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Abstract. We define the concept of and present provably secure con-
structions for Anonymous RAM (AnonRAM), a novel multi-user storage
primitive that offers strong privacy and integrity guarantees. AnonRAM
combines privacy features of anonymous communication and oblivious
RAM (ORAM) schemes, allowing it to protect, simultaneously, the pri-
vacy of content, access patterns and user’s identity, from curious servers
and from other (even adversarial) users. AnonRAM further protects in-
tegrity, i.e., it prevents malicious users from corrupting data of other
users. We present two secure AnonRAM schemes, differing in design
and time-complexity. The first scheme has simpler design; like efficient
ORAM schemes, its time-complexity is poly-logarithmic in the number of
cells (per user), however, it is linear in the number of users. The second
AnonRAM scheme reduces the overall complexity to poly-logarithmic
in the total number of cells (of all users), at the cost of requiring two
(non-colluding) servers.
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1 Introduction

The advent of cloud-based outsourcing services has been accompanied by a grow-
ing interest in security and privacy, striving to prevent exposure and abuse of
sensitive information by adversarial cloud service providers and users. This in
particular includes the tasks of data privacy, i.e., hiding users’ data from overly
curious entities such as the provider, as well as access privacy, i.e., hiding infor-
mation about data-access patterns such as which data element is being accessed
and how (read/write?). The underlying rationale is that exposure of data access
patterns may often lead to a deep exposure of what the user intends to do. An
extensive line of research has produced impressive results and tools for achieving
both data and access privacy. In particular oblivious RAM (ORAM) schemes,
first introduced by Goldreich and Ostrovsky [22], have been extensively inves-
tigated in the last few years, yielding a multitude of elegant and increasingly
efficient results [6, 15,19,20,24,26,27,29].

Another important privacy goal is to hide who is accessing the data, i.e.,
conceal the identity of the user, to ensure anonymity. This area spawned exten-



sive research, and multiple protocols and systems for anonymous communica-
tion [4, 5, 7, 8]. The Tor network [28] currently constitutes the most widely used
representative of these works.

We focus on the combination of these two goals: hiding content and access
patterns as offered by ORAM schemes, but also concealing the user identities as
offered by anonymous communication protocols. Experts in the relevant areas
may not be completely surprised to find that designing this primitive is quite
challenging. In particular, the privacy guarantees cannot be constructed by solely
combining both approaches: The näıve idea to achieve these privacy properties
simultaneously is to maintain separate ORAM data structures for each user, and
having users access the system using the anonymous communication protocol.
However, this construction does not hide the access patterns, since the server can
determine if the same data structure is accessed twice, and thereby trivially link
two accesses made by the same anonymous user. Instead of multiple ORAMs,
one could try to use a single ORAM as black-box with data of all users contained
in it. However, this does not work either, as inherently the users have to share
the same key, and the privacy properties immediately fail in presence of curious
adversaries. (See Section 3 for more details.) Supporting multiple, potentially
malicious (or even ‘just curious’) users, is significantly harder than supporting
multiple cooperating clients (e.g., devices of same user), as in [10,16,21,30].

Furthermore, when considering adversarial environment, and in particular,
malicious users, integrity, i.e., preventing one user from corrupting data of other
users, is also critical. Notice the (popular) ‘honest-but-curious’ model is easier
to justify for servers (e.g., running ORAM) than for clients; handling (also)
malicious client is very important. Note also that ensuring integrity is fairly
straightforward, when users can be identified securely; however, this conflicts
with the goals of anonymity, and even more, with the desire for oblivious access,
i.e., hiding even the pattern of access to data. As often happens in security, the
mechanisms for the different goals do not seem to nicely combine, resulting in a
rather challenging problem, to which we offer the first - but definitely not final -
pair of solutions, albeit with significant limitations and room for improvement.

Our Contributions. We define Anonymous RAM (AnonRAM) schemes, and
present two constructions that are provably secure in the random oracle model.
AnonRAM schemes support multiple users, each user owning multiple memory
cells. AnonRAM schemes simultaneously hide data content, access patterns and
the users’ identities, against honest-but-curious servers and against malicious
users of the same service, while ensuring that data can only be modified by the
legitimate owner.

The first scheme, called AnonRAMlin, realizes a conceptually simple trans-
formation that turns any secure single-user ORAM scheme into a secure Anon-
RAM scheme (that supports multiple users). The key idea here is to convert
every single-user ORAM cell to a multi-cell having a cell for each user, and to
employ re-randomizable encryption such that a user can hide her identity by
re-randomizing all other cells in a multi-cell while updating her own cell. The
drawback of AnonRAMlin, however, is that its complexity is linear in the number
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of users (although poly-logarithmic in the number of cells per users). This linear
complexity stems from the requirement that a user has to touch one cell of each
user when accessing her own cell.

The second scheme, called AnonRAMpolylog, reduces the overall complexity to
poly-logarithmic in the number of users. This comes at the cost of requiring two
non-colluding servers S and T. Server S maintains all user data in encrypted
form using a universal re-encryption scheme, thereby disallowing S and other
users to establish a mapping between a user and her data blocks. Essentially,
AnonRAMpolylog constitutes an extension of hierarchical ORAM designs, e.g., by
Goldreich-Ostrovski [12], where the reshuffle operation and mapping to ‘dummy’
blocks are performed by the dedicated server T. This prevents user deanonymiza-
tion by the server S or by other users. Furthermore, mappings to specific buckets
are achieved by means of a specific Oblivious PRF.

For the sake of exposition, we first describe simplified variants of both schemes
in the presence of honest-but-curious users. We subsequently show how to ex-
tend both constructions to handle malicious users as well. The extension mainly
involves adding an integrity element to the employed (universal) re-encryption,
such that any user can only re-encrypt data of other users, but not corrupt it.

Finally, we consider it an important contribution that we present a rigorous
model and definition for this challenging problem of AnonRAM, and show their
suitability by providing provable security protocol instantiations.

Related Work. Several multi-client ORAM solutions [10, 16, 21, 30] have been
proposed in the literature; however, these works do not protect privacy of a
client from malicious or ‘curious’ clients. Franz et al. [10] introduces the concept
of delegatable ORAM, where a database owner can delegate access rights to
other users and periodically perform reshuffling to protect the privacy of their
accesses. [16, 21] allow multiple clients to share a server-side ORAM structure,
but assume that all clients share the same symmetric key which none of them
is going to provide to the server. [30] deals with concurrent accesses of multiple
clients devices of the same user.

AnonRAM schemes avoid this strong non-collusion assumption between the
users and the storage server. In other words, we consider the problem of anony-
mously accessing the server by multiple users, where the server (cooperating
with some users) should not be able to learn which honest user accessed which
cell over the server. Notably, we achieve our stronger privacy guarantees against
a stronger adversary without requiring any communication among the users.

The only other multi-user ORAM scheme has been proposed by Zhang et
al. [18]. Their scheme uses a set of intermediate nodes to convert a user’s query to
an ORAM query to the server. Privacy of the scheme is, however, analyzed only
for individual non-anonymous user accesses and not for multi-user anonymous
access patterns. Furthermore, their scheme does not provide integrity protection
against malicious users. Moreover, their work lacks both definitions and proofs; as
the reader will see from our work, the definitions and proofs we found necessary
to claim security of our schemes are non-trivial.
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Outline. In Section 2, we introduce and define AnonRAM schemes. In Section 3
and Section 4, we present our two AnonRAM schemes. Section 5 summarizes our
findings.

2 AnonRAM Definitions

We consider a set ofN users U = {U1, . . . ,UN}, a set of η servers S = {S1, . . . ,Sη},
a set Σ of messages, and we let M denote the number of data cells available to
each user. All protocols are parametrized by the security parameter λ. Before
we define the class of AnonRAM schemes, we provide the definitions of access
requests and access patterns.

Definition 1 (Access Requests). An access request AR is a tuple (j, α,m) ∈
[1,M ]×{Read,Write}×Σ. Here j is called the (cell) index of AR, α the access
type, and m the input message.

Intuitively, an access request (j, α,m) will denote that m should be written into
cell j (if α = Write), or that the content of cell j should be read (if α = Read; in
this case m is ignored, and we often just write (j, α, ∗)).

Definition 2 (Access Patterns). An access pattern is a series of tuples (i, ARi)
where i ∈ [1, N ] is a user identifier and ARi is an access request.

For notational simplicity, we will write (i, j, α,m) instead of (i, (j, α,m)) for the
individual elements of access patterns.

We next define AnonRAM schemes. In this work, we consider sequential
schemes where one participant is active at any point in time.

Definition 3 (AnonRAM Schemes). An AnonRAM scheme is a tuple (Setup,
User,Server1, . . . ,Serverη) of η + 2 PPT algorithms, where:
• The initialization algorithm Setup maps a security parameter λ and an iden-

tifier id, to an initial state, where id ∈ {0, 1, . . . , η} identifies one of the servers
(for id > 0), or the user (for id = 0).
• The user algorithm User processes two kinds of inputs: (a) access requests

(from the user) and (b) pairs (l,m) where l ∈ [1, η] denotes a server and m a
message from server Sl. User maps the current state and input to a new state and
to either a response provided to the user or a pair (l,m) with l ∈ [1, η] denoting
a server and m being a message for Sl.
• The server algorithm Serverl for server Sl maps the current server state and

input (message from user or from another server), to a new server state, and a
message either to the user or to another server.

Adversarial Models and Protocol Execution. We consider two different
adversarial models: (i) honest-but-curious (HbC) adversaries that learn the state
of one server S∗ and of a subset U∗ of users, and (ii) malicious users (Mal Users)
adversaries that learn the state of one server (as before), and that additionally
control a subset U∗ of users. In both models, the adversary can additionally
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eavesdrop on all messages sent on the network, i.e., between users and servers,
and between two servers.

We now define the sequential execution Exec(AR,Adv, AP, ζ) of an Anon-
RAM scheme AR in the presence of an adversary Adv and a given access pattern
AP , assuming an adversarial model ζ ∈ {HbC,Mal Users}.

Definition 4 (Execution). Let AR be an AnonRAM scheme (Setup,User,
Server1, . . . ,Serverη), Adv be a PPT algorithm, ζ ∈ {HbC,Mal Users} and AP be
an access pattern. The execution Exec(AR,Adv, AP, ζ) is the following random-
ized process:

1. All parties are initialized using Setup, resulting in initial states σUi
for

each user Ui, and σSl
for each server Sl.

2. Adv selects a server S∗ and a strict subset U∗ ⊂ U .

3. Let (i, j, α,mi,j) be the first element of AP ; if AP is empty, terminate.

4. If Ui ∈ U∗ and ζ = Mal Users, then let (l,m) be the output of Adv on input
(i, j, α,mi,j). Otherwise, let (l,m) be the output of User on input (j, α,mi,j), with
state σUi

, and update σUi
accordingly.

