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Abstract. Impossible differential and zero-correlation linear cryptanalysis are two of the
most powerful cryptanalysis methods in the field of symmetric key cryptography. There
are several automatic tools to search such trails for ciphers with S-boxes. These tools focus
on the properties of linear layers, and idealize the underlying S-boxes, i.e., assume any
input and output difference pairs are possible. In reality, such S-box never exists, and the
possible output differences with any fixed input difference can be at most half of the entire
space. Hence, some of the possible differential trails under the ideal world become impos-
sible in reality, possibly resulting in impossible differential trails for more rounds. In this
paper, we firstly take the differential and linear properties of non-linear components such
as S-box into consideration and propose a new automatic tool to search impossible differ-
ential trails for ciphers with S-box. We then generalize the tool to modulo addition, and
apply it to ARX ciphers. To demonstrate the usefulness of the tool, we apply it to HIGHT,
SHACAL-2, LEA, LBlock. As a result, it improves the best existing results of each cipher.
keywords Impossible differential cryptanalysis, zero-correlation linear cryptanalysis, MILP,
automatic tool

1 Introduction

Impossible differential cryptanalysis (IDC) was introduced by Biham et al. and Knudsen
to attack Skipjack in [2] and DEAL [18], respectively. Unlike the differential cryptanal-
ysis [3] that aims to find a differential characteristic with high probability, IDC tries to
find the best impossible differentials, i.e., to find the longest differentials with proba-
bility 0. It is a very powerful cryptanalysis method. Since it was proposed, it has been
used to analyze security of lots of block ciphers such as AES [22], Camellia [5, 8]. As
the counterpart of IDC, zero-correlation linear cryptanalysis (ZCLC), a variant of linear
cryptanalysis [23], was proposed by Bogdanov et al. in [6]. Similar to the idea of IDC,
its purpose is to find a linear approximation with probability exactly 1/2. In [30], Sun et
al. proposed that in some cases, a zero-correlation linear approximation was equivalent
to an impossible differential.

How to find the best impossible differential for a target cipher is a focus point in
the field of symmetric ciphers. It is not always possible to find the best impossible
differentials by hand as the number possibilities can be far beyond the reach of human.
Hence, the automatic search of impossible differentials received lots of attention, ad
several approaches have been proposed such as U-method [17], UID-method [21] and
the extended tool by Wu and Wang in [40] 5. So far, all these methods above treat the
underlying S-box (substitution-box) used in the target cipher as an ideal S-box, i.e., all
input and output difference transitions are possible. Under such assumption, the length

? The corresponding author
5 This method is renamed as WW-method through this paper.



of IDC depends only on the linear layers. However, S-box used in practical ciphers can
never be ideal, i.e., some input/output difference transitions under an S-box in reality
will never happen, or happen only under some constraints when the actual value falls
in a small set. Due to this, some possible differentials in the ideal world will become
impossible. In other words, it is possible to find IDCs of possibly more rounds which
could not be found in previous tools.

The second limitation of the previous tools are their inapplicability to ARX ciphers
due to the complication of modelling the modular addition. In this paper, we, for the
first time, take the differential property of non-linear components such as S-box and
modular addition into consideration. Under this model, it will be more accurate to
evaluate the security of target block ciphers and more likely to find longer impossible
differentials. In parallel to this work, Sasaki and Todo [28] proposed a similar tool, in
which they only consider to search impossible differentials for the ciphers with S-box
and Sun et al. presented a search tool for impossible differential by using constraint
programming in [29].

Inspired by the automatic search of differentials and linear approximations with
Mixed Integer Linear Programming (MILP) method introduced by [31, 10], we aim
to search the impossible differentials and zero-correlation linear approximations6 with
MILP as well. MILP problem is a mathematical optimization problem in which only
some variables are constrained to be integers and the goal is to find the minimum or
maximum of the objective function, for instance, covering problem and packing prob-
lem. It was introduced into differential and linear cryptanalysis by Mouha et al. and
Wu et al. in [24] and [39] respectively, later improved in [32, 31, 10, 33]. According to its
applications on the search of differentials and linear approximations for block ciphers,
every operation in a certain cipher can be exactly described with linear inequalities
system including non-linear operations such as S-box and modular addition. By exploit-
ing mathematical optimization software which can expedite the feasible and optimized
solution, we can search the optimal characteristic for the target cipher with suitable exe-
cutable time. In this paper, we propose an algorithm to automatically search impossible
differentials and zero-correlation linear approximations based on MILP method.

1.1 Contributions

MILP method uses the idea of inequalities system to describe the propagation of differ-
ence. By taking input and output differences of each component as variables, a special
set of inequalities are given to link these variables. If one input/output pair is a possible
differential propagation pattern for this component, its corresponding variables must
be a solution of this set of inequalities, otherwise, it is not a solution. Take 4-bit S-box

(x0, x1, x2, x3)
S−→ (y0, y1, y2, y3) as an example, we can find out an inequalities system

whose variables are (x0, x1, x2, x3, y0, y1, y2, y3) and solutions exactly denote its all pos-
sible differential patterns. By combining all inequalities for all components in a target
cipher together, we can use the whole system to describe the propagation of difference
in this target cipher. If we fix the input and output differences of this target cipher,
it is easy to solve this linear inequalities system to get one specific differential charac-
teristic. But sometimes the system cannot be solved which means it is overcontraint.
So detecting whether the system is infeasible or not can be a new way to find impossi-
ble differential characteristics. In this paper, we exactly utilize this idea to construct a

6 For the sake of simplicity, zero-correlation linear approximation is renamed as ZC approximation
through this paper.



new automatic search tool. So do ZC approximations. Our contributions are shown as
follows.

