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ABSTRACT
TLS and SSH are two of the most commonly used proto-
cols for securing Internet traffic. Many of the implemen-
tations of these protocols rely on the cryptographic primi-
tives provided in the OpenSSL library. In this work we dis-
close a vulnerability in OpenSSL, affecting all versions and
forks (e.g. LibreSSL and BoringSSL) since roughly October
2005, which renders the implementation of the DSA signa-
ture scheme vulnerable to cache-based side-channel attacks.
Exploiting the software defect, we demonstrate the first pub-
lished cache-based key-recovery attack on these protocols:
260 SSH-2 handshakes to extract a 1024/160-bit DSA host
key from an OpenSSH server, and 580 TLS 1.2 handshakes
to extract a 2048/256-bit DSA key from an stunnel server.

Keywords
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1. INTRODUCTION
One of the contributing factors to the explosion of the

Internet in the last decade is the security provided by the
underlying cryptographic protocols. Two of those protocols
are the Transport Layer Security (TLS) protocol, which pro-
vides security to network communication and the more spe-
cialized Secure Shell (SSH), which provides secure login to
remote hosts.

Software implementations of these protocols often use the
cryptographic primitives’ implementations of the OpenSSL
cryptographic library. Consequently, the security of these
implementations depends on the security of OpenSSL.

In this paper we present a novel side-channel cache-timing
attack against OpenSSL’s DSA implementation. The attack
exploits a vulnerability in OpenSSL, which fails to use a side-
channel-secure implementation of modular exponentiation
— the core mathematical operation used in DSA signatures.
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Our attack builds upon several techniques to profile the
cache memory and capture timing signals. The signals are
processed and converted into a sequence of square and mul-
tiplication (SM) operations from which we extract informa-
tion to create a lattice problem. The solution to the lattice
problem yields the secret key of digital signatures.

Flush+Reload [40] is a powerful technique to perform
cache-timing attacks. We adapt the Flush+Reload tech-
nique to OpenSSL’s implementation of DSA and, exploit-
ing properties of the Intel implementation of the x86 and
x64 processor architectures, our spy program probes rele-
vant memory addresses to create a signal trace.

We process the captured signal to get the SM sequence
performed by the sliding window exponentiation (SWE) al-
gorithm. Then we observe and analyze the number of bits
that can be extracted and used from each of those sequences.
Later, the variable amount of bits extracted from each trace
is used as input to a lattice attack that recovers the private
key.

To bridge the gap between the limited resolution of the
Flush+Reload technique [4] and the high-performance of
the OpenSSL code we apply the performance-degradation
technique of Allan et al. [4]. This technique slows the expo-
nentiation by an average factor of 20, giving a high resolution
trace and allowing us to extract up to 8 bits of information
from some of the traces.

Similar to previous works [9, 14, 21, 32], we perform a
lattice attack to recover the secret key. We use the lattice
construction of Benger et al. [9] and solve the resulting lat-
tice problem using the lattice reduction technique of Nguyen
and Shparlinski [28].

A unique feature of our work is that we target common
cryptographic protocols. Previous works that demonstrate
cache-timing key-recovery attacks only target the crypto-
graphic primitives, ignoring potential cache noise from the
protocol implementation. In contrast, we present end-to-
end attacks on two common cryptographic protocols: SSH
and TLS. We are, therefore, the first to demonstrate that
cache-timing attacks are a threat not only when executing
the cryptographic primitives but also in the presence of the
cache activity of the whole protocol suite.

Our contributions in this work are the following:

• We identify a security weakness in OpenSSL which
fails to use a side-channel safe implementation when
performing DSA signatures. (Section 3)

• We describe how to use a combination of the Flush+
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Reload technique with a performance-degradation at-
tack to leak information from the unsafe SWE algo-
rithm. (Section 4)

• We present the first key-recovery cache-timing attack
on the TLS and SSH cryptographic protocols. (Sec-
tion 5)

• We construct and solve a lattice problem with the side-
channel information and the digital signatures in order
to recover the secret key. (Section 6)

2. BACKGROUND

2.1 Memory Hierarchy
Accessing data and instructions from main memory is a

time consuming operation which delays the work of the fast
processors, for that reason the memory hierarchy includes
smaller and faster memories called caches. Caches improve
the performance by exploiting the spatial and temporal lo-
cality of the memory access.

In modern processors the hierarchy of caches is structured
as follows, higher-level caches, located closer to the processor
core, are smaller and faster than low-level caches, which are
located closer to main memory. Recent Intel architecture
typically has three levels of cache: L1, L2 and Last-Level
Cache (LLC).

Each core has two L1 caches, a data cache and an instruc-
tion cache, each 32 KiB in size with an access time of 4
cycles. L2 caches are also core-private and have an inter-
mediate size (256 KiB) and latency (7 cycles). The LLC is
shared among all of the cores and is a unified cache, con-
taining both data and instructions. Typical LLC sizes are
in megabytes and access time is in the order of 40 cycles.

The unit of memory and allocation in a cache is called
cache line. Cache lines are of a fixed size B, which is typ-
ically 64 bytes. The lg(B) low-order bits of the address,
called line offset, are used to locate the datum in the cache
line.

When a memory address is accessed, the processor checks
the availability of the address line in the top-level L1 cache.
If the data is there then it is served to the processor, a
situation referred to as a cache hit. In a cache miss, when
the data is not found in the L1 cache, the processor repeats
the search for the line in the next cache level and continues
through all the caches. Once the line is found, the processor
stores a copy in the cache for future use.

Most caches are set-associative. They are composed of S
cache sets each containing a fixed number of cache lines. The
number of cache lines in a set is the cache associativity, i.e.,
a cache with W lines in each set is a W -way set-associative
cache.

Since the main memory is orders of magnitude larger than
the cache, more than W memory lines may map to the same
cache set. If a cache miss occurs and all the cache lines in
the matching cache set are in use, one of the cached lines
is evicted, freeing a slot for a new line to be fetched from
a lower-level memory. Several cache replacement policies
exist to determine the cache line to evict when a cache miss
occurs but the typical policy in use is an approximation to
the least-recently-used (LRU).

The last-level cache in modern Intel processors is inclusive.
Inclusive caches contain a superset of the contents of the

cache levels above them. In the case of Intel processors,
the contents of the L1 and L2 caches is also stored in the
last-level cache. A consequence of the inclusion property is
that when data is evicted from the last-level cache it is also
evicted from all of the other levels of cache in the processor.

Intel architecture implements several cache optimizations.
The spatial pre-fetcher pairs cache lines and attempt to fetch
the pair of a missed line [17]. Consecutive accesses to mem-
ory addresses are detected and pre-fetched when the pro-
cessor anticipates they may be required [17]. Additionally,
when the processor is presented with a conditional branch,
speculative execution brings the data of both branches into
the cache before the branch condition is evaluated [35].

Page [30] noted that tracing the sequence of cache hits
and misses of software may leak information on the internal
working of the software, including information that may lead
to recovering cryptographic keys.

This idea was later extended and used for mounting sev-
eral cache-based side-channel attacks [10, 29, 31]. Other
attacks were shown against the L1-instruction cache [3], the
branch prediction buffer [1, 2] and the last-level cache [20,
22, 25, 40].

2.2 The Flush+Reload Attack
Our LLC-based attack is based on the Flush+Reload [20,

40] attack, which is a cache-based side-channel attack tech-
nique.

Unlike the earlier Prime+Probe technique [29, 31] that
detects activity in cache sets, the Flush+Reload technique
identifies access to memory lines, giving it a higher resolu-
tion, a high accuracy and high signal-to-noise ratio.

