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Abstract. The accuracy and the fast convergence of a leakage model
are both essential components for the efficiency of side-channel analysis.
Thus for efficient leakage estimation an evaluator is requested to pick a
Probability Density Function (PDF) that constitutes the optimal trade-
off between both aspects. In the case of parametric estimation, Gaussian
templates are a common choice due to their fast convergence, given that
the actual leakages follow a Gaussian distribution (as in the case of an
unprotected device). In contrast, histograms and kernel-based estima-
tions are examples for non-parametric estimation that are capable to
capture any distribution (even that of a protected device) at a slower
convergence rate.

With this work we aim to enlarge the statistical toolbox of a side-channel
evaluator by introducing new PDF estimation tools that fill the gap be-
tween both extremes. Our tools are designed for parametric estimation
and can efficiently characterize leakages up to the fourth statistical mo-
ment. We show that such an approach is superior to non-parametric esti-
mators in contexts where key-dependent information in located in one of
those moments of the leakage distribution. Furthermore, we successfully
demonstrate how to apply our tools for the (worst-case) information-
theoretic evaluation on masked implementations with up to four shares,
both in a profiled and non-profiled attack scenario. We like to remark
that this flexibility capturing information from different moments of the
leakage PDF can provide very valuable feedback for hardware design-
ers to their task to evaluate the individual and combined criticality of
leakages in their (protected) implementations.

1 Introduction

Physical attacks are known to pose a major threat to the cryptographic com-
ponents and security services in many embedded devices. An attacker obtaining
side-channel leakages such as the power consumption or electromagnetic emis-
sions from a cryptographic implementation can extract the secret cryptographic
key by applying suitable statistical tools on the collected data. A number of



reports have demonstrated that such attacks are not just a theoretical concern
but that also real-world devices can be compromised [19, 30,40, 56]. As a con-
sequence, the seminal Differential Power Analysis (DPA) paper by Kocher et
al. [23] has been followed by a vast literature on solutions for a wide range of
contexts to mitigate these attacks. For example, the inclusion of random de-
lays [11], or shuffling [54] are a frequently used heuristic to improve the physical
protection of software implementations. In contrast to this, re-keying strategies,
formalized under the name of leakage-resilient cryptography, provide theoreti-
cal tools that enable reducing the security of multiple iterations to a single one
(cf. [18] for an early result and [52] for a recent one). In this context, one of the
most investigated and best understood protection against side-channel attacks
is masking [8,14,44] that bridges theory and practice. Its underlying principle
is to encode any sensitive variable in an implementation into d shares, and to
perform the computations on these shares only. Given that the leakage of all the
shares is independent and that the measurements are sufficiently noisy, it ensures
that the smallest key-dependent (mixed) moment in the leakage distribution is
d. Therefore, any adversary trying to extract information from a masked imple-
mentation should (ideally) estimate this (mixed) higher-order moment, a task of
which the complexity increases exponentially in d.

A drawback with all these solutions is the significant performance overhead.
As a result, the development of methodologies enabling a fair assessment of their
security level has evolved in parallel with the development of countermeasures
so that designers can discuss security and performance implications for their
implementations on a sound basis [51]. Since side-channel analysis is essentially
based on the comparison of key-dependent leakage models with actual measure-
ments, these methodological developments have led to a central division between
profiled and non-profiled evaluation tools and attacks [55]. In the first case, the
adversary/evaluator is allowed to build an accurate (yet not perfect [17]) model
for his target device that generally corresponds to an estimation of the leak-
age Probability Density Function (PDF)?%. As depicted in the upper left part of
Figure 1, Gaussian Template Attacks (TA) are the most common tool for this
purpose [9]. In this (here: exhaustive) approach, one builds a Gaussian model
for the leakage of every target intermediate value in the implementation. The
main limitation of Gaussian templates is that they are bound to the analysis of
the first two moments in a leakage distribution (i.e., unprotected implementa-
tions and masking with d = 2). According to the state-of-the-art, the canonical
way to analyze higher-order masked implementations would be to switch to
non-parametric PDF estimation, e.g., based on histograms and kernels. But this
comes at the cost of two important drawbacks. First, these tools imply a more
complex (hence measurement intensive) estimation problem. Second, they esti-
mate all the statistical moments at once, meaning that one loses the detailed
intuition that could be obtained from the separate examination of all moments.
Alternatively, one could use the Moments-Correlating Profiled DPA (MCP-DPA)

4 Profiled attacks can also be referred to when the adversary possesses a device with
a biased randomness source (as masks).
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Fig. 1. Summary of side-channel evaluation tools and attacks.

introduced in [33] that suffers from the complementary drawback. Namely, since
MCP-DPA is essentially a “per moment” approach, the intuitions extracted now
only correspond to moment taken separately, and it is unclear how one could
extend these attacks towards the joint exploitation of multiple moments at the
same time.

A comprehensive understanding of how the information leakage of a masked
cryptographic implementation is spread among different statistical moments is
essential to interpret the results of its security evaluation. That is, in general a
(d — 1)th-order secure implementation is defined as an implementation for which
the smallest key-dependent moment in the leakage distribution is d, and this is
ideally expected to occur for d shares. But in practice, it frequently happens that
glitches (i.e., non-independent leakages) contradict this expectation, leading to
informative moments of smaller orders than d, both in hardware and software
case studies [10, 28]. Significant research efforts have been dedicated to the de-
sign of glitch-free implementations, e.g., based on multiparty computation [45]
or threshold implementations [32,34]. However, in the latter case the number of
shares is larger than the claimed order. This, however, highlights the demand for
the ability to determine the exact moment that actually leaks [3]. Simple leak-
age detection tests (e.g., t-test [47]) can be used for this, however they provide
only limited information and merely show the existence of leakage (for a more
detailed discussion of the limitations of ¢-test based leakage detection see [16]).
Eventually, the recent results in [15] showed that by quantifying the informative-
ness of each statistical moment in a side-channel attack, one can extrapolate the



security level of an implementation in function of the noise in its measurements
(i.e., a parameter that is typically easier to adapt for HW engineers).

