
Automatic Search for a Maximum Probability Differential
Characteristic in a Substitution-Permutation Network?

Arnaud Bannier, Nicolas Bodin, and Eric Filiol

ESIEA, (C + V)O Lab, Laval, France,
{bannier, bodin, filiol}@esiea.fr

Abstract. The algorithm presented in this paper computes a maximum probability differ-
ential characteristic in a Substitution-Permutation Network (or SPN). Such characteristics
can be used to prove that a cipher is practically secure against differential cryptanalysis or
on the contrary to build the most effective possible attack. Running in just a few second on
64 or 128-bit SPN, our algorithm is an important tool for both cryptanalists and designers
of SPN.

1 Introduction

1.1 Motivation

Modern block ciphers are mainly divided in two categories: Feistel ciphers and Substitution-
Permutation Networks, or SPN for short. The encryption process in a Feistel cipher or in a
SPN consists in applying a simple operation called round function to the plaintext several times.
A different round key is used for each iteration of the round function. These round keys are
extracted from a master key using an algorithm called key schedule. Such ciphers are called
iterated block ciphers. In a SPN, the round function is made of three distinct stages: a key
addition, a substitution layer and a permutation layer.

Differential [3] and linear [12] cryptanalysis are considered as the most important attacks
against block ciphers [9]. Therefore, all current ciphers have to resist them. Lai, Massey and
Murphy [10] have proposed a formalization for differential cryptanalysis. They clearly exposed
the hypothesis made for the attack and introduced Markov ciphers. Since SPN are Markov
ciphers, our presentation is based on their work.

A differential predicts that if two plaintexts have a given difference α, then the corresponding
ciphertexts have a given difference β with a certain probability. A differential characteristic is
more precise since it gives the difference of intermediate messages for each round. To built a
differential crytanalysis, we usually use a differential that ends just before the last round of the
cipher and some ciphertext pairs for which we know that the corresponding plaintexts have the
required difference.

For each possible value of the last round key, we decrypt the last round of the ciphertext pairs.
If the proportion of obtained pairs satisfying the predicted difference is close to the expected
probability, then the chosen round key is probably the right one. Once the last round key is
found, it is generally not difficult to recover the entire master key. Therefore, finding an effective
differential is the most important part in differential cryptanalysis.

The actual cipher security against differential cryptanalysis is evaluated with the differential
probabilities. As these probabilities are difficult to compute, four measures of security have been
proposed [8]. They can be split in two categories according to the security they imply.
? This article is a minor revision of the version that appears in HICSS-48

– The provable security is evaluated by two measures called precise and theoretical. The precise
measure gives the maximum differential probability whereas the theoretical measure upper-
bounds it.

– The practical security is assessed by two measures called heuristic and practical. The heuristic
measure gives the maximum differential characteristic probability while the practical measure
upper-bounds it.

The number of chosen plaintexts and the differential cryptanalysis complexity is inversely pro-
portional to these probabilities [3]. A block cipher is said to have provable or practical security
whenever these measures are lower than a threshold depending on its features.

It should be emphasized that differential characteristic probabilities are computed assuming
that the subkeys are independent and uniformly distributed. Although the subkeys are fixed
in a classical differential attack, this assumption provides a good approximation of the true
probability. This hypothesis, called stochastic equivalence, seems to hold for almost all secure
ciphers. Furthermore, to the authors’ knowledge, there is no practical way to compute the exact
probability of a differential.

1.2 Previous Works

Under the previous hypothesis, computing a characteristic probability is simple. However, prac-
tical security is assessed by the maximum differential characteristic probability and the number
of differential characteristic is such that an exhaustive search is intractable.

In [13], Matsui presented an algorithm that find a maximum probability characteristic in a
Feistel cipher. Such an algorithm computes the cipher heuristic measure and enables the practical
security evaluation. Running it several times on DES, Matsui found a permutation of the S-boxes
making the DES stronger against both differential and linear cryptanalysis. While its complexity
remains high for the cipher FEAL, two successive improvements have been proposed in [14] then
[2].

An adaptation of Matsui’s algorithm is possible for SPN. However the block size (64 or 128
bits) of modern ciphers makes the calculations intractable. This fact was also highlighted by
Collard et al. [7] who then proposed a few improvements to use this algorithm on the cipher
Serpent. Another variation is exposed by Ali and Heys [1]. They gave up finding a maximum
probability characteristic to reduce the complexity. On the other side, their algorithm cannot
prove cipher practical security, but may still help the cryptanalyst to build an attack.

1.3 Contributions

This article presents a search algorithm for a maximal probability differential characteristic in a
SPN. Due to the duality between differential and linear cryptanalysis [5], all the results of this
article can be adapted to linear cryptanalysis.

The aim of our work is to adapt Matsui’s algorithm for SPN but especially to reduce its
complexity greatly. Indeed, spending three months in computing the practical security of a known
cipher is not a problem. However, the designer has to repeat several times this search in order to
optimize the choice of its cipher components (S-boxes, permutation) or the number of rounds.

In the last few years, many lightweight ciphers have been suggested [4,6,15]. They are de-
signed to be implemented in restricted environments such as RFID tags. Consequently, their
permutation layers are often bit permutation for efficiency purposes. We have focused our atten-
tion on this case and our algorithm allows to analyze practical security of a few cipher systems
in just a few seconds.

2

The security analysis of Present [4], Puffin [6] and Iceberg [15] was performed with
the practical measure. Their authors have upper-bounded the probability for a small number of
rounds (form 1 to 5) and have then deduced an upper-bound for the full cipher. Our algorithm
allows to assess their security more precisely by computing maximum probabilities characteristics.