Like Prime+Probe, Flush+Reload relies on cache shar-
ing between processes. Additionally, it requires data shar-
ing, which is typically achieved through the use of shared
libraries or using page de-duplication [6, 36].

A round of the attack, which identifies victim access to
a shared memory line, consists of three phases. (See Algo-
rithm 1.) In the first phase the adversary evicts the mon-
itored memory line from the cache. In the second phase,
the adversary waits a period of time so the victim has an
opportunity to access the memory line. In the third phase,
the adversary measures the time it takes to reload the mem-
ory line. If during the second phase the victim accesses the
memory line, the line will be available in the cache and the
reload operation in the third phase will take a short time. If,
on the other hand, the victim does not access the memory
line then the third phase takes a longer time as the memory
line is loaded from main memory.

Algorithm 1: Flush+Reload Attack

Input: Memory Address addr.
Result: True if the victim accessed the address.

begin
flush(addr)
Wait for the victim.
time ← current_time()

tmp ← read(addr)
readTime ← current_time() - time
return readTime < threshold

The execution of the victim and the adversary processes
are independent of each other, thus synchronization of prob-



ing is important and several factors need to be considered
when processing the side-channel data. Some of those fac-
tors are the waiting period for the adversary between probes,
memory lines to be probed, size of the side-channel trace and
cache-hit threshold. One important goal for this attack is to
achieve the best resolution possible while keeping the error
rate low and one of the ways to achieve this is by targeting
memory lines that occur frequently during execution, such
as loop bodies. Several processor optimizations are in place
during a typical process execution and an attacker must be
aware of these optimizations to filter them during the anal-
ysis of the attack results. See [4, 39, 40] for discussions of
some of these parameters.

A typical implementation of the Flush+Reload attack
makes use of the clflush instruction of the x86 and x64
instruction sets. The clflush instruction evicts a specific
memory line from all the cache hierarchy and being an un-
privileged instruction, it can be used by any process.

The inclusiveness of the LLC is essential for the Flush+
Reload attack. Whenever a memory line is evicted from
the LLC, the processor also evicts the line from all of the L1
and L2 caches. On processors that do not have an inclusive
LLC, e.g., AMD processors, the attack does not work [40].
See, however, Lipp et al. [24] for a variant of the technique
that does not require an inclusive LLC.

2.3 The Digital Signature Algorithm (DSA)
A variant of the ElGamal signature scheme, DSA was first

proposed by the U.S. National Institute of Standards and
Technology (NIST). DSA uses the multiplicative group of a
finite field. We use the following notation for DSA.
Parameters: Primes p, q such that q divides (p − 1), a gen-
erator g of multiplicative order q in GF (p) and an approved
hash function h (e.g. SHA-1, SHA-256, SHA-512).
Private-Public key pairs: The private key α is an integer
uniformly chosen such that 0 < α < q and the corresponding
public key y is given by y = gα mod p. Calculating the
private key given the public key requires solving the discrete
logarithm problem and for correctly chosen parameters, this
is an intractable problem.
Signing: A given party, Alice, wants to send a signed mes-
sage m to Bob—the message m is not necessarily encrypted.
Using her private-public key pair (αA, yA), Alice performs
the following steps:

1. Select uniformly at random a secret nonce k such that
0 < k < q.

2. Compute r = (gk mod p) mod q and h(m).

3. Compute s = k−1(h(m) + αAr) mod q.

4. Alice sends (m, r, s) to Bob.

Verifying: Bob wants to be sure the message he received
comes from Alice—a valid DSA signature gives strong evi-
dence of authenticity. Bob performs the following steps to
verify the signature:

1. Reject the signature if it does not satisfy 0 < r < q
and 0 < s < q.

2. Compute w = s−1 mod q and h(m).

3. Compute u1 = h(m)w mod q and u2 = rw mod q.

4. Compute v = (gu1yu2
A mod p) mod q.

5. Accept the signature if and only if v = r holds.

2.3.1 DSA in Practice
Putting it mildly, there is no consensus on key sizes, and

furthermore keys seen in the wild and used in ubiquitous
protocols have varying sizes—sometimes dictated by existing
and deployed standards. For example, NIST defines 1024-bit
p with 160-bit q as “legacy-use” and 2048-bit p with 256-bit
q as “acceptable” [8]. We focus on these two parameter sets.

SSH’s Transport Layer Protocol1 lists DSA key type ssh-

dss as “required” and defines r and s as 160-bit integers,
implying 160-bit q. In fact the OpenSSH tool ssh-keygen
defaults to 160-bit q and 1024-bit p for these key types, not
allowing the user to override that option, and using the same
parameters to generate the server’s host key. It is worth
noting that recently as of version 7.0, OpenSSH disables
host server DSA keys by a configurable default option2, but
of course this does not affect already deployed solutions.

As a countermeasure to previous timing attacks, Open-
SSL’s DSA implementation pads nonces by adding either q
or 2q to k—see details in Section 3.

For the DSA signing algorithm, Step 2 is the performance
bottleneck and the exponentiation algorithm used will prove
to be of extreme importance when we later collect our side-
channel information in Section 4.

2.4 Sliding Window Exponentiation
Sliding window exponentiation (SWE) is a widely imple-

mented software method to perform integer exponentiations,
e.g. featured alongside other methods in the OpenSSL code-
base. SWE is fairly popular due to its performance since it
reduces the amount of pre-computation needed and, more-
over, reduces the average amount of multiplications per-
formed during the exponentiation.

An exponent e is represented and processed as a sequence
of windows ei, each of length L(ei) bits. Processing the
exponent in windows reduces the amount of multiplications
at the cost of increased memory utilization since a table of
pre-computed values is used.

A window ei can be a zero window represented as a string
of “0”s or non-zero window represented as a string starting
and ending with “1”s and such window is of width w (de-
termined in OpenSSL by the size in bits of the exponent e).
The length of non-zero windows satisfy 1 ≤ L(ei) ≤ w, thus
the value of any given non-zero window is an odd number
between 1 and 2w − 1.

As mentioned before, the algorithm pre-computes values
and stores them in a table to be used later during multipli-
cation operations. The multipliers computed are bv mod m
for each odd value of v where 1 ≤ v ≤ 2w − 1 and these
values are stored in table index g[i] where i = (v−1)/2. For
example, with the standard 160-bit q size, OpenSSL uses a
window width w = 4, the algorithm pre-computes multipli-
ers b1, b3, b5, ..., b15 mod m and stores them in g[0], g[1], g[2],
..., g[7], respectively.

Using the SWE representation of the exponent e, Algo-
rithm 2 computes the corresponding exponentiation through
a combination of squares and multiplications in a left-to-
right approach. The algorithm scans every window ei from

1https://tools.ietf.org/html/rfc4253
2http://www.openssh.com/legacy.html
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Algorithm 2: Sliding window exponentiation.

Input: Window size w, base b, modulo m, N-bit
exponent e represented as n windows ei, each of
length L(ei).

Output: be mod m.
// Pre-computation
g[0]← b mod m;
s← MULT(g[0], g[0]) mod m;

for j ← 1 to 2w−1 − 1 do
g[j]←MULT(g[j − 1], s) mod m;

// Exponentiation
r ← 1;
for i← n to 1 do

for j ← 1 to L(ei) do
r ←MULT(r, r) mod m;

if ei 6= 0 then r ←MULT(r, g[(ei − 1)/2]) mod m;

return r;

the most significant bit (MSB) to the least significant bit
(LSB).

For any window, a square operation is executed for each
bit and additionally for a non-zero window, the algorithm
executes an extra multiplication when it reaches the LSB of
the window.