5. Invoke Sl with (input) message m. The server Sl may call other servers
(possibly recursively) and finally produces an (output) message m′.

6. If Ui ∈ U∗ and ζ = Mal Users, provide the message m′ to Adv. Otherwise,
provide m′ to user Ui. Ui (Adv if Ui ∈ U∗ and ζ = Mal Users) may repeat sending
messages to any servers. Eventually, Ui (Adv) terminates.

7. Repeat the loop (from step 3) with the next element of AP (until empty).

Throughout the execution, the adversary learns the internal states of S∗ and
of all users in U∗, as well as all messages sent on the network.

A trace is the random variable defined by an execution, using uniformly-
random coin-tosses for all parties. The trace includes the sequence of messages
in the execution corresponding to access requests, and the final state of the ad-
versary. Let Θ(x) denote the trace of execution x.

Privacy and Integrity of AnonRAM schemes. To define privacy for Anon-
RAM schemes, we consider an additional PPT adversary D called the distin-
guisher. D outputs two arbitrary access patterns of the same finite length, which
differ only in inputs to unobserved users. We then randomly select and execute
one of these two patterns. The distinguisher’s goal is to identify which pattern
was used. Since these two accesses may differ in user, cell, operation or value, this
definition encompasses all relevant privacy properties in this setting, including
anonymity (identity privacy), confidentiality (value privacy), and obliviousness
(cell and operation privacy). We call an adversary Adv compliant with a pair
of access patterns (AP0, AP1) if Adv only outputs sets U∗ of users in Step 2) of
Exec(AR,Adv, AP0, ζ) and Exec(AR,Adv, AP1, ζ) such that AP0 and AP1 are
identical when restricted to users in U∗.

Definition 5 (Privacy of AnonRAM). An AnonRAM scheme AR preserves
privacy in adversarial model ζ ∈ {HbC,Mal Users}, if for every pair of (same
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finite length) access patterns (AP0, AP1) and for every pair of PPT algorithms
(Adv,D) s.t. Adv is compliant with (AP0, AP1), we have that∣∣∣∣Pr [b∗ = b : b∗ ← D (Θ (Exec(AR,Adv, APb, ζ)))]− 1

2

∣∣∣∣
is negligible in λ, where the probability is taken over uniform coin tosses by all
parties, and b←R {0, 1}.

Note that when all-but-one (i.e., N − 1) users are observed and ζ = HbC,
our privacy property corresponds to the standard ORAM access privacy defini-
tion [12]. ORAM is hence a special case of AnonRAM with a single user (N = 1).

AnonRAM should ensure integrity to prevent invalid executions caused by
parties deviating from the protocol. Informally, a trace is invalid if a value read
from a cell does not correspond to the most recently written value to the cell.

Definition 6 (Integrity of AnonRAM). Let ϑ be a trace of execution with
access pattern AP , and let AR = (j,Read, ∗) with (i, ARi) ∈ AP be a read
request for cell j of user Ui, returning a value x. Let AR′ = (j,Write, x′) be the
most recent previous write request to cell j of user Ui in AP , or ⊥ if there was
no such previous write request. If x 6= x′, we say that this read request is invalid.
If any read request in the trace is invalid, then the trace is invalid.

An AnonRAM scheme AR preserves integrity if there is negligible (in λ)
probability of invalid traces when the traces are constrained to the view of the
honest users (all Ui ∈ U in the HbC model, and all users Ui ∈ U/U∗ in the
Mal Users model), for any PPT adversary and any access pattern AP .

3 Linear-complexity AnonRAM

In this section, we present our first AnonRAM constructions and prove them
secure in the underlying model. For the sake of exposition, we start with a few
seemingly natural, but flawed approaches to construct AnonRAM schemes.

3.1 Seemingly Natural but Flawed Approaches

A natural first idea to design an AnonRAM scheme is to maintain all the M ·N
cells in encrypted form on the server and to only access them via an anonymous
channel such as Tor [28]. However, this approach fails to achieve AnonRAM
privacy, since the adversary can simply observe all memory accesses on the server
and thereby determine how often the same cell j of a user is accessed. One may
try to overcome this problem using a shared (M · N)-cell stateless ORAM [16]
containing M cells for each of N users, and assuming that every user executes
her ORAM requests via an anonymous channel. In this case, all users will have
to use the same private key in the symmetric encryption scheme employed in the
ORAM protocol to hide their cells from the server. However, this allows Eve,
an HbC user, to break privacy of honest users, by observing the values in cells
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(allocated to honest users) which she downloaded and decrypted as a part of her
legitimate ORAM requests.

Another natural design would be to use a separate ORAM for the M cells of
each user, and rely on anonymous access to hide user identities. This use would
hide the users’ individual access patterns, but the server can identify all accesses
by the same user and thereby violate the AnonRAM privacy requirement.

The AnonRAM schemes presented in this paper overcome such problems, by
having users re-randomize cells belonging to other users as well whenever own
cells are being accessed, in addition to encrypting the user’s own cells.

3.2 AnonRAMlin and its Security Against HbC Adversaries

We now present the AnonRAMlin construction and prove it secure in the HbC
adversarial model. AnonRAMlin uses an anonymous communication channel [28]
and the (single-user, single-server) Path ORAM [27], or other ORAM scheme
satisfying a property identified below.

In Path ORAM, the user’s cells are stored on the server RAM as a set of
encrypted data blocks such that each block consists of a single ciphertext, and
all blocks are encrypted with the same key known to the user’s ORAM client.
A block encrypts either a user’s cell, or auxiliary information used by the User
algorithm. To access a cell, the ORAM client reads (and decrypts) a fixed number
of blocks from the server, and writes encrypted values (cells or some special
messages) in a fixed number of blocks. The server’s duty is to execute these
user’s read and write requests.

AnonRAMlin employs N instances (one per user) of Path ORAM for M cells
each, while requiring a single server.5 To encrypt data as required in the ORAM
scheme, AnonRAMlin uses a semantically secure re-randomizable encryption (RE)
scheme (E,R,D) (e.g., ElGamal encryption), where E, R, and D are respectively
encryption, re-randomization, and decryption operations. The AnonRAMlin client
of user Ui, has access to her private key ski and to the public keys (pk1, . . . , pkN )
of all users. In AnonRAMlin, the ORAM scheme uses this RE scheme (E,R,D),
instead of the (symmetric) encryption scheme used in ‘regular’ Path ORAM.

Intuitively, an AnonRAMlin client internally runs an ORAM client and me-
diates its communication with the server. Whenever the ORAM client reads or
writes a specific block, the AnonRAMlin client performs corresponding read or
write operations for all users, without divulging the user identity to the server
at the network level as follows: Reading a block of another user can be trivially
achieved, since the block is encrypted for the owner’s key, but the contents are
not used (our goal is only to create indistinguishable accesses for all users). Writ-
ing a block belonging to other user’s ORAM must not corrupt the data inside
and is hence achieved by re-randomizing the blocks of other users.

The Setup and Server algorithms of AnonRAMlin, are simplyN instances of the
corresponding algorithm of the underlying ORAM scheme (e.g., Path ORAM).

5 AnonRAMlin can also use an ORAM scheme that uses multiple servers. In this case,
AnonRAMlin will use the same number of servers.
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upon access request (j, α,m) from user Ui :
Invoke the ORAM client Oc with access request (j, α,m).

upon read request from Oc for block j′ :
for k ∈ [1, N ] do Let B[j′, k]← Read block j′ of user Uk kept by the server.

Return B[j′, i] to Oc.

upon write request from Oc, for value (ciphertext) B in block j′ :
B[j′, i]← B
for k ∈ [1, N ]|k 6= i do B[j′, k]← Rk(B[j′, k])

for k ∈ [1, N ] do
Write block B[j′, k] to position j′ of user Uk and release it from memory.

upon Receiving a result res from Oc :
Return res to Ui.

Fig. 1. User algorithm of AnonRAMlin with access request (j, α,m) for user Ui.

Namely, the Setup initializes state for N copies of the ORAM (one per user),
and the Server receives a ‘user identifier’ i together with each request, and runs
the ORAM’s Server algorithm using the ith state over the request. The Server
algorithm for the AnonRAMlin scheme simply processes Read/Write requests sent
by the users as in the ORAM scheme, e.g. the server returns the content of the
requested block for Read requests, or overrides the content of the requested block
with the new value for Write requests.

We finally describe the User algorithm of AnonRAMlin using pseudocode in
Fig. 1 to increase readability. It relies on an oracle Oc for the ORAM client, and
an RE scheme (E,R,D). We write (Ei,Ri,Di) for the corresponding encryption,
re-encryption and decryption operations, using the corresponding keys for user
Ui. The pseudocode depicts which operations are performed for an individual
access request (j, α,m) of user Ui. Its execution starts with invoking user Ui’s
local ORAM client Oc with the access request (j, α,m), and ends with a Re-
turn message to Ui. The process involves multiple instances of Read and Write
requests from Oc, for specified blocks kept by the server. These requests to Read
and Write blocks kept by the server, should not be confused with access requests
(j, α,m), where α ∈ {Read,Write}, for ORAM cells.

We this far selected Path ORAM as a specific ORAM instantiation. However,
any other ORAM scheme is equally applicable, provided that it exhibits an
additional property: individual accesses have to be indistinguishable, i.e., the
adversary observing just one access request from an access pattern should not
be able to tell apart how many accesses the honest user performed so far. We call
this property indistinguishability of individual accesses, and it is trivially satisfied
by Path ORAM. Hierarchical ORAMs (e.g., [12, 16, 19, 20]), however, do not
achieve indistinguishability of individual accesses, as the runtime of individual
accesses depends on the number of accesses performed so far; in particular the
client has to reshuffle periodically a variable amount of data.
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Theorem 1. AnonRAMlin preserves access privacy in the adversarial model HbC,
when using a secure ORAM scheme O that satisfies indistinguishability of in-
dividual accesses, and a semantically secure re-randomizable encryption scheme
(E,R,D).

Proof. Assume to the contrary that some PPT HbC adversary D can efficiently
distinguish, with a non-negligible advantage, between a pair of access-patterns
AP = {(iu, ju, αu,mu)}, AP ′ = {(i′u, j′u, α′u,m′u)}u∈[1,len] of length len.

Let APv = {(i∗u, j∗u, α∗u,m∗u)}u∈[1,len] be a ‘hybrid’ access pattern, where
(i∗u, j

∗
u, α

∗
u,m

∗
u) = (iu, ju, αu,mu) for u ≤ v, and (i∗u, j

∗
u, α

∗
u,m

∗
u) = (i′u, j

′
u, α

′
u,m

′
u)

for u > v. In fact, let v be the smallest such value, where some adversary (say D)
can distinguish between APv−1 and APv, and such v > 0 exists by the standard
‘hybrid argument’ as AP and AP ′ differ at least in one access.