Propose an automatic tool to search impossible differentials and ZC ap-
proximations for both ARX ciphers and ciphers with S-box. IDC and ZCLC
are two efficient cryptanalysis methods in the field of symmetric ciphers. In this paper,
we propose an automatic method to search impossible differentials and ZC linear ap-
proximations for ARX ciphers and ciphers with S-box by MILP method. It is the first
published widely applicable search tool for ARX ciphers and a strong general tool for
ciphers with S-box, which takes the differential and linear properties of non-linear com-
ponents into consideration based on [10] and [31]. Comparing with previous methods
which regard S-box used in ciphers as ideal S-box, we can not only find the previous
results, but also be able to find longer impossible differentials and ZC approximations
with this new tool. Further more, with this tool, the security of lots of ARX ciphers and
lightweight block ciphers against IDC and ZCLC can be evaluated more accurately and
easily.

Application on HIGHT Cipher. HIGHT cipher, introduced by Hong et al. at
CHES 2006 [14], is an ISO standard lightweight block cipher. Its block size and key size
are 64 bits and 128 bits respectively, and it totally has 32 rounds. Its longest previous
impossible differential and ZC approximation are both 16 rounds, which are introduced
in [20, 9, 26] and in [36] respectively. In our work, we use our automatic tool to search
all cases of 17-round impossible differentials (ZC approximations) that both hamming
weights of input and output differences (masks) are one. As a result, we totally find 4
impossible differentials and 4 ZC approximations for 17-round HIGHT, which are the
longest ones until now. The results are summarized in Table 1.

Application on SHACAL-2 Cipher. SHACAL-2 [11], proposed by Handschuch
and Naccache, was selected as one of the four block ciphers by NESSIE. Its block size
is 256 bits and key size is various from 128 bits to 512 bits. SHACAL-2 has totally 64
rounds and its round function is based on the compression function of the hash function
SHA-2. The longest previous impossible differential of SHACAL-2 was presented by
Hong et al in [12] and had 14 rounds. In this paper, by using our new automatic search
tool, we search 216 cases and find out 15-round impossible differentials, which are the
longest ones so far. The results for SHACAL-2 are summarized in Table 1.

Application on LEA Cipher. LEA is a block cipher proposed by Hong et al.
in [13], which can provide a high-speed software encryption on general-purpose pro-
cessors. It has three versions (blocksize/keysize/rounds): 128/128/24, 128/192/28 and
128/256/32. This cipher adopts ARX construction and operates on 32-bit word. The
previous best impossible differential and ZC approximation are proposed in [13], which
had 10 rounds and 7 rounds respectively. In this paper, based on analyzing LEA ci-
pher’s construction, we search out 3 ZC approximations for 10-round LEA with our
search tool. These trails are the best ones so far. What’s more, the security bound
should be extended more rounds than the given rounds claimed in [13] according to our
results.

Application on LBlock Cipher. LBlock, designed by Wu and Zhang in [41], is
an efficient lightweight block cipher. Its block size and key size are 64 bits and 80 bits. It
applies a 32-round modified Feistel structure. Under the related-key setting, Minier and
Naya-Plasencia found a 15-round related-key impossible differential in [38], then Wen
et al. found two 16-round related-key impossible differentials in [37]. But Wen et al.’s
two differentials are right only under part of master key pairs which satisfy one of the



given two key differences. With our new search tool, we build a MILP model for LBlock
and find out eighteen 16-round related-key impossible differentials. These impossible
differentials break the limitation existed in Wen et al.’s work. As long as the master
key pair satisfies one of the given differences, such related-key impossible differential is
right in our work. The results for LBlock are summarized in Table 1.

Table 1. Summary of results for HIGHT, SHACAL-2, LEA, LBlock

Cipher Type Round Resource

HIGHT

Imp. diff. 16 [20]
Imp. diff. 16 [9]
Imp. diff. 16 [26]
Imp. diff. 17 Sec. 4.1

ZC approx. 16 [36]
ZC approx. 17 Sec. 4.1

SHACAL-2
ZC approx. 12 [35]
Imp. diff. 14 [12]
Imp. diff. 15 Sec. 4.2

LEA

Imp. diff. 10 [13]
Imp. diff. 10 Sec. 4.3

ZC approx. 7 [13]
ZC approx. 10 Sec. 4.3

LBlock
RK Imp. diff. 15 [38]

RK Imp. diff. * 16 [37]
RK Imp. diff. 16 Sec.4.4

1 (RK) Imp. diff.: (Related-key) impossible differential.
2 ZC approx.: Zero correlation approximation.
3 *: This related-key impossible differential is right only for

part of master key pairs under the given difference of mas-
ter key.

1.2 Outline

This paper is organized as follows. In section 2, we propose an automatic tool to search
impossible differentials and ZC approximations for both ARX ciphers and ciphers with
S-box. Then in section 3, a verification algorithm is presented. As applications, we use
this tool to search impossible differentials and ZC approximations for several ciphers in
section 4. At last, section 5 concludes this paper.

2 Automatic Tool for Search of Impossible Differentials and ZC
Approximations

In this section, we propose an automatic tool to search impossible differentials for both
ARX ciphers and ciphers with S-box. Similar to the idea of MILP models for differential
cryptanalysis in previous work, we firstly utilize linear inequalities to exactly describe
every component in the target cipher as well. But we are indifferent to the objective
function, only interested in whether there is a solution for the whole inequalities sys-
tem with fixed input and output differences or not. If not, the fixed input and output
differences can lead to an impossible differential, which is expected. In section 2.1 and
2.2, we build the models to search impossible differentials for ARX ciphers and ciphers



with S-box respectively. Since we do not care about the probability of each differential
pattern for non-linear component, we redescribe the constraints for modular addition
with 8 linear inequalities, reducing about 40% comparing with these proposed by Fu et
al. for searching differentials in [10]. In section 2.3, we briefly introduce the model to
search ZC approximations.

2.1 Impossible Differential Model for ARX Ciphers

ARX ciphers are designed by combining modular addition, bit rotation and XOR op-
erations. For each operation, there is a set of linear inequalities to equivalently depict
it.