For novel reasons explained later in Section 3, the side-
channel part of our attack focuses on this algorithm. Specif-
ically, in getting the sequence of squares and multiplies per-
formed during its execution. Then we extract partial infor-
mation from the sequence for later use in the lattice attack.

2.5 Partial key disclosure
Recall that the nonce k and the secret key α satisfy the

following linear congruence.

s = k−1(h(m) + αr) mod q

The constants of the linear combination are specified by
s, h(m), and r, which, typically for a signed message, are all
public. Hence, knowing the nonce k reveals the secret key
α.

Typically, side-channel leakage from SWE only recovers
partial information about the nonce. The adversary, there-
fore, has to use that partial information to recover the key.
The usual technique for recovering the secret key from the
partial information is to express the problem as a hidden
number problem [12] which is solved using a lattice tech-
nique.

2.5.1 The hidden number problem
In the hidden number problem (HNP) the task is to find a

hidden number given some of the MSBs of several modular
linear combinations of the hidden number. More specifically,
the problem is to find a secret number α given a number of
triples (ti, ui, `i) such that for vi = |α · ti − ui|q we have
|vi| ≤ q/2`i+1, where | · |q is the reduction modulo q into the
range (−q/2, . . . , q/2).

Boneh and Venkatesan [12] initially investigate HNP with

a constant `i = `. They show that for ` < log1/2 q+log log q
and random ti, the hidden number α can be recovered given
a number of triples linear in log q.

Howgrave-Graham and Smart [21] extend the work of

Boneh and Venkatesan [12] showing how to construct an
HNP instance from leaked LSBs and MSBs of DSA nonces.
Nguyen and Shparlinski [27] prove that for a good enough
hash function and for a linear number of randomly chosen
nonces, knowing the ` LSBs of a certain number of nonces,
the ` + 1 MSBs or 2 · ` consecutive bits anywhere in the
nonces is enough for recovering the long term key α. They
further demonstrate that a DSA-160 key can be broken if
only the 3 LSBs of a certain number of nonces are known.
Nguyen and Shparlinski [28] extend the results to ECDSA,
and Liu and Nguyen [26] demonstrate that only 2 LSBs are
required for breaking a DSA-160 key. Benger et al. [9] ex-
tend the technique to use a different number of leaked LSBs
for each signature.

2.5.2 Lattice attack
To find the hidden number from the triples we solve a

lattice problem. The construction of the lattice problem
presented here is due to Benger et al. [9], and is based on
the constructions in earlier publications [12, 27].

Given d triples, we construct a d + 1-dimensional lattice
using the rows of the matrix

B =


2`1+1 · q

. . .

2`d+1 · q
2`1+1 · t1 . . . 2`d+1 · td 1

 .

By the definition of vi, there are integers λi such that
vi = λi · q + α · ti − ui. Consequently, for the vectors x =
(λ1, . . . , λd, α), y = (2`1+1 · v1, . . . , 2`d+1 · vd, α) and u =
(2`1+1 · u1, . . . , 2

`d+1 · ud, 0) we have

x ·B − u = y.

The 2-norm of the vector y is about
√
d+ 1 · q whereas

the determinant of the lattice L(B) is 2d+
∑
li · qd. Hence y

is a short vector in the lattice and the vector u is close to
the lattice vector x ·B. We can now solve the Closest Vector
Problem (CVP) with inputs B and u to find x, revealing the
value of the hidden number α.

2.5.3 Related Work
Several authors describe attacks on cryptographic systems

that exploit partial nonce disclosure to recover long-term
private keys.

Brumley and Hakala [14] use an L1 data cache-timing at-
tack to recover the LSBs of ECDSA nonces from the dgst

command line tool in OpenSSL 0.9.8k. They collect 2,600
signatures (8K with noise) and use the Howgrave-Graham
and Smart [21] attack to recover a 160-bit ECDSA private
key. In a similar vein, Acıiçmez et al. [3] use an L1 instruc-
tion cache-timing attack to recover the LSBs of DSA nonces
from the same tool in OpenSSL 0.9.8l, requiring 2,400 sig-
natures (17K with noise) to recover a 160-bit DSA private
key. Both attacks require HyperThreading architectures.

Brumley and Tuveri [15] mount a remote timing attack on
the implementation of ECDSA with binary curves in Open-
SSL 0.9.8o. They show that the timing leaks information on
the MSBs of the nonce used and that after collecting that
information over 8,000 TLS handshakes the private key can
be recovered.

Benger et al. [9] recover the secret key of OpenSSL’s EC-
DSA implementation for the curve secp256k1 using less than



256 signatures. They use the Flush+Reload technique to
find some LSBs of the nonces and extend the lattice tech-
nique of Howgrave-Graham and Smart [21] to use all of the
leaked bits rather than limiting to a fixed number.

Van de Pol et al. [32] exploit the structure of the modulus
in some elliptic curves to use all of the information leaked
in consecutive sequences of bits anywhere in the top half of
the nonces, allowing them to recover the secret key after ob-
serving only a handful of signatures. Allan et al. [4] improve
on these results by using a performance-degradation attack
to amplify the side-channel. The amplification allows them
to observe the sign bit in the wNAF representation used in
OpenSSL 1.0.2a and to recover a 256 bit key after observing
only 6 signatures.

Genkin et al. [19] perform electromagnetic and power anal-
ysis attacks on mobile phones. They show how to construct
HNP triples when the signature uses the low s-value [38].

3. A NEW SOFTWARE DEFECT
Percival [31] demonstrated that the SWE implementation

of modular exponentiation in OpenSSL version 0.9.7g is vul-
nerable to cache-timing attacks, applied to recover RSA pri-
vate keys. Following the issue, the OpenSSL team com-
mitted two code changes relevant to this work. The first3

adds a“constant-time” implementation of modular exponen-
tiation, with a fixed-window implementation and using the
scatter-gather method [13, 41] of masking table access to the
multipliers.

The new implementation is slower than the original SWE
implementation. To avoid using the slower new code when
the exponent is not secret, OpenSSL added a flag (BN_FLG_-
CONSTTIME) to its representation of big integers. When the
exponent should remain secret (e.g. in decryption and sign-
ing) the flag is set (e.g. in the case of DSA nonces, Figure 1,
Line 252) at runtime and the exponentiation code takes the
“constant-time” execution path (Figure 2, Line 413). Oth-
erwise, the original SWE implementation is used.

The execution time of the“constant-time” implementation
still depends on the bit length of the exponent, which in the
case of DSA should be kept secret [12, 15, 27]. The second
commit4 aims to “make sure DSA signing exponentiations
really are constant-time” by ensuring that the bit length of
the exponent is fixed. This safe default behavior can be dis-
abled by applications enabling the DSA_FLAG_NO_EXP_CON-

STTIME flag at runtime within the DSA structure, although
we are not aware of any such cases.

To get a fixed bit length, the DSA implementation adds γq
to the randomly chosen nonce, where γ ∈ {1, 2}, such that
the bit length of the sum is one more than the bit length of
q. More precisely, the implementation creates a copy of the
nonce k (Figure 1, Line 264), adds q to it (Line 274), checks
if the bit length of the sum is one more than that of q (Line
276), otherwise it adds q again to the sum (Line 277). If q
is n bits, then k + q is either n or n+ 1 bits. In the former
case, indeed k + 2q is n + 1 bits. As an aside, we note the
code in question is not constant-time and potentially leaks
the value of γ. Such a leak would create a bias that can be
exploited to mount the Bleichenbacher attack [5, 11, 18].

