
Code-based Strong Designated Verifier Signatures: Security
Analysis and a New Construction

Maryam Rajabzadeh Asaar

Department of Electrical and Computer Engineering, Science and Research Branch,
Islamic Azad University, Tehran, Iran.

asaar@srbiau.ac.ir

Abstract. Strong designated verifier signatures make the message authenticated only to a designated
person called the designated verifier while privacy of the signer’s identity is preserved. This primitive is
useful in scenarios that authenticity, signer ambiguity and signer’s privacy are required simultaneously
such as electronic voting and tendering. To have quantum-attack-resistant strong designated verifier
signatures as recommended in National Institute of Standards and Technology internal report (NISTIR
8105, dated April 2016), a provably secure code-based construction was proposed by Koochak Shooshtari
et al. in 2016. In this paper, we show that this code-based candidate for strong designated verifier signa-
tures does not have signer ambiguity or non-transferability, the main feature of strong designated verifier
signatures. In addition, it is shown that it is not strongly unforgeable if a designated verifier transfers
a signature to a third party. Then, a new proposal for strong designated verifier signatures based on
coding theory is presented, and its security which includes strong unforgeability, signer ambiguity and
privacy of the signer’s identity properties is proved under Goppa Parameterized Bounded Decoding and
the Goppa Code Distinguishing assumptions in the random oracle model.

Keywords: code-based signatures, strong designated verifier signatures, coding theory, provable secu-
rity, random oracle model.

1 Introduction

Designated verifier signatures (DVS) are kinds of signatures that enable signers to prove the validity of a
message to a specified entity called the designated verifier. Since the designated verifier by itself can generate
these kinds of signatures on each message it wants, these types of signatures are non-transferable or signer
ambiguous in the sense that the signature is created by the signer or the designated verifier. Hence, only the
designated verifier which knows that it has not issued the signature is convinced of validity or invalidity of the
message. In other words, the main feature of traditional signatures named as non-repudiation is not preserved
while the message is authenticated. This concept was introduced by Jakobsson, Sako and Impagliazzoin in
1996 [14], and is used where a signer would like to determine who may be convinced by its signatures. For
example, this primitive is a solution to the problem of electronic tendering of contracts [14]. Consider a
scenario in which a company has a contract and would like put it to tender, and participants would like
to propose their prices to win the contract. The participants signed their proposals to be authenticated.
This procedure can be abused by tenderer in a way that it can show participant’s proposal (the proposed
price signed by a participant) to another participant to enable it to give a better proposal. With employing
designated verifier signatures, each participant presents its proposal (the proposed price signed by designated
verifier signatures by the participant and the company). In this case, there is no advantage for the company to
show the participant’s proposal to another participant since this kind of signature is ambiguous and nobody
can be convinced who generates the proposal, the company or the participant. If participants’ designated
verifier signatures are captured before arriving to the company, signers can be identified since the company did
not create the signature. To remove this problem in 1996, Jakobsson et al. [14] also briefly introduced another
notion called strong designated verifier signatures (SDVS) which means that the designated verifier needs
its secret key to verify the validity or invalidity of a signature. Therefore, nobody except for the designated
verifier can specify who is the actual signer. In 2003, Saeednia et al. presented this notion formally [23], and
in 2005 strengthen by Laguillaumie and Vergnaud [15]. Following Saeednia et al.’s work [23], some SDVS
schemes [12, 13] have been proposed, where their security is proved based on hard problems in number theory.



2

In 1994, some research has been done by Shor [26] to show that quantum computers can break security of
cryptographic algorithms based on number theory. With eminent emergence of quantum computers, number
theory-based public key algorithms will be broken. In 2016, National Institute of Standards and Technology
(NIST) in an internal report [6] emphasizes that it is vital to immigrate from currently used public key cryp-
tosystems to quantum-attack-resistant counterparts. One of these recommended post-quantum cryptographic
candidates is code-based cryptography.

