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Abstract

We prove the related-key security of the Iterated Even-Mansour cipher under broad classes
of related key derivation (RKD) functions. Our result extends the classes of RKD functions
considered by Farshim and Procter (FSE, 15). Moreover, we present a far simpler proof
which uses techniques similar to those used by Cogliati and Seurin (EUROCRYPT, 15)
in their proof that the four-round Even-Mansour cipher is secure against XOR related-key
attacks—a special case of our result and the result of Farshim and Proctor. Finally, we give a
concrete example of a class of RKD functions covered by our result which does not satisfy the
requirements given by Farshim and Procter and prove that the three-round Even-Mansour
cipher is secure against this class of RKD functions.
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1 Introduction

The security of modern block ciphers—i.e., families of pseudorandom permutations—such as
the Advanced Encryption Standard (AES), is not based on highly structured mathematical
assumptions such as factoring or discrete-log, but rather relies on heuristics and empirical evi-
dence. Nevertheless, the design of modern block-ciphers is far from ad-hoc, and typically their
high-level structure is derived from one of a few classical, well-studied paradigms.

One of the well-known paradigms for building practical block ciphers is known as the Iterated-
Even-Mansour (or, equivalently, the key-alternating) cipher. In this paradigm, computation of
the block cipher proceeds in r+1 rounds and it is assumed that the block-cipher has oracle access
(in both the forward and backward direction) to r public, independent, random permutations
P = (P1, . . . , Pr). The initial state st1 is set to the input x ∈ {0, 1}n. In each round i, the
current state sti, is xor’d with the corresponding round key ki and updated. Then the updated
state sti is queried to the permutation Pi and the state at the end of the round is set to the
output of this query. In the final round, the state str+1 is xor’d with the corresponding round
key kr+1, but no permutation is applied. In this work, we consider the case where all round
keys are set to the same value (i.e. k = k1 = k2 = · · · = kr+1) and refer to this as the “trivial
key schedule.” Formally the computation of the cipher is defined as follows:

EMP(k, x) := k ⊕ Pr(k ⊕ Pr−1(· · ·P2(k ⊕ P1(k ⊕ x)) · · · )).

To invert the cipher, one can then compute:

EM−1,P(k, y) := k ⊕ P1(k ⊕ P2(· · ·P−1
r−1(k ⊕ P−1

r (k ⊕ y)) · · · )).

The Iterated Even-Mansour cipher models the high-level structure of modern block-ciphers such
as the Advanced Encryption Standard (AES). In practice, of course, the public, random permu-
tations applied in each round are replaced with concrete, efficient instantiations. Nevertheless,
an important area of research is to understand the provable security guarantees offered by this
classical paradigm. Specifically, studying the security of the Iterated Even-Mansour cipher in the
idealized, random permutation model, reveals the strengths and weaknesses inherent to block
ciphers that follow this high-level paradigm: When the security of concrete block ciphers such
as AES differ from what the Iterated Even-Mansour cipher predicts, it points to a flaw in the
low-level specification of the scheme, rather than the high-level structure.

In 1991, Even and Mansour [10] (and subsequently Dunkelman et al. [8] in 2012) proved
that the two-round Even Mansour cipher is indistinguishable from a random permutation. In
this work, we consider increasing the number of rounds in order to achieve a stronger notion of
security, known as security against related-key attacks.

Related-Key Attacks and Prior Work. Security under related-key attacks (RKAs), first
considered by Biham and Knudsen [6, 5, 13], captures non-traditional settings where an at-
tacker may tamper with user keys, and thus cause the cryptosystem to be run on a sequence
of related keys. Related-key attacks are also of concern in settings where, through faulty de-
sign, a higher-level protocol runs a lower-level protocol on related keys (instead of generating
fresh keys for each instance), allowing an adversary to observe correlated outputs of the cryp-
tosystem on related keys. Real-life examples of such incorrect key usage, are key derivation
procedures in standardized protocols such as EMV [9] and the 3GPP integrity and confidential-
ity algorithms [12]. Due to these examples, related-key attacks have become a practical concern,
and resilience against RKAs, particularly for blockciphers, is now a widely-accepted security
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goal. Bellare and Kohno [4] initiated the theoretical study of security under related-key attacks
and introduced rigorous definitions capturing RKA-secure pseudorandom functions (PRFs) and
pseudorandom permutations (PRPs). Subsequently, Albrecht et al. [1] extended these defini-
tions to idealized models of computation (as we consider in our setting) to capture settings in
which the key is derived in a way that depends on the ideal primitive. Both works prove that
the ideal cipher is RKA secure against broad classes of related-key derivation (RKD) functions.
Bellare and Cash [2] presented an RKA-secure pseudorandom function, against specific classes
of related-key functions, from standard assumptions. Subsequently, Bellare, Cash, and Miller [3]
investigated the possibility of RKA-preserving security reductions, showing e.g. a generic con-
structions of RKA and chosen ciphertext attack (CCA) secure public key encryption from any
RKA-secure identity-based encryption (IBE).

In this work we are specifically interested in the RKA security of the r + 1-round Even-
Mansour cipher with the trivial key schedule. Formally, we consider a class of related-key
derivation (RKD) functions Φ and a related-key adversary A who has access to r+ 1 oracles: r
permutation oracles, and a related-key oracle RK—which is supposed to simulate the extra power
afforded to the adversary by a related-key attack. In more detail, on input (φ, x), x ∈ {0, 1}n,
the related-key oracle RK for a block cipher BCk with key k (denoted RK[BCk]) runs the block-
cipher BCφ(k)(x) on input x and related-key φ(k) and returns the output to the adversary. In
the security game, the adversary may make up to qp queries to each Pi ∈ P and qe queries to its
RK oracle and must distinguish between the following two worlds:

• the “real” world, where it interacts with (RK[EMP
k ],P) where P = (P1, . . . , Pr) is a tuple of

random permutations, EMP is the r+ 1-round Even-Mansour cipher, and k is a randomly
drawn key;

• the “ideal” world where it interacts with (RK[Ek],P) where P = (P1, . . . , Pr) is a tuple of
random permutations, E is an ideal cipher independent from P, and k a randomly drawn
key.

In both of the above worlds, the attacker interacts with its oracles to produce a transcript, τ ,
which represents everything the attacker has learned about the block cipher during its interac-
tions. To prove security, we must show that the view of the adversary is indistinguishable in the
above two worlds, which is equivalent to showing that the distributions over transcripts in the
two worlds are statistically close. We denote by AdvΦ

EM[n,r](qe, qp) the distinguishing advantage
of the adversary in the above game.

The related-key security of the Iterated Even-Mansour cipher in the model discussed above
has been considered by the two prior works of Farshim and Proctor [11] and Cogliati and
Seurin [7]. Briefly, Farshim and Proctor’s result applies to general classes of RKD functions (in
particular, their result encompasses RKD functions φ(k) = φP(k) that make oracle queries to
P), while Cogliati and Seurin address the special case of XOR related-key attacks, where the
key k may be xor’d with a known offset ∆. On the other hand, Cogliati and Seurin’s proof,
which uses the H-coefficient technique [14], is more rigorous and achieves somewhat improved
concrete security bounds versus that of Farshim and Proctor.