3https://github.com/openssl/openssl/commit/
46a643763de6d8e39ecf6f76fa79b4d04885aa59
4https://github.com/openssl/openssl/commit/
0ebfcc8f92736c900bae4066040b67f6e5db8edb

While the procedure in this commit ensures that the bit
length of the sum kq is fixed, unfortunately it introduces a
software defect. The function BN_copy is not designed to
propagate flags from the source to the destination. In fact,
OpenSSL exposes a distinct API BN_with_flags for that
functionality—quoting the documentation:

BN_with_flags creates a temporary shallow copy
of b in dest . . . Any flags provided in flags will
be set in dest in addition to any flags already set
in b. For example this might commonly be used
to create a temporary copy of a BIGNUM with
the BN_FLG_CONSTTIME flag set for constant time
operations.

In contrast, with BN_copy the BN_FLG_CONSTTIME flag does
not propagate to kq. Consequently, the sum is not treated
as secret, reverting the change made in the first commit—
when the exponentiation wrapper subsequently gets called
(Figure 1, Line 285), it fails the security-critical branch. Fol-
lowing a debug session in Figure 2, indeed the flag (explicit
value 0x4) is not set, and the execution skips the call to BN_-

mod_exp_mont_consttime and instead continues with the in-
secure SWE code path for DSA exponentiation.

In addition to testing our attack against OpenSSL (1.0.2h),
we reviewed the code of two popular OpenSSL forks: Li-
breSSL5 and BoringSSL6. Using builds with debugging sym-
bols, we confirm both LibreSSL7 and BoringSSL8 share the
same defect. It is worth noting that BoringSSL stripped out
TLS DSA cipher suites in late 20149.

4. EXPLOITING THE DEFECT
In this section we describe how we use and combine the

Flush+Reload technique with a performance degradation
technique [4] to attack the OpenSSL implementation of DSA.

We tested our attack on an Intel Core i5-4570 Haswell
Quad-Core 3.2GHz (22nm) with 16GB of memory running
64-bit Ubuntu 14.04 LTS “Trusty”. Each core has an 8-way
32KB L1 data cache, an 8-way 32KB L1 instruction cache,
an 8-way 256KB L2 unified cache, and all the cores share a
12-way 6MB unified LLC (all with 64B lines). It does not
feature HyperThreading.

We used our own build of OpenSSL 1.0.2h which is the
same default build of OpenSSL but with debugging symbols
on the executable. Debugging symbols facilitate mapping
source code to memory addresses but they are not loaded
during run time, thus the victim’s performance is not af-
fected. Debugging symbols are, typically, not available to
attackers but using reverse engineering techniques [16] is
possible to map source code to memory addresses.

As previously discussed in Section 2.5, for DSA-type sig-
natures, knowing a few bits of sufficiently many signature
nonces allows an attacker to recover the secret key. This
is the goal of our attack: we trace and recover side-channel
information of the SWE algorithm that reveals the sequence

5https://www.libressl.org
6https://boringssl.googlesource.com/boringssl
7https://github.com/libressl-portable/openbsd/blob/
master/src/lib/libssl/src/crypto/dsa/dsa ossl.c
8https://boringssl.googlesource.com/boringssl/+/master/
crypto/dsa/dsa.c
9https://boringssl.googlesource.com/boringssl/+/
ef2116d33c3c1b38005eb59caa2aaa6300a9b450
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246 /* Get random k */

247 do

248 if (!BN_rand_range(&k, dsa->q))

249 goto err;

250 while (BN_is_zero(&k)) ;

251 if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {

252 BN_set_flags(&k, BN_FLG_CONSTTIME);

253 }

...

263 if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {

264 if (!BN_copy(&kq, &k))

265 goto err;

266

267 /*

268 * We do not want timing information to leak the length of k, so we

269 * compute g^k using an equivalent exponent of fixed length. (This

270 * is a kludge that we need because the BN_mod_exp_mont() does not

271 * let us specify the desired timing behaviour.)

272 */

273

274 if (!BN_add(&kq, &kq, dsa->q))

275 goto err;

276 if (BN_num_bits(&kq) <= BN_num_bits(dsa->q)) {

277 if (!BN_add(&kq, &kq, dsa->q))

278 goto err;

279 }

280

281 K = &kq;

282 } else {

283 K = &k;

284 }

285 DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, K, dsa->p, ctx,

286 dsa->method_mont_p);

Figure 1: Excerpt from OpenSSL’s dsa_sign_setup in
crypto/dsa/dsa_ossl.c. Line 252 sets the BN_FLG_CON-

STTIME flag, yet BN_copy on Line 264 does not prop-
agate it. The subsequent Line 285 exponentiation
call will have pointer K with the flag clear.

+--bn_exp.c--------------------------------------------------------------------------+

|402 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |

|403 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |

|404 { |

B+ |405 int i, j, bits, ret = 0, wstart, wend, window, wvalue; |

|406 int start = 1; |

|407 BIGNUM *d, *r; |

|408 const BIGNUM *aa; |

|409 /* Table of variables obtained from ’ctx’ */ |

|410 BIGNUM *val[TABLE_SIZE]; |

|411 BN_MONT_CTX *mont = NULL; |

|412 |

>|413 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { |

|414 return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); |

|415 } |

|416 |

|417 bn_check_top(a); |

+------------------------------------------------------------------------------------+

|0x7ffff779db3e <BN_mod_exp_mont+92> mov 0x14(%rax),%eax |

|0x7ffff779db41 <BN_mod_exp_mont+95> and $0x4,%eax |

|0x7ffff779db44 <BN_mod_exp_mont+98> test %eax,%eax |

>|0x7ffff779db46 <BN_mod_exp_mont+100> je 0x7ffff779db85 <BN_mod_exp_mont+163> |

|0x7ffff779db48 <BN_mod_exp_mont+102> mov -0x1b0(%rbp),%r8 |

+------------------------------------------------------------------------------------+

child process 29096 In: BN_mod_exp_mont Line: 413 PC: 0x7ffff779db46

(gdb) break BN_mod_exp_mont

Breakpoint 1 (BN_mod_exp_mont) pending.

(gdb) run dgst -dss1 -sign ~/dsa.pem -out ~/lsb-release.sig /etc/lsb-release

Starting program: /usr/local/ssl/bin/openssl \

dgst -dss1 -sign ~/dsa.pem -out ~/lsb-release.sig /etc/lsb-release

Breakpoint 1, BN_mod_exp_mont (...) at bn_exp.c:405

(gdb) backtrace

#0 BN_mod_exp_mont (...) at bn_exp.c:405

#1 0x00007ffff77eea62 in dsa_sign_setup (...) at dsa_ossl.c:285

#2 0x00007ffff77ee344 in DSA_sign_setup (...) at dsa_sign.c:87

#3 0x00007ffff77ee53d in dsa_do_sign (...) at dsa_ossl.c:159

#4 0x00007ffff77ee30c in DSA_do_sign (...) at dsa_sign.c:75

...

(gdb) stepi

(gdb) info register eax

eax 0x0 0

(gdb) print BN_get_flags(p, BN_FLG_CONSTTIME)

$1 = 0

(gdb) macro expand BN_get_flags(p, BN_FLG_CONSTTIME)

expands to: ((p)->flags&(0x04))

(gdb) print ((p)->flags&(0x04))

$2 = 0

(gdb)

Figure 2: Debugging OpenSSL DSA signing in
crypto/bn/bn_exp.c. The Line 413 branch is not
taken since BN_FLG_CONSTTIME is not set, as seen from
the print command outputs. Hence BN_mod_exp_-

mont_consttime is not called— the control flow con-
tinues with classical SWE code.

of squares and multiplications, from that sequence we re-
cover a few bits that we use for the lattice attack described
in Section 6.

