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Abstract

Bilinear-type conversion is to convert cryptographic schemes designed over symmetric groups
instantiated with imperilled curves into ones that run over more secure and efficient asymmetric
groups. In this paper we introduce a novel type conversion method called IPConv using 0-1 Integer
Programming. Instantiated with a widely available IP solver, it instantly converts existing intricate
schemes, and can process large-scale schemes that involves more than a thousand variables and
hundreds of pairings.

Such a quick and scalable method allows a new approach in designing cryptographic schemes over
asymmetric bilinear groups. Namely, designers work without taking much care about asymmetry
of computation but the converted scheme runs well in the asymmetric setting. We demonstrate
the usefulness of conversion-aided design by presenting somewhat counter-intuitive examples where
converted DLIN-based Groth-Sahai proofs are more compact than manually built SXDH-based proofs.
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1 Introduction

1.1 Background

Prime-order bilinear groups consist of source groups G0 and G1, target group GT , and a pairing e :
G0 ×G1 → GT . In so called Type-I bilinear groups, G0 = G1, i.e., the pairing is symmetric. It has been a
popular choice in early research and development. Recent progress in analyzing symmetric pairing groups
instantiated with small characteristic curves [30, 31, 26, 9] motivates crypto designers to move to Type-III
groups where G0 6= G1, i.e., the pairing is asymmetric, and no efficient mapping is known between G0 and
G1. For Type-III groups, no such weakness has been observed until now and efficient instantiations have
been developed. Yet Type-I setting is useful for presenting and understanding cryptographic schemes for
their simplicity. Besides, number of schemes have been designed only for Type-I groups in the literature,
e.g. [37, 36, 2, 8, 41, 40, 16].

Bilinear-type conversion is a method to translate schemes designed for Type-I groups into ones that
work over Type-III groups. Cryptographic schemes designed in Type-I setting do not necessarily work in
Type-III due to the presence of symmetric pairings, e(X,X). A workaround is to convert the algorithm
by duplicating the variables. That is, the variable is represented by a pair (X,X ′) ∈ G0 ×G1. Duplication
however clearly slows down the performance since all relevant computations are ’duplicated’ in G0 and
G1 as well. Besides, duplication is not always possible due to mathematical constraints or external
requirements. For instance, it is not known how to pick random and consistent pair X and X ′ while
retaining the hardness of the discrete logarithm problem on X and X ′. An automated conversion finds
the best allocation of variables over G0 and G1 that makes all group operations doable with minimal
overhead.

Besides saving existing schemes over Type-I groups, conversion plays the role in putting ”Design in
Type-I and Run in Type-III” paradigm into practice as suggested in the pioneering work by Akinyele,
Green and Hohenberger [7]. That is, let crypto designers focus on their high-level idea of construction
without taking much care about asymmetry of computation by designing in Type-I setting, and then
convert the results to obtain executable schemes over Type-III groups. For conversion tools to be useful,
the processing speed and scalability are of importance on top of the performance of the final executables.
Like compilers for high-level programming languages a conversion tool will be executed over and over
again throughout the development. Quick response is strongly desired for productivity and stress-free
developing environment. Its importance increases when large-scale systems that consist of several building
blocks are targeted. Nevertheless, only small-scale monolithic schemes has been targeted so far. Hence
the validity of the design paradigm has not been well substantiated yet.

1.2 Our Contribution

We propose a new efficient conversion algorithm, which we call ’IPConv’, based on 0-1 Integer Programming
(IP). A technical highlight that separates this work from previous ones [7, 6] is how to encode several
kinds of constraints into a system of linear relations over binary variables, and how to implement ones
metric into an objective function the 0-1 IP minimizes subject to the constraints. The idea of encoding
computational constraints into an objective function follows from previous works. Our novelty is the
encoding method that allows one to use Integer Programming that fits well to our optimization problem
with various constraints. Besides, using such a tool is advantageous in the sense that there are publicly
available (both commercial and non-commercial) software packages such as [28, 5, 24, 33, 35, 34].

Performance of IPConv is demonstrated by experiments over real cryptographic schemes in the
literature. IPConv instantly completes the task even for complex schemes. To measure the scalability,
large systems with thousands of variables and pairings are generated randomly subject to some reasonably
looking structures. IPConv processed them in a few minutes to hours even with non-commercial IP
solver SCIP [5] as an engine. The concrete figures of course become magnitude of better with a powerful
commercial IP solver e.g. [28]. Scaling up to thousands of pairings may seem an overkill. However, for
instance, schemes that include Groth-Sahai (GS) proof system [27] easily involve dozens or even hundreds
of pairings when their security proofs are taken into account. Furthermore, tools such as [12, 10, 11] would
allow automated synthesis that reach to or even exceed such a scale. Our method not only contributes to
speedup the process of conversion but also opens the door to automated synthesis and optimization of
large scale cryptographic applications over bilinear groups.
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Next we, for the first time, prove the usefulness of the conversion-assisted design for middle-scale
schemes. It is shown that schemes involving GS proofs based on decision linear assumption (DLIN) can
be converted to ones based on XDLIN assumption [1] in Type-III so that they are more efficient than
their direct instantiation based on the symmetric external Diffie-Hellman assumption (SXDH). The result
may be counter-intuitive since the commitments and proofs of SXDH-based GS-proofs require less group
elements than those based on DLIN. Key observations that explain our result are:

• Relations such as e(X,A) = e(B, Y ) for variables X and Y are considered as linear pairing product
equations (PPEs) in Type-I whose proof consists of 3 elements whereas they are more costly two-sided
PPEs in Type-III that costs 8 elements. Proving linear PPEs can be converted without duplicating
the proofs and commitments in general.

• Commitments and proofs in the converted proof system are allocated mostly in G0 whereas they
appear in both G0 and G1 in direct SXDH-based instantiation. Taking the fact that elements in G1

is typically twice as long as those in G0 in bits, the former can be shorter than the latter in some
cases.

Our first example in Section 5.2 is a scheme for showing ones possession of a correct structure-preserving
signature [3] on a public message in zero-knowledge. The scheme obtained by conversion yields proofs that
are up to 50% shorter (asymptotic in the message length) than those generated by direct constructions
based on SXDH. It uses a novel fine-tuning for zero-knowledge GS-proofs (GSZK) presented in Section 5.1
that takes the above mentioned advantages.

Our second example in Section 5.3 is to demonstrate that our framework can be applied to schemes
that is already designed in Type-III setting to seek for better instantiations. We pick an automorphic
blind signature scheme [3] that involves GS-proofs and is secure under SXDH assumption in Type-III
setting. We show that the proofs can be replaced with the DLIN-based ones and it can be converted to
work in Type-III under XDLIN assumption. Though the GS-proofs are witness indistinguishable for
this time, it still can take the above mentioned advantages and saves 28% in the length of the signatures
compared to the originally manufactured SXDH-based scheme.

Although our primary metric for optimization is the size of intended objects, we also compare their
computational workload in the number of pairings in signature verification. Interestingly, the winner
changes depending on the message size, acceptable duplication, and also the use of batch verification
technique [13]. This unveils an open issue on optimization of schemes involving GS-proofs.

1.3 Related Works

There are some conversion systems in the literature. Early works on type conversion, e.g. [39, 18, 17, 19],
study and suggest heuristic guidelines for when a scheme allows or resists conversion. To our best
knowledge, AutoGroup introduced by Akinyele, Green and Hohenberger in [7] is the first automated
conversion system that converts schemes from Type-I to Type-III. Given a target scheme described in
their scheme description language, the system finds set of ’valid’ solutions that satisfy constraints over
pairings by using a satisfiability modulo theory solver [21]. It then search for the ’optimal’ solution that
conforms to other mathematical constraints and ones preferences. When there are number of possible
solutions, the performance gets lower. In this pioneering work, the security of the resulting converted
scheme was not guaranteed. In [4], Abe et. al., established a theoretical ground for preserving security
during conversion. Their framework, reviewed in Section 2, provides useful theorems for security guarantee.
But their conversion algorithm is basically a brute-force search over all possible conversions and it
requires exponential time in the number of pairings. Recently in [6], Akinyele, Garman, and Hohenberger
introduced an upgraded system called AutoGroup+ that integrates the framework of [4] to AutoGroup.
Though the system becomes more solid in terms of security, their approach for finding an optimal solution
remains the same as before. They cover only small scale cryptographic schemes.

Regarding Groth-Sahai zero-knowledge proofs, the closest work is the one by Escala and Groth in [22].
They observe that commitment of 1Zp

can be seen as a commitment of the default generator G and uses
the fact that a commitment of G can be equivocated to G0 to construct more efficient zero-knowledge
proofs for pairing product equations (PPEs) with constant pairings of the form e(G,A) in Type-III setting.
Our fine-tuning in Section 5.1 uses the same property for the commitment of G but use it in a different
manner that is most effective in Type-I setting. Another close work is [25] that presents a DLIN-based
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variant of GS-proof system over asymmetric bilinear groups. Their scheme bases on SDLIN assumption
where independent DLIN in G0 and G1 are assumed as hard, and uses independently generated CRSes for
commitments in G0 and G1. Thus their proof system is inherently asymmetric, which cannot exploit nice
properties of symmetric setting as done in this work. Besides, SDLIN-based instantiation is less efficient
than SXDH-based one. We therefore use the original SXDH-based instantiation for comparison in this
paper.

In [23, 29], a more efficient instantiation of GS-proofs by using recently introduced Matrix assumptions.
Although DLIN-based GS-proofs are used throughout this paper, matrix-based assumption might be an
alternative to further gain efficiency if the Type-III analogue of the assumption is acceptable.

2 Conversion based on Dependency Graphs

2.1 Overview

In this section we review the framework in [4]. To guarantee the security of the resulting scheme, it
converts not only algorithms that form the target scheme but also all algorithms that appear in the
security proof as well as underlying assumptions. Namely, it assumes that the security is proven by the
existence of reduction algorithms from some assumptions in Type-I, and converts the algorithms and
assumptions into Type-III. This way, the security proof is preserved under the converted assumption. It
is proven in [4] that if the original assumptions are valid in Type-I generic bilinear group model [15],
the converted assumptions are valid in Type-III generic bilinear group model. Most typically, the DLIN
assumption is converted to XDLIN.

In their framework relations among variables in target algorithms are described by using a graph called
a dependency graph, and the central task of conversion is reduced to find a ’split’ of the graph so that
each graph implies variables and computations in each source group in the Type-III setting.

We follow the framework of [4] that consists of the following four steps.

1. Verify that the target scheme in Type-I and its security proof follows the abstraction of bilinear
groups.

2. Describe the generic bilinear group operations over source group G by using a dependency graph as
we shall explain later.

3. Split the dependency graph into two that satisfy some conditions. The resulting graphs imply
variables and group operations in G0 and G1 respectively.

4. Describe the resulting scheme in Type-III as suggested by the graphs.

As well as [4], we focus on step 3 and propose an efficient algorithm for the task of finding a split. Thus,
when we conduct an experiment for demonstrating the performance, we start from a dependency graph as
input and complete when a desirable split of the input graph is obtained.

2.2 Dependency Graph

A dependency graph is a directed graph that represents computational dependencies among variables
storing source group elements in the target system. In Figure 1, we show an example of a dependency
graph for a program that computes some group operations over Type-I bilinear groups. In the right is
a sample program that takes source group elements A,B,D as input and computes C and E via group
operations (multiplication and exponentiation), and outputs a result of pairing e(C,E). In the left is a
dependency graph that corresponds to the algorithm. Nodes represent the source group elements and
edges correspond to group operations. Each input to the pairing operation is represented by a connection
to node PCE[b] called a pairing node. As the graph only describes relations between group elements via
group operations, it does not show the structure of the program like ”if-then-else” directive or involve
non source group elements like a ∈ Zp. Operations in the target group are irrelevant either.

There are several types of nodes in a dependency graph. Node types can be considered as attributes
attached to the nodes or lists of nodes. We use either way according to the context.
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B A D 

C E 

PCE[0] PCE[1] 

Sample(a,A,B,D):

a ∈ Zp, A,B,C,D,E ∈ G

if a = 0 then

C := A ·B, E := D
else

C := Da, E := D3

endif

Output e(C,E)

Figure 1: An example of a dependency graph for a program in Type-I bilinear groups.

• Pairing nodes (P). They represent inputs to pairing operations. Every pairing node has only one
incoming edge and no outgoing edges. Each pairing node is paired with another pairing node so
that the pair constitutes an input to a pairing operation.

• Control nodes (CT ). These are the ones added to the graph to control the assignment to their
parent nodes. A control node has one or more incoming edges but no outgoing edges. By specifying
which group to assign to a control node, its parent nodes are also assigned to the same group. For
instance, when two variables associated to nodes n and n′ are to be compared, a control node is
added with incoming edges from n and n′. This results in assigning n and n′ to the same group the
control node is assigned. The control nodes are used also to implement user specified preferences
such as grouping as we shall explain later.

• Regular nodes (R). All nodes other than pairing nodes and control nodes are regular nodes. Regular
nodes may have other attributes named as follows.

– Bottom nodes (B). A regular node is a bottom node if it does not have outgoing edges. This
includes a ’pseudo’ bottom node that virtually works as a bottom node in a closure.

– Prohibited nodes (PH). These are nodes that must not be duplicated for some reasons. They
are assigned to either of the source groups but the assignment is not fixed in advance. Nodes
representing variables as an output of “hash-to-group” function that directly maps to group
elements must be a prohibited node. Currently known technology does not allow us to hash an
input onto two source group elements in a way that their exponents are unknown but remain
in a preliminary fixed relation. Another example of the prohibiting nodes are inputs given to
the target scheme from outside like messages in a signature scheme. They are subject to other
building blocks and hence demanding duplicated messages loses generality of the signature
scheme. Thus it is generally desirable that messages are considered as prohibited nodes.