1.1 Our Results

In this work, we prove the related-key security of the Iterated Even-Mansour Cipher against
a strictly larger set of classes of RKD functions than the set of classes considered by Farshim
and Proctor [11]. In particular, we note that our result (as well as the result of Farshim and
Proctor) includes as a special case the class of XOR related-key attacks, defined above, which is
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of particular interest. We use proof techniques similar to the H-coefficient technique that was
used by Cogliati and Seurin [7], thereby greatly simplifying our analysis.

The requirements on the classes of functions we consider can be framed in various ways: First,
they can be framed with respect to events that occur during an execution of the Ideal experiment
in the RKA security definition (see Section 2.1). We then show that the requirements on the
classes of functions we consider can also be framed with respect to events that occur during an
execution of the Real experiment in the RKA security definition, with only slight security loss
(see Section 2.1 and Lemma 3.6). Finally, we show that these requirements can also be framed
with respect to an adversary AP that has oracle access to P, but no oracle access to RK and
thus no access at all to the secret key k (see Sections 2.2, 2.3). Framing our requirements in this
way allows us to compare our requirements with the requirements of Farshim and Proctor, who
adopted the latter approach.

We sketch below the three requirements we impose on the classes of RKD functions (see
Section 2.1 for more details). Note that we allow our RKD functions φ(k) = φP(k) to make
oracle queries to P.

First requirement: Output unpredictability says φ(k) is unpredictable and is a basic re-
quirement already shown to be necessary for RKA security of the ideal cipher by Bellare and
Kohno [4]. Our requirement is a strengthening of output unpredictability (similar to Farshim
and Proctor) which essentially says that for known x, y, the quantities P1(φ(k)⊕ x)⊕ φ(k) and
P−1

3 (φ(k)⊕ y)⊕ φ(k) are unpredictable. Specifically, we define a bad event EVou1 which occurs
if the same query to P2 is made (1) directly to the P2 oracle and (2) during computation of the
encrypt/decrypt procedure within an RK query.

Second requirement: Claw-freeness (also called collision-resistance and required by Bellare
and Kohno [4] to achieve RKA security of the ideal cipher) says that for it is hard to find distinct
φ1, φ2 such that φ1(k) = φ2(k). Our requirement is a strengthening of claw-freeness (again,
similar to Farshim and Proctor) which essentially says that it is hard to find distinct φ1, φ2 and
x1, x2 or y1, y2 such that P1(φ1(k)⊕ x1)⊕ φ1(k) = P1(φ2(k)⊕ x2)⊕ φ2(k) or P−1

3 (φ1(k)⊕ y1)⊕
φ1(k) = P−1

3 (φ2(k) ⊕ y2) ⊕ φ2(k). Note that our requirement implies claw-freeness by setting
x1 = 0, x2 = 0. Specifically, we define a bad event EVcf1 which occurs if the same query to P2

is made during computation of the encrypt/decrypt procedure within two distinct RK queries.

Third requirement: Our third requirement is a technical requirement that seems necessary
in order to complete the security proof. Our requirement is strictly weaker than the third
requirement of Farshim and Proctor. Informally, in their result, Farshim and Proctor required
that the same query to P2 is never made both (1) during the computation of some RKD function
φ1(k) and (2) during the encryption/decryption procedure corresponding to some RK query
with RKD function φ2. In our work we relax this requirement and allow intersection queries
as above, as long as the transcript can be re-ordered in such a way that the query during
encryption/decryption occurs first. Specifically, the adversary A generates a transcript τ during
the related-key attack experiment (making queries to its oracles in an arbitrary order). For each
adversary A, we consider all possible re-ordering functions R(τ) that re-order the queries in the
transcript τ . The event EVord is the event that the same query to P2 is made during (1) and (2)
as above and, moreover, that (1) occurs before (2). For adversary A making (qp, qe) queries, we
then consider the minimum probability that EVord occurs over choice of re-ordering function R.
Let EVRord denote the event that EVord occurs when the best possible re-ordering function for
A, R, is used. Note that the order of queries specified by R(τ) may be entirely different from
the order of queries made by the adversary, A, during the security experiment.
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We now present our main result:

Theorem 1.1 (Informal). Let qe, qp be positive integers, N = 2n, and assume the trivial key-
schedule. Let Φm

ρ be a class of RKD functions such that (1) every φ ∈ Φm
ρ makes at most m

queries to P; and (2) for all adversaries A making at most qe queries to RK and qp queries to
each Pi ∈ P, the probability that event EVou1 or EVcf1 or EVRord occurs is at most ρ.

Then

Adv
Φm
ρ

EM[n,r](qe, qp) ≤ 2ρ+
3m(qe)

2

N
+

2(qe)
2

N
+
qe · qp
N

.

Finally, we give a concrete example of a class Φ of RKD functions that satisfies our three
requirements, but does not satisfy the requirements of Farshim and Proctor. Specifically, security
of the four-round Even-Mansour cipher for this class Φ does not follow from the results of Farshim
and Proctor, since it is possible to cause the same query to be made (1) during the computation
of some RKD function φ1(k) and (2) during the encryption/decryption procedure corresponding
to some RK query with RKD function φ2 with probability 1. Nevertheless, using our main
theorem above, we are able to show that the three-round Even-Mansour cipher is secure against
this RKD class Φ. More formally, we prove the following theorem:

Theorem 1.2. Let N = 2n, qe, qp be positive integers, I the identity function, and Φ the RKD
class defined as:

Φ =

{
φ∆, ∆ ∈ {0, 1}n

I

where φ∆(k) := P2(P1(k ⊕∆)⊕ k)⊕ P1(k ⊕∆). Then

AdvΦ
EM[n,2](qe, qp) ≤

13(qe)
2

N
+

9qe · qp
N

+
4(qe)

2 · qp
N

+
8(qe)

3

N
.

Note that the P2 query made by RKD function φ∆(k) is the same as the P2 query made
during the encryption procedure when the RK oracle is queried with input (I,∆).

We leave for future work the significant problem of fully characterizing the classes of RKD
functions for which the r + 1-round Even-Mansour cipher achieves related-key security.

2 Methodology and Preliminaries
Notation. For positive integers x, y, x ≥ y, we denote by (x)y := (x)(x−1) · · · (x−y+1). For
an event EV, we denote by EV the complement of the event. The following is readily verified:

Fact 2.1. For positive integers x, a, c such that x > a · c, we have that

(x− a)c

xc
≥ 1− ac

x
.