Constraints for XOR and Bit Rotation. Both XOR and bit rotation are linear
operations. For every XOR operation with bit-level input and output differences a, b
and c, the constraint below can perfectly describe it:

a+ b+ c = 2d⊕, (1)

where d⊕ is a dummy bit variable.
For the case of circular shift, since it only transforms the position of its input bits,

so we can easily build linear equations between related bits.
Constraints for Modular Addition. In [19], Lipmaa and Moriai proposed a

method to verify whether a given differential characteristic is possible or not. For sake
of simplicity, Fu et al. summarized this method into a theorem in [10] as follows:

Theorem 1 (see [19, 10]). The differential (α, β → γ) satisfies γ = α+ β iff (α[0]⊕
β[0] ⊕ γ[0]) = 0 and α[i − 1] = β[i − 1] = γ[i − 1] = α[i] ⊕ β[i] ⊕ γ[i] when α[i − 1] =
β[i− 1] = γ[i− 1], i ∈ [1, n− 1].

In order to describe the first condition α[0] ⊕ β[0] ⊕ γ[0] = 0 in Theorem 1, we utilize
one equality to satisfy it as follows:

α[0] + β[0] + γ[0] = 2d⊕, (2)

where d⊕ is a dummy bit variable.
When i ∈ [1, n − 1], there are 56 possible patterns for (α[i], β[i], γ[i], α[i + 1], β[i +

1], γ[i+ 1]) to meet the second condition in Theorem 1. We propose 8 linear inequalities
whose solution set is exactly these 56 possible patterns for each i ∈ [1, n− 1] as follows.

−α[i]− β[i]− γ[i] + α[i+ 1] + β[i+ 1] + γ[i+ 1] ≥ −2,

α[i] + β[i] + γ[i]− α[i+ 1]− β[i+ 1]− γ[i+ 1] ≥ −2,

α[i] + β[i] + γ[i] + α[i+ 1] + β[i+ 1]− γ[i+ 1] ≥ 0,

α[i] + β[i] + γ[i] + α[i+ 1]− β[i+ 1] + γ[i+ 1] ≥ 0,

α[i] + β[i] + γ[i]− α[i+ 1] + β[i+ 1] + γ[i+ 1] ≥ 0, (3)

−α[i]− β[i]− γ[i] + α[i+ 1]− β[i+ 1]− γ[i+ 1] ≥ −4,

−α[i]− β[i]− γ[i]− α[i+ 1] + β[i+ 1]− γ[i+ 1] ≥ −4,

−α[i]− β[i]− γ[i]− α[i+ 1]− β[i+ 1] + γ[i+ 1] ≥ −4.

Note that in [10], Fu et al. used 13 linear inequalities to exactly describe the differ-
ential patterns of modular addition because of taking the probability of each pattern



into consideration. In our model, we don’t care about the probability, but just focus on
whether the probability of each pattern is nonzero or not. Thus, we only need 8 new
linear inequalities to describe the differential propagation on modular addition, which
can accelerate the search process.

Up to now, by setting the input and output differences of each operation in the tar-
get ARX cipher as corresponding binary variables and constructing linear inequalities
system among these variables following the rules in this section, the differential propaga-
tion on each operation can be exactly described. By combining all inequalities together,
the whole inequalities system can perfectly describe the target cipher, and its every
solution is a differential characteristic. When we fixed the input and output differences,
if the inequalities system is infeasible, it means this is an impossible differential. By
traversing a special set of input/output differences in the MILP model, we can confirm
whether there exists an impossible differential or not for a certain reduced-round ARX
cipher within this set. Note that due to the time complexity, it is hard to search all
input/output differences, so this special set needs to be decided carefully and it always
depends on the feature of the given cipher. Without loss of generality, we denote such
set as (∆→ Γ ), where ∆ and Γ are chosen sets of input and output differences respec-
tively. In Algorithm 1, we explain how to implement the search process of impossible
differentials.

Algorithm 1: General search process for impossible differentials

// Step 1: Construct the MILP model.

1 Set the input and output differences of each operation as binary variables;
2 Add linear inequalities for each operation of the target cipher so as to link all variables in the

model;
// Step 2: Search out all impossible differentials within a certain set of input

and output differences.

3 Decide the set of input differences ∆ and the set of output differences Γ ;
4 for input differences ∆xi ∈ ∆ do
5 for output differences ∆yj ∈ Γ do
6 Add all constraints about the fixed input and output differences into MILP model;
7 Start to solve this model;
8 if solver finds a solution then

// The current input and output differences is a possible

differential.

9 Break;

10 else
// The current input and output differences lead an impossible

differential.

11 Store current input and output differences;

2.2 Impossible Differential Model for Ciphers with S-box

Unlike ARX ciphers, lots of block ciphers use S-box layer as the non-linear operations
rather than modular addition and their linear operations may be more complicated
by including many XOR, rotation operations and simple permutations. For the sake
of simplicity, we don’t depict the linear operations in detail as they have been exactly
described in section 2.1.



Constraints for S-box operation. Assume S is anm×l-bit S-box that (y0, y1, . . . , yl−1) =
S(x0, x1, . . . , xm−1) and (∆x,∆y) are input and output differences. The set of all its dif-

ferential patterns is DT = {(∆x,∆y)|Pr[∆x S−→ ∆y] > 0}. According to Sun et al.’s
work in [31], we can build linear inequalities system to exactly depict DT with the help
of software SAGE 7 and the greed algorithm in [33]. For more details, please refer to
[33].

Remark: In this section, we describe the differential propagations of S-box, modular
addition and linear operations with MILP model. Actually, some ciphers are designed by
other nonlinear components such as bit-level AND and OR and so on. These operations
can be described similarly as that for S-box. As far as we know, most operations used in
current ciphers can be exactly described. Especially, the large S-box such as 8-bit size
can already be exactly described [27], althrough it needs lots of linear inequalities.

