence of hybrids:

Hyb0(1λ, f, x):

∆← {0, 1}λ
for each input wire i of f :
Wi ← F
σi ← {0, 1}
X[i] := (Wi ⊕ xi∆, σi ⊕ xi)

for each gate g in f , in topological order:
let g have input wires i1, . . . , im, output wires j1, . . . , jn, functionality τ
~W (in) := (Wi1 , . . . ,Wim)
σ(in) := σi1‖ · · · ‖σim
( ~W (out); ~G)← GateGbH(g,·)

τ (σ(in); ~W (in),∆)

(Wj1 , . . . ,Wjn) = ~W (out)

σ(out) := σj1‖ · · · ‖σjn ← {0, 1}n
for χ in {0, 1}m:
v := σ(in) ⊕ χ
G′χ := H(color‖g‖χ; ~W (in) ⊕ v∆)⊕ (σ(out) ⊕ τ(v))

F [g] := (~G;G′0m , . . . , G
′
1m)

for each output wire i of f :
d[i, 0] := H(out‖i;Wi)
d[i, 1] := H(out‖i;Wi ⊕∆)

return F,X, d

Figure 5: Hybrid 0 for the security proof.

Hybrid 0: This is the “real world” in which the adversary receives (F,X, d) generated honestly,
illustrated by Hyb0 in Figure 5.

Hybrid 1: Following the proof sketch, we conceptually shift the hybrid from the garbler’s per-
spective to the evaluator’s perspective. Instead of maintaining the false wire label Wi for each wire,
and deriving the others by XORing with ∆, we maintain the wire label that will be visible to the
evaluator (called W ∗i ). This is done by computing for each wire i the truth value vi that is carried
on each wire, then conceptually replacing each reference to Wi with W ∗i ⊕ vi∆, and so on.

Similarly, we choose random χi for each wire, and then set σi = vi ⊕ χi (rather than choosing
σi randomly first). The hybrid is given in detail in Figure 6.

Hybrid 2: Observe that in the previous hybrid, the starred lines of the main loop can be thought
of as a function that takes previous W ∗i visible wire labels and ∆ as input, then computes outgoing
wire labels W ∗j and garbled gate information. If we ignore the fact that these lines take the previous

wire labels as input, we have that each main loop in this hybrid is essentially View
H(g,·)
R (χ, v) from

Definition 7, where R is a non-degenerate matrix that describes the correlations among the different
input wire labels for this particular gate. Such an R exists since the previous wire labels were
generated themselves via a Linicrypt process.

Hence, Hybrid 2 is a conceptual change that expresses the main loop as a composition of View-
like subroutines. Each View takes as input R-correlated visible input wire labels (for some R) and
outputs the visible output wire labels and garbled gate information for its gate. Note that the only
value implicitly shared among all calls to View is ∆.
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Hyb1(1λ, f, x):

for each wire i:
vi := truth value on wire i when circuit input is x

for each input wire i of f :
W ∗i ← F
χ∗i ← {0, 1};
X[i] := (W ∗i , χ

∗
i )

∆← {0, 1}λ
for each gate g in f , in topological order:

let g have input wires i1, . . . , im, output wires j1, . . . , jn, functionality τ

* ~W (in) := (W ∗i1 ⊕ vi1∆, . . . ,W ∗im ⊕ vim∆)
* χ(in) := χ∗i1‖ · · · ‖χ

∗
im

; σ(in) := χ(in) ⊕ (vi1‖ · · · ‖vim)

* ( ~W (out); ~G)← GateGbH(g,·)
τ (σ(in); ~W (in),∆)

* (W ∗j1 , . . . ,W
∗
jn

) = ~W (out) ⊕ (vj1‖ · · · ‖vjn)∆
χ∗j1‖ · · · ‖χ

∗
jn
← {0, 1}n

for δ in {0, 1}m:
χ̃ := χ(in) ⊕ δ
v := vi1‖ · · · ‖vim
G′χ̃ := H(color‖g‖χ̃; (W ∗i1 , . . . ,W

∗
im

)⊕ δ∆)⊕ (σ(out) ⊕ τ(δ ⊕ v))

F [g] := (~G;G′0m , . . . , G
′
1m)

for each output wire i of f :
d[i, vi] := H(out‖i;W ∗i )
d[i, vi] := H(out‖i;W ∗i ⊕∆)

return F,X, d

Figure 6: Hybrid 1 of the security proof.