The following section gives the definitions and notation used in this paper. Section 3 presents
a simple adaptation of Matsui’s algorithm [13]. Our optimizations are exposed in Sections 4 and
5. Finally, Section 6 describes our results.

2 Definitions

A S-bit substitution box (or S-box) is a permutation over FS2 . A S-Box can be seen as a look-up
table. The set of integers from a to b included is denoted Ja, bK. Let 0n = (0, . . . , 0) denote the
identity element of Fn2 .

Definition 1 (SPN). Let S and N be positive integers and σ1, . . . , σN be S-bit S-boxes. Let us
define the following function

σ : (FS2)N −→ (FS2)N

x = (x1, . . . , xN) 7−→ (σ1(x1), . . . , σN (xN)) .

Let π be a bijective F2-linear mapping from FSN2 to FSN2 . Let us define the round-function F by

F (k, x) = (π ◦ σ)(x⊕ k) ,

for any round key k in FSN2 and for any message x in FSN2 . The key addition is the operation
x 7→ x⊕k which consists of an exclusive OR of the message x with the round key k. The functions
σ and π are respectively called the substitution layer and the permutation layer of the round
function F . An iterated cipher having F as round-function is called a Substitution-Permutation
Network or SPN for short.

Remark 2. The last round of a SPN is usually different from the previous ones. Since a differential
characterisic ends just before the last round, this article remains relevant.

Definition 3 (bit permutation). A linear mapping π : FSN2 → FSN2 is called bit permutation
if there exists a permutation φ of J1, SNK such that

π(x1, . . . , xSN) = (xφ−1(1), . . . , xφ−1(SN)) .

Throughout the article, we consider a generic given SPN. The basic aim of differential
cryptanalysis [3] is to study the propagation of a difference between two plaintexts x1 and x∗1
through the SPN rounds. Let (k1, . . . , kR) denote fixed round keys used for encryption. For each
1 ≤ r ≤ R, let us define xr+1 = F (kr, xr) and x∗r+1 = F (kr, x∗r). The difference αr = xr ⊕ x∗r
between xr and x∗r is fixed by the round key addition since (xr ⊕ kr)⊕ (x∗r ⊕ kr) = xr ⊕x∗r = αr.
Let yr = σ(xr ⊕ kr) and y∗r = σ(x∗r ⊕ kr) denote the outputs of the substitution layer and
βr = yr ⊕ y∗r denote their difference. Note that βr is kr-dependant. The linearity of π implies
that αr+1 = xr+1 ⊕ x∗r+1 = π(yr) ⊕ π(y∗r) = π(yr ⊕ y∗r) = π(βr). Thus, the input difference of
the round r + 1 depends only on the output of the round r.

Notation. Input and output differences of the substitution layer for the round r are respectively
referred as

αr = (ar1, . . . , arN) and βr = (br1, . . . , brN) .

3

These belong to (FS2)N . Whenever an arbitrary round is considered, the index r is omitted and
we simply write

α = (a1, . . . , aN) and β = (b1, . . . , bN) .

A difference that can be both in input or output of the substitution layer, is denoted γ =
(c1, . . . , cN).

In the rest of the paper, the subkeys are assumed to be independent and uniformly distributed.
The probability that a difference a ∈ FS2 produces b ∈ FS2 by the i-th S-box is given by

Pi(a→ b) = #{x ∈ FS2 | σi(x)⊕ σi(x⊕ a) = b}
2S . (1)

The 2S×2S matrix formed by these probabilities is called the differential table of the i-th S-box.
It should be stressed that Pi(0→ 0) = 1. The probability that a difference α ∈ (FS2)N produces
β by the substitution layer is

P(α→ β) =
N∏
i=1

Pi(ai → bi) , (2)

since the S-boxes are assumed to be independent [10].

Definition 4 (active S-box). Let γ be a difference. The i-th S-box is activated by γ if ci 6= 0.
Let us define the application

#SB : (FS2)N −→ J1, NK
γ = (c1, . . . , cN) 7−→ #{i ∈ J1, NK | ci 6= 0} ,

that relates a difference to the number of S-Boxes it activates.

Definition 5 (candidate). A candidate for an input difference α is an output difference β such
that P(α→ β) 6= 0.

The following lemma links both previous definitions.

Lemma 6. If β is a candidate for α, then bi = 0S ⇔ ai = 0S for each i such that 1 ≤ i ≤ N ,
that is, they activate the same S-boxes. In this case,

P(α→ β) =
∏

i,ai 6=0S

Pi(ai → bi) .

Proof. Assume that β is a candidate for α. Let i such that 1 ≤ i ≤ N . As P(α → β) 6= 0, we
have Pi(ai → bi) 6= 0. As S-boxes are one-to-one, the probability Pi(ai → 0S) is non-zero if and
only if ai = 0S . Further, Pi(0S → bi) is non-zero only if bi = 0S . The result follows. ut

Definition 7 (characteristic). Let R be a non-negative integer. A R-round differential char-
acteristic is an element

T = ((α1, β1), . . . , (αR, βR))

of ((FSN2)2)R satisfying αr+1 = π(βr) for all 1 ≤ r < R. For each 0 ≤ i ≤ j ≤ R, let T[i,j] denote
the sub-characteristic ((αi, βi), . . . , (αj , βj)).

4

As we have seen, a difference is fixed by the subkey addition and is mapped by the permutation
layer almost surely. The subkeys being independently and uniformly distributed, a R-round
characteristic probability is computed by

P(T) =
R∏
r=1

P(αr → βr) =
R∏
r=1

N∏
i=1

Pi(ari → bri) . (3)

Definition 8 (optimal characteristic). A R-round characteristic with maximum probability
among all the R-round characteristics is said optimal1. In this case, its probability is denoted
pBest(R).
Definition 9 (extension). Let r and r′ be integers such that 0 ≤ r ≤ r′. Let T and T ′ be r and
r′-round characteristics respectively. The characteristic T ′ extends T if the r first round input
and output differences of T and T ′ are equal, that is, T ′[1,r] = T . In this case, T ′ = T ‖ T ′[r+1,r′].