The Iterated Even-Mansour Cipher. Fix integers n, r ≥ 1. We consider the r + 1-round
iterated Even-Mansour construction when the same key k is used in each round (we call this the
“trivial key schedule”). In this paper, we consider only r ≥ 2. It is defined in the following way:
EM[n, r] specifies, from any r-tuple P = (P1, . . . , Pr) of permutations of {0, 1}n, a block cipher
with n-bit keys and n-bit messages, simply denoted EMP in all the following (parameters [n, r]
will always be clear from the context), which maps a plaintext x ∈ {0, 1}n and a key k ∈ {0, 1}n
to the ciphertext defined by:

EMP(k, x) = (k)⊕ Pr(k ⊕ Pr−1(· · ·P2(k ⊕ P1(k ⊕ x)) · · · )).
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Related-Key Oracle. Let E ∈ BC(κ, n) be a block cipher, and fix a key k ∈ {0, 1}κ. We
define the related-key oracle with respect to RKD class Φ, RKΦ[Ek], which takes as input a
function φ ∈ Φ and a plaintext x ∈ {0, 1}n, and returns RKΦ[Ek](φ, x) := Eφ(k)(x). The oracle

can be queried backward, namely RK[Ek]
Φ,−1(φ, y) := E−1

φ(k)(y). Note that we allow functions
φ ∈ Φ to make oracle queries to P.

Security against related-key attacks. To formalize related-key attacks against the r-round
Even-Mansour cipher, we extend in a straightforward way the classical Bellare-Kohno model [4]
to the case where the adversary has access to additional oracles. Formally, we consider a class of
RKD functions Φ and a related-key adversary A which has access to r+1 oracles—r permutation
oracles and a related-key oracle—and must distinguish between the following two worlds:

• the “real” world, where it interacts with (RK[EMP
k ],P) where P = (P1, . . . , Pr) is a tuple

of random permutations and k is a randomly drawn key;

• the “ideal” world where it interacts with (RK[Ek],P) where P = (P1, ..., Pr) is a tuple of
random permutations, E an ideal cipher independent from P, and k a randomly drawn
key.

The adversary is adaptive, and can make two-sided queries to each oracle. As usual, we assume
that it is computationally unbounded, deterministic, and never makes pointless queries. Note
that in the ideal world, as long as φ1(k) 6= φ2(k), the related-key oracle RK[Ek] simply imple-
ments an independent random permutation for each φ1, φ2. The distinguishing advantage of A
is defined as

Adv(A) =
∣∣∣Pr[ARK[EMP

k ],P = 1]− Pr[ARK[Ek],P = 1]
∣∣∣ ,

where the first probability is taken over the random choice of k and P, and the second probability
is taken over the random choice of E, k, and P. For qe, qp non-negative integers, we define the
insecurity of the iterated Even-Mansour cipher against Φ-restricted related-key attacks as

AdvΦ
EM[n,r](qe, qp) = max

A
Adv(A),

where the maximum is taken over all adversaries making exactly qe queries to the related-key
oracle and exactly qp queries to each inner permutation oracle, Pi ∈ P. We assume without loss
of generality, that for each RK query with RKD function φ made by A, there is a corresponding
RK query made by A with the same RKD function φ and the input (x or y) set to 0.

Transcript. The transcript τ consists of two parts: A key k and a set Sτ of tuples (representing
adversarial queries) of the following form: (O, φ, x, y) where O denotes whether the oracle the
query was made to was Pi, i ∈ [r] or RK, φ denotes the associated RKD function if O = RK, and
is set to ⊥ otherwise, and x, y denote the input/output received by the adversary, respectively.
We do not make a distinction between queries made in the forward or inverse direction to RK
or Pi. Let T denote the set of all possible transcripts. The transcript τ is meant to capture
the view of the adversary A in the security experiment. We denote by Tre, resp. Tid, the
probability distribution of the transcript τ induced by the real world, resp. the ideal world
(note that these two probability distributions depend on the adversary). By extension, we use
the same notation to denote a random variable distributed according to each distribution. The
advantage of adversary A can be upper-bounded by the statistical distance between Tre and
Tid. We denote by Tre and Tid the support of Tre and Tid, respectively.
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Extended Transcript. The extended transcript τext represents all the randomness needed to
implement the oracles in the real experiment and consists of two parts: A key k and a set Sτext
of tuples (representing all queries made to Pi during the experiment—even “hidden” ones) of the
following forms: (Pi,⊥, x, y) denotes a direct query made to oracle Pi. (RK, φ, x, y, b, Pi, x

′, y′)
denotes a hidden query to Pi made during an adversarial query to RK with RKD function φ
and input/output x, y. More specifically, (RK, φ, x, y) denotes the original adversarial query,
b is a bit set to 1 if the hidden query was made during evaluation of the RKD function φ(k)
and 0 otherwise, Pi represents the oracle the hidden query was made to, and x′, y′ denote the
input/output of the query to Pi. Note that, for fixed A, given an extended transcript τext, the
original transcript τ can be recovered. We write τext ` τ to indicate that τext is an extended
transcript consistent with τ . Note that A’s view does not include everything in τext. We denote
by Text

re , the probability distribution of the extended transcript τext induced by the real world
(note that this probability distribution depends on the adversary). By extension, we use the
same notation to denote a random variable distributed according to the distribution.

Ordered Transcript. For a given τ , an ordering of τ , τ ord consists of two parts A key k and
a set Sordτ of tuples (representing adversarial queries) of the following form: (O, φ, x, y, j) where
(O, φ, x, y) ∈ Sτ , and the index j ∈ |Sτ | indicates an ordering of the queries in Sτ . For a fixed
τ , let Ord(τ) denote the set of all possible orderings of τ . For transcripts containing at most s
queries, we consider the set of all possible re-ordering functions R that take as input τ with s
queries and output an ordered transcript τ ord ∈ Ord(τ).

2.1 Our Requirements on RKD Classes

We next present our requirements on RKD classes. In Sections 2.2 and 2.3 we show that our
requirements are strictly weaker than those of Farshim and Proctor. At a very high-level, our
requirements state that the following events occur with small probability. Details follow.

The event EVou1. Given a (partial) extended transcript τext, EVou1 occurs if:

∃(RK, φ, x′, y′, 0, P2, x, y), (P2,⊥, 0, P2, x, y) ∈ τext,

i.e. the same query is made to P2 within an RK query and directly to the P2 oracle.

The events EVcf and EVcf1. If (in the Real or Ideal game) A makes two RK queries such
that φ1 6= φ2, but φ1(k) = φ2(k), then (φ1, φ2,COL) is recorded in the transcript, τ , and EVcf

is said to occur. Note that this event occurs internally during a draw τ ∼ Tid (resp. τ ∼ Tre).
Given a (partial) extended transcript τext, EVcf1 occurs if:

∃(RK, φ1, x1, y1, 0, P2, x
′, y′), (RK, φ2, x2, y2, 0, P2, x

′, y′) ∈ τext s.t. (φ1, x1, y1) 6= (φ2, x2, y2),

i.e. there exist two distinct queries to RK, in which the same query is made to P2 and these
queries were not made during evaluation of the RKD function.

The event EVord. Given a (partial) extended transcript τext and a re-ordering function R,
EVord occurs if:

∃(RK, φ1, x1, y1, 1, P2, x
′, y′), (RK, φ2, x2, y2, 0, P2, x

′, y′) ∈ τext s.t.