From the above classification, we have V = P ∪ CT ∪ R. The nodes that will be assigned to either of
the source groups exclusively are called constrained nodes. Precisely, we define constrained nodes C by
C := P ∪ CT ∪ B ∪ PH.

2.3 Valid Split

It has been shown in [4] that if a dependency graph is split into two graphs that satisfy four conditions
below then the converted scheme derived from the graphs works over Type-III bilinear groups and is
secure in the same sense as the original scheme but based on converted assumptions. Such a pair of graphs
is called a valid split. Let Anc(Γ, X) denote a subgraph of Γ that consists of X and all paths that reach
to X. Let NoDup be a list of nodes representing variables as output of hash-to-group function.

Definition 1 (Valid Split). Let Γ = (V,E) be a dependency graph for Π̃. Let P = (p1[0], . . . , pnp
[1]) ⊂

V be pairing nodes. A pair of graphs Γ0 = (V0, E0) and Γ1 = (V1, E1) is a valid split of Γ with respect to
NoDup ⊆ V if:
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1. merging Γ0 and Γ1 recovers Γ,

2. for each i ∈ {0, 1} and every X ∈ Vi \ P , the subgraph Anc(Γ, X) is in Γi,

3. for each i ∈ {1, . . . , np}, paring nodes pi[0] and pi[1] are separately included in V0 and V1, and

4. V0 ∩ V1 ∩ NoDup = ∅.

The first condition guarantees that all variables and computations are preserved during conversion.
The second condition guarantees that all variables needed to compute a variable belong to the same source
group. The third condition guarantees consistency of pairing operations by forcing that every pairing
operation takes inputs from G0 and G1. The last condition is to conform with the constraint about the
hash-to-group functions. In Figure 2, we illustrate a valid split for the dependency graph shown in Figure
1 and the resulting program in Type-III.

B A D 

C 

PCE[0] 

D  

E  

PCE[1] 

Sample(a,A,B,D, D̃):

a ∈ Zp, A,B,C,D ∈ G0, D̃, Ẽ ∈ G1

if e(G, D̃) 6= e(D, G̃) then err;

if a = 0 then

C := A ·B, Ẽ := D̃
else

C := Da, Ẽ := D̃3

endif

output e(C, Ẽ)

Figure 2: A valid split for the dependency graph in Fig.1, and a converted program.

Note that a valid split as defined above only meets the mathematical constraint over the pairings
and those given by NoDup. There could be large number of valid splits for a dependency graph and it is
another issue how to pick the optimal one according the metric and constraints given by the user.

3 Finding Optimal Valid Split with IP

3.1 Users’ Preferences

One may want to avoid duplication regarding specific set of variables as much as possible. Typical practical
demands would be to look for the minimal duplication in the public-key elements, or the smallest possible
duplication in the instance of assumptions. We show in the following several types of preferences that can
be handled in our conversion procedure.

1. Priority. We allow users to give a priority to some nodes so that they avoid duplication as much as
possible than other nodes. Concretely, a priority is given by a list of sets of nodes. Let (I1, I2, · · · )
be a sequence of non-empty sets of nodes where every set consists of arbitrary number of nodes
and the sets are pairwise disjoint. It is considered that nodes in Ii are given more priority for
non-duplication than those in Ii+1. For instance, suppose that I1 includes nodes representing a
public-key and I2 includes nodes representing a signature. By specifying (I1, I2) as a priority, a
solution that includes less duplication in a public-key is preferred. If only one node in a public-key
is duplicated in solution A, and all nodes in a signature are duplicated in solution B, then solution
B will be taken. Unspecified nodes are given the least priority.

2. Prohibiting duplication. By specifying a node as ’prohibited’, the node will never be duplicated.

3. Grouping. By specifying a set of nodes, they are assigned to the same group. (But it does not
solely mean no duplication for individual node.)
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4. Exclusive assignment. By specifying two nodes, different groups are assigned to each node. The
specified nodes are implicitly specified as prohibited so that the exclusive assignment holds. This
option, together with the prohibition, allows one to describe schemes designed in Type-III without
concretely specifying groups to every variable.

5. Specific assignment. By specifying a particular group to a particular node, the group is assigned
to the node. (But the node may still be duplicated unless it is specified as ’prohibited’ as well.)

6. Magnification factor. Often a node represents multiple of variables treated in the same manner
in the converting program. For instance, a message m consisting of several group elements m =
(m[0], . . . ,m[k]) with constant k can be represented by a node referred to by m[i]. Such a node
should have a magnification factor of k. It must be equal or larger than one.

In the next section, we explain how these preferences are incorporated to the objective function and
constraints given to Integer Programming.

3.2 IPConv Procedure

We present a new method, which we call ’IPConv’ for finding an optimal valid split. IPConv takes the task
in the third step of the conversion procedure mentioned in Section 2.1. It takes as input a dependency
graph Γ for source group G of Type-I scheme, and outputs two dependency graphs Γ0 and Γ1 for G0 and
G1, respectively, of the converted Type-III scheme.

IPConv consists of the following stages. Details are given after the overview.

1. Preprocessing on the graph. The input dependency graph is modified to implement some
user-specified preferences. The output of this stage is the modified dependency graph and a list of
constrained nodes.

2. Establishing the objective function. Binary variables that represent (non-)membership in each
source group are placed on constraint nodes. They must satisfy relations for consistency and for
user’s preferences. Sanity checking is done to assure the existence of a solution that conforms to the
constraints. Then the objective function over the variables is established.

3. Running Integer Programming. Run 0-1 Integer Programming for finding an assignment to
the variables that minimizes the objective function subject to the constraints.

4. Composing the final split. The assignment decides which constraint nodes belong to which source
group, and further decides on other nodes. Thus a valid split is composed from the assignment.

Preprocessing on the graph. First of all, user preference in prohibiting duplication is dealt simply by
including the specified nodes to the list of prohibited nodes PH. A specific assignment to a specific node,
say n, is handled by adding a new control node, c, and edge (n, c) to the graph. As the specific group is
assigned to c, the same group must be assigned to n as well since n is an ancestor of c. Grouping of nodes
n1, . . . , nk is handled in the same manner by adding a new control node c, and edges (n1, c), . . . , (nk, c) to
the graph. This step outputs the updated graph with attributes that identifies the constraint nodes.

Establishing the objective function By |Gb| we denote number of bits necessary to represent
arbitrary element in Gb. Let Γ = (V,E) be a dependency graph. By dec(n) for node n ∈ V , we denote all
descendant nodes of n in Γ, i.e., all nodes that can be reached from n. For every node n ∈ C we associate
a binary variable xnb for b = 0, 1 that 1:

xnb =

{
1 (n ∈ Gb)
0 (n 6∈ Gb)

(1)

Let x denote the set of all those variables; x := {xnb |n ∈ V, b ∈ {0, 1}}. Let Φ(x) be a collection of
relations on variables in x needed for consistency of assignments. Since every constrained node should be

1Instead, we can associate a single variable xn set to b if the node is in Gb as done in our proof of concept implementation.
It slightly reduces the number of relations, but here we choose xnb for comprehensible explanation.
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exclusively assigned to either of the source groups, relation xn0 + xn1 = 1 for all n ∈ C are included in
Φ(x). For every pair of pairing nodes, say n and n′, they must get exclusive assignment to either of the
source groups. Thus it must hold that xn0 + xn′1 = 1 and xn1 + xn′0 = 1. The same relation should hold
for every pair of nodes specified to have exclusive assignment. For every pair of nodes n and n′ in C, if
n′ ∈ dec(n), then xn0 − xn′0 = 0 and xn1 − xn′1 = 0 must be included in Φ(x) as they have to receive the
same assignment. For a control node n for specifying assignment Gb to a regular node, relation xnb = 1 is
included in Φ(x). Control nodes for prohibiting duplication and grouping need no further treatment since
they are already treated as a constrained nodes.

We apply a sanity checking that the constraints in Φ(x) are satisfiable. Observe that relations in Φ(x)
can be seen as a system of equations over GF (2). Then Φ(x) is satisfiable if and only if the system of
equations is not overdetermined. Such a checking can be done in O(|C|3) binary operations. Despite
the asymptotic growth rate, the sanity check indeed finishes instantly even for large inputs and in fact
negligible compared to the main workload shown in the next. By Φ(x) = 1, we denote that constraints in
Φ(x) are satisfiable. We denote Φ(x) = 0, otherwise.

We then establish the objective function, E , and constraints Ψ. Define a function n
?
∈ Gb for n ∈ V

and b = 0, 1 by

n
?
∈ Gb =

{
1 (n ∈ Gb)
0 (n 6∈ Gb)

. (2)

For every node n ∈ C, it is clear, by definition, that

(n
?
∈ Gb) = xnb. (3)

For regular nodes (as defined in Section 2.2) other than those included in C, i.e., n ∈ V \C = R\ (B∪PH),
observe that n ∈ Gb holds if there is a constrained node in the descendant of n that is assigned to Gb. Let
Cn denote C ∩ dec(n) that are the constrained nodes reached from node n. Then we have

(n
?
∈ Gb) =

∨
d∈Cn

xdb = ¬
∧
d∈Cn

¬xdb = 1−
∏
d∈Cn

(1− xdb). (4)

We now use a well known lemma [20] to remove the higher-order term in the above formula.

Lemma 1. For binary variables x1, . . . , xk and y, relation

k∏
i=1

xi = y (5)

holds if and only if the following relations hold:

k − 1−
k∑
i=1

xi + y ≥ 0 and xi − y ≥ 0 for all i = 1, . . . , k. (6)

With this trick, we write (4) using a new variable, ynb, as

(n
?
∈ Gb) = 1−

∏
d∈Cn

(1− xdb) = ynb (7)

and put constraints ∑
d∈Cn

xdb − ynb ≥ 0, and ynb − xdb ≥ 0 for all d ∈ Cn. (8)

Define function eval(n) for every regular node n ∈ R by

eval(n) :=
∑

b∈{0,1}
wnb · (n

?
∈ Gb) (9)
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where wnb is a positive real number associated to node n. Also define

eval max (n) := wn0 + wn1,

eval 2nd(n) :=

{
wn0 + wn1 (if wn0 = wn1),
max(wn0, wn1) (if wn0 6= wn1),

eval min(n) := min(wn0, wn1),

(10)

which means the maximum, second-minimum, and minimum value eval(n) can take respectively.
Parameter wnb represents the cost of having node n in Gb and the concrete value for the parameter

is defined according to one’s metrics. In this work, we set wn0 := 1 and wn1 := 2 according to the
typical ratio of bit length of elements in G0 and G1. When a magnification factor kn is defined, they are
multiplied by kn. The idea for the setting is that we seek for a conversion requiring minimum space for
storing objects specified in the priority.

We then compose an objective function according to the given priority (I1, . . . , Ik). Let Ik+1 be regular

nodes that do not appear in the priority, i.e., Ik+1 := R \ (
⋃k
i=1 Ii). For each node n, let

∆n := eval max (n)− eval min(n) (11)

which means the relative impact of duplicating n in the priority of n. And for each Ii, let

Ξi := min
n∈Ii
{eval 2nd(n)− eval min(n)}, (12)

that is the relative minimum impact in the Ii of the assigning one single node to the larger group. For
every Ii, we define priority factor ρi as

ρi · Ξi >
k+1∑
j=i+1

ρj
∑
n∈Ij

∆n. (13)

This means that assigning one single node to the larger group in any level of priority has more significant
impact than duplicating all nodes in all lower levels of priority. For example, it is enough to let ρk+1 := 1
and

ρi := 1 +
1

Ξi

k+1∑
j=i+1

ρj
∑
n∈Ij

∆n (14)

for i = k down to 1. Let v denote all variables xnb and ynb. We define the target function E(v) by

E(v) :=

k+1∑
i=1

ρi
∑
n∈Ii

eval(n)− eval min(n), (15)

which is linear over variables in v. By Ψ(v) we denote associated constraints that include all relations
in Φ(x) and relations in (8). By Ψ(v) = 1 we denote that all constrains in Ψ(v) are fulfilled. Otherwise
Ψ(v) = 0.

Running 0-1 Integer Programming. Now we run 0-1 IP solver by giving E(v) and Ψ(v) as input.
The output is an assignment to v that minimizes E(v) subject to Ψ(v) = 1. Note that the IP solver, SCIP,
used in our implementation recognizes unsolvable inputs by nature as a part of its functionality. It makes
the sanity check in the previous stage redundant. Nevertheless, the sanity check in the earlier stage is
useful for debugging.

Composing the final split. Given the assignment to v one can compute (n
?
∈ Gb) for all n ∈ V ,

and construct two dependency graphs for G0 and G1 in such a way that every edge (n, n′) in the input
dependency graph is included in at least one of the resulting graphs that include the destination n′. Since
the assignment conforms to all given constraints, this yields a valid split. The split is optimal in the sense
that it minimizes the target value E(v) that measures one’s preferences. This completes the description of
our IPConv method.
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Target Graph Size Processing Notes

Scheme #vertices #pairings Time

Waters’ DSE [41] 95 13 146 ms (4639 ms)

BBS HIBE [14] 283 56 262 ms (15667 ms)

BlindAutoSIG [3] 339 116 142 ms -

AHO[3]+GSZK [27] 597 222 463 ms -

Trace. Group Enc.[38] 1604 588 6306 ms -

Table 1: Processing time of IPConv with SCIP. Figures in parenthesis are those of AutoGroup+ in the
same environment. The upper half is small-scale monolithic schemes and the lower half is middle-scale
schemes consisting of several building blocks. (# vertices) counts all nodes including the pairing nodes in
the input graph. (# pairings) counts pairs of pairing nodes.