If iv = i′v (i.e., for the same user), the executions only differ in the ORAM
client Oc Read/Write blocks for Uiv ; however, this immediately contradicts the
privacy of the underlying ORAM scheme. Notice that a user does not decrypt
or modify the other users’ data during her accesses.

Therefore, assume iv 6= i′v. Since we expect our ORAM client Oc to sat-
isfy indistinguishability of individual accesses, the difference between these two
patterns are only between the encryption of the blocks output by Oc and the re-
encryption of the blocks received anonymously by the ORAM server. However,
ability to distinguish between these, contradicts the indistinguishability property
of the semantically secure re-randomizable encryption scheme (E,R,D). �

Let cS and cB denote the amortized costs of client-side storage and communi-
cation complexity of the underlying ORAM protocol. Then, the respective amor-
tized costs of AnonRAMlin are N ·cS and N ·cB . For example, using Path ORAM,
the client-side storage and communication complexity costs of AnonRAMlin be-
come O(N logM) and O(N log2M).

3.3 AnonRAMM
lin and its Security Against Malicious Users

When some users are malicious, we need to ensure that only a user knowing the
private key associated with a block can update the value inside the block, while
other users should only be able to re-randomize it. Leveraging the security of
AnonRAMlinto the adversarial model of malicious users, we require a semantically
secure encryption primitive such that a ciphertext C ′ can replace a ciphertext
C if C ′ is a re-randomization of C or if the encryptor knows the encryption key
for C. Whenever a block is written, the user attaches a zero-knowledge proof
showing either that the ciphertext is re-encryption of the previous ciphertext, or
that the user has the (secret) encryption key. The server verifies the proof before
updating the block in its RAM memory. This ensures indistinguishability of re-
encryption from new encryptions, while ensuring that one user cannot corrupt
or modify value of another user. We denote the resulting scheme as AnonRAMM

lin .
The required ZK proofs are standard. For the re-randomizable CPA-secure

ElGamal encryption scheme, this will involve a disjunction of ZK proof of knowl-
edge of discrete logarithm and ZK proof of equality of the discrete logarithm of
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two pairs of group elements. Following the formal notation from [17] and extend-
ing it for disjunction, the required proof is

PoK{xi|pki = gxi} ∨ P{∃r s.t. (C ′1, C
′
2) = (Cr1 , C

r
2)},

where PoK stands for proof of knowledge, g is a generator of a group of prime
order q, (pki, C = (C1, C2), C ′ = (C ′1, C

′
2)) are group elements, and (xi, r) are

elements in Zq.

Theorem 2. AnonRAMM
lin based on a secure ORAM scheme O that satisfies in-

distinguishability of individual accesses, CPA-secure public-key encryption scheme
(e.g., ElGamal), and a disjunction ZK proof defined above, preserves integrity
and privacy in the adversarial model Mal Users.

Proof Sketch. The integrity argument is simple: use of the disjunction ZK proof
ensures that the adversarial users cannot modify the cell of other honest users.
The adversarial users also cannot change the order of cells in a sequence of cells
as the server verifies correctness of one cell at a time. They can only re-randomize
the cells of the honest users.

The privacy properties are also preserved similarly to AnonRAMlin as the dis-
junctive nature of the included ZK proof does not allow the server to determine
which of N cells is modified by an honest user. While privacy of the accessed cell-
index as well as the access type is maintained by the employed ORAM scheme.

�

4 Polylogarithmic-complexity AnonRAM

The AnonRAMlin scheme exhibits acceptable performance for small number of
users, but linear overhead renders it prohibitively expensive as the number of
users increases. In this section, we present AnonRAMpolylog, an AnonRAM scheme
whose overhead is poly-logarithmic in the number of users.

AnonRAMpolylog is conceptually based on the hierarchical Goldreich-Ostrovsky
ORAM (GO-ORAM) construction [12], where a user periodically reshuffles her
cells maintained over a storage server S. To reshuffle together cells belonging to
multiple users, we introduce in AnonRAMpolylog an additional server, the so-called
tag server T. The tag server reshuffles data on the users’ behalf, without knowing
the data elements, and thereby maintains a user privacy from the storage server
S as well as from the other users. The tag server only requires constant-size stor-
age to perform this reshuffling, and we show that, similarly to the storage server,
it cannot violate (on its own or with colluding users) the privacy requirements
of AnonRAM schemes.6

In what follows, we first describe the employed cryptographic tools, and then
present the AnonRAMpolylog construction and its complexity and security analy-

sis, first for the honest-but-curious case, and after that its extension, AnonRAMM
polylog,

to cope with malicious users.

6 Adhering to our adversarial model from Section 2, we only consider the corruption
of a single server, and hence assume non-colluding servers S and T.
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4.1 Cryptographic Building Blocks

Universally Re-randomizable Encryption. A universally re-randomizable
encryption (UREnc) scheme [13, 25] allows to re-randomize given ciphertexts
without requiring access to the encryption key. We use the construction of Golle
et al. [13]: For a generator g of a multiplicative group Gq of prime order q and
a private/public key pair (xi, g

xi) for party i with xi ∈ Z∗q , the encryption C =
E∗i (m) of a message m is computed as an El-Gamal encryption of m together with
an El-Gamal encryption of the identity 1 ∈ Gq; i.e., C = (ga, gaxi ·m, gb, gbxi ·1)
for a, b ∈ Z∗q . The ciphertext C can be re-randomized, denoted R∗(C) by selecting

a′, b′ ←R Z∗q and outputting (ga · (gb)a′ , gaxi ·m · (gbxi)a
′
, (gb)b

′
, (gbxi)b

′
) as the

new ciphertext. Note that this scheme is also multiplicatively homomorphic.
We employ a distributed version of the UREnc scheme, where the private key

is shared between two servers such that both have to be involved in decryption.

(Partially Key-Homomorphic) Oblivious PRF. An oblivious pseudo-
random function (OPRF) [11, 17] enables a party holding an input tag µ to
obtain an output fs(µ) of a PRF fs(·) from another party holding the key s
without the latter party learning any information about the input tag µ.

We use the Jarecki-Liu OPRF construction [17] as our starting point. Here,
the underlying PRF fs(·) is a variant of the Dodis-Yampolskiy PRF construc-
tion [9] such that fs(µ) := g1/(s+µ) is defined over a composite-order group of
order n = p1p2 for safe primes p1 and p2. This function constitutes a PRF if
factoring safe RSA moduli is hard and the Decisional q-Diffie-Hellman Inversion
assumption holds on a suitable group family Gn [17].

To securely realize pre-tag randomization in our Reshuffle algorithm (ex-
plained later), we propose a modification of the Jarecki-Liu OPRF where a sec-
ond key ŝ is used to define a new PRF fs,ŝ(µ) := gŝ/(s+µ). We call such a PRF
partially key-homomorphic as (fs,ŝ(µ))δ = fs,(ŝ·δ)(µ) holds for it. For unlinkabil-
ity of PRF values of the same input µ with updated δ, we expect the Composite
DDH assumption 7 [3] to hold in Gn. We denote our OPRF construction as

OPRFA,Bs,ŝ (µ), where A denotes a party with input µ, and B denotes a server
possessing the keys s and ŝ. Our OPRF protocol makes only minor changes to
the Jarecki-Liu OPRF, and we postpone its full description and security analysis
to Appendix A.

Additively Homomorphic Encryption. For appropriately computing on our
OPRF outputs, we need a suitable additively homomorphic encryption scheme
whose decryption is shared between our two servers. Similarly to our OPRF
construction, we employ a semantically-secure variant [17] of the Camenisch-
Shoup encryption (CSEnc) [2] scheme. With its roots in Paillier encryption [23],
the CSEnc scheme is secure in the common reference-string model under the
composite decisional residuosity assumption [23]. The scheme is defined in the
safe RSA moduli (n = p1p2) setting with plaintext messages belonging to Zn.
Here, an encryption E+

pk(m) denotes a message m ∈ Zn encrypted under a public

7 Composite Decisional Diffie-Hellman assumption [3] is a variant of the standard
DDH assumption [1], but defined over a composite order group.
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key pk = gx, where g is a generator of group Gn of size n, and the private key x
belongs to Z∗n/4. CSEnc is an additively homomorphic encryption scheme such

that E+
pk(m)·E+

pk(m
′) = E+

pk(m+m′) for any m,m′ ∈ Zn, and E+
pk(m)δ = E+

pk(m·δ)
for any δ ∈ Z∗n. This scheme moreover allows shared decryption; i.e., given
public/private keys pairs (pkA, skA) and (pkB, skB) of parties A and B and the
joint public key pk = pkA ·pkB, parties A and B can jointly decrypt a ciphertext
E+
pk(m) for a receiver using their private keys skA and skB. In our construction,

given a ciphertext encrypted under the joint public key of servers S and T, they
jointly decrypt the ciphertext such that the plaintext message is available to T.

Oblivious Sort. In Oblivious Sort (OSort), one party (in our case, S) holds an
encrypted data array, and the other party (T) operates on the data array, such
that the data array becomes sorted according to some comparison criteria, and S
learns nothing about the array (therefore, the name “oblivious” sort). OSort can
be instantiated by the recently introduced randomized ShellSort algorithm [14],
which runs in O(z log(z)) for z elements.

4.2 AnonRAMpolylog Data Structure

AnonRAMpolylog caters N independent users (U1, . . . , UN ) with their M ·N cells
(i.e., M cells per user) using a storage server S and a tag server T. Similarly to
other hierarchical schemes [12, 19, 20, 24], blocks are organized in L = dlog(M ·
N)e + 1 levels, where each level ` ∈ [1, L] contents 2` buckets. Each bucket
contains β := dcβ log(M ·N)e blocks, where cβ is a (small) constant.

Similarly to GO-ORAM, during each access, the user reads a pseudo-randomly
chosen (entire) bucket from each level such that server S cannot learn anything
by observing the bucket access patterns. AnonRAMpolylog adopts a recent im-
provement to GO-ORAM proposed in [19, 20, 24] to avoid duplicate user blocks
in the server-side (RAM) storage at any point in time. To achieve this, on every
access, the user has to write a ‘dummy’ block into the location where it finds
the data such that S cannot distinguish between the added ‘dummy’ block and
the ‘real’ data block. These user-added dummy blocks are periodically removed
to avoid RAM memory expansion, and the rest of the blocks are periodically
reshuffled to allow users to access the same cell multiple times.

In existing single-user single-server GO-ORAM designs [12,19,24], this reshuf-
fling is performed by the user. In AnonRAMpolylog, reshuffling operations involve
blocks of different users, and it cannot be performed by one or more users with-
out interacting with all other users. As we want to avoid interaction among the
users, reshuffling in AnonRAMpolylog is jointly performed by two non-colluding
servers (the storage-server S and the tag-server T) without exposing a user’s
data or access pattern to either server.

Blocks Types. Each block in AnonRAMpolylog consists of two parts: a CSEnc-
encrypted OPRF output called pre-tag part and a UREnc-encrypted value part.
We consider three types of blocks: real, empty, and dummy blocks.