Example 10. Consider the SPN SmallPresent(4) [11]. Its parameters are S = 4 and N = 4.
The hexadecimal notation is used for the elements of FS2 = F4

2. For instance, A denotes the vector
(1, 0, 1, 0). The four S-boxes are defined by

a 0 1 2 3 4 5 6 7 8 9 A B C D E F
σi(a) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

for each 1 ≤ i ≤ 4. Since they are equal, Pi(a → b) = P1(a → b) holds for each i. Let φ denote
the permutation given by

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
φ(k) 1 5 9 13 2 6 8 12 3 7 11 15 4 8 12 16

The linear layer π is the bit permutation associated with φ.
Now we turn our attention to the following pairs of input/output differences

α1 = (0, F, 0, 0) α2 = (0, 0, 0, 4) α3 = (0, 1, 0, 1)
β1 = (0, 1, 0, 0) β2 = (0, 0, 0, 5) β3 = (0, 3, 0, 3) .

Since α2 = π(β1) and α3 = π(β2), they can be concatenated to form longer characteristics. Three
rounds of the cipher are represented in Figure 1. The S-boxes activated by α1, α2 and α3 are
grayed. It is not hard to check that

Pi(F→ 1) = Pi(4→ 5) = Pi(1→ 3) = 2−2 and Pi(F→ 2) = 0

with Equation (1). Thus, β1 is a candidate for α1 while (1, 0, 0, 0) and (0, 2, 0, 0) are not. Let T
denote the 2-round characteristic ((α1, β1), (α2, β2)). Using Equation (2), we have

P(α1 → β1) =
∏4
i=1 Pi(a1

i → b1
i) = P2(a1

2 → b1
2) = P2(F→ 1) = 2−2 .

Similarly, P(α2 → β2) = 2−2 and P(α3 → β3) = 2−4. Then P(T) = P(α1 → β1)P(α2 → β2) = 2−4

according to Equation (3). Once the differential table is computed, it is easy to check that T is
optimal as it activates the minimum number of S-boxes with maximum probabilities. There are
several optimal characteristics, for instance(

((0, 0, 0, F), (0, 0, 0, 1)), ((0, 0, 0, 1), (0, 0, 0, 3))
)

is also optimal. By definition, T ′ = T ‖ (α3, β3) extends T . It can be shown that T ′ is optimal
by running the algorithm presented in this paper. In contrast, T ′[2,3] is not optimal as P(T ′[2,3]) =
2−6 < 2−4.
1 Let us mention that there may exists more than one optimal characteristic.

5

σ1 σ2 σ3 σ4

σ1 σ2 σ3 σ4

σ1 σ2 σ3 σ4

α1

β1

α2

β2

α3

β3

T

σ2

σ4

σ2 σ4

Fig. 1. Three rounds of SmallPresent(4)

3 Search for an Optimal Characteristic

3.1 General Principle

Let us denote R̃ the actual number of rounds. The algorithm presented here computes an optimal
R̃-round characteristic without requiring any a priori knowledge. It is based on the algorithm
OptTrailEst. The latter accepts an integer R ≥ 2, the probabilities (pBest(r))1≤r<R and an
estimation pEstim of pBest(R) as arguments and returns an optimal R-round characteristic with
its probability pBest(R). The knowledge of (pBest(r))1≤r<R and pEstim speeds up the search. Next,
an automatic management of the estimation pEstim is proposed which gives rise to the algorithm
OptTrail. Thus, OptTrail takes R and (pBest(r))1≤r<R as inputs only, and still outputs an
optimal R-round characteristic.

It should be stressed that pBest(1) can be easily computed (cf Remark 15). Then, compute

pBest(R) = OptTrail
(
R, (pBest(r))1≤r<R

)
for R from 2 to R̃. The latter computation gives the desired result.

6

In the rest of this section we explain the principle of OptTrailEst. The next section describes
several optimizations. Finally, the section 5 presents the automatic management of the estimation
pEstim.

Algorithm OptTrailEst
For each non-zero output difference β1,

Call the search procedure FirstRound()
If a characteristic has been found (E is not empty),

Return E and pEstim . Here, pBest(R) = pEstim and E is optimal
Else

Return () . Here, pBest(R) < pEstim
End of the algorithm

Function FirstRound()
pRd(1) ← maxα P(α→ β1)
α1 ← α such that P(α→ β1) = pRd(1)
α2 ← π(β1)
If R > 2, then

Call the search procedure Round(2),
Else

Call the search procedure LastRound()
End of the function . We continue the main loop

Function Round(r) (2 ≤ r < R)
For each candidate βr for αr,

pRd(r) ← P(αr → βr)
If
∏r

i=1 pRd(i) is not lower than the rank-r bound, then
αr+1 ← π(βr)
If r + 1 < R, then

Call the search procedure Round(r + 1)
Else,

Call the search procedure LastRound()
End of the function . We continue Round(r − 1) or FirstRound()

Function LastRound()
pRd(R) ← maxβ P(αR → β)
βR ← β such P(αR → β) = pRd(R)

If
∏R

i=1 pRd(i) ≥ pEstim, then
E ← ((α1, β1), . . . , (αR, βR)) . The current characteristic is saved
pEstim ←

∏R

i=1 pRd(i) = P(E).
End of the function . We continue Round(R− 1) or FirstRound()

Fig. 2. Search algorithm for an optimal characteristic

Figure 2 describes the algorithm OptTrailEst. First, suppose that the condition on the bound
in procedure Round is true. Under this assumption, the algorithm runs implicitly through the
tree of all R-round characteristics and saves one which has a maximum probability in E . Observe
that the first and last rounds have a special treatment that speeds up the search. When the

7

program reaches the function Round(r), the current characteristic is

T = ((α1, β1), . . . , (αr−1, βr−1)) and P(T) =
r−1∏
i=1

P(αi → βi) =
r−1∏
i=1

pRd(i) .