3.3 Optimality of the Output

According to our implementation of the objective function, IPConv outputs a solution whose variables
given the top priority have minimal space to store. That is, those variables avoid duplication and are
allocated in G0 as much as possible. Then, subject to the allocation in the top priority, variables in
the second priority are allocated to have minimal space to store, and so forth. Concrete meaning of
optimality is defined by the variables specified in the order of priority. If one’s target is a public-key
encryption scheme, for instance, and elements in a public-key are set as the top priority, the outcome is
a scheme whose public-key has the shortest representation possible. (But it never reduces the number
of group elements in the public-key, which is left for the designers’ work.) To see the balance between
several options in the order of priority, one may repeat the conversion to the same scheme with different
preferences. Each result of conversion is optimal with respect to the given preference.

In the context of bilinear-type conversion, optimizing the size of objects is a reasonable choice for
better efficiency as avoiding duplication not only saves the space but also saves relevant computation. Yet
extending the objective function to implement more elaborate metrics is a potential direction for further
research. For instance, it is desirable to incorporate the cost of computation each variable is involved in.
It requires the dependency graph to carry more information than the relations by group operations. We
leave it for future development.

4 Performance

Throughout the paper, experiments are done on a standard PC: CPU: Intel Core i5-3570 3.40GHz, OS:
Linux 3.16.0-34-generic #47-Ubuntu. For Integer Programming, we use SCIP [5] (non-commercial) and
GUROBI [28] (commercial).

4.1 Processing Time for Real Schemes

Small-scale schemes. In the first two rows of Table 1, we show the processing time of IPConv for
converting Boneh-Boyen HIBE [14] with ` = 9 hierarchy, and Waters’ Dual-system encryption [41]. Their
dependency graphs are relatively small but have number of possible splits. A comparison to AutoGroup+
is done in the same environment. For fair comparison, we need to offset the overhead for processing
high-level I/O format in AutoGroup+. According to [6], it takes about 500ms to handle the smallest case
in their experiments. Even after offsetting similar amount as an overhead, the speedup with IPConv is
obvious.

Middle-scale schemes. We also conduct experiments on middle scale schemes that involve GS-proofs
and other building blocks. The results are summarized in Table 1.
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AHO Signature + GSZK: Our first experiment is for a structure-preserving signature scheme in [3],
a.k.a. AHO signature scheme, combined with zero-knowledge proof of a correct signature on a public
message. We set the message length for AHO signatures to n = 4 and instantiate the zero-knowledge
proof with the DLIN-based GS-proofs and convert the entire scheme to Type-III. More details
appear in Section 5.

Blind Automorphic Signature Scheme: The second experiment is for the automorphic blind
signature scheme from [3]. This experiment is to demonstrate that our framework can handle
schemes that is already in Type-III. Overall structure of the target scheme is the same as the first
one; a combination of a signature scheme and a NIWI GS-proof of a correct signature. Unlike the
first one, however, the scheme is constructed under SXDH assumption that holds only in the Type-III
setting. We describe a dependency graph for the scheme using exclusive assignment directive so
that SXDH assumption is consistently incorporated to the framework. It may be interesting to see
that assumptions are the only part that need to set constraints originated from the asymmetry of
groups. Constraints in all upper layer algorithms are automatically taken from the assumptions.
More details appear in Section 5.3.

Traceable Group Encryption: Our last experiment is for a traceable group encryption scheme from
[38] that is more intricate involving several building blocks such as a tag-based encryption [32], AHO
signatures, and one-time signatures, and GS-proofs. Taking reduction algorithms in the security
proofs of each building block, the corresponding dependency graph becomes as large as consisting
of 1604 nodes including 588× 2 pairing nodes, which is beyond the scale that existing automated
conversion can process within a practical time.

4.2 Scalability

Though the experiment in the previous section already demonstrates the scalability of IPConv to some
extent, we would like to see overall behavior of IPConv against the size of inputs. Generally it is exponential
due to the nature of IP. Yet it is worth to know the threshold for the practical use.

On Random Graphs. To measure the performance and the tolerance in the scale, it is necessary to
sample dependency graphs from reasonable and scalable distribution. However, it is indeed impossible to
consider the distribution over all constructable cryptographic schemes. It does not make sense to consider
it over all possible graphs, either, since most of them do not correspond to meaningful cryptographic
schemes. We therefore use some heuristics to define the distribution. Through the experiments in the
previous section, we have observed that dependency graphs for real cryptographic schemes follow some
structure. We simulate it in a scalable manner in the following way: Let N be the number of regular
nodes, P be the number of pairings, and k be the maximum fan-in to a regular node. Every regular node
is indexed by i ∈ {1, . . . , N}. Pairing nodes pij [0] and pij [1] represent a pairing with nodes i and j as
input.

[Random Dependency Graph Generation]

1. Generate regular nodes 1, . . . , N .

2. For every regular node i ∈ {1, . . . , N}, select k′ ← {1, . . . , k} and repeat the following
k′ times:

• Select j ← {1, . . . , i− 1}.
• Generate an edge (j, i).

3. Repeat the following P times:

• Randomly select two regular nodes i and j(≥ i) (discard and redo if the pair
has been chosen before).

• Generate pairing nodes pij [0] and pij [1] and edges (i, pij [0]) and (j, pij [1]).

Our preliminary experiment shows that large k results in so dense graphs that do not well simulate the
graphs for real schemes in the previous section. Throughout our experiments, we set k = 6 and N = P as
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they are close to the average for those in the real examples. With such a heuristic parameter setting we
are not able to claim theoretical rigorousness to the result of our experiments. But they do show some
tendency in the scalability. For the purpose of comparison, we show a real dependency graph for a tagged
one-time signature scheme [2] in Figure 6 and a random dependency graph that has the same number of
pairings in Figure 7. The square-shaped nodes placed in the bottom of the graph are the pairing nodes.
Other nodes are represented by a circle. The node at the top represents the default generators.

We first examine the permissible scale of IPConv by measuring its processing time for random
dependency graphs having up to 600 pairings and equal number of regular nodes. Figure 3 illustrates
the results for 1200 inputs. IPConv finds an optimal solution in well affordable time up to around
N = P = 600. But after that point, the processing time gets more dispersed depending on the input.
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Figure 3: Processing time in the semi-log scale for random dependency graphs.

We next compare the performance with AutoGroup+. The result is illustrated in Figure 4 that includes
250 samples for each AutoGroup+ and IPConv. Around 150 nodes, the SMT solver used in AutoGroup+
rarely fails for some unidentified reason. With graphs containing 150 nodes, the processing time between
two conversion methods differ 100 to 106 times. This result shows that middle to large scale conversion
is out of the scope of AutoGroup+. Comparing the absolute processing time based on Figure 4 is not
perfectly fair as IPConv only takes the task of finding an optimal split whereas AutoGroup+ deals with
higher-level inputs and outputs. But from the figure, one can see less dispersion in the processing time
with IPConv, and its scalability is well observed.

On Cluster Graphs. We next evaluate the performance for more structured dependency graphs based
on a prospect that large scale systems over bilinear groups are built in a modular fashion by combining
several building blocks and GS-proofs. How would dependency graphs for such systems look like? Observe
that, 1) only a small number of objects will be passed from one building block to others, 2) every building
block would be used only through the legitimate interface during security proofs, and 3) the default
generator is connected to a number of nodes in each building blocks. We thus foresee that a dependency
graph for a modularly-built large-scale system would form sparsely connected clusters of dependency
graphs with a single node that has relatively dense connection to nodes in every cluster.

We generate random cluster dependency graphs in a way that each cluster has similar volume and
structure as that of AHO signature plus GS zero-knowledge proof appeared in the previous experiment
(see Figure 8 for its dependency graph). Namely, a cluster consists of a randomly connected thirty six
regular nodes and some of the nodes are involved in two random PPEs for GS zero-knowledge proofs
whose dependency is automatically encoded to the graph. Then every two clusters are randomly connected
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Figure 4: Comparison between IPConv and AutoGroup+ regarding stability of processing time.

each other with a fixed number of edges. The resulting graph with five clusters is shown in Figure 9.
The performance of IPConv for the random cluster graphs are measured up to n = 19 clusters. The
experiment is repeated 10 times for each n. At n = 19, a graph consists of 13046 nodes and 5182 pairings
in average. Comparing Figure 5 with Figure 3, there is a clear stretch in the handleable number of vertices.
If there are no connections between the clusters (except for those from the node representing the default
generator), the processing time will be linear in the number of the clusters assuming that the processing
time for each cluster is the same. We can thus see that the sparse connection among the clusters did not
add much complexity.

5 Using Conversion in Cryptographic Design

In this section we show how conversion plays the role in designing cryptographic schemes. We begin by
introducing a new fine-tuned construction of GS Zero-knowledge proofs in Type-I setting in Section 5.1.
It is followed by an example that combines the GS ZK with the AHO signature scheme in Section 5.2. We
then show another example in Section 5.3 that demonstrates conversion of an automorphic blind signature
scheme designed originally in Type-III.

5.1 Fine-Tuned GS Proof of Correct Commitment via Conversion

In the Groth-Sahai NIZK for PPE relations, it is often needed to prove that [X] is a correct commitment
of a public constant A in such a way that the proof can be simulated with X = 1G. In the original
paper [27], it is done by proving a relation represented by a general multi-scalar multiplication equation
(MSE). We present a technique that does the job with a less costly linear pairing product equation (PPE).

The Original Construction. Recall that, in the symmetric setting under the DLIN assumption,
committing to a scalar value a ∈ Zp requires two random values, say r1 and r2, in Zp, and committing to
a group element A ∈ G uses three random values, s1, s2, s3 ∈ Zp. We denote the commitment by [a; r1, r2],
and [A; s1, s2, s3], respectively. The genuine prover algorithm computes a default commitment of 1Zp as
[1Zp ; 0, 0], and a proof for multi-scalar multiplication equation

[X]1 ·A−[1Zp ] = 1G. (16)
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Figure 5: Processing time in the semi-log scale for cluster dependency graphs.

Zero-knowledge simulation with a hiding CRS is done as follows. The simulator opens the default
commitment [1Zp

; 0, 0] as [0Zp
; r′1, r

′
2] by using the trapdoor. It then sets X = 1G and computes [X]

which is perfectly indistinguishable from [A]. With respect to those commitments relation (16) is read
as [1G]1 ·A−[0Zp ] = 1G, which is true. Thus the simulator can generate a proof following the legitimate
procedure.

Fine-Tuning in Type-I. Instead of using default [1Zp
], the prover algorithm uses default commitment

[G1; 0, 0, 0]. Then prove a PPE
e([X], G) e(A−1, [G1]) = 1GT

. (17)

instead of (16). Since we are considering the DLIN-based instantiation for now, (17) is a linear PPE that
costs only 3 group elements whereas proof of (16) requires 9 elements.

Zero-knowledge simulation with a hiding CRS is done by first equivocating [G1; 0, 0, 0] into [G0; s1, s2, s3]
using the trapdoor. Then, by setting X = 1G, relation (17) is e([1G], G) e(A−1, [G0]) = 1GT

, which is true.
Thus the zero-knowledge simulator can prove it using the witness.

Converting to Type-III. By converting the above proof system, we have an analogue proof system
in the asymmetric setting based on the XDLIN assumption [1]. While the security is guaranteed by the
conversion framework of [4], the quality of the resulting proof system must be examined.

Speaking from the conclusion, we have a clean split of its dependency graph without duplication except
for the nodes representing the CRS. Thus, with duplicated CRS in G0 and G1, every group operation
is done in either G0 or G1 and asymmetric pairing computation can be performed consistently. More
importantly, the proof remains consisting of 3 group elements (and they are all in G0). Below,we present
the resulting proof system in detail. It is particularly important to see that A and [X] in (17) are in the
same group without duplicating A. Full details are presented in the following.

To cope with the original description of the Groth-Sahai proof system, we switch to additive notation
in the rest of this section. Let us define some notations used in the following. Let (p,G0,G1,GT , e,G, G̃)
be an asymmetric bilinear group with e : G0 ×G1 → GT . For X,Y ∈ Gnb , operation X + Y denotes the
result of element-wise group operations in Gb. By Matn×m, we denote all matrices of size n×m over Zp.
Let F̃ be a function that

F̃

 X1

X2

X3

 ,

 Y1
Y2
Y3

 :=

 ê(X1, Y1) ê(X1, Y2) ê(X1, Y3)
ê(X2, Y1) ê(X2, Y2) ê(X2, Y3)
ê(X3, Y1) ê(X3, Y2) ê(X3, Y3)

 (18)
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where

ê(X,Y ) =


e(X,Y ) (X ∈ G0 ∧ Y ∈ G1)

e(Y,X) (Y ∈ G0 ∧X ∈ G1)

⊥ (otherwise)

. (19)

By X •̃Y , we denote F̃ (X,Y ). For vectors ~X = (X(1), . . . , X(n)) and ~Y = (Y (1), . . . , Y (n)), we denote
~X •̃ ~Y for shorthand of

∑n
i=1

(
X(i) •̃Y (i)

)
.

It is important to see that computation in F̃ and •̃ can be carried out as long as X and Y are taken
exclusively from G0 and G1. We use convention that large case letters like A represent elements in G0,
and those with tilde like Ã represent elements in G1.