A real block is of the form 〈E+
TS(θi),E

∗
Ui

(j,mi,j)〉. Here, the value part con-

tains the jth cell of user Ui with value mi,j encrypted with UREnc for Ui, while
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the pre-tag part contains a pre-tag θi computed using OPRF for some secret
input of Ui and encrypted using CSEnc for a joint public key of T and S. The
pre-tag θi is computed by Ui with help from the storage server S using OPRF,
and it is used to map the block to a particular bucket in the given level. Given a
pre-tag θ, for a level ` ∈ [1, L], the bucket index (or tag) is computed by applying
a random oracle hash function, h` : {0, 1}∗ → Z2` . The mapping changes after
2` accesses, which we refer to as an epoch.

Empty blocks are padding blocks that are used to form buckets of the re-
quired size β on the storage server S. An empty block is of the form 〈E+

TS(0),
E∗TS(“empty”)〉, where “empty” is a constant in the UREnc message space. An
empty block will be encrypted similarly to other types of blocks to ensure the
privacy against the storage server S, and the server should not be able to deter-
mine whether a user fetched an empty block or a real block. The first part of
empty block is an encryption of unity 0 as it allows the tag server T to determine
if a block is empty during the reshuffle.

Finally, similarly to most ORAM algorithms, we use dummy blocks to hide lo-
cations of the real blocks. Once a real block with a specific index is found at some
level, it is moved to a new bucket at the first level and is replaced with a dummy
block in its old location. A dummy block is of the form 〈E+

TS(θD),E∗TS(“dummy”)〉,
where the pre-tag θD is computed using OPRF on the number (t) of accesses made
by the users so far and a secret input µD known only to server T, and “dummy”
is a constant in the UREnc message space.

Note that different blocks are completely indistinguishable to non-colluding
servers S and T individually. Nevertheless, during the reshuffle operations, when
necessary, with help from server S, server T can determine type of a block.

4.3 AnonRAMpolylog Protocol Overview

Initialization. We need to initialize UREnc, CSEnc, and OPRF. For the secu-
rity parameter λ, we choose a multiplicative group Gq of an appropriate prime
order q for UREnc, and a multiplicative group Gn of order equal to an appro-
priate safe RSA modulus n for CSEnc and OPRF. Let g and g be generators of
groups Gq and Gn respectively.

Given this setup, every user generates her UREnc key from Z∗q . The two
servers select their individual shared private keys for both UREnc and CSEnc,
and publish the corresponding combined public key for CSEnc; we do not need
UREnc public key for two servers. We represent these encryptions as follows:
E∗Ui

(·) represents a UREnc encryption for user Ui; E∗TS(·) and E+
TS(·) respectively

represent shared UREnc and CSEnc encryptions for the servers S and T. The
servers make an encrypted empty block E∗TS(“empty”) and an encrypted dummy
block E∗TS(“dummy”) public to all users.

Similarly to all existing hierarchical ORAM constructions, all levels in the
AnonRAMpolylog data structure on S are initially empty. In particular, the com-
plete first level is filled up with empty blocks, while the rest of the levels are
not yet allocated. The users write M ·N cells initialized to some default value,
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one by one, at the first level such that at the end of the initialization procedure,
M ·N users’ cells will be stored at level L and the remaining levels will be empty
(w.l.o.g. we assume that M ·N is power of 2). Let t denote the access counter,
which is made available publicly by the servers. Each level ` has an epoch counter
ξ(t, `) that increments after every 2`−1 accesses. In other words, for level ` and
t accesses, the epoch counter is ξ(t, `) = bt/2`−1c.

Recall that our OPRF employs two keys. S generates the first (and fixed)
OPRF key s←R Z∗n, and then a series of second OPRF keys ŝ[`, ξ(t, `)]←R Z∗n,
for each level ` ∈ [1, L] and the current access t. A user Ui generates indepen-
dently a secret PRF input µi ∈ Zn, and computes a pre-tag θ for her block j
using µi by performing OPRF with S. Similarly, the tag server T generates a
secret input µD for dummy blocks. To tag blocks, the construction uses a hash
function family {h`} domain [0, 2` − 1], for each level ` ∈ [1, L]. In particular,
a tag (or bucket index) for a pre-tag θ is computed as h`(ξ(t, `)||θ), where ||
represents string concatenation.

Protocol Flow. Similarly to our constructions in Section 3, users have to
communicate with the servers via anonymous channels. To access a cell j during
the tth access, user Ui first computes the associated pre-tags for all levels θi using
OPRF with S on her secret inputs µi and j. She also obtains θD pre-tags from
server T for all levels for the current value of access counter t. Here, T computes
pre-tags for dummy blocks by interacting with S and sends those to the users
as the users cannot locally compute them. These pseudorandom pre-tag values
depend on the level and the current epoch through the PRF keys used by S.
Due to the oblivious nature of OPRF and secret inputs µi for Ui and µD for T,
server S does not learn the pre-tag values.

Once pre-tags are computed, the user maps each of those to a bucket index
(or tag) in their level ` using h`. Now, she starts searching for her cell j from
level 1 using tags computed using a pre-tag θi. Similarly to other hierarchical
schemes, after obtaining her cell, she searches for the rest of the levels with
tags computed using θD values. The updated cell j is added back to the level 1.
During this process, a pre-tag θ associated with the user’s cell changes to another
value θ′ indistinguishable from random. Fig. 2 shows the main sub-flow of User
algorithm executed by Ui in cooperation with servers S and T. In User flow, this
sub-flow is repeated once for each level. Finally, at the end of User, the user
computes a new pre-tag for possibly updated cell j, and computes and stores a
block with them at the first level.

Although dummy pre-tags and tags are computed by and known to T, it
cannot learn a tag employed by a user while requesting blocks from S, as com-
munication between the user and server S is encrypted. T cannot learn this
information based on the content of blocks of specific tags retrieved by observed
users, since S re-randomizes blocks before sending them to users.

The main task of T is to reshuffle the blocks without involving the users. In
the Reshuffle protocol, while reshuffling levels 1 to ` into level ` + 1, server T
copies, re-randomizes or changes blocks from levels 1 to `, and then sorts them
using oblivious-sorting (OSort) such that the users can obtain their required cells
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Fig. 2. Flow of User algorithm in AnonRAMpolylog for user Ui, cell j, and level `: 1)
Ui asks the tag server T for a dummy pre-tag. 2) T runs an OPRF protocol with the
storage server S, such that T learns the dummy pre-tag, and S learns nothing. 3) T
sends the dummy pre-tag to Ui. 4) Ui runs OPRF with S to learn a pre-tag for her cell
j obliviously. 5) Depending on whether cell j is found in the previous levels or not,
Ui selects one of the two pre-tags to compute a tag and sends the tag to S. 6) S re-
randomizes and sends the block(s) associated with the user’s tag. 7) Ui re-randomizes
or updates the block(s), and possibly learns the value of cell j. If ` = 1, steps 4) and
5) are skipped, and in step 6) S sends all blocks from that level.

over level `+ 1 by procuring the appropriate pre-tag values from server S. This
step requires server S helping server T to decrypt randomized version of pre-tags
in blocks. Here, for every second access, T performs reshuffle of level 1 into level 2
on S, to empty level 1. For every fourth access, all the real blocks at levels 1
and 2 will be moved to level 3, and so on.

The crucial property is that, while reshuffling, server T should not learn
any information about user’s data from pre-tags. To prevent T from identifying
users’ cells by pre-tags, S proactively shuffles all blocks that T will access during
Reshuffle and updates the pre-tags associated with the blocks. Here, S utilizes
homomorphic properties of OPRF: in particular, for some pre-tag θ = fs,ŝ(µ)
for server S’s OPRF keys s, ŝ, the server computes θδ = fs,(ŝ·δ)(µ) for some
random δ. Although pre-tags in the blocks are stored in the encrypted form and
cannot be decrypted by S alone, the homomorphic properties of CSEnc allow
S to apply the aforementioned trick to ciphertexts without knowing pre-tags in
plain. Finally, S partially decrypts the pre-tags of the blocks that have to be
reshuffled by T and moves these blocks to a temporary array.

After the pre-processing by server S, server T decrypts pre-tags of the blocks
and reshuffles non-empty blocks to arrange them into buckets based on pre-tags.
This process is essentially the same as the Oblivious-Hash step in GO-ORAM [12]
except for de-duplication of blocks [24]. Specifically, while reshuffling blocks from
levels 1 to ` into level ` + 1, T first adds 2` forward dummy blocks that can
potentially be accessed by a user in subsequent accesses. It then assigns tags
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to non-empty blocks using hash function h`+1 and ensures that no tag gets
assigned to more than β blocks. Finally, T pads the temporary array with the
tagged empty blocks such that exactly β blocks have the same tag, replaces
forward dummy blocks with empty ones, and moves all these blocks to level
` + 1 on server S. Here, T cannot link the pre-tags seen in a current Reshuffle
execution to those observed during previous reshuffles as the value δ chosen by
S is unknown to T.

4.4 User Algorithm

In the User algorithm, a user searches in all levels for a block containing her cell
j. Once the block is found, it is moved to a new location at the first level after
a possible update (in case of Write operation), and a dummy block is instead
added to the old location.

User algorithm for user Ui, on input (j, α,m) consists of the following steps:
1. Allocate local space to hold a single encrypted block value res and initial-

ize it to E∗TS(“dummy”). Set boolean variable found to false.

2. Receive from T the pre-tag θD := OPRFT,S
ŝ[1,ξ(t,1)](µD + t) computed by T

by performing OPRF with S. Read all blocks at level 1. Let B denote a current
block at level 1, re-randomized and sent by S to Ui. Parse block B into its two
components (B1, B2), where the first part is a CSEnc ciphertext and the second
part is a UREnc ciphertext. User Ui deciphers B2 using her UREnc private key.
If block with cell index j is found, then the user sets found to true, copies
B2 to res, and replaces B with a dummy block 〈E+

TS(θD),R∗(E∗TS(“dummy”))〉.
Otherwise, Ui replaces the block B with its re-randomized version.

3. For each level ` from 2 to L:
(a) Compute a pre-tag θi ← OPRFUi,S

ŝ[`,ξ(t,`)](µi + j) by interacting with S, and

receive a pre-tag θD ← OPRFT,S
ŝ[`,ξ(t,`)](µD+t) from T. If found, then compute

tag τ := h`(ξ(t, `)||θi), else τ := h`(ξ(t, `)||θD).
(b) Read all blocks of bucket τ at level `. Let B denote a current block of

bucket τ at level `, re-randomized and sent by S to Ui. If B is Ui’s real block
with index j, the user sets found to true, copies the value of B to res, and
replaces B with a dummy block 〈E+

TS(θD),R∗(E∗TS(“dummy”))〉. Otherwise,
i.e. if B is not Ui’s real block with index j, then Ui replaces block B with a
re-randomized version of B.
4. If α = Write, update res to the new value E∗Ui

(m).