The input difference αr for this round equals π(βr−1). Then, for each candidates βr for αr,
T is extended by (αr, βr) and the search for the next round is called. Therefore, the program
performs a depth-first search. When the program reaches the function LastRound(), it is not hard
to compute the output βR that maximizes the probability of the last round. The characteristic
is then saved only if it is better than E . Let us now explain the condition on the bound.
Definition 11 (rank-r bound). Let T be a r-round characteristic with r < R. Its probability
is lower than the rank-r bound if

P(T) < pEstim

pBest(R−r)
.

This condition on the probability of the current characteristic allows to prune the search tree
without missing an optimal characteristic. It can be rewritten P(T) · pBest(R−r) < pEstim and
means that even if the characteristic is extended by an optimal (R− r)-round characteristic, the
probability of the whole characteristic would be lower than pEstim.

The significance of pEstim is now clear. If pEstim > pBest(R), a characteristic expandable in an
optimal R-round characteristic can be cut. Furthermore, no characteristic will be saved because
of the condition in LastRound(). On the other hand, the closer pEstim is from pBest(R), the
stronger is the pruning condition and the lower is the complexity of OptTrailEst.

3.2 Proof of the Algorithm
We have explained the general principle of the algorithm. Let us now prove the optimality of the
characteristic returned.
Lemma 12. Let r be an integer such that 1 ≤ r < R. Let T be a r-round characteristic whose
probability is lower than the rank-r bound. Then there exists no R-round characteristic extending
T of probability greater than or equal to pEstim.
Proof. By contradiction, assume that T ′ is an extension of T such that P(T ′) ≥ pEstim. Then
the probability of the (R− r)-round characteristic T ′[r+1,R] is

P
(
T ′[r+1,R]

)
=

P(T)P(T ′[r+1,R])
P(T) =

P(T ‖ T ′[r+1,R])
P(T) = P(T ′)

P(T) .

By assumption, P(T) < pEstim /pBest(R−r) holds. Note that this strict inequality implies pEstim >
0. It follows that

P(T ′)
P(T) ≥

pEstim

P(T) >
pEstim

pEstim / pBest(R−r)
= pBest(R−r) .

By definition of pBest(R−r), this leads to a contradiction and hence the result follows. ut
Theorem 13 (validity of the algorithm). The algorithm OptTrailEst returns a character-
istic E such that P(E) = pBest(R) if there exists a R-round characteristic of probability greater
than pEstim, in other words, if pEstim ≤ pBest(R). Otherwise, the algorithm returns the empty
characteristic.
Proof. Suppose the condition on the bound removed. If pEstim is lower than pBest(R), an optimal
characteristic is saved in E , otherwise E remains empty. The previous Lemma ensures that the
pruning condition avoids only characteristic with probability strictly lower than pEstim. The result
still holds. ut

8

4 Optimizations

The complexity of this version of OptTrailEst is too large to be achievable with real-sized SPN.
For example, the first step requires to call the procedure FirstRound for all non-zero output
differences β1. Since there are 2SN − 1 such differences, we can lower-bound its complexity by
264 if (N,S) = (16, 4) and by 2128 if (N,S) = (16, 8). The optimization of the different parts is
the focus of this section.

4.1 Construction of the First Difference

As we have just seen, the number of calls to the function FirstRound() is a problem that we
must now solve. To optimize this step, a partition of the set of all non-zero differences is defined.
Then, we give an effective way to test whether no difference in one part can be the beginning of
an optimal characteristic.

Let n be an integer such that 1 ≤ n ≤ N . The maximum probability of the n-th S-box is

pSB(i) = max
a,b∈FS

2

Pi(a→ b) .

Let us sort these probabilities in the decreasing order. This is equivalent to define a permutation
τ of J1, NK such that pSB(τ(i)) ≥ pSB(τ(i+1)) for all 1 ≤ i < N . Let p[n]-SB denote the maximum
probability of a one-round characteristic activating n S-boxes. In other words we have

p[n]-SB = max
α,β∈(FS

2)N

#SB(α)=n

P(α→ β) .

Proposition 14. Let n be an integer such that 1 ≤ n ≤ N . Then,

p[n]-SB =
n∏
i=1

pSB(τ(i)) .

Proof. Let α be an input difference activating n S-boxes and β be an output difference. We
will prove that

∏n
i=1 pSB(τ(i)) ≥ P(α → β). For each i in J1, NK, define qi = Pi(ai → bi). By

definition, P(α→ β) =
∏N
i=1 Pi(ai → bi) =

∏N
i=1 qi. Let ρ be a permutation of J1, NK such that

qρ(i) ≥ qρ(i+1). Since the input difference α activates n S-boxes, it must be the case that qρ(i) = 0
for each i > n. It follows that P(α→ β) =

∏N
i=1 qi =

∏N
i=1 qρ(i) =

∏n
i=1 qρ(i).

As
∏n
i=1 pSB(τ(i)) is the product of the n best probabilities, the inequality

∏n
i=1 pSB(τ(i)) ≥∏n

i=1 pSB(ρ(i)) holds. Next,
∏n
i=1 pSB(ρ(i)) ≥

∏n
i=1 qρ(i) since pSB(i) ≥ qi ≥ 0 for each i in J1, NK.