2.3 Zero-Correlation Linear Model for ARX Ciphers and Ciphers with
S-box

In order to search ZC approximations for ARX ciphers and ciphers with S-box, it is
necessary to consider about the linear approximations of basic operations such as XOR,
branching, bit rotation and modular addition operations. Before studying the construc-
tion of MILP model for search of ZC approximations, we introduce the linear approxi-
mations over XOR and branching operations proposed by Biham in [4] as follows, where
“·” means the scalar product of binary vectors.

Lemma 1 (XOR operation [4]). Let h(x1, x2) = x1⊕x2, α1, α2 are the input masks
of x1 and x2 respectively, β is the output mask, then the correlation C(β · h(x1, x2), α1 ·
x1 ⊕ α2 · x2) 6= 0 if and only if β = α1 = α2.

Lemma 2 (Branching operation [4]). Let h(x) = (x, x), α is the input mask, β1,
β2 are the output masks of h(x), then the correlation C((β1, β2) · h(x), α · x) 6= 0 if and
only if α = β1 ⊕ β2.

Following Lemma 1 and 2, we start to construct MILP model to search ZC approxima-
tions for ARX ciphers.

Constraints for Branching, XOR and Bit Rotation. Assumed that the input
mask of braching operation is α, the output masks are β1 and β2. According to Lemma
2, α = β1⊕β2, so similar to (1) in section 2.1, we have the following equality to exactly
describe its each bit operation.

α[i] + β1[i] + β2[i] = 2d⊕, (4)

where d⊕ is a dummy bit variable.

In the light of Lemma 1, some linear equations between input masks and output
mask can perfectly describe the linear approximation of XOR operation. Besides, the
bit rotation operation is a simple permutation that we can list some equations for the
related bits.

Constraints for Modular Addition. In [34, 25], a method to calculate the cor-
relation of modular addition is given as follows.

7 Inequality generator() function in the sage.geometry.polyhedron class of SAGE. The website of SAGE
is: http://www.sagemath.org/.



Theorem 2 ([34, 25]). For the linear approximation of addition modulo 2n, let the
input masks and output mask be α1 = (α1[n− 1], . . . , α1[0]), α2 = (α2[n− 1], . . . , α2[0])
and β = (β[n − 1], . . . , β[0]) respectively, where α1, α2, β ∈ Fn

2 , and let the vector u =
(u[n− 1], . . . , u[0]) satisfy u[i] = 4β[i] + 2α1[i] + α2[i], 0 ≤ u[i] < 8, 0 ≤ i < n. Then the
correlation can be computed as follows:

cor�(β, α1, α2) = LAu[n−1]Au[n−2] . . . Au[0]C, (5)

where Ar, 0 ≤ r < 7, is 2× 2 matrice,

A0 =
1

2

[
2 0
0 1

]
, A1 = A2 = −A4 =

1

2

[
0 0
1 0

]
,

A7 =
1

2

[
0 2
1 0

]
,−A3 = A5 = −A6 =

1

2

[
0 0
0 1

]
,

L is a row vector L = (1, 0), and C is a column vector C = (1, 1)T .

In order to quickly calculate the correlation shown in Theorem 2, Nyberg and Wellén
utilized the automaton to calculate (5) by multiplication from left to right [25]. They
let e0 = L = (1, 0) and e1 = (0, 1), then the state transitions for addition modulo 2n is
as follows:

εn = e0
u[n−1]−−−−→ εn−1

u[n−2]−−−−→ εn−2 → . . .→ ε1
u[0]−−→ ε0.

Where εj ∈ {e0, e1}, 0 ≤ j < n. For more details, please refer to [25].
Based on the work above, Fu et al. in [10] set a 0 − 1 variable si that si = 0 if

εi = e0, otherwise, si = 1, then utilized (si+1, β[i], α1[i], α2[i], si) to describe the state
transition from εi+1 to εi, namely esi+1Au[i] = esi . They found that there were 10 possible
transitions for the vector (si+1, β[i], α1[i], α2[i], si), and listed eight linear inequalities
exactly satisfying these 10 possible transitions with the help of SAGE and the greedy
algorithm in [33], which are shown as follows:

si+1 − β[i]− α1[i] + α2[i] + si ≥ 0, si+1 + β[i] + α1[i]− α2[i]− si ≥ 0,

si+1 + β[i]− α1[i]− α2[i] + si ≥ 0, si+1 − β[i] + α1[i]− α2[i] + si ≥ 0,

si+1 + β[i]− α1[i] + α2[i]− si ≥ 0, si+1 − β[i] + α1[i] + α2[i]− si ≥ 0,

−si+1 + β[i] + α1[i] + α2[i] + si ≥ 0, si+1 + β[i] + α1[i] + α2[i] + si ≤ 4.

Note that there is an additional constraint εn = e0, hence, the constraints include
8× n+ 1 linear inequalities for linear approximation of addition modulo 2n.

Constraints for S-box operation. Assume S is an arbitrary m × l S-box that
(y0, y1, . . . , yl−1) = S(x0, x1, . . . , xm−1), and α, β are input and output masks respec-

tively, then the set of all its meaningful linear approximations is LT = {(α, β)|Pr[α S−→
β] 6= 1

2}. Similar to the construction of constraints for S-box in impossible differential
cryptanalysis in section 2.2, we can build linear inequalities system to exactly depict
LT , with the help of SAGE and Greedy algorithm in [33].

Until now, every operation in a certain reduced-round ARX cipher or cipher with
S-box can be exactly described with inequalities in MILP method. The corresponding
MILP model for search of ZC approximations is built by combining the whole inequal-
ities system of all operations, and it is similar as the building process for searching of
impossible differentials.



3 Algorithm to Verify the Impossible Differentials and ZC
Approximations

In section 2, we propose a method to search impossible differentials and ZC approxi-
mations by judging whether the model is infeasible or not. However, with this method,
we can not directly find out the contradictory place, even we can not judge whether
infeasible status is caused by writing wrong code or not. What’s more, the contradic-
tions found by this method are often not traditional contradiction between 0 and 1 on
a certain bit, but two sets of differences on some bits calculated from input and out-
put differences respectively which have no intersection. So in this section, we propose
an algorithm to verify the corretness of impossible differentials and ZC approximations
searched by our new tools.