5. Re-randomize and send 〈E+
TS(θi), res〉 to S, where θi := OPRFUi,S

ŝ[1,ξ(t,`)](µi+

j). Server S writes the block to the first available empty slot at level 1.
6. If α = Read, return res.

4.5 Reshuffle

Reshuffle of every level ` into a higher level, is performed every 2` accesses,
when the number of non-empty blocks (real or dummy) at level ` reaches 2`. We
reshuffle all blocks, from levels 1 to ` into level `+1, and there are no duplicates.
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Recall that after User, the number of non-empty blocks at the first level
increases by 1. After two accesses, all blocks from the first level will be reshuffled
into the second level. After two more accesses, all blocks from first level should
be reshuffled into the second level. This event triggers the reshuffle of all blocks
from the first two levels into third level. After this point, there will be four
non-empty blocks at level 3, and levels 1 and 2 will be empty.

For the current value of t, let `m := max{` > 0 s.t. 2`|t}. Then, before the
reshuffle is performed, level 1 has two non-empty blocks, and each level ` ∈ [2, `m]
has 2`−1 non-empty blocks. As we show in Lemma 2 later, level `m+ 1 is empty.
Hence, the Reshuffle procedure takes all elements from levels 1 up to `m and
moves them into level `m + 1. The total number of non-empty blocks in levels
1 to `m is 2 +

∑`m
`=2 2`−1 = 2`m , so 2`m real or dummy blocks will be added

into level `m + 1. The array is sparse; there are (2`m+1 − 2)β blocks at levels 1
to `m including empty ones, and among them only 2`m dummy or real ones. A
Reshuffle protocol between S and T requires two operations performed by T on
data stored at S: Scan and OSort.

A generic Reshuffle algorithm for levels 1 up to `m into level `m + 1 is given
below; steps 1-3 are performed by S, and remaining steps 4-13 by T:

1. S allocates space for a temporary array A to hold 2`m+2 · β blocks.

2. For each level ` from 1 to `m:

(a) S moves all 2` · β blocks from level ` into a temporary array A′, and fills the
level ` with empty blocks. Each new empty block is just a re-randomization
of the public empty block E∗TS(“empty”).

(b) Let C denote the encrypted pre-tag of some block in A′, and C = E+
TS (

θŝ[`,ξ(t,`)−1]
)
, where θŝ denotes the value of PRF fs,ŝ(µ) for some input µ ∈

Zn. For each block in A′, S replaces C with C ′ ← C ŝ[`+1,ξ(t,`+1)]/ŝ[`,ξ(t,`)−1].
Thanks to the properties f and homomorphic properties of CSEnc, C ′ =
E+
TS

(
θŝ[`,ξ(t,`+1)]

)
.

(c) S moves all blocks from array A′ to array A.

3. S pads A with empty blocks and partially decrypts pre-tags of all blocks.
Finally, S permutes A.

4. Decrypting pre-tags: Decrypt pre-tags using partial decryption of S and
attach pre-tags to the blocks using (fast) local encryption scheme.

5. Adding forward dummies: Add 2`m dummy blocks 〈E+
TS(θ0),E∗TS(“dummy”)〉,

. . . , 〈E+
TS(θ2`m−1), E∗TS(“dummy”)〉, where T computes pre-tags in interaction

with S as θk := OPRFT,S
ŝ[`m,ξ(t+k,`m+1)]( µD + (t + k)), and for k ∈ [0, 2`m − 1].

Array A now contains 2`m+1 non-empty blocks. Scan A and add temporary en-
cryption for flag to the blocks: value 1 to the forward dummy blocks, otherwise
value 0.

6. Mapping to buckets: Scan A and use hash function h`m+1 to assign tags to
non-empty blocks. Since there are no duplicates, each non-empty block has (with
overwhelming probability) a unique input to the hash function. Specifically, T
attaches to a block the tag h`+1(ξ(t, `m + 1)||θ), where θ denotes the pre-tag of
that block.
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7. Obliviously-sort A, using the OSort protocol, according to the following
criteria: (a) non-empty blocks before empty ones, (b) lower tags first.

8. Checking if there is no bucket overflow : Scan A and check that no single
tag was given to more than β blocks. If there is such a tag, this is considered as
overflow. An overflow can happen only with low probability; in this case, choose
another hash-family h`+1, and go to step 6.

9. Scan A and assign tags to 2`m+1β untagged empty blocks, one tag per β
blocks. This steps ensures that each tag 0, . . . , 2`m+1 − 1 is represented by at
least β blocks.

10. OSort A according to the following criteria: (a) tagged blocks before
untagged, (b) lower tags first, (c) non-empty blocks before empty ones (among
blocks with the same tag).

11. Scan A and make sure that exactly β blocks have the same tag, erasing
excessive blocks. Note that all excessive blocks are empty.

12. Prepare buckets for level (`m + 1): OSort A according to the following
criteria: (a) tagged blocks before untagged, (b) lower tags first.

13. Scan A to replace the dummy blocks introduced in Step 5 with empty
ones; these blocks have the value of encrypted flag 1. Scan A to erase tags,
temporary encryptions of pre-tags (attached to the blocks in Step 4), and flags
for forward dummy blocks. Move the 2`m+1β prefix of A into level `m + 1, one
by one in the same order as the blocks appear in A.

The result of Reshuffle is 2`m+1β blocks is stored at level `m + 1. The first β
blocks have tag 0, next β blocks tag 1, etc. Since the storage at server S organizes
in buckets of size β, this layout corresponds to putting β blocks with same tag
to one bucket.

Reshuffle algorithm ensures, using forward dummy blocks, that buckets do
not overflow in the follow-up accesses made by users until the next reshuffle.
Specifically, there are no buckets accessed more than β times at some level `
within one epoch. Note that if instead of accessing dummy blocks, a user chose
random buckets, this could lead to a small, but not negligible probability of
distinguishing specific access patterns.

Last Reshuffle. After reshuffle into level L+ 1, M ·N real and M ·N dummy
blocks are located at that level. T and S eliminate dummy blocks by jointly
decrypting the block value: if a block is dummy, the decryption succeeds. Finally,
M ·N real blocks from level L+ 1 are reshuffled into level L, thus achieving the
state after the initial setup.

4.6 Complexity and Security Analysis

Computational and communication complexity of User is O(log2(M ·N)) since
there are L = log(M ·N) levels, and for each level a user performs β = O(log(M ·
N)) encryptions, decryptions, and OPRF evaluations. Each of these operations
requires O(1) exponentiations.

Computational and communication complexity of Reshuffle depends on pa-
rameter t. Consider the state after Setup, and the state after M ·N subsequent
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accesses. They are identical, as all the real blocks are located at level L. Hence it
suffices to analyze the aforementioned interval. Let ρ(`) denote the complexity of
Reshuffle(`) denoted the reshuffle from levels 1 to ` into level `+1. In Reshuffle(`),
the number of blocks involved is 2`+1β, hence ρ(`) = O(2`+1 ·β · log(2`+1 ·β)) due
to the cost of OSort. Then, within M ·N accesses, there is one Reshuffle(L), none
of Reshuffle(L− 1) (since level L initially already contains M ·N elements), two
Reshuffle(L−2), four Reshuffle(L−3), etc. Thus, the total complexity of all reshuf-

fles made within M ·N accesses is (
∑L−2
`=1 2L−2−` · ρ(`)) + ρ(L) = (

∑L−2
`=1 2`−1 ·

O(2`+1 ·β · log(2`+1 ·β)))+O(2L+1 ·β · log(2L+1 ·β)) = O(β ·
∑L−2
`=1 22` · log(2`+1))

= O(β ·2L ·L·logL) = O(M ·N ·log2(M ·N)·log log(M ·N)). Hence, the amortized
cost of Reshuffle is Õ(log2(M ·N) · log log(M ·N)).

Theorem 3. AnonRAMpolylog preserves access privacy against HbC adversaries
in the random oracle model, when instantiated with semantically secure univer-
sally re-randomizable encryption (UREnc) and additively homomorphic encryp-
tion schemes, and a secure (partially key-homomorphic) oblivious PRF scheme
for appropriate compatible domains.

The proof of Theorem 3 and subsequent proofs are postponed to the ap-
pendix.

4.7 AnonRAMM
polylog Secure Against Malicious Users

For AnonRAMpolylog, we need the users to satisfy some more conditions to avoid
any tampering by the malicious users. Integrity and privacy of an honest user
Ui can be achieved if a malicious user can neither change existing real entries of
other users, nor introduce new real blocks encrypted using Ui’s key. We present a
modification of AnonRAMpolylog (AnonRAMM

polylog) secure against malicious users.

Without loss of generality and observing that blocks are written to the first
level in a pre-defined manner, we may assume that User for tuple (i, j, α,m)
parametrized with t does the following:

1. User Ui reads (t mod 2) blocks at level 1, and β blocks at each level ` ∈ [2, L].
2. Among all these blocks there is at least one block belonging to Ui, and

exactly one block matches the target index j.
3. User Ui replaces one of the blocks that belongs to her, with the dummy

block.
4. The replaced above real block is moved to a new pre-defined location at

level 1 (replacing an empty block).

It is important to enforce both 3) and 4), since otherwise a malicious user
could introduce a new real block of an unobserved user, thus violating integrity
of honest users. We elaborate on appropriate zero-knowledge proofs for UREnc
and CSEnc.

Recall that ZK proof system required in AnonRAMM
lin for a pair of old and

new ciphertexts, ensures that the new ciphertext is either a re-randomization
of the old ciphertext, or the user knows the associated with the old ciphertext

19



secret key. Re-randomization of ciphertext can be split into two parts: cipher-
texts are encrypted under the same key, and encoded messages are the same. In
AnonRAMM

polylog, to achieve integrity we require also the former component, i.e.
proof that two ciphertexts are encrypted under the same key.

Summarizing, we have the following types of proof systems w.r.t. a single
ciphertext C = (C1, . . . , C4), or relations between two ciphertexts C and C ′:
– the user knows the decryption key of UREnc ciphertext C; it requires ZK

proof of knowledge of discrete logarithm PoK{xi|C4 = Cxi
3 }.

– ciphertext C ′ is encrypted under the same key as ciphertext C; the required
proof is ZK proof of equality of the discrete logarithm of two pairs of group
elements P{∃r s.t. (C ′3, C

′
4) = (Cr3 , C

r
4)}.

– ciphertext C ′ is a re-randomization of ciphertext C; the required proof is
conjunction of two ZK proofs of equality of the discrete logarithm of two pairs
of group elements if C is UREnc ciphertext, or just one such ZK proof if C is
CSEnc ciphertext (in this case C = (C1, C2)).
We refer to Appendix C for the detailed description of necessary changes in

AnonRAMpolylog in order to obtain AnonRAMM
polylog secure against malicious users.