As seen in Figure 2, every time OpenSSL performs a DSA
signature, the exponentiation method BN_mod_exp_mont in
crypto/bn/bn_exp.c gets called. There, the BN_FLG_CONST-
TIME flag is checked but due to the software defect discussed
in Section 3 the condition fails and the routine continues
with the SWE pre-computation and then the actual expo-
nentiation. For the finite field operations, BN_mod_exp_mont
calls BN_mod_mul_montgomery in crypto/bn/bn_mont.c and
from there, the multiply wrapper bn_mul_mont is called,
where, by default for x64 targets, assembly code is executed
to perform low level operations using BIGNUMs for square
and multiplication. OpenSSL uses Montgomery represen-
tation for efficiency. Note that for other platforms and/or
non-default build configurations, the actual code executed
ranges from pure C implementation to entirely different as-
sembly. The attacker can easily adapt to these different
execution paths, but the discussion that follows is geared
towards our target platform.

The threshold set for the load time in the Flush+Reload
technique (cache hit vs. cache miss) is system and software
dependent. From our measurements we set this threshold
accordingly since the load times from LLC and from memory
were clearly defined. Figure 4 shows that loads from LLC
take less that 100 cycles, while loads from main memory
take more than 200 cycles.

As mentioned before, to get better resolution and gran-
ularity during the attack one effective strategy is to tar-
get body loops or routines that are invoked several times.
For that reason we probe, using the Flush+Reload tech-
nique, inner routines used for square and multiply. Since
squares can be computed more efficiently than multiplica-
tion, OpenSSL’s multiply wrapper checks if the two pointer
operands are the same and, if so, calls to assembly squar-
ing code (bn_sqr8x_mont)—otherwise, to assembly multiply
code (bn_mul4x_mont).

At the same time we run a performance degradation at-
tack, flushing actively used memory addresses during these
routines (e.g. assembly labels Lsqr4x_inner and Linner4x,
respectively). We slow down the execution time to a safe,
but not noticeable by the victim, threshold that ensures a
good trace by our spy program. In our experiments, we ob-
serve slow down factors of roughly 16 and 26 for 1024-bit and
2048-bit DSA, respectively due to the degrade technique.

Using this strategy, our spy program collects data from
two channels: one for square latencies and the other for
multiply latencies. We then apply signal processing tech-
niques to this raw channel data. A moving average filter on
the data results in Figure 3 and Figure 4 for 1024-bit and
2048-bit DSA, respectively. There is a significant amount
of information to extract from these signals on the SWE
algorithm state transitions and hence exponent bit values.
Generally, extracted multiplications yield a single bit of in-
formation and the squares yield the position for these bits.
Some short examples follow.

Stepping through Figure 3, the initial low amplitude for
the multiply signal is the multiplication for converting the
base operand to Montgomery representation. The subse-
quent low amplitude for the square signal is the temporary
square value used to build the odd powers for the SWE pre-
computation table (i.e. s in Algorithm 2). The subsequent



long period of low multiply amplitude is the successive mul-
tiplications to build the pre-computation table itself. Then
begins the main loop of SWE. As an upward sloping multiply
amplitude intersects a downward sloping square amplitude,
this marks the transition from a multiplication operation to
a square operation (and vice versa). This naturally occurs
several times as the main exponentiation loop iterates. The
end of this particular signal shows a final transition from
multiply to a single square, indicating that the exponent is
even and the two LSBs are 1 and 0.

Stepping through Figure 4 is similar, yet the end of this
particular signal shows a final transition from square to
multiply—indicating that the exponent is odd, i.e. the LSB
is 1.

Even when employing the degrade technique, it is impor-
tant to observe the vast granularity difference between these
two cryptographic settings. On average, a 2048-bit signal is
roughly ten times the length of a 1024-bit signal, even when
the exponent is only 60% longer (i.e. 256-bit vs. 160-bit).
This generally suggests we should be able to extract more
accurate information from 2048-bit signals than 1024-bit—
i.e., the higher security cryptographic parameters are more
vulnerable to side-channel attack in this case. See [37, 39, 40]
for similar examples of this phenomenon.

Granularity is vital to determining the number of squares
interleaved between multiplications. Since, in our environ-
ment, there appears to be no reliable indicator in the signal
for transitions from one square to the next, we estimate the
number of adjacent squares by the horizontal distance be-
tween multiplications. Since the channel is latency data, we
also have reference clock cycle counter values so another es-
timate is based on the counter differences at these points.
Our experiments showed no significant advantage of one ap-
proach over the other.

Extracting the multiplications from the signal and inter-
leaving them with a number of consecutive squares propor-
tional to the width of the corresponding gap gives us the
square and multiplication sequence, or SM sequence, that
the SWE algorithm passed through. Figure 7 shows an ex-
ample of an SM sequence recorded by the spy program when
OpenSSL signs using 2048-bit DSA.

Our spy program is able to capture most of the SM se-
quence accurately. It can miss or duplicate a few squares
due to drift but is able to capture all of the multiplication
operations. Closer to the LSBs, the information extracted
from the SM sequence is more reliable since the bit position
is lost if any square operation is missed during probing.

5. VICTIMIZING APPLICATIONS
The defect from the previous section is in a shared library.

Potentially any application that links against OpenSSL for
DSA functionality can be affected by this vulnerability. But
to make our attack concrete, we focus on two ubiquitous
protocols and applications: TLS within stunnel and SSH
within OpenSSH.

As we discuss later in Section 6, the trace data alone is
not enough for private key recovery—we also need the digital
signatures themselves and (hashed) messages. To this end,
the goal of this section is to describe the practical tooling
we developed to exploit the defect within these applications,
collecting both trace data and protocol messages.

5.1 Attacking TLS
To feature TLS support, one option for network applica-

tions that do not natively support TLS communication is
to use stunnel10, a popular portable open source software
package that forwards network connections from one port
to another and provides a TLS wrapper. A typical stun-
nel use case is listening on a public port to expose a TLS-
enabled network service, then connecting to a localhost port
where a non-TLS network service is listening—stunnel pro-
vides a TLS layer between the two ports. It links against
the OpenSSL shared library to provide this functionality.
For our experiments, we used stunnel 5.32 compiled from
stock source and linked against OpenSSL 1.0.2h. We gener-
ated a 2048-bit DSA certificate for the stunnel service and
chose the DHE-DSS-AES128-SHA256 TLS 1.2 cipher suite.

We wrote a custom TLS client that connects to this stun-
nel service. It launches our spy to collect the timing signals,
but its main purpose is to carry out the TLS handshake and
collect the digital signatures and protocol messages. Fig-
ure 5 shows the TLS handshake. Relevant to this work, the
initial ClientHello message contains a 32-byte random field,
and similarly the server’s ServerHello message. In practice,
these are usually a 4-byte UNIX timestamp concatenated
with a 28-byte nonce. The Certificate message contains
the DSA certificate we generated for the stunnel service. The
ServerKeyExchange message contains a number of critical
fields for our attack: Diffie-Hellman key exchange parame-
ters, the signature algorithm and hash function identifiers,
and finally the digital signature itself in the signed_params

field. Given our stunnel configuration and certificate, the
2048-bit DSA signature is over the concatenated string

ClientHello.random + ServerHello.random +

ServerKeyExchange.params

and the hash function is SHA-512, both dictated by the
SignatureAndHashAlgorithm field (explicit values 0x6, 0x2).
Our client saves the hash of this string and the DER-encoded
digital signature sent from the server. All subsequent mes-
sages, including ServerHelloDone and any client responses,
are not required by our attack. Our client therefore drops
the connection at this stage, and repeats this process sev-
eral hundred times to build up a set of distinct trace, digital
signature, and digest tuples. See Section 6 for our explicit
attack parameters. Figure 4 is a typical signal extracted by
our spy program in parallel to the handshake between our
client and the victim stunnel service.