Contribution. Based on this state-of-the art, our contribution is threefold.

First, we extend the evaluation toolbox for profiled side-channel analysis
with three new PDF estimation tools, based on Exponentially Modified Gaus-
sian (EMG) distributions, Pearson distribution system and Shifted Generalized
Lognormal (SGL) distributions. As illustrated in the upper left part of Figure 1,
they allow characterizing statistical moments up to the fourth one, which cap-
tures all most relevant masked implementations published so far.

Second, we show that these tools enable the computation of the information
leakage in each statistical moment of a leakage distribution (up to the fourth
one). We further illustrate that based on such computations, we can design effi-
cient attacks that are able to exploit the information in all the leaking moments
jointly, and that the efficiency of these attacks is proportional to the sum of the
information provided by each moment.

Eventually, we observe that our tools also have applications in the con-
text of non-profiled side-channel analysis, where the adversary assumes some
a-priori model for his target implementation (e.g., typically Hamming weights,
Hamming distances). In this context as well, one can divide existing solutions
between “per moment” and “PDF-based” distinguishers (see the middle right
part of Figure 1). Usual representatives of the first category include Correla-
tion Power Analysis (CPA) [6] or its equivalents [27] for first-order moments,
and higher-order DPA [39], Correlation-Enhanced Power Analysis Collision At-
tacks (CEPACA) [29] or Moments Correlating Collision-DPA (MCC-DPA) [33]
for higher-order moments. The most common representative of the second cat-
egory is Mutual Information Analysis (MIA) [21], which usually relies on (non-
parametric) histograms or kernels [2], although any PDF estimation tool is in
principle eligible®. We show that MIA based on the previously mentioned PDF
estimation tools (EMG, Pearson, SGL) leads to interesting efficiency tradeoffs
for implementations leaking in moments up to four.

The combination of these tools and methods are valuable inputs for the
evaluation of the masking countermeasure, since they allow a more accurate
understanding of its implementation weaknesses due to glitches (or any other
physical default). Furthermore, they are not limited to analysis techniques and
also lead to new attacks exploiting a (practically relevant) combination of mo-
ments. Eventually, we remark that our results raise relevant questions regarding
the so-called simplifying distinguishers in the bottom of Figure 1. In this con-
text, the adversary/evaluator does not build a model for every target interme-
diate value but for a combination of them (or of their bits). All the published
simplifying distinguishers (e.g., linear regression in the profiled case [46], its on-
the-fly extension [13] and stepwise regression [55] in the non-profiled case) mix a
“per moment” approach [12] with simple (typically Gaussian) PDF estimations.

® Such as cumulants which are used in [24] to estimate the mutual information.



Hence, finding whether one could combine a simplifying distinguisher (that pro-
vides useful intuitions regarding the parts of the computations that leak more)
with more complex PDF estimation tools as in this paper (that provide similarly
useful intuitions regarding which moments are leaking) remains an interesting
open problem.

2 Background

Generally, density estimation — as a well-studied field in statistics — refers to two
major categories, namely non-parametric and parametric methods. Histograms
and kernels are amongst the well-known non-parametric ones, which do not make
any assumptions about the form of the distribution and use only the sampled
data to estimate the distribution. A more detailed description of the two methods
is provided in Appendix A. By contrast, Gaussian density estimation, which is
the most popular parametric PDF estimator, assumes a symmetric form for
the distribution, and characterizes it based on its (sample) mean and standard
deviation only. As mentioned in the introduction, our focus in this paper is side-
channel evaluation, which is commonly based on PDF estimation for building the
leakage models. In this section, we shortly recall some frequently-applied PDF
estimation techniques in the field of side-channel analysis. We only consider
a univariate scenario, which is motivated by our experimental case study in
Section 5, that is based on a threshold implementation in which all the shares
are manipulated in parallel.

Notations. The parametric PDF estimators make use of statistical moments
that we specify as follows. Let X be a (univariate) random variable. The dth-
order raw statistical moments are defined as E(X?), with p = E(X) the mean
of the distribution and E(.) the expectation operator. The dth-order central mo-

ments are defined as E ((X - u)d>7 with 02 = E ((X - M)Q) the variance of the

d
distribution. The dth-order standardized moments are defined as E <(X;“) >,

3
with v = E ((XU_“) ) the skewness (a measure of the asymmetry of the dis-

o
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tribution, also known as the first shape parameter), and Sy = E ((X“) )

the kurtosis (a measure of the peakedness of the distribution, also known as the
second shape parameter). It is noteworthy that the central and standardized mo-
ments can be also derived from the raw moments. The corresponding expressions
are given in Appendix B. Unless otherwise stated, for simplicity we denote first
raw, second central, third (and fourth) standardized moments by first, second,
third (and fourth) moments respectively.



Gaussian Density Estimation. In this case, it is assumed that the leakages
follow a Gaussian (normal) distribution, and the PDF is given by:

1 _(@—pw)?
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with p and o the estimated mean and standard deviation of the samples. Since
a Gaussian distribution considers only the first two moments, it generally leads
to a more efficient estimation compared to the non-parametric histograms or
kernels (as long as the actual distribution is close enough to a Gaussian one).
In other words, if the higher (> 2nd) statistical moments of the underlying
distribution of the samples are negligible, Gaussian density estimation is going
to be extremely efficient. Gaussian Templates and regression-based models are
part of the widely-used tools exploiting such an assumption [17].

Gaussian Mixtures. We mention that yet another approach to PDF estima-
tion for masked implementations would be to consider mixture distributions. As
demonstrated in [53], this solution is especially efficient when the profiling phase
assumes the knowledge of the shares. By contrast, it becomes heuristic — since
based on the Expectation Maximization (EM) algorithm — if they are not [25],
which will be our running scenario in this work. In particular, we will consider
contexts where the different modes of the mixture distributions are well inter-
leaved (i.e. when the noise is large enough for masking to enforce good security
guarantees), which makes the EM algorithm hard(er) to apply and stands in
contrast with contexts where the modes can be trivially identified by the adver-
sary (for example see [31]). That is, our goal is to investigate simple(r) tools that
apply to masking when it delivers its promises and are guaranteed to converge
without any need to guess about the number of shares in the target device.