The result hence follows. ut

This proposition makes the computation of p[n]-SB easy as the probabilities pSB(i) can be read
on the differential tables.

Remark 15. As a corollary, the inequalities p[1]-SB ≥ . . . ≥ p[N]-SB hold. Thus, the probability of
an optimal one-round characteristic is

pBest(1) = max
α,β∈(FS

2)N
P(α→ β) = p[1]-SB = pSB(τ(1)) .

Of course, the differential tables and the probabilities pSB(i) and p[i]-SB are precomputed to
optimize the search.

9

Algorithm OptTrailEst
For n from 1 to N ,

If p[n]-SB is lower than the rank-one bound, then
Exit the loop . See Theorem 16

Else,
For each output difference β1 activating n S-boxes,

Call FirstRound()
If a characteristic has been found (E is not empty), then

Return E and pEstim
Else

Return ()

Fig. 3. First optimization – construction of the first difference

Theorem 16. Let n and n′ be integers such that 1 ≤ n ≤ n′ ≤ N . If p[n]-SB is lower than
the rank-one bound, then there exists no R-round characteristic activating n′ S-boxes in the first
round with probability greater than or equal to pEstim.

Proof. Assume that p[n]-SB is lower than the rank-one bound. Let T be a one-round characteristic
activating n′ S-boxes. By definition, P(T) ≤ p[n′]-SB. The inequality p[n′]-SB ≤ p[n]-SB follows
from Proposition 14, therefore P(T) ≤ p[n]-SB. Hence, P(T) is lower than the rank-one bound
and Lemma 12 ensures that there exists no R-round characteristic extending T with probability
greater than or equal to pEstim. This concludes the proof. ut

This theorem states that whenever p[n]-SB is lower than the rank-one bound, we only have to
test the output differences β1 activating at most n− 1 S-boxes. There are

n−1∑
i=1

(
N

i

)
(2S − 1)i

such differences, compared with 2SN − 1 otherwise.
We have run the final algorithm with several SPN having a bit permutation as linear layer.

With N = 16 and S = 4, p[4]-SB is always lower than the rank-one bound. There are at most
221 differences to be tested instead of 264. With N = 16 and S = 8, the gap is even larger since
p[3]-SB is always lower than the bound. Finally, 221 differences instead of 2128 remain to be tested.
The algorithm optimized with Theorem 16 is described in Figure 3.

4.2 The Round Function
Following Matsui’s algorithm [13], the round candidates are constructed recursively. Let α denote
the input difference of the current round. According to Lemma 6, a candidate β is constructed
by selecting an output for each S-box activated by α.

Recall that the support of L in FN2 is the set supp(L) = {i ∈ J1, NK | Li 6= 0} and its Hamming
weight is ω(L) = # supp(L).

The function list : (FS2)N → FN2 maps a difference γ to the vector list(γ) = (x1, . . . , xN) where
xi equals 1 if and only if the i-th S-box is activated by γ. It is clear that #SB(γ) = ω(list(γ)).
Further, β is a candidate for α if and only if list(α) = list(β).

Let L ∈ FN2 be a compact representation of active S-boxes and define

pListSB(L) =
∏

i∈ supp(L)

pSB(i) .

10

Let ∨ denote the bitwise OR and ∧ denote the bitwise AND. Next, the vector of size n in which
the first n coordinates are 1 and the last N − n are 0 is denoted (0n1N−n).

Example 17. With the same notations as in the previous example, list(α3) = list(β3) = (0, 1, 0, 1)
and list(α3) ∧ (0212) = (0, 1, 0, 1) ∧ (0, 0, 1, 1) = (0, 0, 0, 1).

Theorem 18. Let r be an integer such that 1 ≤ r ≤ R and T be a r-round characteristic.
Denote m = #SB(αr) and let n be an integer satisfying 1 ≤ n ≤ m. Define the function
ρ : J1,mK → J1, NK that maps i to the index of the i-th S-box activated by αr. Finally, let us
define L = list(αr) ∧ (0ρ(n)1N−ρ(n)). If

P
(
T[1,r−1]

) (∏n
i=1 Pρ(i)

(
arρ(i) → brρ(i)

))
pListSB(L)

is lower than the r-rank bound, then for all γ satisfying:

– cρ(i) = brρ(i) for each i < n, and
– Pρ(n)(arρ(n) → cρ(n)) ≤ Pρ(n)(arρ(n) → brρ(n)),

there exists no R-round characteristic extending T[1,r−1] ‖ (αr, γ) with probability greater than or
equal to pEstim.

Proof. If γ is not a candidate for αr, then P(αr → γ) = 0 and any characteristic extending
T[1,r−1] ‖ (αr, γ) has also a zero probability. Therefore, we assume that γ is a candidate for αr
in the following. Since supp(L) = {ρ(i) | n+ 1 ≤ i ≤ m}, it follows that

P(αr → γ) =
∏m
i=1 Pρ(i)(arρ(i) → cρ(i))

=
∏n
i=1 Pρ(i)(arρ(i) → cρ(i))

∏m
i=n+1 Pρ(i)(arρ(i) → cρ(i))

≤
∏n
i=1 Pρ(i)(arρ(i) → brρ(i))

∏m
i=n+1 Pρ(i)(arρ(i) → cρ(i))

≤
(∏n

i=1 Pρ(i)(arρ(i) → brρ(i))
)
pListSB(L)

Next, we have the inequality

P(T[1,r−1] ‖ (αr → γ)) = P(T[1,r−1])P(αr → γ)
≤ P

(
T[1,r−1]

)(∏n
i=1 Pρ(i)(arρ(i) → brρ(i))

)
pListSB(L) .