Now we are ready to describe how to prove that [X] is a correct commitment of A ∈ G0 with the GS
proof system instantiated in Type-III setting based on XDLIN.

[CRS Generation]

Choose α, β, ξ1, ξ2 ← Zp and compute G1 := Gα, G2 := Gβ , ~u1 := (G1,O, G), ~u2 := (O, G2, G), and

~u3 = (G31, G32, G33) := ξ1 · ~u1 + ξ2 · ~u2 + (O,O,−γ ·G) (20)

= (ξ1 ·G1, ξ2 ·G2, (ξ1 + ξ2 − γ) ·G) (21)

where γ = 0 for binding and γ = 1 for hiding mode. Compute ~̃u1, ~̃u2, and ~̃u3 exactly in the same way
using the same randomness (α, β, ξ1, ξ2) but with generator G̃ instead of G. Then CRS is (~u, ~̃u) where

~u :=

 ~u1
~u2
~u3

 , and ~̃u :=

 ~̃u1
~̃u2
~̃u3

 . (22)

[Prover Algorithm]

Given A ∈ G0 as a witness, first commit to X := A using randomness SX := (s1,X , s2,X , s3,X)← Mat1×3
as

[X] := (O,O, X) + SX ~u = (C1,X , C2,X , C3,X). (23)

Set (s1,G̃, s2,G̃, s3,G̃) = (0, 0, 0) ∈ Z3
p. Compute proof θ(17) as

θ(17) :=

 s1,X s1,G̃
s2,X s2,G̃
s3,X s3,G̃

( O O G
O O A−1

)
=

 O O θ1,(17)
O O θ2,(17)
O O θ3,(17)

 . (24)

Output [X] and θ(17) as a proof. Dropping trivial elements, they consist of 6 group elements in G0.

[Verifier Algorithm]

Compute the default commitment of G̃ as

[G̃] := (O,O, G̃) + (0, 0, 0) ~u = (O,O, G̃) = (C̃1,G̃, C̃2,G̃, C̃3,G̃). (25)

Then output 1 if the following holds. Output 0, otherwise. C1,X

C2,X

C3,X

 •̃
 OO

G̃

+

 C̃1,G̃

C̃2,G̃

C̃3,G̃

 •̃
 OO

A−1

 = (~̃u)>•̃(θ(17))> (26)

[Zero-Knowledge Simulation]

Generate CRS with γ = 1 (hiding mode). Given A ∈ G0 and trapdoor (α, β, ξ1, ξ2), set (s1,G̃, s2,G̃, s3,G̃) :=
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(ξ1, ξ2,−1), which equivocate the default commitment [G̃1; 0, 0, 0] to [G̃0; ξ1, ξ2,−1]. Also set X := G0.
Then follow the prover algorithm using these witnesses.

Direct Fine-Tuning in Type-III. The above idea can be applied to SXDH-based GS-proofs in Type-III
as well. However, it is limited to the case where A is duplicated. The reason is that, relation (17) must be
proved as one-side PPE in Type-III where involved commitments appear only in one side of the pairing
operations. Namely, (17) has to be rewritten as

e([X], G̃) e([G1], Ã−1) = 1GT
. (27)

Thus we need A ∈ G0 to compute [X] and additionally need Ã ∈ G1 to verify the proof.
If duplicating A is not acceptable, we have to get back to the original construction that proves MSE

(16) instead. It costs 6 group elements. Note that it is also possible to prove (17) as a two-side PPE but
it costs 8 group elements.

5.2 AHO Signature + GSZK

AHO signature scheme in Type-I setting is summarized as follows. Let gk := (p,G,GT , e,G) be a symmetric
bilinear groups. A public-key is (gk , A0, A1, A2, A3, B0, B1, B2, B3, Gz, Gr, Hz, Hu, G1, . . . , Gn, H1, . . . ,Hn)
for the message space of Gn. A signature for message (M1, . . . ,Mn) is σ = (Z,R, S, T, U, V,W ) ∈ G7.
To prove possession of a correct signature for a message in the clear, a prover randomizes (S, T, V,W )
into (S′, T ′, V ′,W ′) in a way that e(S, T ) = e(S′, T ′) and e(V,W ) = e(V ′,W ′) hold and then proves that
pairing product equations

e(A0, [A1]) e(A2, [A3]) = e(Gz, [Z]) e(Gr, [R]) e(S′, [T ′])
n∏
i=1

e(Gi, [Mi]) (28)

e(B0, [B1]) e(B2, [B3]) = e(Hz, [Z]) e(Hu, [U ]) e(V ′, [W ′])
n∏
i=1

e(Hi, [Mi]) (29)

hold with respect to committed variables in the brackets. Additionally, relation (17) for every public value
X ∈ {A1, A3, B1, B3,M1, . . . ,Mn} is proved by using the technique in Section 5.1 to show the correctness
of the commitments.

We then consider four approaches to obtain Type-III counterpart of the above scheme. Table 2
summarizes the performance of the resulting schemes in Type-III in terms of the proof size and number of
pairings in verification.

Conversion: By converting the above scheme we obtain a scheme in Type-III. Details for the proof part
are presented in Appendix A.1. In the resulting scheme, CRS is entirely duplicated but elements
in the proofs, public-keys, and messages are assigned to either G0 or G1 without duplication. It is
particularly important to point out that X and [X] in (17) are assigned to the same group without
duplicating X while proving (17) as a linear PPE. This approach is the most efficient in the proof
size since most of commitments and proofs can be allocated in G0.

Direct instantiation 1 (with duplicated messages): Next we consider instantiating the GS-proofs
directly over Type-III groups based on the SXDH assumption. As observed in Section 5.1, the
fine-tuned construction is only possible when public constants paired with committed variables are
duplicated. Therefore, elements {A1, A3, B1, B3,M1, . . . ,Mn} have to be duplicated. Duplicated
key elements, A1, A3, B1, and B3 will be a part of the public-key. On the other hand, duplicated
message M1, . . . ,Mn must be sent to the verifier as a part of the proof.

Direct instantiation 2 (with duplicated keys): When duplicating Mi is prohibiting, a workaround
would be to commit to public-key elements Gi and Hi instead. Duplicated Gi and Hi can be
included in the public-key (thus we do not count it in the proof size). Unfortunately, this approach
is not efficient in terms of proof size since the proofs of correct commitment for both Gi and Hi

doubles the proof length. On the other hand, it allows efficient batch verification. The reason is
that pairings corresponding to e([Gi],Mi) and e([Hi],Mi) in the verification can be merged into
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Construction Duplicated Proof Size # of Pairings

Object G0 G1 in bits naive batched

Conversion crs 6n+ 39 6 (6n+ 51)λ 18n+ 90 2n+ 20

Direct (1) msg 2n+ 18 3n+ 12 (8n+ 42)λ 12n+ 60 2n+ 17

Direct (2) pk 4n+ 26 4n+ 16 (12n+ 58)λ 20n+ 84 n+ 23

Direct (3) - 4n+ 26 4n+ 20 (12n+ 66)λ 22n+ 100 2n+ 22

Table 2: Comparison of proof size and number of pairings between conversion-aided and three direct
constructions. The message is in G0. Proof size is for GS commitments and proofs. Column ”naive”
counts the number of pairings literally in the verification equations, and ”batched” counts the number of
pairings in batch verification.

one pairing associated to Mi while at least two pairings are needed to deal with e(Gi, [Mi]) and
e(Hi, [Mi]) in the above approaches.

Direct instantiation 3 (without duplication): Finally, we consider avoiding duplication at all in
the direct instantiation of GS proofs in Type-III by following the original approach using MSE (16)
as shown in the beginning of Section 5.1. As expected, both proof size and number of pairings
increase due to the MSEs. Use of batch verification is not quite effective, either.

As we see from Table 2, there is no clear winner. The scheme obtained by conversion yields the
most compact proofs for messages of n > 5. But for short and duplicable messages, direct construction
produces more compact proofs. Regarding the computational workload, when batch verification is taken
into account, there is not much difference for small n no matter what approach is taken. But for large n,
direct instantiation in Type-III with duplicated public-key is more advantageous.

5.3 Automorphic Blind Signature Scheme

Examples so far deals with schemes designed purely in Type-I. Now we show that schemes designed
originally in Type-III are also incorporated into our framework for finding optimal deployment of source
groups and perhaps finding more efficient GS-proofs used there.

In the automorphic blind signature scheme in [3], a blind signature is a GS-proof for one’s possession
of a correct (plain) automorphic signature on a clear message. A plain automorphic signature consists of
five group elements σ := (A,B, D̃,R, S̃) verified by PPEs:

e(A, Ỹ · D̃) = e(K ·M, G̃) e(T, S̃), (30)

e(B, G̃) = e(F, D̃), e(R, G̃) = e(G, S̃). (31)

An automorphic blind signature is a GS-proof of (30) and (31) with (A,B, D̃,R, S̃) as a witness. The
security of the original construction bases on SXDH assumption and Asymmetric Double Hidden Strong
DH Assumption (ADHDH) [3].

To incorporate the scheme into the conversion framework, we need to build a dependency graph in
such a manner that the original scheme is included in a possible solution of conversion. First, a special
treatment is needed to the nodes representing X and Ỹ that are already in the duplicated form since they
should not be individually duplicated by conversion. We set dependency Y → X, and prohibit duplication
of X. In this way, Y will be duplicated so that X is assigned to Gb and Ỹ is assigned to G1−b. Such
a treatment is applied to (M,N) and (R,S) as well. Second, we need to build a dependency graph for
the assumptions. Since ADHDH is known to hold even in the Type-I generic bilinear group model, we
simply ignore the distinction of G0 and G1. For SXDH, we prohibit duplication of any variable in its
instance and use grouping of variables so that they are allocated to the same group. In this way, the
assumption remains valid when converted back to Type-III. Finally, the GS-proof part is described by
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Construction Duplicated Size of Blind Sig. # of Pairings

Objects G0 G1 in bits naive batched

Conversion crs, D̃ 24 6 36λ 64 13

Original[3] - 18 16 50λ 68 13

Table 3: Comparison of the signature size and number of pairings in verification between conversion-aided
and direct instantiations of verifier’s algorithm for the automorphic blind signature scheme [3]. The
message is (M,N) ∈ G0 ×G1. Duplication of D̃ is needed for computing proofs but not for verification.

using the DLIN-based instantiation of GS-proofs. They are witness indistinguishable proofs and we do
not rely on the fine-tuning as in the previous case.

After conversion, the resulting scheme in Type-III is secure based on SXDH, ADHDH with duplicated
D̃, and XDLIN assumptions. We present details of the converted scheme for the part of generating and
verifying a blind signature in Appendix A.2. Table 3 summarizes the performance in comparison with the
original construction. The converted scheme saves 28% of blind signature in bits and equal or slightly
better in verification workload. More concretely, the resulting signature consists of commitments for
(A,B,R) ∈ G3

0 and (D̃, S̃) ∈ G2
1 that require (9, 6) elements in (G0,G1). It is followed by proofs for one

non-linear PPE in (30), two linear PPEs in (31) that costs 15 elements in G0. In total, a signature that a
verifier receive except for the message is of size (26, 6) in (G0,G1), which is 36λ bits for |G0| = λ and
|G1| = 2λ. It compares to the original construction that requires 6(= 3 · 2) in G0 for committing to
(A,B,R), 4(= 2 · 2) in G1 for (D̃, S̃), and 3 (4, 4) ∈ G0 ×G1 for the proof of (30) and (31). This sums up
to (18, 16) and it turns out 50λ bits as above.

6 Conclusion

We have proposed an efficient type conversion method based on 0-1 Integer Programming. It is shown
how to represent several constraints into a system of linear binary equations so that a 0-1 IP solver can
find an optimal solution that meets the constraints. The performance and scalability are demonstrated
over real schemes and randomly generated samples.

Usefulness of the conversion-aided design approach is demonstrated by examples that outputs more
compact GS-proofs than those manufactured directly in Type-III setting. A fine-tuning technique that
improves the performance of converted GS-proofs is introduced.

Nevertheless, results in this paper can be seen as a step toward realizing automated modular design
of cryptographic protocols. Depending on the target schemes, direct instantiation in Type-III based on
SXDH can yield better results. It is in fact another optimization issue that machines can help to find a
globally optimal solution. We include it as an interesting research and engineering target in our future
plan.

Finally, a proof-of-concept implementation with source codes and data files for experiments in Section 5
are available from the authors for review. Open source development is certainly in our future plan.
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A Details of Converted Schemes in Section 5

A.1 Converted GSZK for AHO signature

Let parameters for AHO signature scheme be asymmetric bilinear groups gk := (p,G0,G1,GT , e, G, G̃),
verification-key pk := (gk , G̃z, G̃r, H̃z, H̃u, {G̃i, H̃i}ni=1, Ã0, A1, Ã1, A2, B̃0, B1, B̃1, B2), message msg :=

(M1, . . . ,Mn), and signature σ := (Z,R,U, S̃, T, Ṽ ,W ). CRS ~u ∈ G3
0 and ~̃u ∈ G̃3

1 are generated in exactly
the same manner as described in Section 5.1. The relations to prove are PPEs (28), (29), and (17)
re-numbered as follows.