The idea of our new search method for impossible differentials and ZC approxi-
mations based on MILP is that the differential propagation on cipher can be exactly
described by inequalities system. Specifically, we first set variables on both sides of each
operation in the cipher to represent the possible differences, then link them with suit-
able inequalities system so that the solutions’ set of this system is exactly the set of all
possible differential patterns. Without loss of generality, assume that there is a R-round
impossible differential for the target cipher. Obviously, if we remove some inequalities
from its MILP model such that the infeasible model becomes feasible, the contradiction
must be happened on the variables existed in those removed inequalities. In our method,
we find the contradiction between the dR2 e-th and dR2 e+ 1-th rounds8, i.e. that consider
the contradiction on the input difference of dR2 e + 1-th round. Based on such observa-
tion, we propose a method to verify the impossible differentials and ZC approximations.
Take the verification process of an impossible differential as an example, see algorithm
2. So does the verification process for the ZC approximation.

To search the related-key impossible differential of a target cipher, the process is
similar to that under single key setting, except that the key schedule and conditions on
master key should be described into the MILP model. However, note that in the phase
of finding out sets A and B, the set of linear inequalities for whole key schedule and
constraints on master key must be put into two small models for rounds 1 ∼ dR2 e and
rounds dR2 e+ 1 ∼ R simultaneously.

4 Applications

4.1 Application on HIGHT

HIGHT, introduced by Hong et al. at CHES 2006 [14], is a lightweight block cipher
approved by Korea Information Security Agency (KISA) and is adopted as an Interna-
tional Standard by ISO/IEC 18033-3 [15]. Its block size and key size are 64 bits and 128
bits respectively. HIGHT employs the Type-II generalized Feistel network consisting of
32 rounds with four parallel Feistel functions in each round. Whitening keys are applied
before the first round and after the last round. The round function is shown in Figure 1,
where (Xi

7|Xi
6, . . . , |Xi

0) and (SK4i+3|SK4i+2|SK4i+1|SK4i) indicate the 64 bits input
and 32 bits subkey of the i-th round respectively.

8 Actually, we can find out a contradiction between any two adjacent round functions. However, we
believe that the contradictions happen between the dR

2
e-th and dR

2
e+ 1-th rounds are more intuitive

and cover less related bits.



Algorithm 2: Verification process of an impossible differential
Input: The MILP model of this impossible differential. Assume that the input and output

differences are ∆xin and ∆xout respectively;
Output: The detailed contradiction.

1 Collect all inequalities linking the dR
2
e-th and dR

2
e+ 1-th rounds, then put those into a set Imid;

2 for Each inequality in Imid do
3 Remove the same inequality from the MILP model;
4 Solve the new model;
5 if The model is infeasible then
6 Delete this inequality from set Imid;
7 Continue;

8 else
9 Put this inequality back to MILP model;

10 Extract all variables corresponding to the input difference of dR
2
e+ 1-th round from remained

set Imid, and put them into a set V arcontradiction;
// The contradiction happens on V arcontradiction.

11 Output V arcontradiction;
12 Set two empty set A and B;
13 for Each possible difference value ∆xcontradiction on V arcontradiction do
14 if ∆xin → ∆xcontradiction is possible then
15 put ∆xcontradiction into set A;

16 if ∆xcontradiction → ∆xout is possible then
17 put ∆xcontradiction into set B;

18 Output sets A and B.

F0 F0F1 F1

Xi
7 Xi

6 Xi
5 Xi

4 Xi
3 Xi

2 Xi
1 Xi

0

Xi+1
7 Xi+1

6 Xi+1
5 Xi+1

4 Xi+1
3 Xi+1

2 Xi+1
1 Xi+1

0

SK4i+3 SK4i+2 SK4i+1 SK4i+0

Fig. 1. Round function of HIGHT cipher

Denote exclusive-or, addition modulo 232 and left rotation operations as ⊕, � and
≪ respectively through this paper. F0 and F1, used in the round function, are defined
as follows:

F0(x) = (x≪ 1)⊕ (x≪ 2)⊕ (x≪ 7),

F1(x) = (x≪ 3)⊕ (x≪ 4)⊕ (x≪ 6).

Since the key schedule is not related to the search of impossible differentials and ZC
approximations, we omit it in this paper. For further details, please refer to [14].

17-Round Impossible Differentials of HIGHT. For HIGHT block cipher, the
longest impossible differential, firstly proposed by Lu in [20], is 16 rounds. Based on
the property that the modular addition � operation definitely preserves the least sig-
nificant difference in the original positions, he exploited the miss-in-the-middle manner
to find two impossible differentials for 16 rounds HIGHT cipher. In this part, we use
the method in section 2 to build a MILP model for 17-round HIGHT cipher. In this
model, the differences of all subkeys are set to be zero. Since traversing all input and
output differences is impossible due to the time complexity, we only try the cases that
the hamming weights of both input and output differences are exactly one, we find four



17-round impossible differentials as follows, where ei means only the i-th bit is 1 in this
byte or word through this paper.

(e7, 0, 0, 0, 0, 0, 0, 0) 9 (0, 0, 0, 0, 0, 0, 0, e7), (0, 0, e7, 0, 0, 0, 0, 0) 9 (0, e7, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, e7, 0, 0, 0) 9 (0, 0, 0, e7, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, e7, 0) 9 (0, 0, 0, 0, 0, e7, 0, 0).

Taking the first impossible differential above as an example, we verify it by using the
algorithm in Section 3. One contradiction is found on the last byte of output of round
9 (input of round 10). The set A of values on this 8-bit contradiction place calculated
from fixed input difference includes 255 possible values except 0x80, and the set B of
values on the same 8-bit state calculated from fixed output difference only has the value
0x80. This means sets A and B have no intersection. In other words, this is actually a
17-round impossible differential.