5.2 Attacking SSH
OpenSSH11 is a suite of tools whose main goal is to provide

secure communications over an insecure channel using the
SSH network protocol.

OpenSSH is linked to the OpenSSL shared library to per-
form several cryptographic operations, including digital sig-
natures (excluding ed25519 signatures). For our experi-
ments we used the stock OpenSSH 6.6.1p1 binary pack-
age from the Ubuntu repository, and pointed the run-time
shared library loader at OpenSSL 1.0.2h. The DSA key pair
used by the server and targeted by our attack is the default
1024-bit key pair generated during installation of OpenSSH.

Similar to Section 5.1, we wrote a custom SSH client that

10https://www.stunnel.org
11http://www.openssh.com

https://www.stunnel.org
http://www.openssh.com
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Figure 3: Complete filtered trace of a 1024-bit DSA sign operation during an OpenSSH SSH-2 handshake.
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Figure 4: Complete filtered trace of a 2048-bit DSA sign operation during an stunnel TLS 1.2 handshake.

launches our spy program, the spy program collects the tim-
ing signals during the handshake. At the same time it per-
forms an SSH handshake where the protocol messages and
the digital signature are collected for our attack.

Relevant to this work, the SSH protocol defines the Diffie-
Hellman key exchange parameters in the SSH_MSG_KEXINIT

message, along with the signature algorithm and the hash
function identifiers. Additionally a 16-byte random nonce is
sent for host authentication by the client and the server.

The SSH_MSG_KEXDH_REPLY message contains the server’s
public key (used to create and verify the signature), server’s
DH public key f (used to compute the shared secret K in
combination with the client’s DH public key e) and the sig-
nature itself. Figure 6 shows the SSH handshake with the
critical parameters sent in every message relevant for the
attack. To be more precise, the signature is over the SHA-1
hash of the concatenated string

ClientVersion + ServerVersion +

Client.SSH_MSG_KEXINIT + Server.SSH_MSG_KEXINIT +

Server.publicKey + minSize + prefSize + maxSize +

p + g + e + f + K

As the key exchange12 and public key parameters, our
SSH client was configured to use diffie-hellman-group-

-exchange-sha1 and ssh-dss respectively. Note that two
different hashing functions may be used, one hash function
for key derivation following Diffie-Hellman key exchange and
another hash function for the signing algorithm, which for
DSA is the SHA-1 hash function.

Similarly to the TLS case, our client saves the hash of
the concatenated string and the digital signature raw bytes
sent from the server. All subsequent messages, including
SSH_MSG_NEWKEYS and any client responses, are not required
by our attack. Our client therefore drops the connection at
this stage, and repeats this process several hundred times to

12https://tools.ietf.org/html/rfc4419

build up a set of distinct trace, digital signature, and digest
tuples. See Section 6 for our explicit attack parameters.
Figure 3 is a typical signal extracted by our spy program in
parallel to the handshake between our client and the victim
SSH server.

5.3 Observations
These two widely deployed protocols share many similar-

ities in their handshakes regarding e.g. signaling, content of
messages, and security context of messages. However, in the
process of designing and implementing our attacker clients
we observe a subtle difference in the threat model between
the two. In TLS, all values that go into the hash function to
compute the digital signature are public and can be observed
(unencrypted) in various handshake messages. In SSH, most
of the values are public—the exception is the last input to
the hash function: the shared DH key. The consequence
is side-channel attacks against TLS can be passive, listen-
ing to legitimate handshakes not initiated by the attacker
yet collecting side-channel data as this occurs. In SSH, the
attacker must be active and initiate its own handshakes—
without knowing the shared DH key, a passive attacker can-
not compute the corresponding digest needed later for the
lattice stage of the attack. We find this innate protocol
level side-channel property to be an intriguing feature, and
a factor that should be carefully considered during protocol
design.

6. RECOVERING THE PRIVATE KEY
In previous sections we showed how our attack can re-

cover the sequence of square and multiply operations that
the victim performs. We further showed how to get the sig-
nature information matching each sequence for both SSH
and TLS. We now turn to recovering the private key from
the information we collect.

The scheme we use is similar to past works. We first

https://tools.ietf.org/html/rfc4419


Client Server

ClientHello

[random,

CipherSuite] ------->

ServerHello

[random,

cipher_suite]

Certificate

ServerKeyExchange

[params,

HashAlgorithm,

SignatureAlgorithm,

signed_params]

<------- ServerHelloDone

ClientKeyExchange

(ChangeCipherSpec)

Finished ------->

(ChangeCipherSpec)

<------- Finished

Application Data <------> Application Data

Figure 5: Our custom client carries out TLS hand-
shakes, collecting certain fields from the ClientHello,
ServerHello, and SeverKeyExchange messages to con-
struct the digest. It collects timing traces in parallel
to the server’s DSA sign operation, said digital sig-
nature being included in a SeverKeyExchange field and
collected by our client.

Client Server

ClientVersion ----->

ServerVersion

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

<----- publicKey_alg]

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

publicKey_alg]

SSH_KEXDH_GEX_REQUEST

[minSize, prefSize,

maxSize] ----->

SSH_KEXDH_GEX_GROUP

<----- [p, g]

SSH_KEXDH_GEX_INIT

[e] ----->

SSH_KEXDH_GEX_REPLY

[publicKey, f,

<----- Signature]

SSH_MSG_NEWKEYS

----->

Application Data <----> Application Data

Figure 6: Our custom client carries out SSH hand-
shakes, collecting parameters from all the messages
to construct the digest. It collects timing traces in
parallel to the server’s DSA sign operation, said digi-
tal signature being included in a SSH_KEXDH_GEX_REPLY

field and collected by our client.

Table 1: Empirical results of recovering various
LSBs from the spy program traces and their cor-
responding SM sequences.
` a Pattern Accuracy (%) Accuracy (%)

1024-bit, SSH 2048-bit, TLS
1 1 SSM 99.9 99.9
2 2 SMS 99.9 99.7
2 3 SMSM 98.2 97.2
3 4 SSMSS 99.7 99.7
3 6 SMSMS 99.4 98.2
4 8 SSMSSS 97.8 99.6
4 12 SMSMSS 98.4 97.8
5 16 SSMSSSS 96.7 99.1
5 24 SMSMSSS 95.0 97.6
6 32 SSMSSSSS 85.1 98.8
6 48 SMSMSSSS 90.4 95.0
7 64 SSMSSSSSS 87.5 97.5
7 96 SMSMSSSSS 84.6 95.1
8 128 SSMSSSSSSS 67.7 98.7
8 192 SMSMSSSSSS 75.0 94.8

SMMMMMMMMMMMMMMMMSSSMSSSSSSSMSSSSMSSSSSSSMSSSSSSM
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Figure 7: Example of an extracted SM sequence,
where S and M are square and multiply, respectively.

use the side-channel information we capture to collect in-
formation on the nonce used in each signature. We use the
information to construct HNP instances and use a lattice
technique to find the private key. Further details on each
step are provided below.