3 New Proposals

We now describe three alternative parametric distributions that can cover mo-
ments up to the fourth one. We discuss their advantages as well as the challenges
one may face to set the parameters to use them.

3.1 Exponentially Modified Gaussian

Since the Gaussian distribution is symmetric, its skewness is always zero. The ex-
ponentially Modified Gaussian (EMG) is another parametric distribution which
additionally includes this first shape parameter. The PDF of such a distribution,
that covers the first three moments, is defined by [22]:
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where A1, A2, A3 are the parameters of the distribution and er fc(.) refers to the
complementary error function defined as:

erfe(z) = % /00 et dt.

By means of the sample mean pu, standard deviation o and skewness 7; of the
data, these three parameters can be estimated as:
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It should be noted that EMG does not cover symmetric distributions, i.e.,
v1 = 0. However, it usually causes no issue in practice (and in particular for
side-channel attacks) as the estimated skewness is never exactly zero. Neverthe-
less, if the underlying skewness is zero, the estimated skewness might be very
small. These cases can lead to numerical problems, which can be solved by using
libraries for higher precision computations or switching to a distribution which
covers zero skewness (Gaussian, Pearson). Besides, note that for a negative skew-
ness y; < 0, the distribution is parametrized with the absolute value |v;|, and
then mirrored around the mean.

3.2 Pearson Distribution System

The Pearson distribution system is a collection of probability distributions that
can be parametrized using the first four moments. In total twelve different distri-
butions (cf. [35-37]) are defined in such a way that depending on the estimated
moments one type is preferred, and the corresponding PDF estimation technique
is applied. In our experiments we noticed that types I, IV and VI (which are
presented in detail below) are the only necessary ones. For further descriptions of
the other types, the interested reader is referred to the original articles [35-37].
In addition, we provide a brief discussion of the three types in Appendix C.

Cautionary Note. Distribution systems like Pearson’s are in general very flex-
ible as they allow characterizing a broad range of combinations of moments.
However, they require the estimation of several PDFs, and may face stability
problems at the transitions between the different types of distributions (which
may occur, e.g., by increasing the number of side-channel samples). Hence, in
these cases, it is preferable to rely on a single distribution.

3.3 Shifted Generalized Lognormal

In [26], Low introduced the Shifted Generalized Lognormal distribution (SGL).
It can be parametrized with the first four moments and covers a large inter-
val of possible combinations of skewness and kurtosis. Both of these properties
are desirable in side-channel evaluations, and therefore this distribution can be



an interesting alternative to the Pearson’s distribution system. The realm cov-
ered by the SGL is vast and we found it to be sufficient for all our practical
experiments. This is illustrated by the plot of the distributions coverage given
in Appendix D (which is similar to the aforementioned one given for Pearson’s
distribution system).

Concretely, the PDF of the SGL is given by:

1 — L fim(=22)]
F(z) = —5 Sl (2)
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for \y < & < oo, where Ay, A2, A3, and A4 are the distribution parameters and
I'(.) denotes the gamma function. These parameters can be estimated using the
first four moments. For conciseness, we only give a brief overview of the resulting
estimation problem in Appendix E, and refer the interested readers to [26].

3.4 Computational Complexity

The presented parametric methods have all different PDFs with different com-
putation complexities. For SGL, the computation of the parameters from the
first four moments takes considerably longer than for all other discussed distri-
butions. To present some intuitions on the run time of the different PDFs, we
performed experiments using 100 randomly generated sets of moments and run
each PDF® 100 times for each of these sets. Then we computed the average over
all 1000 executions of each PDF. The Gaussian distribution is used as a reference
value and has an average of 0.0034 s on an Intel i5-4200M CPU. The averages
increase with the number of moments considered in the distribution: 0.0082 s
(EMG), 0.029 s (Pearson), 1.70 s (SGL).

4 Simulated Experiments

In order to better understand the interest of the tools proposed in Section 3 in the
context of side-channel analysis, we present a couple of simulated experiments.
In the following we use mathematically-generated leakages derived from:

= HW(S Decy D 02) + HW(Cl) + HW(CQ), (3)

where HW(.) denotes the Hamming weight function, s a sensitive (secret) 4-bit
variable, and ¢; and cp uniformly distributed random masks in {0, 1}*. Note that
this example is related to any nibble-oriented cipher, e.g., PRESENT [4], and
the basic evaluation procedure presented in this paper does not change for larger
bit sizes. The only adjustment is the number of possible different classifications,
i.e., 2" instead of 2* for n-bit variables. In this simulation it is supposed that the

5 We implemented three distributions in MATLAB and used the publicly available
pearspdf [5].
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Fig. 2. The estimated moments for each possible s € {0,1}* (a) and kernel-estimated
PDFs (b) for mathematically-generated leakages corresponding to a 2nd-order masking.
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Fig. 3. The estimated PDFs for mathematically-generated leakages corresponding to
a 2nd-order masking, obtained with various parametric tools from Sections 2 and 3.

target is a hardware design where the shares are processed at the same time. This
scenario essentially emulates a second-order Boolean masking scheme, where we
only focus on the encoding of a single variable s in a noise-free situation. In this
context, the first and second moments of the leakage distribution are expected to
be independent of s. For each s € {0,1}*, we estimate the PDF using both non-
parametric (kernels) and parametric (Gaussian, EMG, Pearson, SGL) tools. The
first four moments for each s, plotted in Figure 2(a), reveal that there is indeed no
dependency between s and the first two moments (i.e., they remain constant for
all s). Hence, the only way that s can be distinguished is by observing the third
moment. Since kernel-based density estimation considers all possible moments,
it can be used to distinguish s as shown in Figure 2(b).