In 1978, McEliece introduced the concept of code-based cryptography, and also presented the first code-
based public key encryption scheme from the general decoding problem [18]. The proposed scheme [18] cannot
be transformed to a signature scheme since it is not invertible. Niederreiter [20] modified McEliece code-based
cryptosystem in 1986 such that it can be used to generate a signature scheme. Courtois, Finiasz and Sendrier
[7] proposed the first practical code-based signature scheme called CFS scheme in 2001. They adapt the full
domain hash approach of Bellare and Rogaway [3] to Niederreither encryption scheme [20] in a way that a
message is concatenated with a counter before hashing to make hash values decodable. Although authors
presented some security arguments, it does not support provable security. In 2008, Dallot [8] gave a slight
modification to their signature scheme in a way that the counter is replaced with a random value, this
new scheme is named modified CFS or Dallot scheme, and proved its security under Goppa Parameterized
Bounded Decoding [4] and Goppa Code Distinguishing [24] assumptions in the random oracle model [3].
Following the work presented by Dallot [8], a few code-based signature schemes with additional properties
such as identity-based signature [5], one-time signature [2], ring signature [29], threshold ring signature [28,
19, 9], blind signature [21], signcryption [17], undeniable signature [1] and strong designated verifier signature
[25] have been proposed.

Contribution. In this paper, we show that the only provably secure candidate for code-based strong
designated verifier signatures which was presented by Koochak Shooshtari et al. [25] does not have non-
transferability or signer ambiguity. In addition, it is not strongly unforgeable if a designated verifier makes a
designated verifier signature public verifiable which means that everyone can produce new strong designated
verifier signatures for previously signed messages. Then, we propose a new strong designated verifier signature
scheme from coding theory. It should be highlighted that our scheme compared to Koochak Shooshtari et
al.’s scheme provides provable security for privacy of the signer’s identity, while they claim that their scheme
provides this property. In our construction, to have non-transferable signature scheme, we apply the paradigm
“the signer or the designated verifier generates a signature” to Dallot signature scheme [8] to generate a
publicly verifiable designated verifier signature. Hence, our proposal definitely will have signer ambiguity.
Then, the encryption scheme presented by Niederreiter [20] is used to encrypt a piece of the designated
verifier signature to create a strong form of that. Finally, its security is proved under hard problems in coding
theory, Goppa Parametrized Bounded Decoding and the Goppa Code Distinguishing problems, in the random
oracle model [3].

1.1 Organization of the paper

The rest of this paper is organized as follows. Section 2 presents background and complexity assumptions
employed as the signature foundation, the outline of strong designated verifier signature algorithms and its
security model. In Section 3, review of Koochak Shooshtari et al.’s scheme and its security weaknesses are
presented. Our proposed scheme along with its formal security proof and efficiency analysis are given in
Sections 4 and 5, respectively. Section 6 presents the conclusion.

2 Background

In this section, first the used notations in the paper are introduced, then, we review several fundamental
backgrounds employed in this research, including coding theory, complexity assumptions, Dallot signature
scheme, algorithms of a strong designated verifier signature scheme and its security model.

2.1 Notations

In this subsection, the notations used in the paper are defined.



3

– ⊕ : X-OR operation.
– wH(y): the Hamming weight of a word y or the number of non-zero positions of y.
– yT : transpose of a vector y.
– ⊥: an empty string.
– >: a special string.
– θ ← B(y1, ...): the operation of assigning the output of algorithm B on inputs y1, ... to θ.

– y
$← Y : the operation of assigning a uniformly random element of Y to y.

2.2 Coding Theory

Let F2 be the field with two elements and a binary code C(n, k) be a linear subspace of dimension k of Fn2 ,
where k and n ∈ N. Elements of Fn2 and C are named words and codewords, respectively. Code C(n, k) is
presented by a (n−k)×n binary parity check matrix H such that for a codeword x ∈ Fn2 belonged to C(n, k),
we have HxT = 0 and the syndrome of a word x ∈ Fn2 is defined as s = HxT , where s ∈ Fn−k2 . A syndrome
s is said to be t-decodable if there exists a word x ∈ Fn2 such that HxT = s and wH(x) ≤ t, where t = n−k

logn
2

is the error correcting capability of the code C(n, k).
Goppa codes are a subclass of alternant codes [16], and widely used in code-based cryptography. Goppa

codes G(n, k) of t error correcting capability are of length n = 2m and dimension k = n−mt, where m and
t ∈ N. It is assumed that DECH be the decoding algorithm of Goppa code G(n, k) with the parity check
matrix H.