17-Round ZC Approximations of HIGHT. Until now, for HIGHT block cipher,
the longest ZC approximation is 16 rounds presented by Wen et al. in [36], which utilized
the mask property of addition that the correlation is not zero if and only if two input
masks and output mask have the same high non-zero bit position in [7]. They tried to
set the non-zero bits of mask on the highest position of each branch of input and output,
and found 128 ZC approximations, see Theorem 1 in [36]. In this part, we utilize the
MILP model proposed for ZC approximations to search longer ZC approximations for
HIGHT cipher. Note that the masks of all subkeys are set as free variables in this model.
Because of the time complexity as well, we only try the cases that the hamming weights
of both input and output masks are exactly one. As a result, we found four 17-round
ZC approximations as follows, where e0 means 8-bit value 00000001.

(0, e0, 0, 0, 0, 0, 0, 0) 9 (e0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, e0, 0, 0, 0, 0) 9 (0, 0, e0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, e0, 0, 0) 9 (0, 0, 0, 0, e0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, e0) 9 (0, 0, 0, 0, 0, 0, e0, 0).

Taking the second ZC approximation as an example, one contradiction is found on
the first byte of output of round 9 (input of round 10). Set A of masks on this 8-bit
contradiction place calculated from the fixed input mask involves 255 values except
0x01, and set B of masks on this 8-bit state calculated from the fixed output mask only
has one value 0x01. This means such approximation is a valid ZC approximation.

4.2 Application on SHACAL-2

SHACAL-2 [11], introduced by Handschuch and Naccache, was selected as one of the
four block ciphers by NESSIE. Its block size is 256 bits and key size is various from 128
bits to 512 bits. SHACAL-2 has totally 64 rounds and its round function is based on
the compression function of the hash function SHA-2, which is shown in Figure 2. The
input of round i = 0, 1, . . . , 63 is divided into 8 words Ai‖Bi‖Ci‖Di‖Ei‖F i‖Gi‖H i. W i

and Ki are 32-bit subkey and constant respectively.
The functions used in round function is defined as follows, where Si(X) denotes the

right rotation of 32-bit word X by i-bit position, ¬X means the complement of 32-bit
word X.

Ch(X,Y, Z) = (X&Y )⊕ (¬X&Z)

Maj(X,Y, Z) = (X&Y )⊕ (X&Z)⊕ (Y&Z)∑
0 = S2(X)⊕ S13(X)⊕ S22(X)∑
1 = S6(X)⊕ S11(X)⊕ S25(X)



Maj Ch0 1

W

K

i

i

Ai+1

Ai

Bi+1

Bi

Ci+1

Ci

Di+1

Di

E i+1

Ei

F i+1

Fi

Gi+1

Gi

Hi+1

Hi

Fig. 2. Round function of SHACAL-2

Since we do not use the key schedule in this paper, we omit it here.

15-Round Impossible Differentials of SHACAL-2. For SHACAL-2 block
cipher, the longest impossible differential so far was proposed by Hong et al. in [12]
and totally had 14 rounds. In [12], Hong et al. firstly proposed a 9-round impossible
differential from round 2 to 10 as follows, where ∆h110 , i.e. the lsb of ∆H11, is 1.

(0, 0, 0, e31, 0, 0, 0, e31) 9 (?, ?, ?, ?, ?, ?, ?, ∆H11).

By adding two rounds before this 9-round impossible differential, Hong et al. con-
structed two types of 11-round impossible differential which were determined by the
msb of the 0th round key W 0. That is, if the value of the key bit is 0, one of the two
11-round impossible differentials holds with probability 1, otherwise, the other one holds
with probability 1. Consequently, by representing h110 as a nonlinear equation of some
bits in A14, B14, . . . ,H14,K11,K12,K13,W 11,W 12 andW 13, Hong et al. continuely com-
bined a nonlinear equation of 3 rounds to those 11-round impossible differentials. In the
end, they had two types of 14-round impossible differentials for rounds 0 ∼ 13 with re-
spect to the msb of W 0. By utilizing these two 14-round trails, they attacked 30-round
SHACAL-2 with 512-bit key.

In this part, we use our automatic search tool to find out longer impossible differ-
ential for SHACAL-2. The functions Ch, Maj,

∑
0 and

∑
1 used in round function are

all not mentioned in section 2. But they are easy to be described, since the first two
functions can be regarded as S-box operation and the last two ones are similar to single
XOR operation. We describe them one by one as follows.

Constraints for Ch function. It is easy to find that there are 14 out of 16
possible differential patterns for each bit of Ch(X,Y, Z) function except the patterns

(0, 0, 0)
Ch−−→ 1 and (0, 1, 1)

Ch−−→ 0. So we use the following constraints to exactly describe
all differential patterns on each bit of this function, where i = 0, 1 . . . , 31.

X[i] + Y [i] + Z[i]− Ch[i] ≥ 0,

X[i]− Y [i]− Z[i] + Ch[i] ≥ −1.

Constraints for Maj function. By analyzing the differential property ofMaj(X,Y, Z)
function, we find that only 14 out of 16 differential patterns are possible for each bit

of this function. Patterns (0, 0, 0)
Maj−−−→ 1 and (1, 1, 1)

Maj−−−→ 0 never happen. With the
help of software SAGE, we use the following constraints to just describe all possible
differential patterns on each bit.

X[i] + Y [i] + Z[i]−Maj[i] ≥ 0,

Maj[i]−X[i]− Y [i]− Z[i] ≥ −2.



Constraints for
∑

0 and
∑

1 functions. Take
∑

0 = S2(X) ⊕ S13(X) ⊕ S22(X)
as an example, so does that for

∑
1. Firstly we denote S2(X), S13(X) and S22(X) by

Y, Z,W , as a result,
∑

0 = Y ⊕ Z ⊕W . Then for each bit of
∑

0(Y,Z,W ), we can use
the equation as follows to limit it, where d1 and d2 are free 32-bit variables.