Theorem 4. AnonRAMM
polylog in the random oracle model, when instantiated

with semantically secure universally re-randomizable encryption (UREnc) and
additively homomorphic encryption schemes, a secure (partially key-homomorphic)
oblivious PRF scheme for appropriate compatible domains, and augmented with
ZK proof system defined above, preserves integrity and privacy in the adversarial
model Mal Users.

5 Conclusion

We have defined the concept of anonymous RAM (AnonRAM), and presented
provably secure constructions. AnonRAM simultaneously provides privacy of
content, access patterns and the user identities, while additionally ensuring the
integrity of the user’s data. It hence constitutes a natural extension of the concept
of oblivious RAM (ORAM) to a domain with multiple, mutually distrusting
users. Our first construction exhibits an access complexity linear in the number
of users, while the second one improves the complexity to an amortized access
cost that is polylogarithmic in the total number of cells of all users, at the
cost of requiring two non-colluding servers. Both constructions have a simpler
version which assumes honest-but-curious users, but also a version secure against
malicious users. Many open challenges remain, in particular, polylogarithmic
access complexity using a single server.
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A (Partially Key-Homomorphic) Oblivious PRF

We next present the oblivious PRF (OPRF) construction, based on [17], and
mentioned in Section 4.1.

Definition 7 (Oblivious PRF—OPRF [11]). A 2-party protocol π is an
OPRF scheme if there exists some PRF family fs such that π privately realizes
the following functionality: Input: Client holds an evaluation point µ; Server S
holds a key s. Output: Client outputs fs(µ); Server outputs nothing.

This can be denoted as a secure computation protocol for functionality FOPRF :
(s, µ)→ (⊥, fs(µ)).

Our construction is based on the Jarecki-Liu OPRF [17] and presumes a
malicious adversary, but a simpler version without zero-knowledge proof systems
is suitable against an HbC adversary.

Server S (holder of OPRF keys) and user U (client of OPRF) have public
keys pkS, pkU and corresponding private keys skS, skU. The joint public key is

pk = pkS · pkU. We denote Cm = E+
pk(m), C

(S)
m = E+

pkS
(m), and C

(U)
m = E+

pkU
(m).

K+ denotes the key generation algorithm of the encryption scheme, D+ the de-

cryption algorithm. Here, decryption of Cm using skU gives C
(S)
m , and decryption

of Cm using skS gives C
(U)
m . We need the encryption scheme to satisfy addi-

tive homomorphism, verifiable encryption, and verifiable decryption properties
as defined in [17, Sec. 2.2]. Encryption scheme satisfying these properties can
be instantiated with CSEnc from Section 4.1, accompanied with suitable zero-
knowledge proof systems, as specified in [17].

Theorem 5. Assuming hardness of factoring of safe RSA moduli, a semanti-
cally secure encryption scheme on Zn which satisfies properties listed above and
assuming that each proof (of knowledge) system in Fig. 3 is zero-knowledge and
simulation-sound, the protocol in Fig. 3 is a secure computation protocol for
functionality FOPRF.
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Proof. Our proof is similar to the proof of the original OPRF [17].

Constructing an ideal-world server SIMS from a malicious real server S∗: SIMS

interacts with S∗ and FOPRF, and does the following:

– If S∗ succeeds in the proof π1, then SIMS runs the extraction algorithm for π1
with S∗ to extract s, ŝ, s.t. pk1 = gs, pk2 = gŝ.

– SIMS simulates the real-world user U as follows: 1. (pkU, skU)← K+. 2. r ←R

Z∗n, C
(U)
r ← E+

pkU
(r). 3. a ←R Z∗n, C

(S)
a ← E+

pkS
(a). 4. C

(S)
a ← E+

pkS
(a). 5. Send

(pkU, C
(U)
r , C

(S)
a ) and simulate the proof π2.

– If the proof π3 verifies, SIMS sends s, ŝ to FOPRF. On SIMS’s inputs (s, ŝ) and
ideal world user Ū’s input µ, FOPRF outputs fs,ŝ(µ) to Ū.

Let D be a distinguisher that controls the server S∗, chooses the input of
the user U, and also observes the output of U. We argue that D’s view in the
real world (S∗’s view + U’s output) and its view in the ideal world (S∗’s view +
ideal user Ū’s output) are indistinguishable. To show this, we introduce a series
of games G0, . . . ,G6 where G0 is the real world experiment (S∗ interacting with
the real user U), G6 is the ideal world experiment (S∗ interacting with SIMS),
and arguing that the views in Gi and Gi+1 are indistinguishable.

G1: Same as G0 except that instead of proving π2, U simulates it. By zero-
knowledge of the π2, D’s views in G0 and G1 are indistinguishable.

G2: Same as G1 except that if S∗ succeeds in the proof π1, G2 runs the
extractor algorithm for π1 with S∗ to extract s, ŝ. By simulation soundness of
π1, G2 extracts s, ŝ with non-negligible probability.

Common input: (n, g, pk1, pk2). S’s private input: s, ŝ, s.t. gs = pk1, gŝ = pk2.
U’s private input: µ.

Step 1 (S). (pkS, skS)← K+, C
(S)
s ← E+

pkS
(s),

π1 ← PoK{s, ŝ|C(S)
k ∈ E+

pkS
(s), pk1 = gs, pk2 = gŝ}. Send

(
pkS, C

(S)
s

)
, π1 to U.

Step 2 (U). If π1 verifies, then (pkU, skU)← K+, r ←R Z∗n, C
(U)
r ← E+

pkU
(r),

C
(S)
a ←

(
C

(S)
s · E+

pkS
(µ)
)r

, π2←PoK
{
µ|∃r, s.t. C(U)

r ∈E+
pkU

(r), C
(S)
a ∈

(
C

(S)
s · E+

pkS
(µ)
)r }

.

Send
(
pkU, C

(U)
r , C

(S)
a , π2

)
to S.

Step 3 (S). If π2 verifies, then a← D+
skS

(C
(S)
a ). If gcd(n, a) 6= 1, send ⊥ to U and abort.

b← ŝ · (a)−1mod n, ϕS ←R Zn, vS ← gϕS , C
(U)
ϕU ←

(
C

(U)
r

)b
· E+

pkU
(−ϕS),

π3 ← P

 ∃a, ϕS, b, skS s.t. a = D+
skS

(
C

(S)
a

)
, (pkS, skS) ∈ KeyVal

C
(U)
ϕU ∈

(
C

(U)
r

)b
· E+

pkU
(−ϕS), vS = gϕS , a · b = ŝ mod n, pk2 = gŝ

.

Send
(
vS, C

(U)
ϕU , π3

)
to U.

Step 4 (U). Output ⊥ if receiving ⊥ from S, or if π3 fails.

ϕU ← D+
skU

(
C

(U)
ϕU

)
, vU ← gϕU . Output vS · vU.

Fig. 3. Our (partially key-homomorphic) OPRF construction.
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G3: Same as G2 except that if the proof π3 verifies, then G3 outputs fs,ŝ(µ) =
gŝ/(s+µ) as the final output (or ⊥ if gcd(s+µ, n) 6= 1). By simulation soundness
of π3, D’s views in G2 and G3 are indistinguishable.

G4: Same as G3 except that as long as gcd(s+µ, n) = 1, G4 does the following:

1. (pkU, skU) ← K+. 2. a ←R Z∗n, C
(S)
a ← E+

pkS
(a). 3. r ← a · ŝ/(s + µ), C

(U)
r ←

E+
pkU

(r). 4. Simulate the proof π2. The probability that gcd(s + µ, n) 6= 1 is

negligible assuming factoring safe RSA moduli is hard. If gcd(s+µ, n) = 1, then

the tuple (pkU, C
(U)
r , C

(S)
a ) is distributed identically in G3 and G4, and so D’s

views in these games are indistinguishable.
G5: Same as G4 except that value r is replaced by random r′ ∈ Z∗n. By

semantic security of the encryption scheme, D’s views in G4 and G5 are indis-
tinguishable. (See G4 in the first part of the proof of Theorem 1 in [17] for a
reduction.)

G6: G6 is the ideal world game between SIMS (with access to S∗), FOPRF, and
the ideal world user Ū. Instead of computing Step 4. in G5, the simulator SIMS

sends (s, ŝ) to FOPRF in G6. On inputs (s, ŝ) from SIMS and µ from Ū, FOPRF

computes and sends to Ū the value fs,ŝ(µ). We have that D’s views in G5 and
G6 are indistinguishable.

Constructing an ideal-world user SIMU from a malicious real-world user U∗:
SIMU interacts with U∗ and FOPRF and does the following:

– SIMU picks (pkS, skS) ←R K+, s′ ←R Z∗n, computes CS
s ← E+

pkS
(s′), sends pkS

and C
(S)
s to U∗, and simulates the proof π1.

– If the proof π2 verifies, SIMU runs the extractor algorithm of π2 with U∗ to
extract µ and sends it to FOPRF.

– Getting v = fs,ŝ(µ) from FOPRF, which computes it on ideal-world server S̄’s
inputs (s, ŝ) and SIMU’s input µ, SIMU does the following:
1. If fs,ŝ(µ) = 1, then SIMU sends ⊥ to U∗ and aborts. 2. ϕU ←R Zn. 3. vS ←
v/gϕU . 4. C

(U)
ϕr ← E+

pkU
(ϕU). 5. Send (vS, C

(U)
ϕr ) and simulate the proof π3.

Let D be a distinguisher that controls the user U∗, chooses the input of the
server S, and also observes the output of S. We show a series of games G0, . . . ,G4,
where G0 is the real world experiment, G4 is the ideal world experiment, and
argue that the views in Gi and Gi+1 are indistinguishable.

G1: same as G0 except that S simulates the proofs π1 and π3. By zero-
knowledge of these proof systems, D’s views in G0 and G1 are indistinguishable.

G2: same as G1 except that if the proof π2 verifies, G2 runs the extractor
algorithm for π2 with U∗ to extract µ. By simulation soundness of π2, G2 extracts
µ with non-negligible probability.

G3: same as G2 except that it does the following after extracting µ: 1. v =

fs,ŝ(µ); if v = 1, send ⊥ to U∗ and abort. 2. ϕU ←R Zn, vS ← v/gϕr . 3. C
(U)
ϕU ←

E+
pkU

(ϕU). 4. Send
(
vS, C

(U)
ϕU

)
and simulate the proof π3.

For the same arguments made in G3 of the second part of the proof of The-
orem 1 in [17], D’s views in G2 and G3 are indistinguishable.

G4: same as G3 except that when v is to be computed, SIMU sends the ex-
tracted µ to FOPRF (which also gets inputs (s, ŝ) from the ideal world server S̄)
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and gets the value v = fs,ŝ(µ) from the ideal functionality instead. We have that
the views in G3 and G4 are indistinguishable. �

B Proof of AnonRAMpolylog

Theorem 6. AnonRAMpolylog provides access privacy against HbC adversaries
controlling S∗ in the random oracle model, when instantiated with a seman-
tically secure universally re-randomizable encryption (UREnc) scheme, and a
semantically secure additively homomorphic encryption and a secure (partially
key-homomorphic) oblivious PRF schemes for appropriate compatible domains.