2.3 Complexity assumptions

Hard problems and security assumptions used in the paper are defined as follows [8, 10, 24].

Definition 1. Goppa Parameterized Bounded Decoding (GPBD) problem. Given a random (n − k) × n
binary matrix H and a syndrome s ∈ Fn−k2 , output a word x ∈ Fn2 such that wH(x) ≤ n−k

logn
2

and HxT = s.

Definition 2. Goppa Parametreized Bounded Decoding (GPBD) assumption. The GPBD problem is (τ, ε)-
hard if there is no algorithm C which runs in time at most τ and with probability at least ε breaks the GPBD
problem.

Definition 3. Goppa Code Distinguishing (GD) problem. Given a (n − k) × n binary parity check matrix
H, output a bit b ∈ {0, 1} indicating if H is a random binary parity check matrix or a Goppa code random
binary parity check matrix.

The advantage of the distinguisher C is defined as follows.

AdvGDC (n, k) = Pr[1← C(H) | H $← G(n, k)]−
Pr[1← C(H) | H $← B(n, k)]

(1)

Definition 4. Goppa Code Distinguishing (GD) assumption. The GD problem is (τ, ε)-hard if there is no
algorithm C which runs in time at most τ breaks the GD problem with probability AdvGDC (n, k) ≥ ε.

2.4 Strong designated verifier signature algorithms

A strong designated verifier signature scheme consists of Setup, Sign, Ver and Sim algorithms as follows.

– Setup: Given a system security parameter λ, it outputs the set of users U , the message space M and
other public parameters, π. It also outputs users’ public keys pk and each user has its secret key sk; i.e.
(Para, (sk, pk))← Setup(λ), where Para = {U ,M, π}.



4

– Sign: Given the system’s parameter Para, signer’s secret key sks and its corresponding public key
pks, designated verifier’s public key pkv and the message M ∈ M or equivalently an input tuple
(Para, sks, pks, pkv,M), it outputs a signature θ; i.e. θ ← Sign(Para, sks, pks, pkv,M).

– Ver: Given the system’s parameter Para, signer’s public key pks and designated verifier’s public key pkv
and its corresponding secret key skv, the signature θ and the message M , returns 1 if θ is valid; otherwise,
it returns 0; i.e. {0, 1} ← Ver(Para, pks, pkv, skv, θ,M).

– Sim: Given the system’s parameter Para, designated verifier’s secret key skv and its corresponding public
key pkv, signer’s public key pks and the messageM ∈M or equivalently an input tuple (Para, skv, pkv, pks,M),
it outputs the simulated signature θ; i.e. θ ← Sim(Para, skv, pkv, pks,M).

Correctness. The correctness of a SDVS scheme requires that for any (pks, sks), (pkv, skv) and message
M ∈M,

Pr[1← Ver(Para, pks, pkv, skv,Sign(Para, sks, pks, pkv,M),M)] = 1,

and

Pr[1← Ver(Para, pks, pkv, skv,Sim(Para, skv, pkv, pks,M),M)] = 1.

2.5 Security model of strong designated verifier signature schemes

A strong designated verifier signature scheme (SDVS) [14] should be existentially unforgeable under an
adaptive-chosen-message attack, non-transferable (signer ambiguous) and strong which means that it has
privacy of signer’s identity [15].

Unforgeability. Unforgeability means that nobody other than the signer or the designated verifier can
generate a valid designated verifier signature scheme. To give a formal definition for unforgeability of
strong designated verifier signature, the following game between an adversary A and a challenger C is
considered to be played [14].

1. Setup: Algorithm C runs the Setup algorithm with a security parameter λ to obtain system’s parameter
Para and user’s key pair (pk, sk), then it sends (pk, Para) to A.

2. The adversary A in addition to making queries to random oracles adaptively issues a polynomially
bounded number of questions to the Sign, Sim and Ver oracles as follows.