ê(Ã0, [A1]) ê(Ã2, [A3]) = ê(G̃z, [Z]) ê(G̃r, [R]) ê(S̃′, [T ′])
n∏
i=1

ê(G̃i, [Mi]) (32)

ê(B̃0, [B1]) ê(B̃2, [B3]) = ê(H̃z, [Z]) ê(H̃u, [U ]) ê(Ṽ ′, [W ′])
n∏
i=1

ê(H̃i, [Mi]) (33)

ê(G̃, [X]) ê([G̃], X−1) = 1GT
for each X ∈ {A1, A3, B1, B3,Mi}. (34)

With pairing ê defined as (19), the relations can be regarded as linear PPEs. In the rest of this section,
we switch to additive notation for convenience of presenting GS-proofs.

[Prover Algorithm]

Commit to Y ∈ (Z,R,U, T ′,W ′, A1, A3, B1, B3,Mi) by computing

[Y ] := (O,O, Y ) + SY ~u = (C1,Y , C2,Y , C3,Y ) ∈ G3
0. (35)

with independently uniform SY ← Mat1×3. Let SG̃ := (0, 0, 0) ∈ Z3
p, and let

S(32) :=


SA1

SA3

SZ
SR
ST ′

SMi

 , S(33) :=


SB1

SB3

SZ
SU
SW ′

SMi

 , and S(34),X :=

(
SG̃
SX

)
. (36)

Compute θ̃(32), θ̃(33) and θ(34),X for X ∈ {A1, A3, B1, B3,M1, . . . ,Mi} where:

θ̃(32) := S>(32)



O O Ã0

O O Ã2

O O G̃−1z
O O G̃−1r
O O G̃−1t
O O G̃−1i

 =

 O O θ̃1,(32)
O O θ̃2,(32)
O O θ̃3,(32)

 ∈ G̃3×3
1 , (37)

θ̃(33) := S>(33)



O O B̃0

O O B̃2

O O H̃−1z
O O H̃−1u
O O H̃−1w
O O H̃−1i

 =

 O O θ̃1,(33)
O O θ̃2,(33)
O O θ̃3,(33)

 ∈ G̃3×3
1 , (38)

θ(34),X := S>(34),X
(
O O G
O O X−1

)
=

 O O θ1,(34),X
O O θ2,(34),X
O O θ3,(34),X

 ∈ G3×3
0 . (39)

Output all [Y ], θ̃(32), θ̃(33), and θ(34),X dropping redundant O.
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[Verifier Algorithm]

Given the above proof and CRS as input, output 1 (as accept) if all the following equations hold. Output
0, otherwise.

 O
O
Ã0

 •̃
 C1,A1

C2,A1

C3,A1

+

 O
O
Ã2

 •̃
 C1,A3

C2,A3

C3,A3

+

 OO
G̃−1z

 •̃
 C1,Z

C2,Z

C3,Z



+

 OO
G̃−1r

 •̃
 C1,R

C2,R

C3,R

+

 OO
S̃′
−1

 •̃
 C1,T ′

C2,T ′

C3,T ′

+

n∑
i=1

 OO
G̃−1i

 •̃
 C1,Mi

C2,Mi

C3,Mi


=
(
θ̃(32)

)>
•̃ (~u)

>
(40)

 O
O
B̃0

 •̃
 C1,B1

C2,B1

C3,B1

+

 O
O
B̃2

 •̃
 C1,B3

C2,B3

C3,B3

+

 OO
H̃−1z

 •̃
 C1,Z

C2,Z

C3,Z



+

 OO
H̃−1u

 •̃
 C1,U

C2,U

C3,U

+

 OO
Ṽ ′
−1

 •̃
 C1,W ′

C2,W ′

C3,W ′

+

n∑
i=1

 OO
H̃−1i

 •̃
 C1,Mi

C2,Mi

C3,Mi


=
(
θ̃(33)

)>
•̃ (~u)

>
(41)

 C1,X

C2,X

C3,X

 •̃
 OO

G̃

+

 C̃1,G̃

C̃2,G̃

C̃3,G̃

 •̃
 OO

X−1

 =
(
~̃u
)>
•̃
(
θ(34),X

)>
(42)

for X ∈ {A1, A3, B1, B3,Mi} where (C̃1,G̃, C̃2,G̃, C̃3,G̃) := (O,O, G̃).

A.2 Converted Automorphic Blind Signature Scheme

This section presents details of automorphic blind signature scheme obtained by conversion. A full
description includes key generation, blinding, signing, unblinding, verification algorithms, and also
security proofs. Here, we focus on presenting user’s and verifier’s algorithms in transferring a blind
signature. They actually consist of prover and verifier algorithms like the previous case. CRS ~u ∈ G3

0

and ~̃u ∈ G̃3
1 are generated as described in Section 5.1. Let parameters be asymmetric bilinear groups

gk := (p,G0,G1,GT , e, G, G̃), verification-key pk := (gk , F,K, T,X(= Gx), Ỹ (= G̃x)), message (M(=
Gm), Ñ(= G̃m)). An automorphic blind signature is a witness indistinguishable GS-proof for relations
(30) and (31) as re-numbered as follows.

ê([A], Ỹ ) ê([A], [D̃]) = ê(K, G̃) ê(M, G̃) ê(T, [S]) (43)

ê([B], G̃) = ê(F, [D̃]) (44)

ê([R], G̃) = ê(G, [S]) (45)

With pairing ê defined as (19), the second and third relations are regarded as linear PPEs. Again, we
switch to additive notation while describing GS-proofs in the following.

[Blind Signature Issuing Algorithm]

Commit to δ ∈ (A,B,R) and ρ̃ ∈ (D̃, S̃) by

[δ] := (O,O, δ) + Sδ ~u = (C1,δ, C2,δ, C3,δ) ∈ G3
0, and (46)

[ρ̃] := (O,O, ρ̃) + Sρ̃ ~̃u = (C1,ρ̃, C2,ρ̃, C3,ρ̃) ∈ G3
1 (47)
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where Sδ ← Mat1×3 and Sρ̃ ← Mat1×3. Let Tp be a random 3× 3 matrix over Zp. Compute θ(43), θ(44),
and θ(45) as:

θ(43) = S>A (O,O, X) + S>A (O,O, D) + S>
D̃

(O,O, A) + S>A SD̃ ~u

− S>
S̃

(O,O, T ) + (Tp − T>p ) ~u (48)

θ(44) = S>B (O,O, G)− S>
D̃

(O,O, F ) (49)

θ(45) = S>R (O,O, G)− S>
S̃

(O,O, G) (50)

Output all [δ], [ρ̃], θ(43), θ(44), and θ(45) without redundant O as a blind signature.

[Verifier Algorithm]

Given the above blind signature and message msg := (M, Ñ), output 1 if all the following equations hold.
Output 0, otherwise.

 C1,A

C2,A

C3,A

 •̃
 OO

Ỹ

+

 C1,A

C2,A

C3,A

 •̃
 C1,D̃

C2,D̃

C3,D̃

 (51)

=

 OO
K

 •̃
 OO

G̃

+

 OO
M

 •̃
 OO

G̃

+

 OO
T

 •̃
 C1,S̃

C2,S̃

C3,S̃

+
(
θ(43)

)> •̃(~̃u)>

 OO
G̃

 •̃
 C1,B

C2,B

C3,B

 =

 OO
F

 •̃
 C1,D̃

C2,D̃

C3,D̃

+
(
θ(44)

)> •̃(~̃u)> (52)

 OO
G̃

 •̃
 C1,R

C2,R

C3,R

 =

 OO
G

 •̃
 C1,S̃

C2,S̃

C3,S̃

+
(
θ(45)

)> •̃(~̃u)> (53)
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B Sample Dependency Graphs in Section 4.2
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Figure 6: A dependency graph for Tagged One-time Signature Scheme in [2]
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Figure 7: A random dependency graph with the same number of pairing nodes as above.
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Figure 8: A dependency graph of AHO signature scheme with GS Zero-knowledge proof.

p125[0]

p125[1]

p126[0]

p126[1]

$c2 7

$c3 7

p124[0]

p124[1]

p127[0]

p127[1]

p1147[1]

g2 28

p909[1]

p910[0]

p908[1]

p909[0]

p907[1]

p908[0]

p906[1]

p907[0]

p905[1]

p906[0]

p106[1]

p107[0]

p105[1]

p106[0]

$c3 5

p105[0]

$c1 5

$c2 5

$phi2 5

$phi3 5

$phi1 37

p95[1]

p96[0]

p96[1]

p97[0]

p97[1]

p98[0]

p98[1]

p99[0]

p99[1]

p100[0]

p700[0]

p838[1]

p887[1]

p888[0]

p884[1]

p885[0]

p883[1]

p884[0]

p886[1]

p887[0]p885[1]
p886[0]

p958[0]

p958[1]

$c2 53

$c3 53

p700[1]

p960[1]

p959[0]

p959[1]

$c1 54

$c2 54

p29[1]

p30[0]

p26[1]

p27[0]

p25[1]
p26[0]

p28[1]

p29[0]

p27[1]

p28[0]

p797[1]

p798[0]

p796[1]

p797[0]

p795[1]

p796[0]

p794[1]

p795[0]

g2 29

p798[1]

p799[0]

$c3 64

$phi3 46

p793[1]

$phi1 17

p1048[1]

p1049[0]

p1046[1]

p1047[0]

p1047[1]

p1048[0]

p1044[1]

p1045[0]

p1045[1]

p1046[0]

p25[0]

p24[1]

p21[0]

p20[1]

p22[0]

p21[1]

p23[0]

p22[1]

p24[0]

p23[1]

p636[1]

p636[0]

p635[1]

p635[0]

p638[1]

p638[0]

p637[1]

p775[1]

p777[0]

p776[1]

p639[1]

p639[0]

p1122[1]

p1123[0]

p1123[1]

p1124[0]

p219[0]

p218[1]

p1125[1]

p1126[0]

p217[0]

p216[1]

p218[0]

p217[1]

p215[0]

p214[1]

p216[0]

p215[1]

p1070[1]

p470[1]

p470[0]

p466[1]

p466[0]

p467[1]

p467[0]

p468[1]

p468[0]

p469[1]

p469[0]

$phi2 32

$phi1 32

p691[1]

p691[0]

p690[1]

p690[0]

p689[1]

p689[0]

p688[1]

p688[0]

p459[1]

p459[0]

p458[1]

p458[0]

p457[1]

p457[0]

p456[1]

p456[0]

p460[1]

p460[0]

p198[0]

p1167[0]

p392[0]

p199[0]

g2 17

g2 16

g2 19

p198[1]

g2 13

g2 12

g2 15

g2 14

$phi3 17

g2 21

g2 20

$phi2 17

p614[1]

p614[0]

p259[0]

p258[1]

p257[0]

p256[1]

p258[0]

p200[1]

p255[0]

p254[1]

p256[0]

p612[0]

p176[0]

p519[0]

g1 25

p336[0]

g1 24

g1 31

g1 30

p793[0]

g1 29

$c3 58

p491[0]

g1 28

p792[0]

p153[1]

p529[1]

p152[1]

p530[1]

p532[0]

p531[1]

p533[0]

p517[0]

p534[0]

p533[1]

$c2 25

p517[1]

p154[1]

p154[0]

$d1 2

p1072[0]

$d2 2

p1071[1]

$d3 2

g0 9

$z 3

p1072[1]

p518[0]

$phi3 31

p142[1]

p142[0]

p138[1]

p138[0]

p139[1]

p139[0]

p140[1]

p140[0] p141[1]

p141[0]

$c2 23

$c3 8

p149[1]

p149[0]

p148[1]

p148[0]

p151[1]

p151[0]

p150[1]

p150[0]

$phi2 7

$phi1 7

p342[1]

p905[0]

p904[1]

p901[0]

p900[1]

p902[0]

p901[1]

p903[0]

p902[1]

p904[0]

p903[1]

$c2 40

p86[0]

p85[1]

p87[0]

p86[1]

p84[0]

p83[1]

p85[0]

p84[1]

p88[0]

p87[1]

p889[1]

p889[0]

p890[1]

p890[0]

$c1 47

p888[1]

$c3 47

$c2 47

p891[1]

p891[0]

p858[1]

$c1 36

p965[0]

p964[1]

p963[0]

p962[1]

p964[0]

p963[1]

p961[0]

$c3 54

p962[0]

p961[1]

p59[0]

p58[1]

p58[0]

p57[1]

p57[0]

p56[1]

p56[0]

p55[1]

p55[0]

p54[1]

$phi1 34

p583[1]

$phi3 34

$phi2 34

$c2 41

$c1 41

p800[0]

p245[0]

p801[0]

p800[1]

p582[1]

p583[0]

p585[1]

p1169[0]

p586[0]

p528[0]

p584[1]

p585[0]

p1221[0]

p1220[1]

$phi1 3

$c1 44

p766[0]

p1219[0]

p1054[0]

p765[1]

p1053[0]

p1052[1]

p1052[0]

p1051[1]

p1051[0]

p1050[1]

p1050[0]

p1049[1]

p944[0]

p764[1]

p764[0]

$z 4

$d3 3

$d2 3

p763[1]

$d1 3

p634[0]

p634[1]

p633[0]

p633[1]

p632[0]

p632[1]

p631[0]

p631[1]

p630[0]

p630[1]

p1129[0]

p1128[1]

p1128[0]

p1127[1]

p1131[0]

p1130[1]

p1130[0]

p1129[1]

$phi1 49

p1131[1]

g4 32

p694[0]

p694[1]

$c2 37

$c3 37

$phi3 32

$c1 37

p693[0]

p693[1]

p692[0]

p692[1]

p448[0]

p448[1]

p447[0]

p447[1]

p450[0]

p450[1]

p449[0]

p449[1]

p451[0]

p451[1]

p1168[1]

p1168[0]

p602[1]

p261[0]

p601[1]

p260[0]

p262[1]

p263[0]

p599[1]

p262[0]

p263[1]

p264[0]

p603[1]

p604[0]

p210[1]

p211[0]

p209[1]

p210[0]

p212[1]

p213[0]

p211[1]

p212[0]

p213[1]

p214[0]

p701[0]

p289[0]