(1) (RK, φ1, x1, y1, j1), (RK, φ2, x2, y2, j2) ∈ R(τ) for some j1, j2

(2) j1 ≤ j2,

i.e. while querying RK, the same query is made to P2 both during evaluation of an RKD function
and not during the evaluation of an RKD function. Moreover, in the ordering R(τ) of the
transcript τ , the query made during the evaluation of the RKD function occurs first.
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The event EVbp. This event occurs with low probability for every class Φ and is only included
since it will be useful for the proof. Given a (partial) extended transcript τext, EVbp occurs if:

∃(RK, φ1, x1, y1, 1, P2, x3, y3), (RK, φ2, x2, y2, 0, P2, x4, y4) ∈ τext s.t.

(x3 = x4 ∧ y3 6= y4) ∨ (x3 6= x4 ∧ y3 = y4),

i.e. inconsistent answers are given to queries made to P2 during calls to RK—once during the
evaluation of the RKD function and once not during the evaluation of the RKD function.

We next define a distribution over extended transcripts in the Ideal setting, which will help
us formally define the classes of RKD sets for which we can prove security.

Distribution Text
id

• Sample τ ∼ Tid and compute R(τ).

• Sample P conditioned the direct queries to P contained in τ only.

• Answer hidden queries to produce τext as specified in Procedure Hidden and output τext.

Procedure Hidden:

1. For each RK query inside the re-ordering of τ , R(τ), make the next hidden query to
P1, . . . , Pr, with the P2 query during the encrypt/decrypt procedure (not during compu-
tation of φ(k)) always made last.

2. Hidden queries are answered in the following way: If the query already appears in τ , or
has already been answered, answer as before. If the query is a query to P2 during the
encrypt/decrypt procedure, its answer must already be determined by previous queries
and the transcript τ . For all other queries, use access to P in order to answer the query.

3. Once m · qe queries have been answered via access to P2 during the experiment, then for
all subsequent queries to P2 made during evaluation of an RKD function, ignore P and
output the lexicographically first response that has not been used yet.

For an event EV, we denote by PrIdeal[EV] (resp. PrReal[EV]) the probability of EV occur-
ring in extended transcript τext, where τext ∼ Text

re (resp. τext ∼ Text
id ).

Given the above, we present the following definitions: Let the advantage of an adversary A
against the first-order output unpredictability of an RKD set Φ be defined as:

Advou1
Φ,Ideal(A) := Pr

Ideal
[EVou1]; Advou1

Φ,Real(A) := Pr
Real

[EVou1].

(Note that the above quantities will be the same, regardless of choice of R.)

Similarly, let advantage of an adversary A against the (first order) claw-freeness of an RKD
set Φ be defined as:

Advcf
Φ,Ideal(A) := Pr

Ideal
[EVcf ]; Advcf

Φ,Real(A) := Pr
Real

[EVcf ].

Advcf1
Φ,Ideal(A) := Pr

Ideal
[EVcf1]; Advcf1

Φ,Real(A) := Pr
Real

[EVcf1]
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(Note that the above quantities will be the same, regardless of choice of R.)

We define the advantage of an adversary against the ordering of an RKD set Φ with re-
ordering function R as:

Advord
Φ,Ideal(A,R) := Pr

Ideal
[EVord]; Advord

Φ,Real(A,R) := Pr
Real

[EVord].

Finally, note that regardless of the adversary A or the class Φ, we have that

Pr
Ideal

[EVbp] ≤ 2m(qe)
2

N
; Pr

Real
[EVbp] = 0.

2.2 The Requirements on Φ of Farshim and Proctor

We introduce the following notation: σ ∈ {+,−} and P σi indicates a query to Pi in either the
forward or backward direction. Farshim and Proctor presented the following requirements on
RKD sets Φ and showed that the 4-round Even-Mansour construction is RKA-secure against
RKD sets Φ that satisfy them.

First-Order Output Unpredictability. The advantage of an adversary A against the first-
order output unpredictability of an RKD set Φ with access to t ideal permutations is defined
via:

Advfp,ou1
Φ (A) := Pr[∃(i, σ, φ, x, c) ∈ List s.t. P σi (φ(k)⊕ x)⊕ φ(k) = c : List← AP].

First-Order Claw-Freeness. The advantage of an adversary A against the (first-order) claw-
freeness of an RKD set Φ with access to t ideal permutations is defined via:

Advfp,cf
Φ (A) := Pr[∃(i, σ, φ1, x1, φ2, x2) ∈ List s.t. φ1(k) = φ2(k) ∧ φ1 6= φ2 : List← AP].

Advfp,cf1
Φ (A) := Pr[∃(i, σ, φ1, x1, φ2, x2) ∈ List s.t. P σi (φ1(k)⊕ x1)⊕ φ1(k) =

P σi (φ2(k)⊕ x2)⊕ φ2(k) ∧ φ1 6= φ2 : List← AP].

First-Order Query Independence. The advantage of an adversary A against the first-order
query independence of an RKD set Φ with access to t ideal permutations is defined via:

Advfp,qi1
Φ (A) := Pr[∃(i, σ, φ1, x1, φ2) ∈ List s.t. (2, P σi (φ1(k)⊕x1)⊕φ1(k),±) ∈ Qry[φ(k)] : List← AP],

where

Qry[φ(k)] := {(i, x, σ) : (i, x, σ) queried to P by φ(k)},
Qry[φ(k)] := Qry[φ(k)] ∪ {(i, P σi (x),−σ) : (i, x, σ) ∈ Qry[φ(k)]}.

2.3 Comparison of our requirements on Φ with those of Farshim and Proctor

We claim that for the case of the 3-round Even-Mansour cipher with trivial key schedule,
PrIdeal[EVou1∨EVcf∨EVcf1∨EVord] ≤ Advfp,ou1

Φ (A′)+Advfp,cf
Φ (A′)+Advfp,cf1

Φ (A′)+Advfp,qi1
Φ (A′).

Where A,A′ make the same number of queries to P. As a first step in reconciling the two defi-
nitions, we present a transformation F which converts a transcript τ ∼ Tid into a list List as in
the definition of Farshim and Proctor. F (τ) does the following:

9



• For each (RK, φ, x, y) ∈ τ , and each (P2,⊥, x′, y′) ∈ τ , we add tuples (1,+, φ, x, x′),
(3,−, φ, y, y′) to List.

• For each pair (RK, φ1, x1, y1), (RK, φ2, x2, y2) ∈ τ , φ1 6= φ2, we add tuples (1,+, φ1, x1, φ2, x2),
(3,−, φ1, y1, φ2, y2) to List.

• For each pair (RK, φ1, x1, y1, i), (RK, φ2, x2, y2, j) ∈ R(τ), where i ≤ j, we add tuples
(1,+, φ2, x2, φ1), (3,−, φ2, y2, φ1) to List.