– Sign: Adversary A can ask for a strong designated verifier signature on the tuple (pks, pkv,M), where
M ∈M is the message, pks is signer’s public key and pkv is designated verifier’s public key. Then, C
returns the signature θ ← Sign(Para, sks, pks, pkv,M).

– Sim: AdversaryA can ask for a simulated strong designated verifier signature on the tuple (pkv, pks,M),
where M ∈ M is the message, pks is signer’s public key and pkv is designated verifier’s public key.
Then, C returns the simulated signature θ ← Sim(Para, skv, pkv, pks,M).

– Ver: Adversary A can ask for the validity or invalidity of a (simulated) strong designated ver-
ifier signature on the tuple (pks, pkv, θ,M), where M ∈ M is the message, θ is a (simulated)
signature, pks is signer’s public key and pkv is designated verifier’s public key. Then, C returns
{0, 1} ← Ver(Para, pks, pkv, skv, θ,M).

3. Eventually, A returns a strong designated verifier signature θ∗ on the message M∗ with respect to public
keys pks and pkv, and wins the forgery game if the two following conditions hold:

Condition 1. The relation 1← Ver(Para, pks, pkv, skv, θ
∗,M∗) holds.



5

Condition 2. Adversary A has not made Sign query for input of (pks, pkv,M
∗) and Sim query on

input of (pkv, pks,M
∗).

The formal definition of existential unforgeability of strong designated verifier signatures is given in
Definition 5.

Definition 5. An SDVS scheme is (τ, qro, qs, qsim, qv, ε)-existentially unforgeable against adaptive chosen
message attack if there is no adversary which runs in time at most τ , makes at most qro random oracle
queries, qs Sign queries, qsim Sim queries and qv Ver queries, and can win the forgery game with probability
at least ε.

Privacy of the Signer’s Identity (PSI). A strong designated verifier signature scheme has privacy of the
signer’s identity (PSI) if nobody other than the designated verifier says who generates the signature in
case of having two or more potential signers. To have a formal definition for PSI, the following game
between an adversary A and a challenger C is considered to be played [15].

1. Setup: Algorithm C runs the Setup algorithm with a security parameter λ to obtain system’s parameter
Para and user’s key pair (pk, sk), then it sends (pk, Para) to A.

2. The adversary A in addition to making queries to random oracles adaptively issues a polynomially
bounded number of questions to the Sign, Sim and Ver oracles as explained in the unforgeability game.

3. Algorithm C outputs two signer’s public keys pks0 and pks1 , and designated verifier’s public key pkv to A.

4. Adversary A asks for a designated verifier signature on the message M . In response, C chooses b ∈ {0, 1}
at random, and returns θb ← Sign(Para, sksb , pksb , pkv,M) to A.

5. Adversary A continues to issue queries as in Step 2.

6. Finally, A outputs a bit b′ and wins the game if the two following conditions hold.

Condition 1. The relation b′ = b holds.

Condition 2. Adversary A has not made Ver query on input of (b, θb, pkv,M).

The formal definition for this property is given in Definition 6.

Definition 6. (Privacy of the Signer’s Identity). An SDVS scheme is (t, qs, qsim, qv, ε)-PSI-secure if there is
no adversary A which runs in time at most t; issues at most qs Sign queries, qsim Sim queries and qv Ver
queries, and can win the aforementioned game with probability that deviated from 1

2 by more than ε.

Non-transferability (Signer ambiguity). A strong designated verifier signature scheme is said to be
non-transferable or signer ambiguous if the signature generated by the signer is indistinguishable from
the signature simulated by the designated verifier [14]. The formal definition of non-transferability is
expressed in Definition 7.