$phi3 7

p702[0]

p292[0]

p703[0]

p703[1]

p157[0]

p157[1]

p158[0]

p158[1]

p155[0]

p155[1]

p156[0]

p156[1]

p536[1]

p537[0]

p537[1]

p538[0]

p534[1]

p159[1]

p535[1]

p536[0]

p960[0]

p957[1]

p1198[1]

p137[0]

p137[1]

p136[0]

p136[1]

p135[0]

p135[1]

p134[0]

p134[1]

p133[0]

p133[1]

p143[0]

p143[1]

p144[0]

p144[1]

p145[0]

p145[1]

p146[0]

p146[1]

p147[0]

p147[1]

g1 26

p854[1]

p855[0]

p855[1]

p856[0]

p856[1]

p857[0]

p857[1]

p858[0]

p89[1]

p90[0]

p88[1]

p89[0]

p91[1]

$phi1 4

p90[1]

p91[0]

p859[1]

p860[0]

p860[1]

p861[0]

p861[1]

p862[0]

p862[1]

p863[0]

p863[1]

p864[0]

$phi2 42$phi3 42

p951[1]

p952[0]

p952[1]

p953[0]

p953[1]

p727[0]

p954[1]

$phi1 42

$c3 52

p726[1]

p53[1]

p54[0]

$c1 1

$c2 1

$c3 1

p53[0]

p52[1]

$phi1 1$phi2 1

$phi3 1

$c2 52

p1093[1]

g4 6
g4 7

g4 2

g4 3

g4 4

g4 5

p990[1]

p723[0]

p991[1]

g4 1

p1068[1]

$phi1 46

$phi2 46

p722[1]

p1066[1]

p1067[0]
p1067[1]

p1068[0]

$c1 58

$c2 58

p1094[0]

p253[1]

g1 13

p428[1]

p709[1]

p710[0]

p710[1]

p711[0]

$c3 39

p708[0]

p708[1]

p709[0]

p711[1]

p712[0]

$c2 22

p1093[0]

$d1 1

p629[1]

p629[0]

p767[0]

p766[1]

p625[1]

p625[0]p626[1]

p626[0]

p627[1]

p627[0]

p628[1]

p628[0]

$phi3 27

p310[0]

p309[1]

p307[0]

p306[1]

p306[0]

p305[1]

p309[0]

p308[1]

p308[0]

p307[1]

p1116[1]

p1117[0]

p1115[1]

p431[0]

p1114[1]

p1115[0]

p1113[1]

p1114[0]

p1112[1]
p1113[0]

p697[1]

p697[0]

p698[1]

p698[0]

p425[0]

p695[0]

p696[1]

p696[0]

p699[1]

p699[0]

g1 12

p605[0]

$phi23 1$phi13 1

p1177[0]

p454[1]

p454[0]

p455[1]

p455[0]

p452[1]

p452[0]

p453[1]

p453[0]

p1196[1]

p1197[0]

p424[0]

p604[1]

$phi1 27

p605[1]

p7[0]

p6[1]

$c2 31

$c1 31

p606[0]

p4[1]

p6[0]

p5[1]

p3[0]

p2[1]

p4[0]

p3[1]

p208[0]

p5[0]
p207[0]

p206[1]

p206[0]

p205[1]

p205[0]

p204[1]

p1195[1]

p209[0]

p208[1]

p1174[0]

$c3 31

p1192[1]

p1175[0]

p1193[1]

p1176[0]

p765[0]

p207[1]

p164[1]

p164[0]

p541[0]

$c3 26

p160[1]

p160[0]

p161[1]

p161[0]

p162[1]

p162[0]

p163[1]

p539[1]

$c3 16

$c2 16

$phi1 39

$c2 45

$c1 45

$phi3 38

$phi2 38

p853[0]

p852[1]

p852[0]

$c3 45

$phi3 3

$phi2 3

p854[0]

p78[1]

p78[0]

p77[1]

p77[0]

p76[1]

$phi33 3
$phi23 3

p1215[0]

p864[1]

$phi12 3

$phi31 3

$phi21 3

$phi11 3

$phi32 3

$phi22 3

p868[1]

p48[0]

p47[1]

p49[0]

p48[1]

p50[0]

p49[1]

p51[0]

p50[1]

p52[0]

p51[1]

g2 25

$c1 52

p957[0]

p956[1]

p956[0]

p955[1]

p871[1]

$phi33 4

p990[0]

p989[1]

p989[0]

p988[1]

p988[0]

p987[1]

p987[0]

p986[1]

p986[0]

p985[1]

p1065[0]

p1064[1]

p1064[0]

p1063[1]

p1063[0]

p1062[1]

p1062[0]

p1061[1]

p1066[0]

p1065[1]

p859[0]

p707[1]

p707[0]

p706[1]

p706[0]

p705[1]

p705[0]

$c3 38

$c2 38

$c2 39

$c1 39

p1221[1]

$u 1

$c1 30

p753[1]

p259[1]

$c2 30

p750[1]

p751[0]

$dV3 3

p750[0]

p752[1]

p753[0]

p751[1]

p752[0]

$phi2 15

g0 1

p593[0]

p954[0]

p310[1]

p311[0]

p311[1]

p312[0]

p312[1]

p313[0]

p313[1]

$phi1 15

p1122[0]

p602[0]

$phi2 26

p772[1]

p1118[0]

p1117[1]

p1119[0]

p1118[1]

p1120[0]

p774[0]

p1121[0]

p1120[1]

$phi2 25

$phi3 25

$c1 29

p773[1]

$c3 29

p580[0]

p580[1]

p581[0]

p581[1]

p582[0]

$phi3 22

p774[1]

p666[0]

p666[1]

p667[0]

p667[1]

p668[0]

p668[1]

p669[0]

p669[1]

p670[0]

p670[1]

p637[0]

p540[1]

p540[0]

p163[0]

$phi3 21

$c1 23

p440[0]

p440[1]

p441[0]

p441[1]

p442[0]

p442[1]

$phi1 21

$phi2 21

p1173[1]

p1173[0]

p1192[0]

p1191[1]

p1191[0]

p1190[1]

p1190[0]

p1189[1]

p1189[0]

p1172[0]

p1188[0]

p1171[0]

$phi2 11
$phi3 11

$c1 11

$c2 11

p202[1]

p398[1]

p203[1]

$phi1 11

p396[0]

p396[1]

p397[0]

p397[1]

p394[0]

p204[0]

p395[0]

p395[1]

p486[1]

p487[0]

p487[1]

p488[0]

p484[1]

p485[0]

p485[1]

p486[0]

p488[1]

p489[0]

g4 14

p166[0]

p166[1]

p165[0]

p165[1]

$c2 9

$c3 9

$phi3 8

$c1 9

$phi1 8

$phi2 8

$phi1 28

$phi11 4

p1124[1]

p1125[0]

p763[0]

p1126[1]

p1127[0]

p1218[1]

p759[1]

$c1 35

p760[0]

$phi1 18

p967[1]

p1159[1]

p968[0]

p1209[1]

p968[1]

p969[0]

p82[1]

p83[0]

p80[1]

p81[0]

p81[1]

p82[0]

$c3 3

p79[0]

p79[1]

p80[0]

$c2 62

p966[1]

p867[1]

p868[0]

p866[1]

p867[0]

p865[1]

p967[0]

$c3 46

p865[0]

$c1 46

$c2 46

g

$c2 57

p45[1]

p46[0]

p44[1]

p45[0]

p43[1]

p44[0]

p42[1]

p43[0]

p969[1]

p46[1]

p47[0]

p413[1]

$c3 42

p813[0]

p812[1]

$phi1 35

p811[1]

p812[0]

$c1 42

$c2 42

$phi2 35

$phi3 35

g4 26

g4 27

g4 20

g4 21

g4 18

g4 19

g4 24

g4 25

g4 22

g4 23

p1057[1]

p1058[0]

p1056[1]

p1057[0]

p1059[1]

p1060[0]

p1058[1]

p1059[0]

p1060[1]

p1061[0]

p718[1]

p719[0]

p717[1]

p718[0]

p720[1]

p721[0]

p719[1]

p720[0]

p721[1]

p722[0]

p839[1]

p840[0]

p840[1]

p841[0]

p942[1]

p943[0]

$c3 44

p839[0]

p361[1]

p361[0]

p360[1]

p360[0]

p363[1]

p363[0]

p362[1]

p362[0]

p757[0]

p756[1]

p758[0]

p757[1]

p755[0]

p754[1]

p756[0]

p755[1]

p759[0]

p758[1]

p317[0]
p316[1]

p315[0]

p314[1]

p316[0]

p315[1]

$c2 15
g1 1

p314[0]

$c3 15

p597[1]

p946[0]

p577[0]

p576[1]

p576[0]

p575[1]

p579[0]

p578[1]

p578[0]

p577[1]

$phi1 25

p579[1]

p304[0]

p303[1]

p303[0]

p671[0]

p302[0]

p301[1]

p301[0]

p673[0]

p675[1]

p675[0]

p948[0]

p305[0]

p304[1]

g2 2

p947[1]

g2 3

p949[0]

g2 4

p836[1]

p446[1]

p446[0]

p950[0]

p443[1]

p443[0]

$c3 23

p949[1]

p445[1]

p445[0]

p444[1]

p444[0]

p801[1]

g2 8

p950[1]

g1 19

p1090[1]

p1186[1]

p1187[0]

p1183[1]

p1184[0]

p1182[1]

p1183[0]

p1185[1]

p1186[0]

p1184[1]

p1185[0]

p202[0]

p201[1]

p1092[1]

p393[1]

p393[0]

p392[1]

p197[1]

p391[1]

p391[0]

p200[0]

p199[1]

p201[0]

p390[1]

p483[0]

p482[1]

p482[0]

p481[1]

p481[0]

p480[1]

p480[0]

$c3 25

g1 33

g1 32

p484[0]

p483[1]

$c1 61

$c2 61

$phi2 49

$phi3 49

p1132[1]

p1133[0]

$c3 61

p1132[0]

p1133[1]

p1134[0]

g0 2

g2 18

g0 11

g0 10

g0 13

g0 12

g0 15

g0 14

g0 17

g0 16

g0 19

g0 18

$phi11 0

$c2 26

p1069[1] p67[0]

p66[1]

p68[0]

p67[1]

p69[0]
p68[1]

p70[0]

p69[1]

p71[0]

p70[1]

p611[1]

p611[0]

p610[1]

p873[0]

p872[1]

p257[1]

p869[0]

p613[1]

p870[0]

p869[1]

p871[0]

p870[1]

p872[0]

p613[0]

p612[1]

p255[1]

$c2 3

$c1 3

p816[0]

p815[1]

p817[0]

p816[1]

p814[0]

p813[1]

p815[0]

p814[1]

p818[0]

p817[1]

g4 13

g4 12

g4 15

p853[1]

g4 9

g4 8

g4 11

g4 10

g2 35

g4 17

g4 16

p1091[0]

p1056[0]

$c3 57

$phi3 45

$phi2 45

$phi2 4

$c1 57

p1055[0]

p1054[1]

$phi1 45

p1055[1]

p717[0]
p716[1]

p1160[1]

p715[0]

p714[1]

p716[0]

p715[1]

p713[0]

p712[1]

p714[0]

p713[1]

p359[0]

p359[1]

p838[0]

p837[1]

p837[0]

p948[1]

p836[0]

p835[1]

p355[0]

p355[1]

p356[0]

p356[1]

p357[0]

p357[1]

p358[0]

p358[1]

p947[0]

g3 26

g3 27

g3 28

g3 29

g3 30

g3 31

g3 32

g3 33

g3 34
g3 35

p318[1]

p319[0]

p317[1]

p318[0]

p320[1]

p321[0]

p319[1]

p320[0]

p321[1]

p322[0]

g0 3

p991[0]

p595[1]

p300[1]

$phi1 14

$phi2 14

$phi3 14

p298[1]

p299[0]

p299[1]

p300[0]

$phi1 31

$phi2 31

p678[0]

p678[1]

p677[0]

p677[1]

p676[0]

p676[1]

$c1 53

p7[1]

p8[0]

p8[1]

p9[0]

p9[1]

p10[0]

p10[1]

p11[0]

p11[1]

p12[0]

p1182[0]

p1181[1]

p530[0]

p619[0]

p619[1]

p153[0]

p616[0]

p616[1]

p615[0]

p615[1]

p618[0]

p531[0]

p617[0]

p617[1]

p955[0]

p405[0]

p152[0]

p196[1]

p197[0]

p195[1]

p196[0]

p194[1]

p195[0]

p404[0]

p404[1]

p192[1]

p193[0]

p477[0]

p477[1]

p476[0]

p476[1]

p479[0]

p479[1]

p478[0]

p478[1]

$dG1 1

$dG2 1

$c1 25p532[1]

$phi2 22

$c1 10

p1139[0]

p1138[1]

p1137[0]

p1136[1]

p1138[0]

p1137[1]

p1135[0]

p1134[1]

p1136[0]

p1135[1]

p565[1]

p433[1]

p432[0] p432[1]

p563[1]

p431[1]

p564[1]

p430[1]

p951[0]

$phi2 24

$phi3 24

p434[0]
p434[1]

g2 24

$c1 14

$c2 14

p523[0]

g3 3

p748[0]

p833[1]

p834[0]