By contrast, the third moment is not used to parametrize the Gaussian dis-
tribution and thus each s results in the same distribution in this case (as per
Figure 3(a)). This example shows why Gaussian density estimation cannot be
used to analyze the leakages that reside in an order higher than two. Eventu-
ally, our newly proposed estimators consider moments up to the fourth one, and
therefore they can be used to quantify the information leakage of our simulated
masking experiment (this can be seen in the remaining part of Figure 3).



5 Practical Case Studies

To examine the application and efficiency of the above-mentioned solutions, we
consider a threshold implementation of the PRESENT cipher [4] on an FPGA
platform. More precisely, the target design is the Profile 2 presented in [38]
that follows a serialized architecture, i.e., using one instance of the S-box for
the whole SLayer. Such a masked hardware implementation has been selected
for the practical investigations due to its second- and third-order univariate
leakages which allow us to examine our proposed tools. If we would have no
leakage at order three and higher, examining the difference between our tools
and Gaussian would not be possible.

In the target implementation, the data state is represented by d = 3 Boolean
shares, and the SLayer is based on the 2-stage masked S-box described in [34].
In other words, each S-box on a 4-bit data is implemented in a pipeline fashion
and needs two clock cycles to be computed. For more details on the design
architecture we refer the interested reader to [33] and [38].

The leakage traces are collected from a Xilinx Virtex-1I Pro FPGA embedded
on SASEBO [1]. The sampling rate was set to 1 GS/s and the target FPGA clock
was driven at a frequency of 3 MHz. Figure 12(a) (in Appendix F) shows an
exemplary trace covering six clock cycles with respect to the full computation
of 5 S-boxes on 5 key-whitened plaintext nibbles.

We collected 100, 000, 000 traces to be used in our experiments. During the
measurements, the PRNG that provides random data (masks) for the sharing
of the plaintext was kept active. We also examined and confirmed the uniform
distribution of the masks.

A former analysis of MCP-DPA by Moradi and Standaert in [33] on the
same implementation revealed that the first pipeline stage of the target S-box
exhibits the most informative leakages. The result of such an analysis is given
in Appendix F for completeness (see the lower part of Figure 12). It confirms
that no first-order leakage can be exploited from this implementation, whereas
the second and third moments are indeed informative. It also suggests that
second-order leakages are more informative than third ones. By contrast, and
as exhaustively discussed in the introduction, two important questions remain
open. First, can we quantify the informativeness of the different moments on
a (somewhat) more formal basis? Second, and given that more than a single
moment provides information, can we design an attack that jointly exploits these
moments? (which is in contrast with MCP-DPA that only exploits moments one
by one).

Both questions can be answered in the affirmative by the following discussion.
In order to make our results comparable with [33], we focus on the same parts
of the leakage traces. Namely, we analyze the most informative clock cycle in
the S-box execution that corresponds to samples between 13.3 us and 13.6 ps in
Figure 12(a). Based on this case study, we show that the newly introduced PDF
estimation tools are powerful ingredients for the information theoretic analysis
of a threshold implementation. First, they are able to extract an amount of in-
formation from the traces comparable to a kernel density estimation. Second,
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they are useful to estimate the informativeness of each moment, and to perform
attacks based on the best combination of moments carrying significant informa-
tion. Eventually, they can naturally and efficiently be embedded in PDF-based
non-profiled attacks such as MIA.

5.1 Profiled Evaluations and Attacks

First, we examine the information leakage of the target device using an informa-
tion theoretic approach. The idea to use Mutual Information (MI) as an eval-
uation metric was introduced in [51]. It was later refined in [41] to incorporate
the fact that the leakage distribution is only estimated, which can potentially
bias the estimation of the MI. The so-called Perceived Information (PI) is used
to reflect this bias and can be computed as:

PI(S;L) = H[S] = > Pr(s] Y Prenipll|s] - logaPrmodals|l], (4)
SES lel

where Prepip denotes the chip’s true distribution (which is unknown but can be
sampled) and ]ﬁrmodd refers to the adversary’s estimated model (for which we
have an analytical formula). Computing the PT essentially requires an estimated
Iﬁrmodeh which is exactly what our PDF estimation tools provide. In our experi-
ments, we followed the procedure presented in [17] for computing this metric. In
particular, we used 10-fold cross-validation and report the mean of the resulting
PI estimates. We start by looking at the information extracted using all the
moments enabled by each PDF estimation tool. We then analyze (subsets of)
these moments separately.

Combined Moments. In order to compare our proposed solutions (EMG,
Pearson, SGL) with the established ones (kernels, Gaussian), we first compute
the PI using all the covered moments. We estimate Prmodel using the different
estimators and compare the results. As previously mentioned, this experiment
only covers 100 sample points corresponding to the power peak of the targeted
clock cycle, i.e., between 13.3 us and 13.4 us in Figure 12(a). The 100,000,000
traces are divided into 10 sets. For each of the 10 runs we use one of these 10
sets (each with 10,000,000 measurements) as samples of the chip’s true distri-
butions, and the remaining 9 sets (90,000,000 measurements) to estimate the
model distribution (prmode|). Figure 4(a) contains the results.

At the first glance, it can be observed that the achieved PI using the Gaussian
distribution to estimate Prmodd is the lowest. This implies that not all available
information is contained in the first two moments (that are the only ones cap-
tured by a Gaussian distribution). More interestingly, kernel-based density esti-
mation is non-parametric and therefore is expected to provide the highest PI if
its bandwidth is well adapted and enough samples are available. Yet, we observe
that this is not exactly the case in our experiments. As depicted in Figure 4(b)
(where we focus on the most informative sample 719), this is most likely due
to an estimation issue (i.e., a lack of samples). As expected, the non-parametric

11
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covered moments (a) using 100,000,000 meas., (b) over the number of meas.

kernel density estimation is the slowest to converge in this case. This suggests
an interesting feature of our new parametric tools. Namely, whereas Gaussian
estimation is very fast but limited to the exploitation of two moments (hence
leads to less efficient attacks, as will be discussed next), EMG-, Pearson- and
SGL-based estimations combine a faster convergence than kernels with a similar
informativeness.