Consequently, the probability of T[1,r−1] ‖ (αr, γ) is lower than the r-rank bound. The result
then is a consequence of Lemma 12. ut

Remark 19. All the probabilities pListSB(L), with L in FN2 are precomputed. For each 1 ≤ i ≤ N
and each input difference a, the output differences are sorted in decreasing order according to
Pi(a→ ·).

4.3 Active S-Boxes in the Next Round

Throughout this part, the linear layer π is assumed to be a bit permutation.

Definition 20. Let L and L′ be elements of FN2 . Define L 4 L′ if and only if supp(L) ⊆
supp(L′). It is easy to show that 4 is partial order. Clearly,

(L 4 L′) =⇒
(
pListSB(L) ≥ pListSB(L′)

)
.

11

Define the function D : J1, NK× FS2 → (FS2)N that maps a pair (i, c) to D(i, c) = (c1, . . . , cN)
where cj equals c if i = j and 0S otherwise. To simplify, let us denote Di(c) = D(i, c). It is easy
to see that γ =

∑N
i=1 Di(ci) =

∑
i,ci 6=0S

Di(ci) for each difference γ. Furthermore, we say that
two differences γ and γ′ (seen as elements of FSN2 instead of (FS2)N) are mutually disjoint if for
all 1 ≤ i ≤ SN , γi = γ′i ⇒ γi = γ′i

Example 21. Using again the previous notations,

β2 = (0, 0, 0, 5) = D4(5) and β3 =
∑
i,b3

i
6=04

Di(b3
i) = D2(3) + D4(3) .

Lemma 22. Let γ1, . . . , γn be n pairwise mutually disjoint differences. Then

list
(n∑
i=1

γi

)
=

n∨
i=1

list(γi) .

Proof. By induction on n. The case n = 1 being trivial, we assume n = 2. Define L = list(γ1+γ2),
L1 = list(γ1) and L2 = list(γ2). Let i be an integer such that 1 ≤ i ≤ N . Since γ1 and
γ2 are mutually disjoint, the equality c1

i = c2
i implies c1

i = 0S and c2
i = 0S . The converse

being immediate, the equivalence (c1
i + c2

i = 0S) ⇔ (c1
i = 0S and c2

i = 0S) follows, that is
(c1
i + c2

i 6= 0S) ⇔ (c1
i 6= 0S or c2

i 6= 0S). Next, Li = 1 ⇔ c1
i + c2

i 6= 0S ⇔ (c1
i 6= 0S or

c2
i 6= 0S)⇔ (L1

i = 1 or L2
i = 1). Therefore, L = L1 ∨L2. The result follows by induction on n as

γn and
∑n−1
i=1 γi are mutually disjoint. ut

Corollary 23. Let β be an output difference. Let m be an integer such that 1 ≤ m ≤ N and
ρ : J1,mK→ J1, NK an one-to-one function. Then

list
(
π
(m∑
i=1

Dρ(i)(bρ(i))
))

=
m∨
i=1

list
(
π(Dρ(i)(bρ(i))

)
.

Proof. Since π is linear, the following equality holds

π
(m∑
i=1

Dρ(i)(bρ(i))
)

=
m∑
i=1

π(Dρ(i)(bρ(i))) .

Clearly, the Dρ(i)(bρ(i)) are mutually disjoint as ρ is one-to-one. Since π is a bit permuta-
tion, it must be the case that the π(Dρ(i)(bρ(i))) are also disjoint. From Lemma 22, we have
list(

∑m
i=1 π(Dρ(i)(bρ(i)))) =

∨m
i=1 list(π(Dρ(i)(bρ(i)))). ut

Example 24. On the one hand, list(π(D1(C) + D2(9))) = list(π(C, 9, 0, 0)) = list(C, 8, 0, 4) =
(1, 1, 0, 1).

C 8 0 4

C 9 0 0

12

On the other hand,

list(π(D1(C))) ∨ list(π(D2(9)))
= list(8, 8, 0, 0) ∨ list(4, 0, 0, 4)
= (1, 1, 0, 0) ∨ (1, 0, 0, 1) = (1, 1, 0, 1) .

Theorem 25. We use the same notations as in Theorem 18 except that r ≤ R − 1. Define
L′ =

∨n
i=1 list(π(Dρ(i)(brρ(i)))). If[

P
(
T[1,r−1]

) (n∏
i=1

Pρ(i)
(
arρ(i) → brρ(i)

))
pListSB(L)

]
× pListSB(L′)

is lower than the rank-(r + 1) bound, then for all γ such that cρ(i) = brρ(i) for each i ≤ n, there
exists no R-round characteristic extending T[1,r−1] ‖ (αr, γ) with probability greater than or equal
to pEstim.

Proof. Following the proof of Theorem 18, we can assume that γ is a candidate for αr and deduce
the upper-bound

P(T[1,r−1] ‖ (αr, γ)) ≤ P(T[1,r−1])
(n∏
i=1

Pρ(i)
(
arρ(i) → brρ(i)

))
pListSB(L) .

Define αr+1 = π(γ). Let βr+1 be an output difference. Similarly, we can assume that βr+1 is a
candidate for αr+1. Define,

L′′ = list
(
π
(∑m

i=1 Dρ(i)
(
cρ(i)

)))
= list(π(γ)) = list(αr+1) .

Since L′′ = list(αr+1), it follows that P(αr+1 → βr+1) ≤ pListSB(L′′). According to Corollary 23,

L′′ =
∨m
i=1 list

(
π
(
Dρ(i)

(
cρ(i)

)))
<
∨n
i=1 list

(
π
(
Dρ(i)

(
cρ(i)

)))
= L′ .