Definition 7. An SDVS scheme is non-transferable (signer ambiguous) if Equation 2 holds for any proba-
bilistic polynomial time distinguisher A, (pks, sks), (pkv, skv) and any message M ∈M.∣∣∣∣∣∣∣∣∣∣

Pr


θ0 ← Sign(Para, sks, pks, pkv,M),
θ1 ← Sim(Para, skv, pkv, pks,M),
b← {0, 1},
b′ ←− A(pks, pkv, sks, skv, θb)
: b′ = b

− 1
2

∣∣∣∣∣∣∣∣∣∣
< ε(λ), (2)

where ε(λ) is a negligible function in the security parameter λ, and the probability is taken over the
randomness used in Sign and Sim, and the random coins used by A. If the probability is equal to 1

2 , the
scheme is perfectly non-transferable [14].



6

3 Koochak Shooshtari et al.’s code-based strong designated verifier signature
scheme and its security weaknesses

In this section, first we review the details of Koochak Shooshtari et al.’s scheme [25]; then, we show that it
does not have signer ambiguity or non-transferability, and also it is not strongly unforgeable if a designated
verifier transfers a signature to a party.

3.1 Details of Koochak Shooshtari et al.’s scheme

The scheme consists of the following algorithms:

1. Setup: The system parameters are as follows. Let n, k, m and t ∈ N be parameters for a Goppa code
of length n = 2m, dimension k and error correcting capability t = n−k

logn
2

such that t-decoding has com-

plexity at least 2λ for a security parameter λ. Let g : {0, 1}∗ → {0, 1}n−k be a random oracle and
f : {0, 1}n → {0, 1}n−k be a deterministic function. It is assumed that H̃ be a (n − k) × n parity
check matrix of a random binary Goppa code and DECH̃ be its t-decoding algorithm. The public key is

pk = H = UH̃P , and the secret key is sk = (DECH̃ , U, P ), where U is a random binary non-singular
(n−k)×(n−k) matrix and P is a random n×n binary permutation matrix. Therefore, public parameters
are Para = {n, k,m, t, g, f}.

2. Sign: To generate a strong designated verifier signature θ on the message M ∈ {0, 1}∗, the signer chooses
random numbers r1 from {1, ..., 2n−k} and r2 from Fn2 such that wH(r2) = t, computes y = Hvr

T
2 and

α = g(M,f(r2)⊕ r1) and x = DECH̃s
(U−1s α)Ps. If x = ⊥, it chooses another r1, and repeats the signing

procedure. The signature θ on the message M is (x, r1, y).

3. Ver: Given Para, Hs, Hv and a signature θ = (x, r1, y), the designated verifier first computes r2 =
PTv DECH̃v

(U−1v y), the signature θ on the message M is valid and outputs 1 if and only if Hsx
T =

g(M,f(r2)⊕ r1) and wH(x) ≤ t; otherwise, it outputs 0 and the signature is invalid.

4. Sim: To simulate a strong designated verifier signature θ on the message M ∈ {0, 1}∗, the designated
verifier chooses random numbers a from {1, ..., 2n−k} and b from Fn2 such that wH(b) = t, computes
r′2 = PTv DECH̃v

(U−1v g(a, b)). If r′2 = ⊥, it chooses another a, and repeats the simulation procedure.
Then, sets y′ = g(a, b), r′1 = f(r2)⊕ r1⊕f(r′2). The simulated signature θ on the message M is (x, r′1, y

′).

Correctness. The correctness of the signature θ = (x, r1, y) is verified as follows, where α = g(M,f(r2)⊕
r1).

Hsx
T

= (UsH̃sPs)(DECH̃s
(U−1s α)Ps)

T

= (UsH̃sPs)(DECH̃s
(U−1s g(M,f(r2)⊕ r1)Ps)

T

= (UsH̃sPs)P
T
s (DECH̃s

U−1s g(M,f(r2)⊕ r1)T )
= UsU

−1
s g(M,f(r2)⊕ r1)

= g(M,f(r2)⊕ r1)
= g(M,f(r′2)⊕ r′1).

(3)

3.2 Security analysis of Koochak Shooshtari et al.’s scheme

In what follows, we show that Koochak Shooshtari et al.’s scheme has some security weaknesses. Weakness
1 states that it is transferable of not signer ambiguous, and Weakness 2 indicates that it is not strongly
unforgeable if a designated verifier signature is made public verifiable.

Weakness 1. Koochak Shooshtari et al.’s code-based strong designated verifier signature scheme is trans-
ferable. In other words, it is not signer ambiguous.