Summarizing, we can conclude that PDFs covering the right combination of
moments lead to the best tradeoff between a fast convergence towards a well
estimated model, and a well-informative model once properly estimated (i.e., a
model for which the PI should be close to the MI [17]). By contrast, the previous
results do not allow to deduce about the relative informativeness of each moment
(which could possibly be used to further speed up the model estimation and
attacks), which motivates the following analysis.

Separate Moments. An interesting property of the parametric estimators is
the ability to consider only selected moments instead of trying to characterize
any possible moment (as in non-parametric estimations). Using the Gaussian
distribution as an example, we can compute the information contained exclu-
sively in the first two moments, as this distribution only considers the mean
and variance. Similarly, it is also possible to compute the PI for the first three
moments (with EMG distributions) and the first four moments (with Pearson’s
distribution system and SGL distributions). In the following, we present an ap-
proach that enables us to compute the PI both for each moment taken separately
and for any combination of those.

For this purpose, and taking the case where we focus on a single moment,
we simply have to set all but one of the moments to a fixed value. For example,
suppose that we want to consider the information contained in the first moments
of a Gaussian distribution only. We achieve this by considering a Gaussian model
where the means are estimated as in the previous section, but the variances are
set to a fixed value, which essentially removes any secret-dependent information
they could carry from the templates through the second moments. Since chang-
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Fig. 5. The PDFs of the six distributions from Table 1 and 2.

ing the variances affects the shape of the distributions, the fixed value can be
chosen as the average of the variances (over the 16 templates) to minimize the
distance between the original distributions and the ones with a fixed variance”.
A similar technique actually works for any of our parametric estimators, and for
any (combination of) moments.

As an illustration, let us first recall the influence of the first four statistical
moments on the shape of the resulting distribution. The third moment, called
skewness, measures the asymmetry of the distribution. Therefore, distributions
with positive skewness tend to left while distributions with a negative skewness
tend to the right. The fourth moment, called kurtosis, measures the “peakedness”
(sharpness) of the distribution. As a consequence, the higher the kurtosis, the
sharper is the distribution. As an illustration, Figure 9 in Appendix F depicts
different distributions with varying third and fourth moments. Note that we
consider only the first four moments in our analysis, hence we omitted definitions
for moments of any further orders.

When we set specific higher-order moments (as in our approach) to specific
values, we actually fix the width of the distributions (i.e., variance), or their
right-left tendency (i.e., skewness) or their sharpness (i.e., kurtosis). Hence,
information sitting in the corresponding moments does not contribute in the
information-theoretic-based evaluation, e.g., mutual information. We like to em-
phasize that the estimated higher-order moments in real side-channel measure-
ments (categorized, for example, based on the processed data) are very slightly
different. Consider for example the PDF's of four exemplary distributions shown
in Figure 5(a), taken from the most leaking point of the measurements of our
case study (see Figure 4(a)). The first four moments of each distribution are
given in Table 1. All moments of the four distributions are very similar to each
other, e.g., the skewness of all these four distributions is only slightly different.
Hence, fixing the skewness of all of them to a specific value (e.g., the average
of all skewnesses given by 0.0064627) does not significantly change the shape of
the distributions.

" Instead, one can also consider the variance of whole trace set. Here we need only a

fixed value which is not too different from the variance of each template. Such an
approach is not valid in case of Gaussian mixtures as stated in Section 2.
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Table 1. The first four statistical moments of four distributions at sample point 719.

Dist. 1 | Dist. 2 Dist. 3 | Dist. 4
Mean -27.9734310 | -27.9811494 [ -27.9827913 | -27.9782609
Variance || 22.3624316 | 21.9979663 | 22.2165081 | 22.2660171
Skewness|  0.0075083 |  0.0053184 |  0.0131009 | -0.0000767
Kurtosis || 3.0177549 |  3.0202503 |  3.0219293 |  3.0183596

Table 2. The first four statistical moments of two simulated distributions.

| Dist.5 Dist. 6 | Average
Mean 4.9997939 7.400773 6.2002834
Variance 10.0032941 149.017440 79.5103671
Skewness 1.7063003 0.377136 1.0417184
Kurtosis 7.8417563 3.648649 5.7452030

Here we consider four different cases:

1. All moments except the first are fixed to their average (evaluation through
means).

2. All moments except the second are fixed to their average (evaluation through
variances).

3. All moments except the third are fixed to their average (evaluation through
skewnesses)

4. All moments except the fourth are fixed to their average (evaluation through
kurtoses).

For each case, the shape of the resulting distributions is very close to the original
shape in Figure 5(a). The resulting PDFs of the modified distributions for each
case is provided in Appendix F.

It should be noted that in case of simulated data with significantly different
moments for each distribution the resulting shapes of each distribution would be
also dramatically different to each other. Therefore in this case, setting the cor-
responding moments to a fixed (average) value does not make the distributions
to roughly follow the same shape. If such a huge difference between the mo-
ments of the (categorized) distributions exists in practice by any (rare) chance,
the corresponding implementation is significantly vulnerable to certain attacks.
Obviously, this makes the necessity of performing per-moment evaluations ques-
tionable. As an example, we show in Figure 5(b) two simulated distributions
formed by the moments from Table 2. It is obvious that the shape of the distri-
bution with fixed moments is considerably different than that of the original two
distributions. In this case, a per-moment approach would not be easily possible
with an information-theoretic evaluation tool.