Y [i] + Z[i] +W [i] +
∑

0[i]− 2d1[i]− 2d2[i] = 0.

Until now, we can build the MILP model for SHACAL-2. In practice, we only search
the cases that the nonzero bits only happen on the msb of each word of input and output
differences. Totally there are 28× 28 = 216 cases. In the end, we find out eight 13-round
impossible differentials of SHACAL-2 as follows.

(0, 0, 0, e31, 0, 0, 0, e31) 9 (0, 0, 0, 0, e31, 0, 0, 0),

(0, 0, 0, e31, 0, 0, 0, e31) 9 (e31, 0, 0, 0, e31, 0, 0, 0),

(0, 0, e31, 0, 0, 0, 0, 0) 9 (e31, 0, 0, 0, e31, 0, 0, 0),

(0, 0, e31, e31, 0, 0, 0, e31) 9 (e31, 0, 0, 0, e31, 0, 0, 0),

(0, e31, 0, 0, 0, 0, 0, 0) 9 (e31, 0, 0, 0, e31, 0, 0, 0),

(0, e31, 0, e31, 0, 0, 0, e31) 9 (e31, 0, 0, 0, e31, 0, 0, 0),

(0, e31, e31, 0, 0, 0, 0, 0) 9 (e31, 0, 0, 0, e31, 0, 0, 0),

(0, e31, e31, e31, 0, 0, 0, e31) 9 (e31, 0, 0, 0, e31, 0, 0, 0).

Take the first 13-round impossibe differential as an example, we check its correctness.
The difference on the least significant seven bits of F 7 calculated from the input differ-
ence is 1000000, but the difference on the same place calculated from output difference
is 0000000. This is a contradiction.

Since the first two 13-round impossible differentials have the same input difference
with the 9-round impossible differential proposed by Hong et al., we can add two rounds
before them and obtain two types of 15-round impossible differentials for each one. These
are the longest impossible differentials of SHACAL-2 so far.

4.3 Application on LEA

LEA is a block cipher proposed by Hong et al. in [13], which can provide a high-speed
software encryption on general-purpose processors. It has 128-bit block size and 128,
192, or 256-bit key size. The number of rounds is 24, 28 and 32 respectively according
to key size. The round function is shown in Figure 3, where Xi[0]‖Xi[1]‖Xi[2]‖Xi[3]
and RKi[0]‖RKi[1]‖RKi[2]‖RKi[3]‖RKi[4]‖RKi[4], i = 0, 1, . . . , 31 denote 4-word in-
put and 6-word subkey of the i-th round respectively, while ROLi and RORj means
the left rotation of 32-bit value by i-bit and right rotation of 32-bit value by j-bit re-
spectively. In [13], the designers claimed that LEA cipher’s impossible differntial and
ZC approximation were 10 rounds and 7 rounds respectively.

In this part, we combine our basic analysis on the construction of LEA with the
automatic search tool in section 2 to search its impossible differentials and ZC approxi-
mations again. As a result, our longest impossible differential is 10 rounds as well. But
we find out 3 ZC approximations for 10-round LEA, which are three more rounds than
previous ones, They are shown as follows, where ei,j means only the i-th bit and the
j-th bit are 1 in this word. With these trails, the security bound (11 rounds) for ZCLC
claimed in [13] is really not enough.



Key Schedule with a 256-Bit Key. Let K = (K[0],K[1], ...,K[7]) be a 256-bit key. We set T [i] = K[i] for 0 ≤ i < 8.
Round key RKi = (RKi[0], RKi[1], ..., RKi[5]) for 0 ≤ i < 32 are produced through the following relations:

T [6i mod 8]← ROL1(T [6i mod 8]� ROLi(δ[i mod 8])),

T [6i+ 1 mod 8]← ROL3(T [6i+ 1 mod 8]� ROLi+1(δ[i mod 8])),

T [6i+ 2 mod 8]← ROL6(T [6i+ 2 mod 8]� ROLi+2(δ[i mod 8])),

T [6i+ 3 mod 8]← ROL11(T [6i+ 3 mod 8]� ROLi+3(δ[i mod 8])),

T [6i+ 4 mod 8]← ROL13(T [6i+ 4 mod 8]� ROLi+4(δ[i mod 8])),

T [6i+ 5 mod 8]← ROL17(T [6i+ 5 mod 8]� ROLi+5(δ[i mod 8])),

RKi ← (T [6i mod 8], T [6i+ 1 mod 8], T [6i+ 2 mod 8],

T [6i+ 3 mod 8], T [6i+ 4 mod 8], T [6i+ 5 mod 8]).

2.4 Encryption Procedure

The encryption procedure of LEA consists of 24 rounds for 128-bit keys, 28 rounds for 192-bit keys, and 32 rounds
for 256-bit keys. For r rounds, it encrypts a 128-bit plaintext P = (P [0], P [1], P [2], P [3]) to a 128-bit ciphertext
C = (C[0], C[1], C[2], C[3]).

Initialization. Set the 128-bit intermediate value X0 to the plaintext P . Run the key schedule to generate r round
keys.

Iterating Rounds. The 128-bit output Xi+1 = (Xi+1[0], ..., Xi+1[3]) of the i-th round for 0 ≤ i ≤ r − 1 is computed
as

Xi+1[0]← ROL9((Xi[0]⊕RKi[0])� (Xi[1]⊕RKi[1])),

Xi+1[1]← ROR5((Xi[1]⊕RKi[2])� (Xi[2]⊕RKi[3])),

Xi+1[2]← ROR3((Xi[2]⊕RKi[4])� (Xi[3]⊕RKi[5])),

Xi+1[3]← Xi[0].

Finalization. The ciphertext C is produced from the finally obtained Xr after round iteration in the following way:

C[0]← Xr[0], C[1]← Xr[1], C[2]← Xr[2], and C[3]← Xr[3].