$c3 62

$phi1 22

p1213[0]

p74[1]

p75[0]

p73[1]

p74[0]

p72[1]

p73[0]

p71[1]

p72[0]

p594[1]

p75[1]

p76[0]

p834[1]

p835[0]

$phi1 9

$c2 17

g0 4

$c1 17

p1214[1]

$w1 4

p1180[0]

$w3 4

$dG 4

$dG1 4

$dG2 4

$dV1 4

p1179[1]

$dV3 4

p992[0]

p1181[0]

$phi2 41

$phi3 41

p941[1]

p1180[1]

p940[1]

p941[0]

p939[1]

p940[0]

p1178[0]

$c1 51

p1177[1]

p1084[1]

p1085[0]

p1179[0]

$c1 59

$c2 59

$c3 59

p1082[0]

p1082[1]

p1083[0]

p1083[1]

p1084[0]

p731[1]

p732[0]

p727[1]

p728[0]

p728[1]

p729[0]

p729[1]

p730[0]

p730[1]

p731[0]

p848[1]

p849[0]

p847[1]

p848[0]

p354[1]

p354[0]

p849[1]

p850[0]

p352[1]

p352[0]

p353[1]

p353[0]

p350[1]

p350[0]

p351[1]

p351[0]

p1012[1]
p1013[0]

p1013[1]

p1014[0]

p1010[1]

p1011[0]

p1011[1]

p1012[0]

$phi1 24

p1014[1]

p1015[0]

$w2 3

$w1 3

$v 3

$u 3

$dG2 3

$dG1 3

$dG 3

$w3 3

$dV2 3

$dV1 3

p326[0]

p325[1]

p325[0]

p324[1]

p324[0]p323[1]

p323[0]

p322[1]

$phi2 23

p1092[0]

$phi1 16 p326[1]

p944[1]

p610[0]

p248[0]

p618[1]

p682[1]

p682[0]

$c3 36

$c2 36

p679[1]

p679[0]

p247[1]

p680[0]

p681[1]

p681[0]

p405[1]

$phi1 13

p287[1]

p287[0]

p286[1]

$c2 13

$c1 13

$phi3 13

$phi2 13

p288[0]

$c3 13

p622[1]

p622[0]

p623[1]

p623[0] p620[1]

p620[0]

p621[1]

p621[0]

p1162[0]

p1217[0]

p1163[0]

p1163[1]

p1160[0]

p624[0]

p1161[0]
p1161[1]

p401[1]

p401[0]

p402[1]

p402[0]

p399[1]

p399[0]

p400[1]

p400[0]

p193[1]

p403[1]

p403[0]

p194[0]

$c2 20

$c3 20

g1 9

g1 34

g1 11

g1 10

p475[1]

p475[0]

g1 7

g1 6

p473[1]

p473[0]

p474[1]

p474[0]

p471[1]

p471[0]

p472[1]

p472[0]

$v 1

$w1 1

$w2 1

$w3 1

$c3 51

p435[1]

p435[0]

p436[1]

p560[1]

p437[1]

p437[0]

p559[0]

p438[0]

p439[1]

p439[0]

$c3 10

p563[0]

p562[1]

$c2 10

p942[0]

p172[0]

p177[0]

$phi2 9

p188[1]

p188[0]

p187[1]

p187[0]

p186[1]

p186[0]

p185[1]

p185[0]

p184[1]

p184[0]

$c3 32

g1 23

p66[0]

$c3 2

$phi3 2

$phi2 2

$c2 2

$c1 2

p65[0]

p64[1]

$phi1 2

p65[1]

p945[1]

g4 31

p433[0]

g4 29

g4 28

g4 35

g4 34

g4 33

p566[0]

$v 4

$u 4

p566[1]

p935[0]

p934[1]

p936[0]

p935[1]

p937[0]

p936[1]

p938[0]

p937[1]

p939[0]

p938[1]

p564[0]

$phi3 47

$phi2 47

p430[0]

p1080[0]

p1079[1]

p1079[0] p1078[1]

$phi1 47

p1081[1]

p1081[0]

p1080[1]

p754[0]

p346[0]

p346[1]

p345[0]

p345[1]

p348[0]

p348[1]

p347[0]

p347[1]

p724[0]

p723[1]

p349[0]

p349[1]

p726[0]

p725[1]

p725[0]

p724[1]

p847[0]

p846[1]

p845[0]

p844[1]

p846[0]

p845[1]

p843[0]

p842[1]

p844[0]

p843[1]

p1019[0]
p1018[1]

p1018[0]

p1017[1]

p1017[0]

p1016[1]

p1016[0]

p1015[1]

p1020[0]

p1019[1]

g3 14

g3 15

g3 12

g3 13

g3 10

g3 11

g3 8

g3 9

g3 6

g3 7

p1178[1]

p327[0]

p327[1]

p328[0]

$phi2 16

$phi3 16

$c1 16

$phi3 15

p328[1]

p329[0]

g0 6

g1 15

g1 20

$phi2 27

p281[1]

p282[0]

p282[1]

p283[0]

p283[1]

p284[0]

p284[1]

p285[0]

p285[1]

p286[0]

$c1 38

p1209[0]

p1208[1]

p1208[0]

p1207[1]

p1211[0]

p1210[1]

p1210[0]

p1159[0]

p1158[1]

p1158[0]

p1212[0]

p1211[1]

$c1 62

$phi3 51

$phi2 51

$phi1 51

p411[0]

p411[1]

p412[0]

p412[1]

p413[0]

p274[0]

p414[0]

p414[1]

p415[0]

p415[1]

p1146[1]

$phi3 30

p1147[0]

$phi1 30
$phi2 30

p665[0]

p665[1]

p664[0]

p664[1]

$phi23 2

$c2 35

$c3 35

g2 10

g2 11

g1 22

$phi13 2

g1 16

g1 17

g1 14

g2 5

g2 6

g1 21

g1 18

p1119[1]

$phi31 2

$phi21 2

p970[0]

p571[1]

p572[0]

p570[1]

p571[0]

p573[1]

p574[0]

p572[1]

p573[0]

p574[1]

p575[0]

$u 2

$v 2

$w1 2

$w2 2

g2 32

g2 33

g2 34

p1008[0]

$w3 2$dG 2

p191[1]

p192[0]

$phi1 10

$phi2 10

$phi3 10

p191[0]

p189[0]

p189[1]

p190[0]

p190[1]

g0 24

g0 25

g0 26

g0 27

g0 20

g0 21

g0 22

g0 23

p1007[0]

g0 28

g0 29

p1010[0]

g0 7

p894[1]

p895[0]

p799[1]

$c1 48

$c2 48

$c3 48

p892[0]

p892[1]

p893[0]

p893[1]

p894[0]

p1001[1]

p1002[0]

p1000[1]

p1001[0]

p999[1]

p1000[0]

p998[1]

p999[0]

p997[1]

p998[0]

$phi1 41

p933[1]

p934[0]

p931[1]

p932[0]

p932[1]

p933[0]

p929[1]

p930[0]

p930[1]

p931[0]

p1007[1]

p235[0]

p1008[1]

p1009[0]

$d2 4

$d3 4

$z 5

p426[0]

p1009[1]

p425[1]

p740[1]

p741[0]

p739[1]

p740[0]

p738[1]

p739[0]

p737[1]

p738[0]

g1 4

p424[1]

p741[1]

p742[0]

p379[0]

p378[1]

p378[0]

p377[1]

p377[0]

p376[1]

p376[0]

p375[1]

p423[0]

p380[0]

p379[1]

p60[1]

p61[0]

p59[1]

p60[0]

p62[1]

p63[0]

p61[1]

p62[0]

p823[1]

p824[0]

p63[1]

p64[0]

p825[1]

$phi1 36

$phi2 36

$phi3 36

p1021[1]

p1022[0]

p1020[1]

p1021[0]
p1023[1]

p1024[0]

p1022[1]

p1023[0]

p1024[1]

p1025[0]

g3 25

g3 24

g3 17

g3 16

g3 19

g3 18

g3 21

p824[1]

g3 23

g3 22

p334[0]

p333[1]

p825[0]

p330[0]

p329[1]

p331[0]

p330[1]

p332[0]

p331[1]

p333[0]

p332[1]

p1076[1]

p787[0]

p787[1]

p788[0]

p1074[1]

p1075[0]

p1073[1]

p1074[0]

p788[1]

p789[0]

p1077[1]
p1078[0]

$phi33 0

$phi23 0
$phi13 0

p339[1]

$phi12 0

$phi31 0

$phi21 0

$phi3 18

$phi32 0

$phi22 0
p1103[0]

p296[0]

p295[1]

p297[0]

p296[1]

p294[0]

p293[1]

p295[0]

p294[1]

p298[0]

p297[1]

$d1 0

p15[1]

p15[0]

p14[1] p14[0]

p13[1]

p13[0]

p12[1]

p1205[1]

p1206[0]

p1170[0]

p1205[0]

p1203[1]

p1204[0]

p1202[1]

p1203[0]

p407[1]

p407[0]

p406[1]

p406[0]

p409[1]

p409[0]

p408[1]

p408[0]

p410[1]

p410[0]

p659[1]

p659[0]

p660[1]

p660[0]

p661[1]

p661[0]

p662[1]

p662[0]

p663[1]

p663[0]

$c1 63

g2 1

p503[1]

p251[0]

p250[1]

p250[0]

p500[1]

p500[0]

p248[1]

p503[0]

p502[1]

p502[0]

p501[1]

p1171[1]

p1187[1]

$dV1 1

g3 20

p570[0]

p569[1]

p568[0]

p398[0]

p569[0]

p568[1]

$c2 28

$c1 28

p567[0]

p203[0]

p505[0]

p504[1]

p504[0]

$dV3 2

$dV2 2

$dV1 2

$dG2 2

$dG1 2

p506[0]

p505[1]

p965[1]

$c3 11 $phi3 9

p394[1]

p1195[0]

p117[0]

p116[1]

p114[0]

p113[1]

p113[0]

p112[1]

p116[0]

p115[1]

p115[0]

p114[1]

$c3 40

p1077[0]

p1075[1]

p514[0]

p1076[0]

p513[1]

$phi2 33

$phi13 3

p515[0]

$phi3 33

p514[1]

$c1 40

p911[1]

p512[0]

p1053[1]

p511[1]

p513[0]

p512[1]

p912[1]

$c3 63

p966[0]

p900[0]

p899[1]

p1169[1]

p897[0]

p896[1]

p896[0]

p895[1]

p899[0]

p898[1]

p898[0]

p897[1]

$c2 63

p997[0]

p996[1]

p993[0]

p992[1]

p994[0]

p993[1] p995[0]

p994[1]

p996[0]

p995[1]

$phi1 26

p929[0]

$c3 50

$c2 50

$c1 50

$phi3 40

$phi2 40

$phi1 40

p928[1]

p928[0]

p927[1]

p1006[0]

p1005[1]

p1005[0]

p1004[1]

p1004[0]

p1003[1]

p1003[0]

p1002[1]

$c2 8

$d1 4

p1006[1]

p733[0]

p732[1]

p734[0]

p733[1]

p735[0]

p734[1]

p736[0]

p735[1]

p737[0]

p736[1]

p372[1]

p373[0]

p373[1]

p374[0]

p370[1]

p371[0]

p371[1]

p372[0]

$c1 8

p374[1]

p375[0]

p823[0]

p822[1]

p820[0]

p819[1]

p819[0]

p818[1]

p822[0]

p821[1]

p821[0]

p820[1]

g0 30

$phi1 43

p1029[1]

p1028[0]

p1027[1]

p1029[0]

p1028[1]

p1026[0]

p1025[1]

p1027[0]

p1026[1]

p598[0]

p338[1]

p339[0]

p337[1]

p338[0]

p336[1]

p337[0]

p335[1]

p597[0]

p334[1]

p335[0]

p1069[0]

p792[1]

p1070[0]

p596[1]

p1071[0]

p790[1]

p790[0]

p789[1]

p1073[0]

p596[0]

p794[0]

p238[1]

p340[0]

p340[1]

p341[0]

p341[1]

p342[0]

p595[0]

p343[0]

p343[1]

p344[0]

p344[1]

p492[1]

p494[0]

p240[1]

$dV2 1

p761[1]

p762[0]

p762[1]

p1167[1]

p704[1]

p292[1]

p293[0]

p1165[1]

p1165[0]

p1166[1]

p1166[0]

p289[1]

p290[0]

p288[1]

p701[1]

p291[1]

p702[1]

p290[1]

p291[0]

p1202[0]

p1201[1]

p760[1]

p1198[0]

p1197[1]

p1199[0]

p761[0]

p1200[0]

p1199[1]

p1201[0]

p1200[1] p422[0]

p422[1]

p421[0]

p421[1]

p420[0]

p420[1]

p419[0]

p419[1]

p418[0]

p418[1]

p658[0]

p658[1]

p656[0]

p656[1]

p657[0]

p657[1]

p654[0]

p654[1]

p655[0]

p655[1]

$phi1 20

$phi2 20$phi3 20

$c1 22

p428[0]

p254[0]

p429[0]

p429[1]

$z 2

p252[0]
p252[1]

p253[0]

p251[1]

$c3 22

$d2 1

$d3 1

p776[0]

p239[0]