We analyze this moment-based investigation based on the same case study
as for the previous information theoretic analysis. Hence, we repeat the previous
experiments (of Figure 4(a)) with the same parametric estimators (Gaussian,
EMG, Pearson, SGL), but this time we consider each possible moment sepa-
rately. The results are depicted in Figure 6 where the PI curves are categorized
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Fig. 6. PI estimates for the separate moments.

based on the employed estimator. Each part of the figure contains the PI curves
obtained for each moment separately. For example, in Figure 6(a) the curve la-
beled Gaussian (1st) shows the PI achieved for the first moments (and the curve
Gaussian (2nd) depicts the same for the second moments, etc.). Further, we
included the PI curve of the combined moments (taken from Figure 4(a)) and
the sum of the PI curves of the separate moments (e.g., Gaussian Sum as the
sum of the PI curves of Gaussian (1st) and Gaussian (2nd)).

As expected, the first moment does not contain any exploitable information
as the implementation is first-order secure. It is also noticeable that the chosen
estimator does not affect the PI for the first moment. The second moment leads
to the highest PI, and therefore is the most informative moment. As similarly
indicated by MCP-DPA, the third moment is informative but not as much as the
second one. Furthermore, using two estimators (Pearson, SGL) that also cover
the fourth moment, we are not able to detect any significant information leakage
in the fourth moment. Therefore, a combination of the second and third moments
should suffice to capture most of the available information in the underlying
measurements.

Most interestingly, we observe that the sum of the PI values obtained for
the separate moments is actually close to the PI estimated with the combined
moments. Although informal, this observation is particularly interesting in view
of the recent results by Duc et al. in [15] where the PI values are connected with
the success rate of a (worst-case) template attack using the same model. Indeed,
since the sum of the PI values obtained per moment is essentially the same as
the PI value obtained with the non-parametric kernel method, it implies that in
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our case study, the separation between moments did not lead to any significant
information loss. This suggests that a (simple and intuitive) moment-based side-
channel evaluation could be well-founded, at least in certain contexts that would
be worth formalizing. And very concretely, it also means that an attack exploiting
out two informative (i.e., second and third) moments will be close to optimal in
our case.

Profiled attacks. The results in [15] prove that (under sufficiently noisy leak-
ages) the success rate of a profiled template attack is inversely proportional to
the PI value estimated with the same model. In view of the previous discussions,
it means that our proposed estimation tools (EMG, Pearson, SGL) should lead
to more effective profiled attacks than their counterparts with Gaussian estima-
tion (because of modeling errors) and kernels (because of assumption errors).
Furthermore, the attacks exploiting the second moment should lead to a higher
success rate than attacks exploiting the other three moments. Eventually, the
best attack should exploit the combination of second and third moments. For
completeness, we ran experiments to confirm these expectations. We built uni-
variate templates (for the most informative sample point 719) from 90,000,000
measurements and, for each given number of measurements, repeated an attack
1000 times for different measurements (excluding those used for profiling) to
compute a subkey recovery success rate. The results of this last experiment are
depicted in Figure 7 and are well in line with theoretical predictions. In this re-
spect, the most interesting curves are the ones corresponding to the combination
of second and third moments, since they correspond to the best tradeoff between
model complexity and attack efficiency, and could not have been reached with
existing side-channel evaluation tools. (Additional curves are provided in Ap-
pendix F, Figure 11(a), including attacks exploiting kernel-based models that
are as efficient, but as mentioned earlier, more expensive to estimate.)

5.2 Non-Profiled Attacks

In addition, we briefly discuss the application of our solutions in the non-profiled
attack setting. For this purpose, we consider a univariate MIA, which is the
standard representative for non-profiled attacks exploiting PDF estimation. As
usual in this context, we cannot directly use a generic (i.e., identity) power
model, since it would not be able to extract any key-dependent information [55]
if the first encryption round is targeted®. Further, MIA needs a non-bijective
model to be effective. Besides these constraints, our tools are easily applicable in
this scenario. A more detailed discussion with experimental results is provided
in Appendix G.

8 Such an identity model is applicable to e.g., the Sbox output of the second encryption
round [43].
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Fig. 7. Success rate of several univariate template attacks exploiting separate and
combined moments, for the most informative sample point 719 in our traces.

5.3 Selection of Tools

We have discussed multiple parametric tools, each with its own advantages and
disadvantages. Compared to the traditional non-parametric tools, they offer a
higher flexibility and convergence. Therefore, they should be preferred if the
number of samples is too small or a special case (e.g., only two moments) should
be evaluated. The PDF of EMG can be computed very efficiently compared
SGL and Pearson. However, it considers only the first three moments instead
of four. The Pearson distribution system includes the kurtosis and its PDF is
still relatively efficient compared to SGL. Nevertheless, it is made up of multiple
different distributions which can be problematic in certain cases as pointed out
in Section 3.2. Therefore, in scenarios where the computation time of the PDF
can be ignored and the leakages are covered by SGL, it is the preferable tool.
However, the computation time is often a limiting factor and it can be sig-
nificantly reduced in certain cases by choosing a more limited distribution which
is still sufficient to capture all relevant leakage. If the type of implementation
and leakage is known, this choice is easily possible. Gaussian (resp. EMQG) is
the preferred choice for leakage which is exclusive in the first two (resp. three)
moments due to its very efficient PDF. Leakage in the fourth moment can be
also efficiently captured with the Pearson distribution system, assuming that the
aforementioned problems do not arise. If the type of masked implementation,i.e.,
the order of masking, is unknown, then this choice of distribution cannot be that
easily made. SGL is then the best approach, if the distribution is inside the plane
of existence of SGL. For the separate moments method, it is still possible to re-
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duce the computation time by using some of the other distributions (Gaussian,
EMG) for the moments of lower order.