Now, consider an adversary A and the distribution over transcripts τext generated, condi-
tioned on EVcf not occurring. Assume the event EVou1 ∨EVcf1 ∨EVord occurs with probability
ρ1, conditioned on EVcf not occurring. We construct an adversary A′ who gets access only to P
such that Advfp,ou1

Φ (A′) + Advfp,cf1
Φ (A′) + Advfp,qi1

Φ (A′) ≥ ρ1. A′ runs A internally and receives
queries from A. A′ forwards all of A’s queries to P to its own oracle. When A queries RK with
input φ ∈ Φ and x or y, A′ responds as follows: A′ keeps a separate table for each distinct RKD
function φ. Each table has a column for inputs x and outputs y and is filled in on the fly. At each
moment A maintains the invariant that each table is consistent with some permutation (i.e. no
two inputs map to the same output). When A queries RK with RKD function φ, A′ completes
the corresponding row of the corresponding table at random, conditioned on maintaining the
invariant, and returns the response to A. When A is done querying, A′ receives a random key
k and begins making the hidden queries with respect to P as specified by Text

id . Note that the
distribution induced by A′ is identical to the distribution induced by τext ∼ Text

id , conditioned
on EVcf not occurring. So PrIdeal[EVou1∨EVcf1∨EVord] is the same as the probability that one
of these events occur in the simulation of A′. Moreover, if EVou1 (resp. EVcf1,EVord) occurs
during the simulation of A′, then F (τ) contains a tuple (i, σ, φ, x, c) (resp. (i, σ, φ1, x1, φ2, x2),

(i, σ, φ1, x1, φ2)) as in the definition of Advfp,ou1
Φ (A′) (resp. Advfp,cf1

Φ (A′), Advfp,qi1
Φ (A′)).

Showing that PrIdeal[EVcf ] ≤ Advfp,cf
Φ (A′) follows similarly to the above: A′ responds to

queries of A as above. When A is done querying, A′ receives a random key k and begins making
only the hidden RKD queries with respect to P. The induced distribution over τ and hidden
RKD queries differs from the correct distribution only in the case that A queried distinct φ1, φ2

such that φ1(k) = φ2(k) (which causes the response forwarded to A to possibly be inconsistent
with key k). But in this case, EVcf has already occurred.

Note that it is possible that Advfp,qi1
Φ (A) is high for some adversary A making t queries,

while for some R, our event EVord still occurs with low probability for all adversaries A making
the same number of queries. Indeed, in Section 4, we present a concrete class of RKD functions
Φ for which Farshim and Proctor’s notion of first-order query independence does not hold, but
for which our techniques allow us to prove RKA-security of the three-round Even Mansour
construction with respect to this class Φ. Specifically, for our concrete class Φ, we have that
Advfp,qi1

Φ = 1, and so the results of Farshim and Proctor do not even allow proving that the
4-round Even-Mansour cipher is secure against this RKD class. On the other hand, in our
setting we show that for class Φ, there is a re-ordering function R such that PrIdeal[EVou1 ∨
EVcf ∨ EVcf1 ∨ EVord] is small even for the 3-round Even-Mansour cipher, which allows us to
prove security of the 3-round Even-Mansour cipher against this class of RKD functions.

3 Main Results

Let A be an adversary making qe, qp queries to RK and each Pi ∈ P, respectively, and let
R be the re-ordering function used in the experiment. We define EVgood := EVou1 ∧ EVcf ∧
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EVcf1 ∧EVord and EV+
good := EVou1 ∧EVcf ∧EVcf1 ∧EVord ∧EVbp. Define AdvEV

Φ,Ideal(A,R) :=

1− PrIdeal[EVgood] and AdvEV
Φ,Real(A,R) := 1− PrReal[EVgood] = 1− PrReal[EV+

good].
In this section, we prove our main Theorem:

Theorem 3.1. Let qe, qp be positive integers, N = 2n, and assume the trivial key-schedule. Let
Φm
ρ be a class of RKD functions such that (1) every φ ∈ Φm

ρ makes at most m queries to P;
and (2) for all adversaries A making at most qe queries to RK and qp queries to each Pi ∈ P,
minR[AdvEV

Φmρ ,Ideal(A,R)] ≤ ρ. Then

Adv
Φm
ρ

EM[n,r](qe, qp) ≤ 2ρ+
3m(qe)

2

N
+

2(qe)
2

N
+
qe · qp
N

.

To aid in the proof of Theorem 3.1, we introduce several claims, lemmas and corollaries.
The following claim can be verified by inspection of the distributions Text

id ,Text
re .

Claim 3.2. For every τ ∈ Tre ∪ Tid (where Tre and Tid, denote the supports of Tre and Tid,
respectively), PrReal[EV+

good ∧ Tre = τ ] > 0 if and only if PrIdeal[EV+
good ∧ Tid = τ ] > 0.

The following lemma follows from the fact that if EVcf occurs for a transcript τ ∼ Tid then
PrIdeal[EV+

good | Tid = τ ] = 0, whereas if the event does not occur (with probability at least
1− ρ), then the transcript contains qe “fresh” calls to the ideal cipher.

Lemma 3.3. For every τ such that Pr[Tid = τ ∧ EV+
good] > 0,

(1− ρ)
PrIdeal[EV+

good | Tid = τ ]

N((N)qp)
rN qe

≤ Pr
Ideal

[Tid = τ ∧ EV+
good] ≤

PrIdeal[EV+
good | Tid = τ ]

N((N)qp)
r(N)qe

,

The following lemma is the main technical lemma in this section:

Lemma 3.4. Let M := qe(m+ 1). For every τ ∈ Tre,

Pr
Real

[Tre = τ ∧ EV+
good] = Pr

Ideal
[EV+

good | Tid = τ ] · 1

N((N)qp)
r(N − qp −M + qe)qe

.

Proof. We observe that

Pr[Tre = τ ∧ EV+
good] =

∑
τext`τ∧EV+

good

Pr[T ext
re = τext].

To compute the above sum, we first calculate the exact probability of obtaining a particular
extended transcript τext and then multiply by the number of valid extensions τext ` τ , in which
EV+

good occurs.

In more detail: The probability that Tre
ext = τext for a particular τext is simply the prob-

ability of selecting the correct key k and, selecting each explicit query in τ to P1, . . . , Pr and
then selecting each “hidden” query to P1, . . . , Pr during computation of RK queries (note this
includes queries made to φ during the computation of the RKD function). Assume WLOG that
τext contains exactly M = qe(m + 1) new queries to each of P1 . . . , Pr that are not explicitly
contained in τ . Thus, for any particular τext, we have that

Pr
Real

[Tre
ext = τext] =

1

N ·
(
(N)qp+M

)r . (1)

11



Now, for a particular τ , we must compute the number of extended transcripts τext such that
(1) EV+

good holds and (2) τext is consistent with τ . To do this, we present a mapping ψτ from
a set Dτ to the set of extended transcripts τext such that (1) and (2) hold and show that this
mapping is a bijection. Then, the size of Dτ is exactly equal to the desired quantity.

We first define a set D′τ , such that Dτ ⊆ D′τ . D′τ consists of tuples of the form (QP1 , . . . , QPr).
Each QPi for i ∈ [r], i 6= 2, is a tuple of M values (yi1, . . . , y

i
M ), where each yij ∈ [N − qp− j + 1].