Hybrid 3: We modify the hybrid to change the values of vi. Whereas previously vi was the
value on wire i when the circuit input is x, we now let vi be the value on the wire when the circuit
input is x′.

To argue that this change is indistinguishable, we consider the 3 places where vi values are used
in the hybrid:

1. In the starred lines of the hybrid: The security of the garbled gate (Definition 7) is that

View
H(g,·)
R (χ, v) hides v and ∆, when the input wire labels are chosen according to R. Hence,

Lemmas 9 and 10 imply that their composition still hides the v values and ∆. So changing
the vi values here is an indistinguishable change.

2. In the main loop, to generate the encryptions of color bits. Although the corresponding calls to
H return only one bit, it is possible to show that they have the analogous properties allowing
us to switch their payloads. Namely, they use distinct oracle tweaks, they are pseudorandom
when ∆ is local to each call, and their output does not individually leak ∆.

3. In computing the garbled decoding information d. But vi is used here only when i is an output
wire of the circuit. In that case, the output wires will take on the same values for both x and
x′, so there is no effect on these vi values.

Overall, we have replaced logical input x with x′ in the hybrid, which establishes prv security.

In obv security, the value d is not given in the adversary’s view, and the goal is to prove that
(F,X) alone do not leak the value x that was used to generate X ← En(e, x). Since d is no longer
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being produced, we no longer have case 3 from above. This was the only place we needed the fact
that f(x) = f(x′) when changing how the vi values were generated. Without that constraint, we
can freely change the logical input x to any x′.

In aut security, the goal is to show that given (F,X), no adversary can produce Ỹ 6= Ev(F,X)
such that De(d, Ỹ ) 6= ⊥. The only way this is possible is if Ỹ contains some d[i, vi] value. But
d[i, vi] is chosen as the result of an unreachable oracle query H(out‖i;W ∗i ⊕∆), so it is only with
negligible probability that the adversary can produce it.

C Gate Garbling Scheme Synthesis

C.1 Calculating the Size of the Formula

We can determine the sizes of the matrices representing GateGb and GateEv using the parameters in
the shortcut. We consider GateGb first. Let (Mgb, Cgb) be the algebraic representation of GateGb.
We fix the order of the base variables: first are m false input wirelabels, followed by the single
global constant ∆, and finally callsgb oracle responses. The width ofMgb is widthgb = m+1+callsgb.
The number of rows ofMgb is size+n. Therefore a singleMgb contains widthgb×(size+n) variables.

Cgb is composed of callsgb constraints of the form 〈Q,a〉. The widths of both Q and a are
widthgb since each oracle query takes some linear combination of the base variables as input. The
height of Q is the arity of the random oracle arity. Since the a of the ith oracle constraint will
always be a constant vector ai = {0}m+1+i, 1, {0}callsgb−i−1, we never have to create new variables
for a. We also apply the optimization from Section 3.2. Therefore, the total number of variables
in Cgb is widthgb × arity× callsgb − callsgb(callsgb + 1)/2.

Let (Mev, Cev) be the algebraic representation of GateEv. Again, we fix the order of the base
vars: m input wirelabels (with truth value σ ⊕ χ), followed by size ciphertexts, and finally callsev
oracle responses. The width of Mev is then widthev = m + size + callsev. The number of rows of
Mev is the number of outputs n. Then, a singleMev contains widthev× n variables. Cev is created
in the same way as Cgb, so it contains widthev × arity× callsev variables.

We now calculate the number of variables needed to synthesize the garbler using an adaptive
oracle:

widthgb = m+ 1 + callsgb

|Mgb| = widthgb(size + n)

|Cgb| = widthgb × arity× callsgb − callsgb(callsgb + 1)/2

|GateGb| = 2m(|Mgb|+ |Cgb|)

And the evaluator:

widthev = m+ size + callsev

|Mev| = widthev × n
|Cev| = widthev × arity× callsev − callsev(callsev + 1)/2

|GateEv| = 2m(|Mev|+ |Cev|)

Additionally, we require 22m basis change matrices ~B. Each basis change has size widthgb ×
widthgb. This adds | ~B| = 22mwidth2

gb variables to the formula.
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C.2 Synthesized Garbling Schemes

We present instances of the satisfiable schemes from Figure 4. We use a shorthand here (and in
our tool Linisynth) to condense the different versions of GateGb and GateEv. It works like this:

1. GateGb: When S is a set of indices, the notation “[S]W” refers to nonlinear behavior “if
σ ∈ S then W else 0λ”

2. GateEv: When S is a set of indices, the notation “[S]W” refers to nonlinear behavior “if χ ∈ S
then W else 0λ”

Without further ado, here are some gate-garbling schemes, output directly from our Linisynth tool.
We use A,B, . . . to denote input wire labels.

free-xor

⊕ : {0, 1}2 → {0, 1}
size = 0

arity = 1

callsgb = 0

callsev = 0

adaptive = 0

time = 1s

GateGbH(σ,A,B,∆) :

return A+B

GateEvH(χ,A∗, B∗) :

return A∗ +B∗

half-gate

∧ : {0, 1}2 → {0, 1}
size = 2

arity = 1

callsgb = 4

callsev = 2

adaptive = 0

time = 5s

GateGbH(σ,A,B,∆) :

h1 = H(A)
h2 = H(A+ ∆)
h3 = H(A+B)
h4 = H(A+B + ∆)
G0 = [0, 2]∆ + h3 + h4
G1 = A+B + [0, 2]∆ + h1 + h2 + h3 + h4
C0 = B + [0]∆ + [0, 2]h1 + [1, 3]h2 + [1, 2]h3 + [0, 3]h4
return G0, G1, C0

GateEvH(χ,A∗, B∗, G0, G1) :

return [1, 3]A∗ + [0, 2]B∗+

[0, 1]G0 + [1, 3]G1+

H(A∗) +H(A∗ +B∗)
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mux

mux : {0, 1}3 → {0, 1}
size = 2

arity = 1

callsgb = 4

callsev = 2

adaptive = 1

time = 29s

GateGbH(σ,A,B,C,∆) :

h0 = H(A+B + C)
h1 = H(A+B + C + ∆)
h2 = H(A+B + h0 + h1)
h3 = H(A+B + ∆ + h0 + h1)
G0 = [0, 3, 4, 7]∆ + h0 + h1
G1 = A+B + C + [0, 3, 4, 7]∆ + h0 + h1 + h2 + h3
C0 = A+ C + [0, 3]∆ + [1, 2, 4, 7]h0 + [0, 3, 5, 6]h1 + h3
return G0, G1, C0

GateEvH(χ,A∗, B∗, G0, G1) :

h0 = H(A∗ +B∗ + C∗)
h1 = H(A∗ +B∗ +G0)
return [0, 3, 4, 7]A∗ + [1, 2, 5, 6]B∗ + [0, 3, 4, 7]C∗+

[0, 1, 2, 3]G0 + [1, 2, 5, 6]G1+

h0 + h1

eq

eq : {0, 1}4 → {0, 1}
size = 2

arity = 1

callsgb = 4

callsev = 2

adaptive = 1

time = 6m

GateGbH(σ,A,B,C,D,∆) :

h0 = H(A+ C)
h1 = H(A+ C + ∆)
h2 = H(A+ C + h0 + h1)
h3 = H(A+ C + ∆ + h0 + h1)
G0 = A+ C + [2, 3, 6, 7, 8, 9, 12, 13]∆ + h0 + h1 + h2 + h3
G1 = A+B + C +D + [0, 2, 5, 7, 8, 10, 13, 15]∆ + h0 + h1
C0 = [1, 11, 4, 14]∆+

[1, 3, 4, 6, 9, 11, 12, 14]h0 + [0, 2, 5, 7, 8, 10, 13, 15]h1+

[1, 2, 4, 7, 8, 11, 13, 14]h2 + [0, 3, 5, 6, 9, 10, 12, 15]h3
return G0, G1, C0

GateEvH(χ,A∗, B∗, C∗, D∗, G0, G1) :

h0 = H(A∗ + C∗)
h1 = H(B∗ +D∗ +G1)
return [0, 2, 5, 7, 8, 10, 13, 15]A∗ + [0, 3, 5, 6, 9, 10, 12, 15]B∗+

[0, 2, 5, 7, 8, 10, 13, 15]C∗ + [0, 3, 5, 6, 9, 10, 12, 15]D∗+

[2, 3, 6, 7, 8, 9, 12, 13]G0 + [0, 3, 5, 6, 9, 10, 12, 15]G1 +

h0 + h1
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