6 Conclusions

This paper introduced a variety of PDF estimation tools to improve the eval-
uation of leaking devices, both in the profiled and non-profiled settings. Their
main interest is their flexibility: our proposals can indeed capture information
lying in different moments of the leakage PDF. As a result, we can easily analyze
masked implementations and extract useful feedback to hardware designers, i.e.
in terms of how much information is lying in every moment and how to combine
it. This brings a concrete and more founded counterpart the recent evaluations
of implementations with non-independent leakages in [15], where this quantity
of information “per moment” is required. More generally, our findings provide
efficient tradeoffs between the cost of profiling and the efficiency of the resulting
attacks, since they allow adversaries and evaluators to build models that are tai-
lored to their implementations. These results naturally open various interesting
research challenges for future work. As mentioned in introduction, combining
an analysis of moments as in this work with simplifying approaches to leakage
modeling (e.g. based on linear regression) would be even more convenient to
evaluators. Besides, investigating the “summing rule” of Section 5.1 more for-
mally is certainly worth further efforts as well. Eventually, our current tools are
limited to univariate leakages. While this was sufficient to analyze our hardware
case study, it naturally suggests the extension to multivariate case studies as
yet another important question. This is especially interesting given that even
hardware designs with univariate d-order security may include a multivariate
vulnerability for which less than d points are combined [42]. A starting point
for this purpose would be to exploit some popular “combining” functions from
the side-channel literature (which would allow us to exploit our univariate tools
directly).
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A Non-Parametric Density Estimation

A.1 Histograms

Amongst the most straightforward techniques to estimate a PDF, one can group
the sampled data into (commonly equally-sized) bins. The probability for a given
input z can then be given by Prlz] = me(z), where bin(z) returns the number
of samples in the bin to which x belongs, and n indicates the total number of
samples.

Although histograms are a non-parametric estimator, the width of the bins
(respectively the number of bins) is an important parameter that can signifi-
cantly influence the resulting PDF. For certain distributions (e.g., Gaussian),
there are practical guidelines on how to select such parameters (e.g., Scott’s
rule [48] and Freedman-Diaconis rule [20]). But for distributions that strongly
deviate from these assumed forms, the optimal choice of these parameters is
unknown.

In our side-channel context, measurements usually correspond to 8-bit data,
as the analogue to digital converters which sample the leakages (by means of
an oscilloscope) typically have 8-bit effective length. Therefore, the histogram of
side-channel leakages can most precisely be estimated with 256 bins. However,
by using such a narrow bin width, the number of required samples to fill the bins
increases and makes the estimation more data intensive. Hence, the number of
bins is commonly selected with respect to the underlying hypothetical model
used by the adversary, e.g., 9 in case of Hamming weights for an 8-bit interme-
diate value [2]. As histograms make no assumptions about the distribution, the
side-channel leakages of all moments are encapsulated and can be exploited.

A.2 Kernels

The foundation of kernel-based density estimation is to approximate the PDF
with a sum of so-called kernel functions. That is, for each sample point, a kernel
function that is centered around this point (I;) is added to the probability density
function. The density for a given input x can then be estimated as:

n—1
1 .Z*li
F(x)nhZK( - )
=0

where h is the bandwidth and K(.) the kernel function. In contrast with his-
tograms, the kernel-based estimation builds a continuous function which can be
integrated. This allows for a faster convergence (i.e., with less samples) to the
real distribution compared to histograms. For the rest, both methods are similar:
they are able to capture any moment of a distribution, but cannot differentiate
between them.

Concretely, the kernel function should fulfill the property [ fooo K(z)dx = 1.
Although there exist many different proposals for such functions (e.g., Gaussian
and Epanechnikov, see [2]), the type of kernel has only little influence on the
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resulting PDF [49], and the bandwidth h (also called “smoothing parameter”)
plays a more important role in the precision of the estimation. A common ap-
proach to choose the bandwidth is known as Silverman’s rule [50], where h is
selected as con~1/%, with ¢ the standard deviation of the samples, and the con-
stant ¢ selected based on the chosen kernel function. Recent results [7] showed
that an adaptive procedure (i.e., dynamically altering h) can lead to the best
success rates when the PDFs used in a MIA are estimated by a kernel function.

B Central & Standardized Moments from Raw Moments

To compute the parameters for SGL, it is necessary to derive u, o, v1, and [
from the first four raw moments My, My, M3, My (as My = E(X?)). This can
be done as follows:

wo= My, (5)
0% = My — M}, (6)
3
py = Mo SO M2 % 200 (7)
(M2 - M; )2
My — AMy Mz + 6 MEMy — 3M{
62 - (M2 — M12)2 (8)

C Type I, IV and VI of Pearson Distribution System

To determine the type of distribution and find the parameters for the associated
PDF, we first define bg, b1, by as:

a(4B2 — 351) by — Vor (B2 +3) by — 282 — 331 — 6

b = _ _
07108, — 128, — 187 ' 108y — 128, — 187 2 10B, — 128, — 18’

where 3, = ? (squared skewness) and 3» denotes the kurtosis. Based on the
estimated skewness and kurtosis, the most suited type is selected as follows.
If ko = 4;70% < 0, type I is chosen. Otherwise, if ko is in the interval ]0, 1]
type IV is preferred. In the last case (k2 > 1) type VI is used. (The remaining
cases where ko = 0 and ko = 1 require different types of distribution but, as
previously mentioned, were not encountered in our experiments and are therefore
omitted in this section). A visual representation of these type of distributions in
function of v; and S5 is given in Appendix D, Figure 8(b).

In order to estimate the type I and VI distributions, it is necessary to find
the roots of the quadratic function:

f(z) = bax® 4 bya + by, (9)

denoted as a1 and as in the following. The rest of the computations are type
specific and briefly described in the following.
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Type I. This distribution is a generalization of the beta distribution using four
parameters. In this case, Equation (9) has two real roots with different signs.
We assume without loss of generality that a; < 0 < as and define:

by + a1 —b1 —ay

mo=-———-, myg = ——08 = .
! ba(as — ay) ? ba(az — ay)

The PDF is then defined as:
r*#*an/?)ml ( ﬂﬁﬂtﬂzl\/g)m2

F(z) = ((az—al)\/g 1= (a2—a1)y/o
B(mi 4+ 1,mg + 1)(az — a1)\/o

(10)

where B(.,.) refers to the beta function. Hence, = is bounded on both sides
within |a1+/0 + p, a2\/o + pl.