Consequently pListSB(L′′) ≤ pListSB(L′) and P(αr+1 → βr+1) is upper-bounded by pListSB(L′).
Finally,

P(T[1,r−1] ‖ (αr, γ) ‖ (αr+1, βr+1))
= P(T[1,r−1] ‖ (αr, γ))× P(αr+1 → βr+1)
≤
[
P(T[1,r−1])

(∏n
i=1 Pρ(i)(arρ(i) → brρ(i))

)
pListSB(L)

]
× pListSB(L′) .

Thus, the probability of T[1,r−1] ‖ (αr, γ) ‖ (αr+1, βr+1) is lower than the rank-(r + 1) bound
and there exists no R-round characteristic extending it with probability greater than or equal to
pEstim. Using the fact that this property holds for all βr+1, the desired result is proven. ut

The search procedure Round optimized with Theorems 18 and 25 is described in Figure 4.

4.4 Test on the Bound

The previous results can be preserved while strengthening the condition on the bound. Suppose
we have found a characteristic with probability greater than or equal to pEstim. Then, we have
pEstim = P(E). Now, assume that the probability of the current characteristic T satisfies P(T) ·
pBest(R−r) = pEstim. In this case, this probability is not lower than the rank-r bound and the
algorithm tries to extend it. However, the previous equality implies that we can optimally find
a R-round characteristic with probability pEstim. As such a characteristic is already known (E),
the extension of T can be aborted. This discussion leads us to improve Definition 11.

13

Function Round(r) (2 ≤ r < R)
βr ← 0SN
For each i such that 1 ≤ i ≤ #SB(αr)

Let ρr(i) denote the position of the i-th S-box activated by αr
Call SubRound(r,1)

End of the function . We continue Round(r − 1) or FirstRound()

Function SubRound(r,n)
If n > #SB(αr), then

pRd(r) ← P(αr → βr) =
∏#SB(αr)
j=1 pRd(r,j);

αr+1 ← π(βr+1)
If r + 1 < R, then

Call Round(r + 1)
Else

Call LastRound()
Else

For each brρr(n) sorted in decreasing order according to Pρr(n)(arρr(n) → ·)
Lr,n ← list(αr) ∧ (0ρr(n)1N−ρr(n))
pRd(r,n) ← Pρr(n)

(
arρr(n) → brρr(n)

)
If
∏r−1
i=1 pRd(i) ·

∏n

j=1 pRd(r,j) · pListSB(Lr,n) is lower than the rank-r bound, then
Exit the loop . See Theorem 18

If π is a bit permutation, then
L′r,n ←

∨n

i=1 list(π(Dρr(i)(brρr(i))));
If
∏r−1
i=1 pRd(i) ·

∏n

j=1 pRd(r,j) ·pListSB(Lr,n) ·pListSB(L′r,n) is not lower than the rank-(r+ 1)
bound, then

Call SubRound(r,n+ 1) . See Theorem 25
Else

Call SubRound(r,n+ 1)
End of the function . We continue SubRound(r,n− 1) or Round(r)

Fig. 4. Second optimization – the search function Round

Definition 26 (rank-r bound). Let T be a r-round characteristic with r < R. Its probability
is lower than the rank-r bound if

– E is empty and
– P(T) < pEstim / pBest(R−r),

or if

– E contains a characteristic and
– P(T) ≤ pEstim / pBest(R−r).

5 Automatic Management of the Estimation

The parameter pEstim has a high impact on the complexity of OptTrailEst. Several methods
exist to obtain a good estimation of pBest(R). For instance, an iterative characteristic can be used.
Following an idea of Ohta, Moriai and Aoki [14], we propose the algorithm OptTrail. The latter
has two main advantages. First, the estimation management is fully automatic – no knowledge is

14

required on the SPN. Second, its complexity has the same order of magnitude, as OptTrailEst
runs with pEstim = pBest(R) / 2.

The algorithm OptTrail is presented in Figure 5. To understand how it works, it is worth
recalling that OptTrailEst finds no characteristic whenever pEstim > pBest(R) (Theorem 13). In
this case, pEstim is not modified by OptTrailEst. Since pBest(R) ≤ pBest(R−1), we begin by running
OptTrailEst with pEstim = pBest(R−1)/2. The estimation is then each time divided by two until an
optimal characteristic is found. This happens whenever the condition pEstim ≤ pBest(R) becomes
true.

Indeed, the larger is the value of pEstim, the stronger is the pruning condition and the lower
is the complexity of the search. The exact nature of this result is still unknown. However, we
have observed experimentally that the complexity of OptTrailEst running with pEstim ≥ 24 ·
pBest(R), is negligible compared with the complexity of the same algorithm running with pEstim =
pBest(R) /2. The following result comes from this observation: if OptTrailEst is computable with
pEstim = pBest(R) / 2, then OptTrail is also computable.

Proposition 27. The complexity of OptTrailEst decreases as the input pEstim increases.

Algorithm OptTrail
pEstim ← pBest(R−1)
Until no characteristic has been found,

pEstim ← pEstim / 2
Call OptTrailEst with pEstim as estimation

Return E and pEstim

Fig. 5. Automatic estimation management

6 Results

Experiments and simulations have been performed by a AMD Phenom II X4 965 Black Edition
3.4 GHz processor. The running time for a R̃-round cipher includes the precomputations and
R̃− 1 calls to OptTrail, as explained in Section 3.