$dV2 4

p550[1]

p551[0]

p546[1]

p547[0]

p547[1]

p548[0]

p548[1]

p549[0]

p549[1]

p550[0]

p507[1]

p508[0]

p506[1]

p507[0]

p509[1]

p510[0]

p508[1]

p509[0]

p510[1]

p511[0]

g0 5

p240[0]

p497[1]

p498[0]

p496[1]

p497[0]

p495[1]

p496[0]

p494[1]

p495[0]

p593[1]

p594[0]

p498[1]

p499[0]

p111[1]

p112[0]

p107[1]

p108[0]

p108[1]

p109[0]

p109[1]

p110[0]

p110[1]

p111[0]

$phi33 2

p1121[1]

$phi12 4

$phi22 4

$c2 51

p1206[1]

p1207[0]

p973[0]

$phi13 4

p972[1]

$phi23 4

p1204[1]

p1170[1]

$phi21 4

$phi31 4

$d3 0

$d2 0

p975[0]

p974[1]

g1 27

$c1 64

p926[1]

p927[0]

p923[1]

p924[0]

p922[1]

p923[0]

p925[1]

p926[0]

p924[1]

p925[0]

$c2 64

g3 4g3 5

p749[1]

g3 1

g3 2

p560[0]

p747[1]

p182[0]

p748[1]

p749[0]

p370[0]

p369[1]

p832[1]

p833[0]

p831[1]

p832[0]

p830[1]

p831[0]

$c2 19

$c1 19

p367[0]

$c3 19

p368[0]

p367[1]

p369[0]

p368[1]

p559[1]

p1031[1]

p1032[0]

$phi2 43

$phi3 43

$c1 55

$c2 55

$c3 55

p1030[0]

p1030[1]

p1031[0]

p1174[1]

p778[1]

p779[0]

p777[1]

p778[0]

p780[1]

p781[0]

p779[1]

p780[0]

p1194[0]

p781[1]

p782[0]

p791[1]

p1175[1]

p501[0]

p249[1]

p850[1]

p249[0]

p851[0]

p1144[1]

$phi1 50

$phi2 50

p499[1]

p1145[0]

p1145[1]

p1146[0]

p273[1]

p273[0]

p272[1]

p272[0]

p271[1]

p271[0]

p270[1]

p270[0]

p269[1]

p247[0]

p246[1]

p851[1]

p417[1]

p417[0]

$phi1 38

p416[1]

p416[0]

$phi2 19

$phi1 19

$c1 21

$phi3 19

$c3 21

$c2 21

p653[1]

p653[0]

$c3 34

$c2 34

$c1 34

$phi3 29

$phi2 29$phi1 29

p652[1]

p652[0]

p426[1]
p234[1]

p236[0]

p235[1]

p237[0]

p236[1]

p423[1]

p237[1]

g1 3

g1 2

p427[1]

p427[0]

p1188[1]

p1106[1]
p1107[0]

$c3 30

p1104[1]

p1105[0]

p1105[1]

p1106[0]

p1102[1]

p791[0]

p1103[1]

p1104[0]

p546[0]

p545[1]

p543[0]

p542[1]

p542[0]

p541[1]

p545[0]

p544[1]

p544[0]

p543[1]

p260[1]

p171[1]

p171[0]

p516[0]
p515[1]

p603[0]

p168[1]

p168[0]

p167[1]

p167[0]

p170[1]

p170[0]

p169[1]

p169[0]

p592[1]

p600[1]

$phi2 28

p601[0]

$w2 0

$w1 0

p261[1]

g0 33

g0 32
g0 31

p600[0]

$v 0

$u 0

g0 35

g0 34

p490[0]

p489[1]

p238[0]

p490[1]

p492[0]

p491[1]

p493[0]

p239[1]

p241[0]

p493[1]

p599[0]

p598[1]

$c2 29

$c1 7

p123[1]

p122[0]

p121[1]

p123[0]

p122[1]

p120[0]

p119[1]

p121[0]

p120[1]

$phi3 26

$phi32 4

$c2 33

$phi3 37

$c1 43

$c3 33

p567[1]

$c2 43

g4 30

p640[0]

$c3 28

p773[0]

p920[0]

p919[1]

p921[0]

p920[1]

p918[0]

p917[1]

p919[0]
p918[1]

p922[0]

p921[1]

p1172[1]

$phi2 37

p747[0]

p746[1]

p746[0]

p745[1]

p745[0]

p744[1]

p744[0]

p743[1]

p743[0]

p742[1]

p826[0]

$c3 43
p827[0]

p826[1]

p828[0]

p827[1]

p366[0]

p366[1]

p365[0]

p365[1]

p364[0]

p364[1]

$c2 18

$c3 18

$c3 17

$c1 18

p946[1]

p1037[0]

p866[0]

$dV3 1

p1034[0]

p1033[1]

p1033[0]

p1032[1]

p1036[0]

p1035[1]

p1035[0]

p1034[1]

$c2 0

$c1 0

$phi3 0

$phi2 0

p41[0]

p40[1]

p40[0]

$c3 0

p42[0]

p41[1]

$phi1 33

p786[1]

p785[0]

p784[1]

p786[0]

p785[1]

p783[0]

p782[1]

p784[0]

p783[1]

p1116[0]

$phi11 2

p565[0]

p1194[1]

p695[1]

p1141[0]

p1140[1]
p1140[0]

p1139[1]

p268[1]

p269[0]

p1142[0]

p1141[1]

p266[1]

p267[0]

p267[1]

p268[0]

p264[1]

p265[0]

p265[1]

p266[0]

p1196[0]

p19[1]

p20[0]

p16[1]

p17[0]

$z 1

p16[0]

p18[1]

p19[0]

p17[1]

p18[0]

p651[0]

p651[1]

p979[0]

g1 5

p648[0]

p648[1]

p647[0]

p647[1]

p650[0]

p650[1]

p649[0]

p649[1]

p232[1]

p233[0]

p231[1]

p232[0]

p230[1]

p231[0]

p229[1]

p230[0]

$phi3 28

p233[1]

p234[0]

$c1 33

p1112[0]

p1111[1]

p1111[0]

p1110[1]

p1110[0]

p1109[1]

p1109[0]

p1108[1]

p1108[0]
p1107[1]

p556[1]

p557[0]

p555[1]

p556[0]

p554[1]

p555[0]

$c3 27

p554[0]

p159[0]

p768[0]

p557[1]

p558[0]

g2 31

p1193[0]

p518[1]

p176[1]

p516[1]

p172[1]

p173[0]

p173[1]

p174[0]

p174[1]

p175[0]

p175[1]

p1176[1]

p244[1]

p584[0]

p243[1]

p244[0]

p242[1]

p243[0]

p241[1]

p242[0]

p1220[0]

p1219[1]

p586[1]

p587[0]

p1218[0]p1217[1]

p245[1]

p246[0]

$dG 1

p829[0]

p828[1]

p830[0]

p829[1]

g1 35

p1100[0]

p1099[1]

p1100[1]

$phi2 6
$phi3 6

p117[1]

$phi1 6

$c3 6

p118[0]

$c1 6

$c2 6

p118[1]

p119[0]

p1102[0]

p1101[1]

p915[1]

p1212[1]

$phi2 39

$phi3 39

$c1 49

$c2 49

$c3 49

p916[0]

p916[1]

p917[0]

p1213[1]

p1214[0]

p775[0]

p1164[0]

p1164[1]

p1215[1]

p1216[0]

p1216[1]

p1036[1]

p1162[1]

p979[1]

p980[0]

p978[1]

p624[1]

p977[1]

p978[0]

p976[1]

p977[0]

p975[1]

p976[0]

p877[1]

p878[0]

p875[1]

p876[0]

p876[1]

p877[0]

p873[1]

p874[0]

p874[1]

p875[0]

p388[0]

p387[1]

p389[0]

p388[1]

p386[0]

p385[1]

p387[0]

p386[1]

p390[0]

p389[1]

p35[1]

p36[0]

p36[1]

p37[0]

p37[1]

p38[0]

p38[1]

p39[0]

p39[1]

$phi1 0

g2 27

p805[1]

p806[0]

p1094[1]

$phi1 48

p1091[1]

p802[0]

p802[1] p803[0]

p803[1]

p804[0]

p804[1]

p805[0]

p1040[1]

p1041[0]

p1039[1]

p1040[0]

p1038[1]

p1039[0]

p1037[1]

p1038[0]

$phi2 12

p1041[1]

p1042[0]

p1157[0]

p1157[1]

p1156[0]

p1156[1]

p1155[0]

p1155[1] p1154[0] p1154[1]

p1153[0]

p1153[1]

p644[1]

p644[0]

p645[1]

p645[0]

p642[1]

p642[0]

p643[1]

p643[0]

$c1 26

p646[1]

p646[0]

p275[1]

p684[1]

p229[0]

p228[1]

g1 8

p226[0]

p225[1]

p225[0]

p224[1]

p228[0]

p227[1]

p227[0]

p226[1]

$c1 60

$c2 60

p1095[0]

p1095[1]

$phi2 48$phi3 48

p1097[0]

p1097[1]

p1096[0]

p1096[1]

p552[0]

p551[1]

p553[0]

p552[1]

$phi1 23

p553[1]

$phi3 23

p945[0]

$c2 27

$c1 27

p943[1]

p277[0]

p276[1]

p278[0]

p277[1]

p279[0]

p278[1]

p280[0]

p279[1]

p281[0]

p280[1]

$c2 44

p524[0]

p523[1]

p178[1]

p178[0]

p521[0]

p520[1]

p520[0]

p519[1]

p177[1]

p522[1]

p522[0]

p521[1]

p841[1]

p842[0]

p592[0]

p591[1]

p590[0]

p589[1]

p591[0]

p590[1]

p588[0]

p587[1]

p589[0]

p588[1]

p680[1]

g2 7

$phi32 2

$phi3 12

g2 9

p131[1]

p131[0]

p130[1]

p130[0]

p129[1]

p129[0]

p128[1]

p128[0]

p132[1]

p132[0]

$dG2 0

$c1 20

p912[0]

p562[0]

p911[0]

p910[1]

p914[0]

p913[1]

p913[0]

p561[1]

p915[0]

p914[1]

p561[0]

$phi1 5

p104[1]

p436[0]

p101[0]

p100[1]

p102[0]

p101[1]

p103[0]

p102[1]

p104[0]

p103[1]

p438[1]

p558[1]

p92[0]

$c3 4

$c2 4

$c1 4

p94[0]

p93[1]

p93[0]

p92[1]

$phi2 18

p95[0]

p94[1]

g2 22

p985[0]

p984[1]

g2 23

p981[0]

p980[1]

p982[0]

p981[1]

p983[0]

p982[1]

p984[0]

p983[1]

$phi3 4

g2 26

p883[0]

p882[1]

p882[0]

p881[1]

p881[0]

p880[1]

p880[0]

p879[1]

p879[0]

p878[1]

p974[0]

p973[1]

p384[1]

p385[0]

p972[0]

p971[1]

p971[0]

p970[1]

p381[1]

p382[0]

p380[1]

p381[0]

p383[1]

p384[0]

p382[1]

p383[0]

p33[0]

p32[1]

p34[0]

p33[1]

p31[0]

p30[1]

p32[0]

p31[1]

p35[0]

p34[1]

p1088[0]

p1087[1]

p1089[0]

p1088[1]
p1086[0]

p1085[1]

p1087[0]

p1086[1]

p1090[0]
p1089[1]

$phi22 2

p811[0]

p810[1]

p808[0]

p807[1]

p807[0]

p806[1]

p810[0]

p809[1]

p809[0]

p808[1]

p538[1]

$phi12 2

p539[0]

$c1 15

$phi1 44

p1042[1]

$phi3 44

$phi2 44

$c2 56

$c1 56

p1043[0]

$c3 56

p1044[0]p1043[1]

g0 8

$c3 41

p1152[1]

p1152[0]p1148[1]

p1148[0]

p1149[1]

p1149[0]

p1150[1]

p1150[0]

p1151[1]

p1151[0]

p1143[0]

p1142[1]

p770[1]

p771[0]

p769[1]

p770[0]

p768[1]

p769[0]

p767[1]

p640[1]

p641[0]

p641[1]

p771[1]

p772[0]

p1144[0]

p223[1]

p224[0]

p1101[0]

p1143[1]

p1098[0]

$c3 60

p1099[0]

p1098[1]

p219[1]

p220[0]

p220[1]

p221[0]

p221[1]

p222[0]

p222[1]

p223[0]

p465[0]

p465[1]

p464[0]

p464[1]

p463[0]

p463[1]

p462[0]

p462[1]

p461[0]

p461[1]

$c3 12

p275[0]

$c1 12

$c2 12

p687[0]

p687[1]

p274[1]

$phi1 12

p685[0]

p685[1]

p686[0]

p686[1]

p683[0]

p683[1]

p684[0]

p276[0]

$phi12 1

$phi22 1

$phi32 1

$c1 24

$phi33 1

$phi11 1

$phi21 1

$phi31 1

$c2 24

$c3 24

p180[0]

$phi3 50

p1[1]

p2[0]

$dV3 0

p1[0] $dV1 0

$dV2 0

$dG1 0

p179[0]

$w3 0

$dG 0

p609[0]

p609[1]

g2 30

p527[0]

p704[0]

p606[1]

p607[0]

p607[1]

p608[0]

p608[1]

$c1 32

$c2 32

p526[0]

p672[1]

p524[1]

p672[0]

p525[0]

p671[1]

p535[0]

p302[1]

$w2 4

p674[1]

p674[0]

p673[1]

$c3 14

p527[1]

p180[1]

p526[1]

p179[1]

p525[1]

p182[1]

p181[0]

p181[1]

p183[0]

p183[1]

p528[1]

p529[0]

Figure 9: An example of a random cluster dependency graph at n = 5.
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