6.1 Extracting the least significant bits
In Section 4 we showed how we collect the SM sequences

of each exponentiation. From every SM sequence, we extract
a few LSBs to be used later in the lattice attack. To that
end, Table 1 contains our empirical accuracy statistics for
various relevant patterns trailing the SM sequences, and fur-
thermore not for the SWE in isolation but rather in the con-
text of OpenSSL DSA executing in real world applications
(TLS via stunnel, SSH via OpenSSH), as described above
in Section 5. All of these patterns correspond to recovering
a = k̄ mod 2` for an exponent k̄. From these figures, we
note two trends. (1) The accuracy decreases as ` increases
due to deviation in the square operation width. Yet weighed
with the exponentially decreasing probability of the longer
patterns, the practical impact diminishes. (2) As expected,
we generally obtain more accurate results with 2048-bit vs.
1024-bit due to granularity. These numbers show that, ex-
ploiting our new software defect and leveraging the tech-
niques in Section 4, we can recover a with extremely high
probability.



6.2 Lattice attack implementation
Recall that to protect against timing attacks OpenSSL

uses an exponent k̄ equivalent to the randomly selected nonce
k. k̄ is calculated by adding the modulus q once or twice to
k to ensure that k̄ is of a fixed length. That is, k̄ = k + γq
such that 2n ≤ k̄ < 2n+ q where n = dlg(q)e and γ ∈ {1, 2}.

The side-channel leaks information on bits of the expo-
nent k̄ rather than directly on the nonce. To create HNP
instances from the leak we need to handle the unknown value
of γ. In previous works, due to ECC parameters the modu-
lus is close to a power of two hence the value of γ is virtually
constant [9]. For DSA, the modulus is not close to a power
of two and the value of γ varies between signatures. The
challenge is, therefore, to construct an HNP instance with-
out the knowledge of γ. We now show how to address this
challenge.

Recall that s = k−1(h(m) + αr) mod q. Equivalently,
k = s−1(h(m) + αr) mod q. The side-channel information
recovers the ` LSBs of k̄. We, therefore, have k̄ = b2` + a
where a = k̄ mod 2` is known, and

2n−` ≤ b < 2n−` +
⌈
q/2`

⌉
. (1)

Following previous works we use b·cq to denote the reduc-
tion modulo q to the range [0, q) and | · |q for the reduction
modulo q to the range (−q/2, q/2). Within these expres-
sions division operations are carried over the reals whereas
all other operations are carried over GF (q).

We now look at
⌊
b− 2n−`

⌋
q
.

⌊
b− 2n−`

⌋
q

=
⌊
(k̄ − a) · 2−` − 2n−`

⌋
q

=
⌊
k̄ · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
k · 2−` + γ · q · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
k · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
(s−1 · (h(m) + α · r) · 2−` − a · 2−` − 2n−`

⌋
q

=
⌊
α · s−1 · r · 2−` − (2n + a− s−1 · h(m)) · 2−`⌋

q

Hence, we can set:

t =
⌊
s−1 · r · 2−`

⌋
q

u =
⌊
(2n + a− s−1 · h(m)) · 2−` +

⌈ q

2`+1

⌉⌋
q

v = |α · t− u|q

and by (1) we have |v| ≤
⌈
q/2`+1

⌉
.

Out of the HNP instances we generate, we select at ran-
dom 49 for the SSH attack, 130 for the TLS attack and
construct a lattice as described in Section 2.5.2. We solve
the CVP problem with a Sage script, performing lattice re-
duction using BKZ [34], and enumerate the lattice points
using Babai’s Nearest Plane (NP) algorithm [7]. We ap-
ply two different techniques to extend NP to a larger search
space. First, we take multiple rounding values to explore
210 different solutions in the tree paths [23, Sec. 4]. Second,
we use a randomization technique [26, Sec. 3.5] and shuffle
the rows of B between lattice reductions. We repeat with
a different random selection of instances until we find the
private key.

Table 2: Empirical lattice attack results over a thou-
sand trials. Set size and errors are mean values.
Iterations and CPU time are median values.

Victim OpenSSH (SSH) stunnel (TLS)
Key size 1024/160-bit 2048/256-bit
Handshakes 260 580
Lattice size 50 131
Set size 70.8 158.1
Errors 2.1 1.7
Iterations 13 22
CPU minutes 5.9 38.8
Success rate (%) 100.0 100.0

6.3 Results
We implemented the attack and evaluated it against the

two protocols, SSH with 1024/160-bit DSA and TLS with
2048/256-bit DSA. Table 2 contains the results. For both
protocols we only utilize traces with ` ≥ 3. With this value
we experimentally found that we require 49 such signatures
for SSH and 130 for TLS in order to achieve a reasonable
probability of solving the resulting CVP.

Because the nonces are chosen uniformly at random, only
about one in every four signatures has an ` that we can
utilize. To gather enough signatures and to compensate for
possible trace errors, we collect 580 SM sequences from TLS
handshakes and 260 from SSH.

On average, these collected sequences yield 70.8 (SSH)
and 158.1 (TLS) traces with ` ≥ 3. Comparing the traces to
the ground truth, we know that on average less than 3 have
trace errors. However, because an adversary cannot check
against the ground truth, we leave these erroneous traces
in the set and use them in the attack. We note that due
to the smaller key size in SSH, trace errors are much more
prevalent there.

We construct a lattice from a random selection of the col-
lected traces and attempt to solve the resulting CVP. Due
to the presence of the error traces there is a non-negligible
probability that our selected set contains an error. Further-
more, even if all the chosen traces are correct, the algorithm
may fail to find the target solution due to the heuristic na-
ture of lattice techniques. In case of failure, we repeat the
process with a new random selection from the same set. We
need to execute a median value of 13 iterations for SSH and
22 for TLS until we find the target solution.

As seen from Table 2, repeating our experiment over a
thousand trials on a cluster with hundreds of nodes, mixed
between Intel X5660 and AMD Opteron 2435 cores, we find
the private key in all cases requiring a median 5.9 CPU min-
utes for the SSH key and 38.8 CPU minutes for the TLS key.
Although we executed each trial on a single core, in reality
the iterations are independent of each other—the lattice at-
tack is embarrassingly parallel.

7. CONCLUSION
In this work we disclose a programming error in Open-

SSL that results in a security weakness. We show that as
a result of the defect, the DSA implementation in Open-
SSL is vulnerable to cache-timing attacks, and exploit the
vulnerability to mount end-to-end attacks against SSH (via
OpenSSH) and TLS (via stunnel).

It is all too easy to dismiss the bug as an innocent pro-



gramming error. However, we believe that the core issue is
a design problem. When designing the “constant-time” fix,
the developers elected to use an insecure default behavior.
From an engineering perspective the decision is justified—
it is much easier to identify the handful of locations where
we know that the exponent should be kept secret than to
analyze the entire library identifying exponents that can be
leaked. However, from a security perspective, this design
decision breaches the principle of fail-safe defaults, which
Saltzer and Schroeder [33] justify by saying: a design or
implementation mistake in a mechanism that explicitly ex-
cludes access tends to fail by allowing access, a failure which
may go unnoticed in normal use.

It is hard not to appreciate the extraordinary prescience of
Saltzer and Schroeder’s justification. Had OpenSSL elected
to use a better design, that defaults to the constant-time be-
havior, a similar bug could have resulted in a small perfor-
mance loss for non-sensitive exponentiations, but the omis-
sion to preserve the flag in question would have been unlikely
to jeopardize the security of the system. A more secure de-
sign would also improve the security of third-party products
in the case that developers may not be aware of the intrica-
cies of the constant-time flags.

The simplest software-based solution to mitigate our at-
tack is to fix the software defect. During responsible disclo-
sure, OpenSSL, LibreSSL, and BoringSSL merged patches
for CVE-2016-217813, assigned as a result of this work.

Broader, the clflush instruction does not require elevated
privileges to execute, hence we suggest access control mech-
anisms. We recommend that cache flush instructions be
privileged-only execution, or at least restricted to memory
pages to which the process has write access and to memory
pages explicitly allowed by the kernel. Partially or fully dis-
abling caching during sensitive code execution can prevent
cache-timing attacks at the cost of performance [3]. Pre-
venting page sharing between processes is a partial solution
at the cost of increased memory requirements and avoiding
sharing of sensitive code is possible by changing the program
loader.