Type IV. In this case, we first compute the four parameters my, ms, ms, my

as:
1 2b1(1 — ml) (2m1 — 2)3 — (2m1 — 2)2 ms3mso
mip =, My = —F/————, M3 = , My = ———.
Ty T b, 02 2m; — 2)2 + m2 LT o, =2

Then the PDF can be estimated by:

T—p—myo

—arctan m
e ( )ma

mgo

I'(m1)

F(z) =

2 v —p—mao\2\
<1+ (“ 4 > ) :
mso

(11)

where I'(.) denotes the gamma function. In contrast to types I and VI, this dis-
tribution is unbounded on both sides and supports z in the interval [—oo, +00].

B(my — %’ %)m:’,o'

Type VI. This distribution is related to the F' distribution. In this case, Equa-
tion (9) has two real roots with the same sign, and we assume without loss of
generality that |a;| < |as]|. For this distribution, we first compute m; and my as:

ay + b az —ap

my = ———, My = ——— .
! ba(as — aq) 2 ba(ag — aq)

The PDF is then defined as:
x—;t—alﬁ)ml (1 + x—u—a1ﬁ>_(m1+m2)

F(z) = ((a1*a2)\/5 (a1—a2)Vo
B(m1 + 1,m2 — 1) |a1 — 012‘\/5

(12)

Depending on the sign of the skewness, the covered range for x is either Jaj/o +
p, +00] (11 > 0) or [—00, a1v/0 + pf (11 < 0).

24



D Coverage of Pearson and SGL

In Figure 8(a), the coverage for the different types of Pearson distributions is
illustrated. Type I is limited by the impossible region (32 < % + 1). Type III
covers the border between type I and type VI (i.e., 282 = 37% + 6). Similarly,
the border between type VI and type IV is covered by type V (42(82 + 3)? =
4(4B2—37?)(282—372—6)). Note that we did not consider these two border cases
(type IIT and type V) in our experiments. Figure 8(b) shows a similar coverage
area for SGL distributions. In both cases, the non-covered realm of these PDF
estimators is marked in grey to allow straight comparisons.

I )
[ Impossible
I Not Covered
[ sGL

(a) Pearson’s distribution system.

Fig. 8. Plane of existence of the different distributions.
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E Estimation Problem of SGL

At the first step, we introduce a new variable Y defined as Y = M The
raw moments of Y can be computed using (A3, A4) as

o0

E[Y*) = (1/A3 Z kA‘*) AW“F(Q’;;). (13)

i=

From these raw moments, the mean py, variance 0%, skewness vy, and kurtosis
By of Y can be derived (from the definitions given in Appendix B). Given the
actual mean px, variance 0'3(, skewness vx, and kurtosis Sx of X, we strive to
find a pair (Ag, A\4) such that (yy, By) = (vx,Bx)- In [26] it is suggested to use
Newton’s method to approximate a vector u = [\ A3]7 with:

~Jw () =x]
G(u) = |:ﬂy(ll) B 5X} =0. (14)

In each iteration, the vector u is updated using the relation:
ujp = u; — I (1) G(wy), (15)
where J(.) is the Jacobian matrix defined as:

Oy (uy) vy (uy)

O\ O\
W) = | os ) o8viy |- (16)
3)\4 8>\3

Once A3 and A4 are fixed, the other parameters can easily be computed by:

N = X AL = pix — Aspy (17)
Oy

Similar to the EMG, the SGL only considers positive non-zero skewness and
needs to be mirrored for a negative skewness. Besides, and compared to the EMG
and Pearson’s system, this procedure has a higher computational complexity
which can become significant if a large number of PDFs have to be estimated. For
example, this can be the case for non-profiled attacks such as MIA that require
to compute PDFs for every possible subkey candidate. Indeed, our practical
experiments employing SGL (presented in Section 5) required significant more
time compared to the other considered estimators but remained tractable.
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F Supporting Figures
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Fig. 9. Distributions with fixed mean and variance and varying skewness and kurtosis.
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Fig. 10. The estimated PDF's of the four distributions from Table 1 with partly fixed
moments according to the four evaluations cases.
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(b) Non-profiled MIA Attack.

Fig. 11. Additional (profiled and non-profiled) attacks with kernel density estimation
and comparison with other attacks exploiting all the moments at time sample 719.
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Fig. 12. (a) sample trace. (b) first-order, (c) second-order, and (d) third-order MCP-
DPA results for different time samples in the leakage traces (taken from [33]).
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G Mutual Information Analysis

After examining many different models,® we selected the three most significant
bits of the S-box output as the best alternative.
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Fig. 13. Guessing entropy for MIA based on different estimation tools (at sample 719).

Using each density estimator (with various combinations of moments), we
further ran 1000 MIA experiments for each given number of traces, and com-
puted the guessing entropy as defined in [51]. The reason for not using the success
rate again is that the convergence of the attacks is not guaranteed in this case
(and actually not all the attacks converged). The results depicted in Figure 13
indicate that the estimators that capture more of the available moments gener-
ally perform better. Yet, the most interesting (and somewhat surprising) fact is
that the most useful moment is now the third one rather than the second one. A
similarly interesting observation is that the best attack is not the one combining
all moments. This is not contradictory with the previous analysis, since such
non-profiled attacks naturally deviate from the worst case predictions based on
the profiled PI values. Indeed, in the case of MIA, the estimation of the model
parameters is performed “on-the-fly”, which implies that the best option is not
to characterize the leakage the most carefully, but to reach a sufficiently pre-
cise estimation sufficiently quickly. Besides, our experiments also indicate that
(non-profiled) models that are useful for certain moments (and as a matter of
fact, certain time samples as well) may not be as good for others. This somehow

9 Including HW, any single bit, pair and triple of bits of the S-box output.
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joins the conclusions in [53] regarding the difficulty to interpret the result of
non-profiled side-channel attacks in the context of masking. Additional curves
are provided in Figure 11(b), including attacks exploiting kernel-based models
that have an efficiency comparable to other attacks using all the moments, and
hence are less efficient than the best attacks using only the third moment.
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