Similarly, QP2 is a tuple of M − qe values (y2
1, . . . , y

2
M−qe), where each y2

j ∈ [N − qp − j + 1].
Clearly,

|D′| = ((N − qp)M )r−1(N − qp)M−qe . (2)

Let ψτ be the following mapping:

The mapping ψτ (QP1 , . . . , QPr)

1. For each RK query in R(τ), begin making hidden queries to P1, . . . , Pr, in order to recover
a τext, with the P2 procedure (not during computation of φ(k)) made last.

2. Hidden queries are answered in the following way: If the query already appears in τ , or
has already been answered, answer as before. If the query is a query to P2 during the
encrypt/decrypt procedure, its answer is determined by previous queries. For all other
queries, use the next value in the corresponding tuple QP1 , . . . , QPr to answer the query.

3. If there are not enough values in QP2 to answer all the hidden queries, then output the
lexicographically first response that has not been used yet.

4. If EVgood occurs, ψτ outputs τext. Otherwise, ψτ outputs ⊥.

Let Dτ ⊆ D′τ be the set of tuples (QP1 , . . . , QPr) such that ψτ (QP1 , . . . , QPr) 6= ⊥.
We must now argue that ψτ is a bijection, i.e. one-to-one and onto. We show that ψτ

has an inverse g such that: for τext such that (1) and (2) hold, ψτ ◦ g(τext) = τext and for
(QP1 , . . . , QPr) ∈ Dτ , g ◦ ψτ (QP1 , . . . , QPr) = (QP1 , . . . , QPr). We define g(τext) in the following
way: Derive τ from τext and run R(τ) to obtain a re-ordering of τ . Consider the hidden queries
and responses made during RK oracle queries to P1, . . . , Pr (as determined by τext) occurring in
a specific order. g will use these ordered responses to form tuples (QP1 , . . . , QPr) of the correct
form. Note that this can always be done as long as at most M − qe number of queries to P2

must be determined via QP2 , while the rest can be determined by τ and/or previous responses
to queries to P1, . . . , Pr. In the following we show that for τext such that (1) and (2) hold, this
is indeed always the case.

First, since EVou1 and EVcf1 do not occur occur, we have that exactly qe distinct queries
are made to P2 during the encrypt/decrypt procedure inside an RK query. Moreover, since
EVord occurs, we have that these queries to P2 occur first during the encrypt/decrypt procedure
(although they may also occur later during a φ(k) computation). Thus, each time a query to P2

is made during the encrypt/decrypt procedure, it will be entirely defined by τ and the previous
queries made to P1, . . . , Pr and so a fresh value from QP2 does not need to be used in order to
respond to these qe number of queries.

To see that for (QP1 , . . . , QPr) ∈ Dτ , g ◦ ψτ (QP1 , . . . , QPr) = (QP1 , . . . , QPr), we must show
that for τext such that (1) and (2) hold, there are always at least M−qe number of hidden queries
to P2 that are not determined by previous queries. This immediately follows from the fact that
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τext is defined in such a way that it always contains exactly M new hidden queries to each Pi
(if less queries are made during the computation, then we simply add “dummy” queries to τext
at the end of the computation). Thus, given τext, g returns the unique tuple (QP1 , . . . , QPr)
consistent with this extended transcript.

Now, we have that
|Dτ |
|D′τ |

= Pr
Ideal

[EV+
good | Tid = τ ], (3)

since given R(τ), each tuple (QP1 , . . . , QPr) corresponds to a set of oracles P, sampled condi-
tioned on the qp queries to each P1, . . . , Pr contained in τ , whose responses match the first M
responses from P1, P3, . . . , Pr and the first M − qe responses from P2 generated during compu-
tation of ψτ (QP1 , . . . , QPr). Moreover, the size of this set of oracles is the same for each tuple
(QP1 , . . . , QPr) and the sets corresponding to two distinct tuples are disjoint. Therefore, we have

Pr
Real

[Tre = τ ∧ EV+
good] =

|Dτ |
N ·

(
(N)qp+M

)r =
|Dτ |
|D′τ |

· |D′τ |
N ·

(
(N)qp+M

)r
= Pr

Ideal
[EV+

good | Tid = τ ] ·
((N − qp)M )r−1(N − qp)M−qe

N((N)qp+M )r

= Pr
Ideal

[EV+
good | Tid = τ ] · 1

N((N)qp)
r(N − qp −M + qe)qe

,

where the first equality follows from (1) and the third equality follows from (2) and (3).

The following corollary is immediate given Claim 3.2, Lemmas 3.3 and 3.4 and Fact 2.1.

Corollary 3.5. For τ such that PrReal[Tre = τ ∧ EV+
good] > 0 (which implies PrIdeal[Tid =

τ ∧ EV+
good] > 0) we have that

PrIdeal[Tid = τ ∧ EV+
good]

PrReal[Tre = τ ∧ EV+
good]

≥ Vall;
PrReal[Tre = τ ∧ EV+

good]

PrIdeal[Tid = τ ∧ EV+
good]

≥ Valu

where Vall = 1− qe(qp+M)
N − ρ = 1− qe(qp+(m+1)·qe)

N − ρ and Valu = 1− (qe)2

N .

The following lemma shows that if the probability of bad events occurring in the Ideal exper-
iment, ExptIdeal

A,R , is small, then the probability of bad events occurring in the Real experiment,

ExptReal
A,R, is also small.

Lemma 3.6. If AdvEV
Φ,Ideal(A,R) ≤ ρ then AdvEV

Φ,Real(A,R) ≤ ρ′, where ρ′ = ρ+ 2m(qe)2

N + (qe)2

N .

Proof. Recall that the assumption of Lemma 3.6 implies that PrIdeal[EV+
good] ≥ 1− ρ− 2m(qe)2

N .

We would like to prove that PrReal[EV+
good] ≥ 1− ρ′, which immediately implies the conclusion

of Lemma 3.6. We have the following sequence of equations and inequalities:
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Pr
Real

[EV+
good] =

∑
τ :PrReal[τ∧EV+

good]>0

Pr
Real

[τ ∧ EV+
good]

=
∑

τ :PrIdeal[τ∧EV+
good]>0

Pr
Real

[τ ∧ EV+
good] (4)

=
∑

τ :PrIdeal[τ∧EV+
good]>0

Pr
Ideal

[τ ∧ EV+
good] ·

PrReal[τ ∧ EV+
good]

PrIdeal[τ ∧ EV+
good]

≥ Valu ·
∑

τ :PrIdeal[τ∧EV+
good]>0

Pr
Ideal

[τ ∧ EV+
good] (5)

= Valu · Pr
Ideal

[EV+
good]

≥ Valu · (1− ρ−
2m(qe)

2

N
) (6)

≥ 1− (ρ+
(qe)

2

N
+

2m(qe)
2

N
).

where (4) follows from Claim 3.2, (5) from Corollary 3.5 and (6) from the hypothesis.
We are now ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Fix an adversary A making qe, qp queries to RK and each Pi ∈ P respec-
tively. Let R be a re-ordering function at which AdvEV

Φmρ ,Ideal(A,R) attains its minimum. We

upper bound the statistical distance between Tre,Tid, which upper bounds Adv
Φm
ρ

EM[n,r](qe, qp).