To prove the practical security of Present [4] against differential cryptanalysis, the authors
have shown that the probability of any 5-round characteristic is upper-bound by 2−20 and had
exhibited a 5-round characteristic of probability 2−21. The algorithm presented here allows us to
prove in 0.3 second that this upper-bound is reached with the following optimal characteristic:

α1 = (0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7)
β1 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
β2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3)
β3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4)
β4 = (0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0)
β5 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0) .

They have then deduced that any 25-round characteristic probability is upper-bounded by 2−100.
Our algorithm shows that the optimal characteristic probability is 2−110 in 0.5 second. The

15

number of rounds is not a problem since an optimal 64-round characteristic is computed in just
2 seconds. Note that Present has 32 rounds.

The permutation used in SmallPresent [11] (and in Present) can be generalized for each
integers N and S. Define φS,N for all 1 ≤ k ≤ SN by

φS,N (k) = N(k − 1 mod S) + bk−1
S c+ 1 .

It is easy to verify that the permutation φ used in Example 10 is φ4,4. We have constructed a
128-bit SPN on the same model as Present to test our algorithm efficiency. Define π as the bit
permutation associated with φ8,16 and the 16 S-boxes as the AES S-box. We have obtained an
optimal 13-round characteristic of probability 2−89 in 7.1 seconds.

To analyze Puffin security against differential cryptanalysis, Cheng et al [6] have upper-
bounded the probability of an optimal 31-round characteristic by 2−62. In 0.02 second, we have
computed a characteristic that reaches this bound. It is obtained by extending the following
iterative characteristic:

αi = (4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
βi = (4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

αi+1 = (0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
βi+1 = (0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

Finally, we have tested our algorithm on Iceberg [15]. Its permutation layer is not a bit
permutation but a linear diffusion. The optimization presented in Section 4.3 is thus no longer
applicable. The authors have upper-bound the probability of an optimal 16-rounds characteristic
by 2−160. We proved that it is in fact 2−171,6 in 2.3 seconds. All these results are outlined in
Figure 6.

Block Round Upper- Best RunningCipher size number bound probability time
Present 64 5 2−20 2−20 0.3 s
Present 64 25 2−100 2−110 0.5 s

Present-like 128 13 – 2−89 7.1 s
Puffin 64 31 2−62 2−62 0.02 s

Iceberg 64 16 2−160 2−171.6 2.3 s

Fig. 6. Summary of Results

Conclusion

In this paper, we have presented a generic algorithm that computes a maximum probability
differential characteristic in a SPN. Running this algorithm may allow to prove the practical
security of the block cipher. In the opposite case of weak cipher, the returned characteristic
allows the cryptanalyst to build an optimal attack.

Especially optimized for SPN using a bit permutation as permutation layer, we are able to
find a maximum probability characteristic of Present and Puffin within one second. Block
cipher designers have then a powerful tool which can be run several times to improve block cipher
components.

16

References

1. Kashif Ali and Howard M Heys. An Algorithm to Analyze Block Cipher Resistance to Linear and
Differential Cryptanalysis. In Proceedings of Newfoundland Electrical and Computer Engineering
Conference (NECEC 2006), 2006.

2. Kazumaro Aoki, Kunio Kobayashi, and Shiho Moriai. Best differential characteristic search of FEAL.
In Fast Software Encryption, pages 41–53. Springer, 1997.

3. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. Journal of CRYP-
TOLOGY, 4(1):3–72, 1991.

4. Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew JB
Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. PRESENT: An ultra-lightweight block cipher.
In Cryptographic Hardware and Embedded Systems-CHES 2007, pages 450–466. Springer, 2007.

5. Florent Chabaud and Serge Vaudenay. Links between differential and linear cryptanalysis. In
Advances in Cryptology—EUROCRYPT’94, pages 356–365. Springer, 1995.

6. Huiju Cheng, Howard M Heys, and Cheng Wang. Puffin: A novel compact block cipher targeted
to embedded digital systems. In Digital System Design Architectures, Methods and Tools, 2008.
DSD’08. 11th EUROMICRO Conference on, pages 383–390. IEEE, 2008.

7. Baudoin Collard, F-X Standaert, and J-J Quisquater. Improved and multiple linear cryptanalysis
of reduced round Serpent. In Information Security and Cryptology, pages 51–65. Springer, 2008.

8. Masayuki Kanda, Youichi Takashima, Tsutomu Matsumoto, Kazumaro Aoki, and Kazuo Ohta. A
strategy for constructing fast round functions with practical security against differential and linear
cryptanalysis. In Selected Areas in Cryptography, pages 264–279. Springer, 1999.

9. Lars R Knudsen and Matthew JB Robshaw. The block cipher companion. Springer, 2011.
10. Xuejia Lai, James L Massey, and Sean Murphy. Markov ciphers and differential cryptanalysis. In

Advances in Cryptology—EUROCRYPT’91, pages 17–38. Springer, 1991.
11. Gregor Leander. Small Scale Variants Of The Block Cipher PRESENT. IACR Cryptology ePrint

Archive, 2010:143, 2010.
12. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptol-

ogy—EUROCRYPT’93, pages 386–397. Springer, 1994.
13. Mitsuru Matsui. On correlation between the order of S-boxes and the strength of DES. In Advances

in Cryptology—EUROCRYPT’94, pages 366–375. Springer, 1995.
14. Kazuo Ohta, Shiho Moriai, and Kazumaro Aoki. Improving the search algorithm for the best linear

expression. In Advances in Cryptology—CRYPT0’95, pages 157–170. Springer, 1995.
15. Francois-Xavier Standaert, Gilles Piret, Gael Rouvroy, Jean-Jacques Quisquater, and Jean-Didier

Legat. ICEBERG: An involutional cipher efficient for block encryption in reconfigurable hardware.
In Fast Software Encryption, pages 279–298. Springer, 2004.

17