We close with some practical advice regarding this vul-
nerability. OpenSSH supports building without OpenSSL
as a dependency. We recommend that OpenSSH package
maintainers switch to this option. For OpenSSH adminis-
trators and users, we recommend migrating to ssh-ed25519

key types, the implementation of which has many desirable
side-channel properties. Furthermore, ensure that ssh-dss

is absent from the HostKeyAlgorithms configuration field,
and any such HostKey entries removed. On the TLS side,
we recommend disabling cipher suites that have DSA func-
tionality as a pre-requisite.
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[7] László Babai. On Lovász’ lattice reduction and the
nearest lattice point problem. Combinatorica, 6(1):
1–13, March 1986.

[8] Elaine Barker and Allen Roginsky. Transitions:
Recommendation for transitioning the use of
cryptographic algorithms and key lengths. NIST
Special Publication 800-131A Revision 1, Nov 2015.
URL http://dx.doi.org/10.6028/NIST.SP.800-131Ar1.

[9] Naomi Benger, Joop van de Pol, Nigel P. Smart, and
Yuval Yarom. “Ooh aah. . . , just a little bit”: A small
amount of side channel can go a long way. In CHES,
pages 75–92, Busan, KR, Sep 2014.

[10] Daniel J Bernstein. Cache-timing attacks on AES,
2005. Preprint available at
http://cr.yp.to/papers.html#cachetiming.

[11] Daniel Bleichenbacher. On the generation of one-time
keys in DL signature schemes. Presentation at IEEE
P1363 Working Group meeting, Nov 2000.

[12] Dan Boneh and Ramarathnam Venkatesan. Hardness
of computing the most significant bits of secret keys in
Diffie-Hellman and related schemes. In CRYPTO’96,
pages 129–142, Santa Barbara, CA, US, Aug 1996.

[13] Ernie Brickell, Gary Graunke, and Jean-Pierre Seifert.
Mitigating cache/timing based side-channels in AES
and RSA software implementations. RSA Conference
2006 session DEV-203, Feb 2006.

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-2178
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-2178
http://dx.doi.org/10.6028/NIST.SP.800-131Ar1
http://cr.yp.to/papers.html#cachetiming


[14] Billy Bob Brumley and Risto M. Hakala.
Cache-timing template attacks. In 15th ASIACRYPT,
pages 667–684, Tokyo, JP, Dec 2009.

[15] Billy Bob Brumley and Nicola Tuveri. Remote timing
attacks are still practical. In 16th ESORICS, Leuven,
BE, 2011.

[16] Teodoro Cipresso and Mark Stamp. Software reverse
engineering. In Handbook of Information and
Communication Security, pages 659–696. 2010.

[17] Intel Corporation. Intel 64 and ia-32 architectures
optimization reference manual, Jan 2016.

[18] Elke De Mulder, Michael Hutter, Mark E. Marson,
and Peter Pearson. Using Bleichenbacher’s solution to
the hidden number problem to attack nonce leaks in
384-bit ECDSA. In CHES, pages 435–452, Santa
Barabara, CA, US, Aug 2013.

[19] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran
Tromer, and Yuval Yarom. ECDSA key extraction
from mobile devices via nonintrusive physical side
channels. IACR Cryptology ePrint Archive, Report
2016/230, Mar 2016.

[20] D. Gullasch, E. Bangerter, and S. Krenn. Cache
games – bringing access-based cache attacks on AES
to practice. In S&P, pages 490–505, May 2011.

[21] Nick Howgrave-Graham and Nigel P. Smart. Lattice
attacks on digital signature schemes. DCC, 23(3):
283–290, Aug 2001.

[22] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A shared cache attack that works across cores
and defies VM sandboxing – and its application to
AES. In S&P, San Jose, CA, US, May 2015.

[23] Richard Lindner and Chris Peikert. Better key sizes
(and attacks) for LWE-based encryption. In 2011
CT-RSA, pages 319–339, 2011.

[24] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, and
Stefan Mangard. ARMageddon: Last-level cache
attacks on mobile devices. arXiv preprint
arXiv:1511.04897, 2015.

[25] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B Lee. Last-level cache side-channel attacks
are practical. In S&P, pages 605–622, May 2015.

[26] Mingjie Liu and Phong Q Nguyen. Solving BDD by
enumeration: An update. In Topics in
Cryptology–CT-RSA 2013, pages 293–309. 2013.

[27] Phong Q. Nguyen and Igor E. Shparlinski. The
insecurity of the digital signature algorithm with
partially known nonces. J. Cryptology, 15(2):151–176,
Jun 2002.

[28] Phong Q. Nguyen and Igor E. Shparlinski. The
insecurity of the elliptic curve digital signature
algorithm with partially known nonces. DCC, 30(2):
201–217, Sep 2003.

[29] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
Cache attacks and countermeasures: The case of AES.
In 2006 CT-RSA, 2006.

[30] Dan Page. Theoretical use of cache memory as a
cryptanalytic side-channel. IACR Cryptology ePrint
Archive, 2002:169, 2002.

[31] Colin Percival. Cache missing for fun and profit. In
BSDCan 2005, Ottawa, CA, 2005.

[32] Joop van de Pol, Nigel P. Smart, and Yuval Yarom.
Just a little bit more. In 2015 CT-RSA, pages 3–21,
San Francisco, CA, USA, Apr 2015.

[33] Jerome H. Saltzer and Michael D. Schroeder. The
protection of information in computer systems. Proc.
IEEE, 63(9):1278–1308, Sep 1975.

[34] C. P. Schnorr and M. Euchner. Lattic basis reduction:
Improved practical algorithms and solving subset sum
problems. Math. Prog., 66(1–3):181–199, Aug 1994.

[35] Augustus K. Uht, Vijay Sindagi, and Kelley Hall.
Disjoint eager execution: An optimal form of
speculative execution. MICRO 28, pages 313–325,
1995.

[36] Carl A. Waldspurger. Memory resource management
in VMware ESX server. SIGOPS Oper. Syst. Rev.,
pages 181–194, Dec 2002.

[37] Colin D. Walter. Longer keys may facilitate side
channel attacks. In SAC, pages 42–57, Waterloo, ON,
Canda, Aug 2004.

[38] Pieter Wuille. Dealling with malleability.
https://github.com/bitcoin/bips/blob/master/
bip-0062.mediawiki, March 2014.

[39] Yuval Yarom and Naomi Benger. Recovering
OpenSSL ECDSA nonces using the Flush+Reload
cache side-channel attack. IACR Cryptology ePrint
Archive, Report 2014/140, Feb 2014.

[40] Yuval Yarom and Katrina Falkner. Flush+Reload:
a high resolution, low noise, L3 cache side-channel
attack. In 23rd USENIX Security, pages 719–732, San
Diego, CA, US, 2014.

[41] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: A timing attack on OpenSSL constant
time RSA. In CHES, 2016.

https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

	Introduction
	Background
	Memory Hierarchy
	The Flush+Reload Attack
	The Digital Signature Algorithm (DSA)
	DSA in Practice

	Sliding Window Exponentiation
	Partial key disclosure
	The hidden number problem
	Lattice attack
	Related Work


	A New Software Defect
	Exploiting the Defect
	Victimizing Applications
	Attacking TLS
	Attacking SSH
	Observations

	Recovering the private key
	Extracting the least significant bits
	Lattice attack implementation
	Results

	Conclusion