Before proving Theorem 6, we state several facts and lemmas.

Fact 7. During User, a user Ui modifies at most one block at level ` > 1, and
this block is a real block belonging to Ui and it is replaced with a dummy block
by Ui.

Based on Fact 7, after User is executed, the total number of dummy and real
blocks at level ` > 1 remains unchanged and these blocks are located at the same
locations.

Fact 8. After User is executed, the number of dummy or real blocks is increased
by one at level 1.

Lemma 1. The number of non-empty blocks at any level ` is determined only
by the current value t, and not by access pattern.

Proof. It follows from Facts 7 and 8, and the invariant of Reshuffle from levels 1
to ` into `+ 1 for some `: all non-empty blocks from levels 1 to ` are moved to
level `+ 1, and Reshuffle does not introduce any new dummy or real blocks.

Lemma 2. Before reshuffle levels 1 to ` into level `+ 1, level `+ 1 is empty.

Proof. Analogously to the proof of Lemma 1 in [20].

Proof of Theorem 6. We argue that locations of Ui’s real blocks and dummy
locations used by Ui are not known to S∗ (and therefore cannot be distinguished).
First, the adversary cannot decrypt any part of block except for the block value
of the blocks belonging to U∗, so S∗ merely observes the access locations used
by Ui in User and can detect whether the real blocks of corrupted used has
been changed by Ui. Since Ui does not change the blocks of other users while
executing User (Fact 7), the only thing that could help the adversary is the
locations accessed by Ui during User. And second, after Reshuffle, the server S∗

does not know the dummy locations, and the adversary learns dummy locations
used by the compromised users. Dummy locations used by Ui in User, on the
other hand, are known only to Ui itself and the tag server T, since these locations
are computed by T and sent to Ui in User, and they depend on private input
(µD + t) known only to T.
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We define a series of games G1, . . . ,G10, where G1 denotes an execution
Exec(AR,Adv, AP0,HbC), and G10 an execution Exec(AR,Adv, AP1,HbC) for
any two HbC-compliant access patterns AP0, AP1, and show that the views of
the adversary in these games are indistinguishable.

We briefly describe the games. G1 is the real experiment with AP0. In G2,
an uncorrupted user Ui does not overwrite a found real block with the dummy
block, but just re-randomizes the real block and writes to the first level the
dummy block with the pre-tag computed for that level. In other words, the user
re-randomizes all blocks read in Steps 2-4 of User. In G3, the user always sets
τ to the value corresponding to the dummy pre-tag in Step 3b of User. In G4,
the user sends random inputs to OPRF evaluation in Step 3a. In G5, there is
unique user U′ 6∈ U∗ who performs accesses instead of any other user Ui 6∈ U∗.
The remaining games G6, . . . ,G10 form a counter part for AP1 (in the reversed
order) such that G5 = G6. Below, we present reductions from G1 to G10.

G2 - same as G1 except for the changes in User presented below. We define

series of games G0
1, . . . ,G

|AP |
1 with G1 := G

|AP |
1 and G2 := G0

1, where the games
Gi+1
1 and Gi

1 differ in the following: if the (i + 1)-th access is made by some
uncorrupted Ui, do not change the location and content of the real block in Gi

1,
and instead add a dummy block to the first level. We can show that the views
of the adversary in these games are indistinguishable by a reduction to DDH.
For that we need to introduce additional intermediate games as tools that look
as follows:

a. Change the encrypted value (ga,m · gxia, gb, gxib) in a game G to some
random value as (ga, m̃ · gxia, gb, gxib) for some random m̃ ∈ Gq in a game G′.
We show that the views of the adversary in the games G and G′ are indistinguish-
able by reduction to DDH: given a DDH tuple (X,Y, Z) = (gx, gy, gz or gxy),
we construct a distinguisher D against DDH as follows. D runs Setup(λ) of
AnonRAMpolylog where instead of generating the Ui’s secret key xi for UREnc, it
sets gxi = X, and simulates the uncorrupted user Ui without xi based on the
second part of UREnc ciphertext. Then D replaces a challenge ciphertext with
(Y,Z ·m, gb, Xb). If (X,Y, Z) is a true DH tuple, then the game proceeds as G,
otherwise, i.e. if (X,Y, Z) is a random tuple, the game proceeds as in G′.

b. Change the ownership of a ciphertext (ga,m · gxa, gb, gxb) under the key
x ∈ Zq in game G to some random key x̃ ∈ Zq and a random message m̃ ∈ Gq
as (ga, m̃ · gx̃a, gb, gx̃b) in a game G′. We show that the views of the adversary
in these two games are indistinguishable by a reduction to DDH: given a DDH
tuple (X,Y, Z) = (gx, gy, gz or gxy), we construct a distinguisher D against
DDH as follows. D runs Setup(λ) of AnonRAMpolylog and instead of generating
Ui’s secret key xi for UREnc, it sets X = gxi and simulates the uncorrupted user
Ui without xi. Then, D replaces the challenge ciphertext with (ga, Xa ·m,Y, Z).
If (X,Y, Z) is a true DH tuple, then the game proceeds as G, otherwise, i.e. if
(X,Y, Z) is a random tuple, the game proceeds as in G′.

These tools are applied to the block value, since they are encrypted using
UREnc. We just mention that we also need the first tool (for changing the en-
crypted value) for the pre-tag part, which is encrypted using the semantically
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secure encryption scheme on Zn. Having all these tools in place, we define in-
termediate games between Gi+1

1 and Gi
1, so that the views in these games are

indistinguishable for the adversary.

G3 - same as G2, except that pre-tags in OPRF evaluations performed by Ui
are replaced with dummy pre-tags computed and sent by T to Ui. Specifically, we

define series of games G0
2, . . . ,G

|AP0|·L
2 with G2 := G

|AP0|·L
2 and G3 := G0

2, where
games Gi+1

2 and Gi
2 differ in the following: if the (i + 1)-th OPRF evaluation

is performed by Ui, set τ corresponding to the dummy pre-tag computed in
Step 3a, in Gi

2.

Let E be the event that there exist two OPRF evaluations with at least one
of them belonging to an honest user Ui, such that the OPRF is evaluated using
the same input and the same key. We show that the probability of this event is
negligible. In Gi+1

2 , pre-tag is evaluated via OPRF using a storage server’s key
(s, ŝ) and some input (µD+t) or (µi+j). In the former case, t is incremented every
new access, therefore the OPRF evaluation will be pseudo-random (the special
property of OPRF w.r.t. the second key applies only if the inputs to OPRF
are the same), and so will be the tag computed via h`. In the latter case, i.e. if
OPRF is evaluated using input (µi+j), the inputs to OPRF at specific level ` can
be the same, however the keys used by S∗ will be different with overwhelming
probability. The reason lies in the mechanics of User and Reshuffle. Fix level
` > 1. Assume (µi + j) was used as input to OPRF at level ` for some t. This
only could happen if the real block was located at the level ` or at one of the
next levels. Regardless of that level, once read, the real block will be moved by
Ui to the first level. In any subsequent accesses, Ui will send (µi + j) as input
to OPRF for level ` only if the real block is located at level ` or one of the next
levels; denote the time (access counter) when this event happened as t′ > t.
The real block can be moved from lower levels to one of the next levels only by
performing Reshuffle. In particular, there should have been Reshuffle of all levels
from 1 to `−1 into level ` at time t∗ < t′ and t∗ ≥ t. But when level ` is involved
into Reshuffle, the storage server S∗ generates a fresh second key for OPRF. The
probability to draw some ŝ′ that already has been used as the second key to
OPRF in the past is negligible, so is the probability of E. The specific property
of OPRF is “neglected” since the adversary observes the tags, i.e. the output of
h, which is modelled as a random oracle. Hence, the views of the adversary in
games Gi+1

2 and Gi
2 are indistinguishable.

G4 - same as G3, except that uncorrupted users use random inputs to OPRF.

Specifically, we define intermediate games G0
3, . . . ,G

|AP0|·L
3 with G3 := G

|AP0|·L
3

and G4 := G0
3, where Gi+1

3 and Gi
3 differ in the following: if the (i + 1)-th OPRF

evaluation is performed by Ui, the input to OPRF is replaced by a random value.
The output of OPRF is not used subsequently by Ui in Gi+1

3 . So if Adv can
distinguish between these two games, it can break the underlying assumptions
of OPRF.

G5 - same as G4, except that all accesses performed by uncorrupted users are
replaced with “equivalent” accesses performed by some fixed uncorrupted user
U′. Note that uncorrupted users in G4 do not use their secret inputs in OPRF
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evaluation. The uncorrupted users re-randomize the blocks they have read, and
introduce the dummy block to the first level. The views of the adversary in these
two games are indistinguishable provided that communication channels between
users and servers are anonymous.

The remaining games, G6, . . . ,G10 are defined analogously to G1, . . . ,G5, in
reversed order, so that G10 corresponds to an experiment with AP1, and when-
ever AP0 is mentioned in G1 − G5, it should be replaced with AP1 in G10 − G6.
We have G5 = G6. Hence the views in games G1 and G10 are indistinguishable.

�

Theorem 9. AnonRAMpolylog provides access privacy against HbC adversaries
controlling T∗ in the random oracle model, when instantiated with a seman-
tically secure universally re-randomizable encryption (UREnc) scheme, and a
semantically secure additively homomorphic encryption and a secure (partially
key-homomorphic) oblivious PRF schemes for appropriate compatible domains.

Proof. There are several arguments for the proof. First, while accessing S, a
corrupted user from U∗ reads and writes some blocks. Since S re-randomizes the
block before sending it to users, the adversary cannot detect whether a particular
bucket was touched or not, by an uncorrupted user. So, Adv has no information
about tags used by an uncorrupted user, even though T∗ knows pre-tags for
dummy blocks in User.

Second, in Reshuffle, T∗ can observe pre-tags and identify empty blocks, but
only with help of S since pre-tags are encrypted under the joint key TS, while the
users’ data (the value of block) are protected by semantic security of underly-
ing UREnc. Before pre-tags become accessible to T∗ in Reshuffle, S preliminarily
changes pre-tags (Step 2 of Reshuffle) and shuffles array A. Intuitively, T∗ should
not learn the link between pre-tags observed in any two reshuffles, since the stor-
age server S draws a new random second key to OPRF for the level `, into which
all the blocks from levels below are moved, every time Reshuffle is performed.

Finally, after pre-tags become accessible, T∗ can identify empty cells, how-
ever, the number of empty blocks is array A in Reshuffle does not depend on the
access pattern (Lemma 1). Let Adv denote an adversary who corrupts T∗ and
a subset of users U∗. The goal is to show that Adv cannot distinguish between
Exec(AR,Adv, AP0,HbC), and Exec(AR,Adv, AP1,HbC) for any two compliant
access patterns AP0, AP1 significantly better than pure guessing.