Xi[0] Xi[1] Xi[2] Xi[3]

Xi+1[0] Xi+1[1] Xi+1[2] Xi+1[3]

 RKi[0]

ROL9 ROR5 ROR3

RKi[1]

 RKi[2]

RKi[3]

 RKi[4]

RKi[5]

Fig. 1. i-th round function

Fig. 3. Round function of LEA

(0, e0, 0, 0) 9 (e9, e27, e29, e22,0),

(e0, 0, 0, 0) 9 (e9, e27, e29, e22,0),

(e0, e0, 0, 0) 9 (e9, e27, e29, e22,0).

Taking the first ZC approximation as an example, the contradiction happens on the
sixth most significant bit of X4[2].

4.4 Application on LBlock

LBlock, proposed by Wu and Zhang at ACNS in [41], is a lightweight block cipher. On
account of its excellent hardware performance, software performance and security, it is
widely focused on by cryptanalysts in the field of symmetric ciphers. Its block size and
key size are 64 bits and 80 bits respectively. LBlock cipher adopts a 32-round modified
Feistel network which adds an extra left rotation operation on one branch of general
Feistel network. The round function is shown in Figure 4, where (Xi

1, X
i
0) and ski denote

64 bits input and 32 bits subkey of the i-th round respectively.
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Fig. 4. Round function of LBlock cipher

In the round function, there are an XOR operation with subkey, a nonlinear layer
and a simple permutation that the second component involves 8 parallel different S-
boxes S0, S1, S2, S3, S4, S5, S6, S7 and the last component only changes the byte order
of its input. It is worth noting that an 8-bit left rotation operation happens on the right
branch in Figure 4.



The master key of LBlock cipher is 80 bits, denoted by K = k79, k78, . . . , k0. All
subkeys ski, i = 0, 1, . . . , 31 are produced by utilizing an 80-bit register. The process is
illustrated in Algorithm 3.

Algorithm 3: Key schedule of LBlock cipher

1 sk0 = K79∼48;
2 for 1 ≤ r ≤ 31 do
3 k79∼0 ← k79∼0 ≪ 29;
4 k79∼76 ← S9(k79∼76); k75∼72 ← S8(k75∼72); k50∼47 ← k50∼47 ⊕ [i]2;
5 skr ← k79∼48.

In Algorithm 3, ka∼b denotes all key bits from ka to kb, S8 and S9 are two different
4× 4 S-boxes. For more details about LBlock, please refer to [41].

16-Round Related-Key Impossible Differentials of LBlock. Differential
cryptanalysis and impossible differential cryptanalysis are both implemented under the
single-key setting, i.e., all plaintexts are encrypted by one master key. In [1] and [16],
related-key differential and related-key impossible differential cryptanalysis are proposed
respectively, which exploited the relation of two master keys to recover the secret keys.

For LBlock cipher, The previous best related-key impossible differentials is found by
Wen et al. in [37]. They designed a specialized algorithm to search such trails with some
observations on key schedule and structure of the cipher. Finally they totally found
two 16-round related-key impossible differentials. However, Wen et al.’s two impossible
differentials are right only under part of master key pairs under each of the given two
key differences.

In our work, we use the tool in Section 2 to build a MILP model for LBlock cipher
including the key schedule and search the related-key impossible differentials. According
to the key schedule, LBlock is a bit-level cipher. We only search the cases that the
difference of two master keys has only one nonzero bit (80 cases) and the input and
output differences both have no more than one nonzero bit (65 × 65 = 4225 cases), so
in total we search 338000 cases. In the end, we search out eighteen 16-round related-key
impossible differentials shown in Table 2.

Table 2. 16-round related-key impossible differentials for LBlock

∆in ∆out Key difference (∆K)

0 0 or nonzero bit ∈ {20, 21, 22, 23} only k11 = 1

0 0 or nonzero bit ∈ {8, 9, 10, 11} only k10 = 1

0 0 only k6 = 1

0 0 or nonzero bit ∈ {16, 17, 18, 19} only k2 = 1

0 0 only k1 = 1

0 0 only k0 = 1
1 ∆in and ∆out are input and output differences respec-

tively.
2 0 denotes zero difference;
3 Nonzero bit ∈ {n1, n2, n3, n4} means the difference can

be one of four cases: 0x8000000000000000 ≫ ni, i =
1, 2, 3, 4;

4 “only ki = 1” denotes only the i-th bit of master key is 1,
other bits are all 0.



Taking the related-key impossible differential with k0 = 1 as example, one contra-
diction is found on the sixth most significant nibble of output of round 8 (input of round
9). Set A of differences on this 4-bit contradiction place calculated from the fixed input
difference involves only one value 0000, and set B on the same 4-bit state calculated
from the fixed output difference only has 11 values: 1000, 0100, 1100, 1010, 0110, 1110,
0001, 0101, 0011, 1011, 1111. Sets A and B have no intersection, which means such
differential is a valid related-key impossible one.

5 Conclusion

In this paper, we propose a new automatic search tool for impossible differentials and
ZC approximations based on MILP method. In this tool, the differential and linear
properties of non-linear components are firstly taken into consideration, so we can not
only find the previous impossible differentials and ZC approximations, but also may find
longer ones for a target cipher. As applications, we apply this tool on search of impossible
differential or ZC approximations for HIGHT, SHACAL-2, LEA, LBlock. As a result,
we find the longest such types of trails for each cipher so far. Actually, this tool is useful
in IDC and ZCLC for most ARX ciphers and lightweight block ciphers. Additionally,
it can be used in evaluating the security of stream cipher and hash functions as well.
However, there are still two problems in this tool to be solved in the future. Firstly, the
search for cipher with 8-bit S-box is slow because of lots of linear inequalities to describe
such S-box. Secondly, searching all case of target rounds of a cipher is difficult due to
the time complexity, how to shrink searching scope to find the longest trail in suitable
time is another meanful problem, especially under related-key setting. In the future, we
will focus on these problems and improve this tool.
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