∆(Tre,Tid) =
∑

τ,Pr[Tre=τ ]>Pr[Tid=τ ]

(Pr[Tre = τ ]− Pr[Tid = τ ])

=
∑

τ :Pr[Tre=τ ]>Pr[Tid=τ ]

Pr
Real

[Tre = τ ∧ EV+
good] + Pr

Real
[Tre = τ ∧ EV+

good]

− Pr
Ideal

[Tid = τ ∧ EV+
good]− Pr

Ideal
[Tre = τ ∧ EV+

good]

≤
∑
τ

Pr
Real

[Tre = τ ∧ EV+
good] +

∑
τ :Pr[Tre=τ ]
>Pr[Tid=τ ]

(
Pr

Real
[Tre = τ ∧ EV+

good]− Pr
Ideal

[Tid = τ ∧ EV+
good]

)

= Pr
Real

[EV+
good] +

∑
τ :Pr[Tre=τ ]
>Pr[Tid=τ ]

(
Pr

Real
[Tre = τ ∧ EV+

good]− Pr
Ideal

[Tid = τ ∧ EV+
good]

)

≤ ρ′ +
∑

τ :PrReal[Tre=τ∧EV+
good]

>PrIdeal[Tid=τ∧EV+
good]

(
Pr

Real
[Tre = τ ∧ EV+

good]− Pr
Ideal

[Tid = τ ∧ EV+
good]

)
(7)

= ρ′ +
∑

τ :PrReal[Tre=τ∧EV+
good]

>PrIdeal[Tid=τ∧EV+
good]

Pr
Real

[Tre = τ ∧ EV+
good]

(
1−

PrIdeal[Tid = τ ∧ EV+
good]

PrReal[Tre = τ ∧ EV+
good]

)

≤ ρ′ + (1−Vall) (8)

= 2ρ+
2m(qe)

2

N
+

(qe)
2

N
+
qe(qp + (m+ 1) · qe)

N
.
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where (7) follows from Lemma 3.6 and (8) follows from Corollary 3.5.

4 A new RKD class Φ

In this section, we define a new RKD class Φ and show that the 2-round Even-Mansour cipher is
secure against related-key attacks restricted to Φ. It can be checked by inspection that Φ does
not satisfy the requirements on RKD classes as required by Farshim and Proctor. Nevertheless,
Φ fulfills the requirements of our result in the previous section.

Theorem 4.1. Let N = 2n, qe, qp be positive integers, I the identity function, and Φ the RKD
set such that

Φ =

{
φ∆, ∆ ∈ {0, 1}n

I

where φ∆(k) := P2(P1(k ⊕∆)⊕ k)⊕ P1(k ⊕∆). Then

AdvΦ
EM[n,2](qe, qp) ≤

13(qe)
2

N
+

9qe · qp
N

+
4(qe)

2 · qp
N

+
8(qe)

3

N
.

It will be assumed, without loss of generality, that for each query of the form (RK, φ∆, x, y)
∈ τ , there is a corresponding query (RK, I,∆, y) ∈ τ , and vice versa. Given this assumption,
φ∆(k) can also be expressed as c∆ ⊕ P1(k ⊕ ∆) where c∆ is a constant determined by the
transcript. Specifically, for each ∆ such that there is a corresponding query (RK, I,∆, y) ∈ τ ,
c∆ := P2(P1(k⊕∆)⊕k). Note that given (RK, I,∆, y) and the key k (which are both contained
in the transcript), c∆ = y ⊕ k can be derived. We also assume without loss of generality, that
for each RK query with RKD function φ (where φ = φ∆ or φ = I) there is a corresponding RK
query with the same RKD function φ and x or y set to 0.

By Theorem 3.1, we have that in order to prove Theorem 4.1, it is sufficient to define a
re-ordering function R and to upperbound AdvEV

Φmρ ,Ideal(A,R) ≤ ρ, where ρ = ρ1 + ρ2 =
2qeqp
N +

qe(2qp+qe+2qeqp+4qe2)
N =

qe(4qp+qe+2qeqp+4qe2)
N , or equivalently lowerbound PrIdeal[EVgood] ≥ 1− ρ.

In particular, we will define a set Tbad and show that (1) probability over choice of transcript
that τ ∈ Tbad is at most ρ1; (2) For each τ /∈ Tbad, we have PrIdeal[EVgood | Tid = τ ] ≥ 1 − ρ2.
Thus, PrIdeal[EVgood] ≥ 1− (ρ1 + ρ2) and so AdvEV

Φmρ ,Ideal(A,R) ≤ ρ1 + ρ2 = ρ.

Definition 4.2 (Bad Transcripts). Let τ = (Sτ , k) be an attainable transcript. k is bad if

k ∈ BadK =
⋃

1≤i≤2

BadKi

where:

k ∈ BadK1 ⇔ ∃(RK, I, x, y) ∈ τ and (P1,⊥, u1, v1) ∈ τsuch that k ⊕ x = u1

k ∈ BadK2 ⇔ ∃(RK, I, x, y) ∈ τ and (P2,⊥, u2, v2) ∈ τsuch that k ⊕ y = v2

Otherwise, k is good. Tbad is the set of transcripts τ = (Sτ , k), such that k ∈ BadK and
Tgood = T \Tbad is the set of good transcripts.

The following lemma upper bounds the probability of getting a bad transcript in the ideal world.
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Lemma 4.3.
Pr[Tid ∈ Tbad] ≤ ρ1,

where ρ1 =
2qeqp
N .

Proof. Since this is the ideal case, the key k is drawn uniformly at the end of every query phase.
Therefore, only an upper bound is needed of the possible bad values for k for every attainable
query transcript Sτ . Fix a query transcript Sτ . For every distinct (RK, I, x, y) ∈ τ and every
(P1,⊥, u1, v1) ∈ τ , there is exactly one key k such that k⊕ x = u1. Similarly, for every distinct
(RK, I, x, y) ∈ τ and every (P2,⊥, u2, v2) ∈ τ , there is exactly one key k such that k⊕ y = v2.
Hence, |BadK1| ≤ qeqp. Similarly, |BadK2| ≤ qeqp. Hence,

Pr[k ← {0, 1}n : k ∈ BadKi, i = 1, 2] ≤ qeqp
N

The lemma follows.

We next lowerbound the probability of EVgood occurring in the Ideal experiment conditioned
on Tre = τ and τ ∈ Tgood.

Lemma 4.4. Let τ ∈ Tgood. Then

Pr
Ideal

[EVgood | Tre = τ ] ≥ 1− ρ2,

where ρ2 =
qe(2qp+qe+2qeqp+4qe2)

N .

Proof. Let

U1 = {u1 ∈ {0, 1}n : (P1,⊥, u1, v1) ∈ τ}, V1 = {v1 ∈ {0, 1}n : (P1,⊥, u1, v1) ∈ τ}

U2 = {u2 ∈ {0, 1}n : (P2,⊥, u2, v2) ∈ τ}, V2 = {v2 ∈ {0, 1}n : (P2,⊥, u2, v2) ∈ τ}

denote the sets of queries and responses made by the adversary to P1 and P2, respectively.