We define a series of games G1, . . . ,G10, where G1 denotes an execution
Exec(AR,Adv, AP0,HbC), and G10 an execution Exec(AR,Adv, AP1,HbC) for
any two compliant access patterns AP0, AP1, and show that the views of the ad-
versary in these games are indistinguishable. The games are defined in the same
way as in the proof of Theorem 6, however reductions from G1 to G2 and from
G2 to G3 proceed differently, while other reductions remain without changes.
Below, we present reductions from G1 to G10.

G2 - same as G1 except for the changes in User: if the access is made by an
uncorrupted user Ui, then in Steps 2 and 3b, re-randomize the found block, and
write the dummy block in Step 5.
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We introduce an intermediate game Ḡ1 to apply the changes made in the
game G2 into two steps. In the first step (in Ḡ1 compared to G1), the changes
affect only the block value, while the pre-tag remains as in G1. And in the second
step (in G2 compared to Ḡ1), pre-tags are changed, i.e. if User is performed by
an uncorrupted user, then send E+

D(θD) in Step 5 for θD computed in Step 2,
and re-randomize the pre-tag in Step 3b regardless of the value of found. The
reason for this split is the fact that T∗ observes pre-tags in Reshuffle.

Reduction from G1 to Ḡ1 is done similarly to the reduction from G1 to G2 in
the proof of Theorem 6 (except that pre-tags are not altered). For reduction from
Ḡ1 to G2, assume w.l.o.g. that there is a list of all initial M ·N real pre-tags and
M · N dummy pre-tags. Each pre-tag is an element of Gn, so we can represent
pre-tags as a list of 2M ·N distinct (probability of collision is negligible) group
elements: (g1, . . . , g2M ·N ). The i-th element of the list corresponds to a specific
input to OPRF: µD + (i − N · M) if i ≥ M · N , and µ1+i/M + (i mod M)
otherwise. In Step 2 of Reshuffle, w.l.o.g. we may assume that the list is changed
by S to (gr1, . . . , g

r
2M ·N ) for some random r, and T∗ observes a subset of it ordered

randomly. There are |AP |/2 such lists, and we refer to them as to the lists of
pre-tags.

We define series of games Ḡ0,0
1 , . . . , Ḡ

0,|AP |/2
1 , Ḡ1,0

1 , . . . , Ḡ
1,|AP |/2
1 , . . . , Ḡ2M ·N,0

1 ,

. . . , Ḡ
2M ·N,|AP |/2
1 with Ḡ1 := Ḡ

2M ·N,|AP |/2
1 and G2 := Ḡ0,0

1 , where the games

Ḡi,j+1
1 and Ḡi,j

1 differ in the following: for the i-th element of the j-th list of
pre-tags, if this element corresponds to the dummy input or to the input of
uncorrupted user, replace the corresponding value with a random value, and
related OPRF evaluations (for t = 2j and t = 2j+1 and inputs w.r.t. i-th element
of the list) are responded by S with random values. We show that views of in

Ḡi,j+1
1 and Ḡi,j

1 are indistinguishable to the adversary by a reduction to composite
DDH. Let ŝj denote the second OPRF key used in the j-th list of pre-tags. Given
(X,Y, Z) = (gx, gy, gz), we construct a distinguisher D as follows: on input µ
corresponding to the i-th element of the j-th list, set g1/(s+µ) = X, so that
fs,ŝ(µ) = X ŝ for any ŝ 6= ŝj, and fs,ŝj(µ) = Z, where gŝj = Y . For other inputs

µ′ 6= µ, fs,ŝj(µ
′) = Y 1/(ŝ+µ′) (respectively, OPRF is simulated as f1,ŝj(µ

′) with

g← Y ). If (X,Y, Z) is a DH tuple, then the game proceeds as Ḡi,j+1
1 , otherwise,

if (X,Y, Z) is a random tuple, the game proceeds as Ḡi,j
1 . Since dummy pre-tags

and the pre-tags of uncorrupted users observed by T∗ are replaced with random
pre-tags, the views of the adversary in Ḡ1 and G2 are indistinguishable.

G3: same as G2, except that pre-tags in OPRF evaluations performed by an
uncorrupted user Ui are replaced with dummy pre-tags computed and sent by
T∗ to Ui. Since the adversary does not learn tags used by uncorrupted users in
User, the views in these games are indistinguishable.

Reductions from G3 to G5 are the same as in the proof of Theorem 6. Games
G6, . . . ,G10 are defined analogously to G1, . . . ,G5, in reversed order, with the
change that whenever AP0 is mentioned, it is replaced with AP1. We have that
G5 = G6, and so the views of the adversary in games G1 and G10 are indistin-
guishable. �
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Proof of Theorem 3 . We have to show that AnonRAMpolylog construction provides
indistinguishability of access patterns in the two following cases: a) collusion of
honest-but-curious subset of users U∗ and the storage server, b) collusion of
honest-but-curious subset of users U∗ and the tag server T∗. In either case, we
have to construct a simulator that simulates the execution of an access pattern
(for uncorrupted users) without knowing it, such that the adversary is not able
to distinguish between the real or simulated execution. Note that the probability
of overflow in Step 8 of Reshuffle algorithm is determined by n balls to n bins
experiment and therefore is small (≤ 1/n). As in GO-ORAM, the overflow itself
does not help the adversary. The theorem follows from Theorems 6 and 9. �

C Detailed Description of AnonRAMM
polylog

In the following, we present the changes that have to be made in order to make
AnonRAMpolylog secure against malicious users.

Changes in User. We elaborate on ZK proof system, in which a user proves
specific relations between the old (stored at S at the moment before the user
started User) and the new ciphertexts (sent from the user to S during User).

We collect all the blocks read and written by Ui into the array of w :=
(t mod 2)+(L−1)β blocks,B1, . . . , Bw, the modified array of w blocks, B̂1, . . . , B̂w,
and an extra new block B̂0. Each block Bk is the pair (γk, vk), where γk :=
(γk[1], γk[2]) denotes encryption of the pre-tag, and vk := (vk[1], vk[2], vk[3], vk[4])
encryption of the value. During User, the tag server T computes L pre-tags for
the dummy blocks for each level, and the user computes a pre-tag for the new
block (in the proof, we are interested only in aforementioned L+1 pre-tags).
These pre-tags are sent (computed) to (by) the user in Steps 2 and 3a (Step 5)
of User. In the modified version of User, the encryptions of dummy pre-tags are
also sent to S, so that S could verify ZK proofs sent by the user to S at the end of
User. Let γD`

denote the encrypted pre-tag for the dummy block computed for
level ` ∈ [1, L], and γ0 denote the dummy pre-tag computed in Step 5 of User.
Let vD := E∗TS(“dummy”) denote the public ciphertext initialized in Setup.

The proof consists of w + 1 individual parts. For each k ∈ {1, . . . , w}, the
individual k-th part looks as described in Figure 4. The ZK proof for the indi-
vidual part consists of six components. The first two components in the proof
correspond to re-randomization of the block Bk: component 1 states that B̂k en-
crypts the same pre-tag as Bk, and component 2 states that B̂k and Bk encrypt
the same block value under the same key.

The next four components correspond to the case when a real block is found
by the user. The user then replaces that block with the dummy block and stores
an updated value of the real block as B̂0. Specifically:

- component 3 states that the user knows the secret key, using which she can
decrypt the value part of Bk;

- component 4 states that B̂k encrypts the same pre-tag as γD`
;

- component 5 states that the block value of B̂k is a re-randomization of vD;
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P

{
∃r1, r2, r3 s.t. γ̂k = (γk[1] · gr1 , γk[2] · (pkTS)r1) 1

v̂k = (vk[1](vk[3])r2 , vk[2](vk[4])r2 , (vk[3])r3 , (vk[4])r3) 2

}
∨

PoK


x| ∃ r4, r5, r6, r7, r8 s.t. vk[4] = (vk[3])x 3

γ̂k = (γD` [1] · gr4 , γD` [2] · (pkTS)r4), 4

v̂k = (vD[1](vD[3])r5 , vD[2](vD[4])r5 , (vD[3])r6 , (vD[4])r6) 5

(v̂0[3], v̂0[4]) = ((vk[3])r8 , (vk[4])r8) 6


Fig. 4. Part of zero-knowledge proof system for AnonRAMM

polylog relationship between

blocks Bk and B̂k at level `, represented as ciphertexts (γk, vk) and (γ̂k, v̂k) respectively,
and a new block B̂0, represented as (γ̂0, v̂0). Encryption of pre-tag for the dummy
block associated with B̂k is denoted as γD` . Encryption of the constant dummy value
is denoted as vD.

- component 6 states that the value of B̂0 is encrypted under the same key as
the user’s ciphertext vk.

Note that we do not restrict the value of B̂0, since the user may want to
update the value of her cell to some other value, different from the value of Bk.

The last, (w+1)-th, part of ZK proof system is P
{∨w

k=0 ∃rk s.t. (v̂k[3], v̂k[4]) =

((vD[3])rk , (vD[4])rk)
}

. It states that the value in at least one of the new blocks
is encrypted under the same key as the dummy value vD. This part of ZK proof
system tolerates a malicious user who just re-randomizes all blocks she has read
(and thus proving only components 1-3 in Figure 4) and introduces a new block
of an honest user. In this case, the newly introduced block B̂0 has to be encrypted
using the shared key pkTS.

The user sends w+1 proofs to the server S at the end of User command. The
server rejects if at least one of the proofs does not verify.

Changes in Reshuffle. Reshuffle has to be modified as follows: if T observes
two or more blocks with same pre-tag, it replaces them with empty blocks. To
this end, T performs an additional preparation step: OSort array A by pre-tags
in the ascending order, then Scan A and replace any consecutive blocks having
the same pre-tag with empty blocks. This modification to Reshuffle circumvents
a malicious scenario in which too many blocks have the same pre-tag (such
blocks would be mapped to the same tag and cause a bucket overflow with high
probability).

D Postponed Proof for AnonRAMM
polylog

Proof Sketch of Theorem 4. The argument for integrity is based on ZK proof
systems introduced in Section 4.7. They ensure that a user can modify the block
value only if she knows the secret key which is required for decryption of the
value. Since all the users generate their keys independently, the probability that a
malicious user from U∗ knows the secret key of any uncorrupted user is negligible.
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The employed ZK proof system also ensures that the introduced to the first level
block is encrypted either under the same key as one of the blocks, for which the
user has proven the knowledge of the secret key, or under the joint servers’ key.
Thus, the probability that the adversary changes during User any block belonging
to an honest user, or introduces a new block of an honest user, is negligible.

The privacy properties are preserved based on security analysis of AnonRAMpolylog

secure against HbC adversaries. �
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