We begin by defining the re-ordering function R which does the following: R(τ) re-orders the
queries in Sτ so that the set of queries to RK with RKD function φ = I precedes the set of
queries to RK with RKD function φ = φ∆.
For u′ ∈ {0, 1}n, let X(u′) = {(RK, I,∆, y) ∈ τ : k ⊕ ∆ = u′}, and let U ′ = {u′ ∈ {0, 1}n :
X(u′) 6= ∅}. For u′′ ∈ {0, 1}n, let X(u′′) = {(RK,∆, x, y) ∈ τ : φ∆(k) ⊕ x = u′′}, and let
U ′′ = {u′′ ∈ {0, 1}n : X(u′′) 6= ∅}. By definition of a good transcript, U ∩ U ′ = ∅. One can
denote

U ′ = {u′∆1
, . . . , u′∆µ

} and

U ′′ = {u′′∆1,1, . . . , u
′′
∆1,q1 , . . . , u

′′
∆µ,1, . . . , u

′′
∆µ,qµ}.

Also let

α =

µ∑
i=1

(
∣∣X(u′∆i

)
∣∣+

qi∑
j=1

∣∣X(u′′∆i,j)
∣∣). (9)

It is now sufficient to lower bound the number of possible tuples of values (v′∆1
, . . . , v′∆µ

) and

(v′′∆1,1
, . . . , v′′∆1,q1

, . . . , v′′∆m,1
, . . . , v′′∆µ,qµ

) such that event EVgood occurs.
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In the following, x∆i,j (resp. x∆i) denotes the x-value of the j-th query that uses the RKD
function φ∆i (resp. the x-value of the i-th query that uses RKD function I), and y∆i,j (resp.
y∆i) denotes the y-value of the j-th query that uses RKD function φ∆i (resp. the y-value of the
i-th query that uses RKD function I). We argue that if the following conditions are met then
the event EVgood occurs where EVgood = EVou1 ∧ EVcf1 ∧ EVord.
For v′∆i

, i ∈ [µ]:

(1-1) v′∆i
6= v1 for all v1 ∈ V1.

(1-2) v′∆i
6= u2 ⊕ k for all u2 ∈ U2.

(1-3) v′∆i
6= v′∆j

for all j < i.

(2-1) v′∆i
6= c∆i ⊕ x∆i,j ⊕ u1 for all j ∈ [qi], u1 ∈ U1.

(2-2) v′∆i
6= c∆i ⊕ y∆i,j ⊕ v2 for all j ∈ [qi], v2 ∈ V2.

(3-1) v′∆i
6= c∆i ⊕ x∆i,j ⊕ u′∆`

for all j ∈ [qi] and ` < i.

(3-2) v′∆i
6= k ⊕ y∆`

⊕ c∆i ⊕ y∆i,j for all j ∈ [qi] and ` < i.

(4-1) v′∆i
6= c∆i ⊕ x∆i,j ⊕ c∆`

⊕ v′∆`
⊕ x∆`,w for all j ∈ [qi], w ∈ [q`] and ` < i.

(4-2) v′∆i
6= c∆i ⊕ y∆,i,j ⊕ c∆`

⊕ v′∆`
⊕ y∆`,w for all j ∈ [qi], w ∈ [q`] and ` < i.

For v′′∆i,j
, i ∈ [µ], j ∈ [qi]:

(5-1) v′′∆i,j
6= v1 for all v1 ∈ V1.

(5-2) v′′∆i,j
6= v′∆`

for all ` ∈ [µ].

(5-3) v′′∆i,j
6= v′′∆`,w

for all (`||w) < (i||j).

(6-1) v′′∆i,j
6= v′∆i

⊕ c∆i ⊕ u2 for all u2 ∈ U2.

(7-1) v′′∆i,j
6= v′∆`

⊕ k ⊕ v′∆i
⊕ c∆i for all ` ∈ [µ].

(8-1) v′′∆i,j
6= c∆i ⊕ v′∆i

⊕ v′′∆`,w
⊕ c∆`

⊕ v′∆`
for all j ∈ [qi], w ∈ [q`] and ` < i.

Note that:

• Conditions (1-1), (1-3), (5-1), (5-2), (5-3) are required to ensure that (v′∆1
, . . . , v′∆µ

),

(v′′∆1,1
, . . . , v′′∆1,q1

, . . . , v′′∆µ,1
, . . . , v′′∆µ,qµ

) are a valid sequence of outputs.

• Conditions (2-1), (3-1), (4-1) are required to ensure that (u′′∆1,1
, . . . , u′′∆1,q1

, . . . , u′′∆µ,1
, . . . , u′′∆µ,qµ

)

are pairwise distinct and distinct from (u′∆1
, . . . , u′∆µ

), u1 ∈ U1. (Note that (u′∆1
, . . . , u′∆µ

)

are pairwise distinct by definition and distinct from u1 ∈ U1 since τ ∈ Tgood.)

• Conditions (1-2), (2-2), (6-1) are required to ensure EVou1.

• Conditions (3-2), (4-2), (7-1), (8-1) are required to ensure EVcf1.

• EVord is ensured since each φ∆i(k) makes only a single P2 query, P2(v′∆i
⊕ k), and this

query must have already been made during the encryption procedure of RK query (I,∆i).
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Additionally, note that the above conditions ensure that
∣∣∣X(u′′∆i,j

)
∣∣∣ = 1, and so qe = α.

Let N1 denote the number of tuples of pairwise distinct values {v′∆1
, . . . , v′∆µ

} such that condi-
tions 1 through 4 are satisfied. Let N2 denote the number of tuples of pairwise distinct values
{v′′∆1,1

, . . . , v′′∆1,q1
, . . . , v′′∆µ,1

, . . . , v′′∆µ,qµ
} such that conditions 5 through 8 are satisfied. One has:

N1 ≥
µ∏
i=1

(N − qp − qp − i+ 1− qiqp − qiqp − qi(i− 1)− qi(i− 1)− qi
i−1∑
`=1

q` − qi
i−1∑
`=1

q`)

≥
µ∏
i=1

(N − 2qp − µ− 2qeqp − 2qeµ− 2qe
2)

≥
µ∏
i=1

(N − 2qp − qe − 2qeqp − 4qe
2)

where the second to last line follows from (9) and the last line follows since µ ≤ qe.

And

N2 ≥
∏

i∈[µ],j∈[qi]

(N − qp − µ− j − 1−
i−1∑
`=1

q` − qp − µ− qi
i−1∑
`=1

q`)

≥
α−µ∏
i=1

(N − 2qp − 2µ− q2
e)

≥
qe−µ∏
i=1

(N − 2qp − 2qe − q2
e)

Finally, we compute the following lower bound on N1·N2
(N−qp)qe

, which gives a lower bound on

PrIdeal[EVgood | Tre = τ ]:

N1 ·N2

(N − qp)qe
≥ (N − 2qp − qe − 2qeqp − 4qe

2)qe

N qe

≥ 1− qe(2qp + qe + 2qeqp + 4qe
2)

N
,

where the second inequality follows from Fact 2.1.
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