7

According to Definition 7, a SDVS scheme is non-transferable or signer ambiguous if the adversary A
which has designated verifier’s secret key and signer’s secret key cannot tell who generates the signature
(among two possible signers: the signer or the designated verifier). In our analysis, it is not necessary
to consider all adversary’s capabilities (having signer’s secret key and designated verifier’s secret key)
as given in Definition 7. In fact, to show this weakness, just having designated verifier’s secret key or
receiving the decrypted some parts of the signature is sufficient. To do this, a designated verifier decrypts
the value of y to obtain r2, and gives θ = (x, r1, y) along with r2 to another party. In this case, the
signature is made publicly verifiable by the designated verifier. Hence, everyone can check if y = Hvr

T
2 ,

wH(r2) = t, Hsx
T = g(M,f(r2)⊕ r1) and wH(x) ≤ t hold.

Since the designated verifier signature has been converted to a publicly verifiable signature under signer’s
public key, everyone can be sure that the signature θ is generated by the signer not the designated verifier.
We should emphasize that the main reason for this weakness is that each designated verifier can simulate
signatures only for messages that it receives their designated verifier signatures. In other words, it is
impossible for a designated verifier to simulate valid signatures without having valid designated verifier
signatures.
Another way to prove this weakness is that we show that probabilities of simulated signatures and real
signatures are not the same. The probabilities of generating and simulating of a valid designated verifier
signature are given as follows.

θ = (x, r1, y) :


r1

$← Fn−k2

r2
$← Fn2 : wH(r2) ≤ t

y = Hvr
T
2

x = DECH̃s
(U−1s g(M,f(r2)⊕ r1))Ps ∧ x 6= ⊥

(4)

θ′ = (x′, r′1, y
′) :



a
$← Fn−k2

b
$← Fn2 : wH(b) ≤ t

r′2 = PTv DECH̃v
(U−1v g(a, b)) ∧ r′2 6= ⊥

y′ = g(a, b)
x′ = x
r′1 = f(r′2)⊕ r1 ⊕ f(r2)

(5)

Let θ be a valid signature which is randomly chosen from the set of all valid signer’s signatures intended
to the verifier. Subsequently, we have distributions of probabilities as follows:

Pr
θ

= Pr
r1;r2

[
θ = θ

]
=

∑t
i=0

(
n
i

)(
n
t

)
2(n−k)

, (6)

and

Pr
θ′

= Pr
a;b

[
θ = θ′

]
=

∑t
i=0

(
n
i

)(
n
t

)
2(n−k)

γ, (7)

where the value of γ is the probability of receiving the designated verifier signature θ by a designated
verifier. Therefore, without having the signature θ = (x, r1, y), a designated verifier who does not have
x, r1 and y, which are required for signature simulation (refer to signature simulation algorithm), cannot
simulate a valid designated verifier signature. As a consequence, the probability of simulating such a sig-
nature will be zero. This analysis shows that both distributions of probabilities are not the same. Hence,
this scheme does not satisfy the non-transferability or signer ambiguity property.

Weakness 2. Koochak Shooshtari et al.’s code-based strong designated verifier signature scheme is not
strongly unforgeable if a designated verifier signature is transferred, which means that everyone can sim-
ulates new signatures on previously signed messages.

If a designated verifier transfers a signature θ = (x, r1, y) on the message M along with r2 to an-
other party, not only it can find out who is the real signer of a designated verifier signature, but also



8

it can simulate new signatures on the same message. To generate a new signature on the same message
M , that party chooses r̃2 from Fn2 such that wH(r̃2) = t, computes ỹ = Hv r̃

T
2 , sets x̃ = x and sets

r̃1 = f(r2)⊕ r1⊕ f(r̃2). Therefore, the simulated signature θ̃ on the message M is (x̃, r̃1, ỹ) such that Ver
algorithm on that signature returns 1 which means that the signature is valid.

4 Our code-based strong designated verifier signature scheme

In this section, first details of our proposed scheme is presented; then, its security is proved under GPBD
and GD assumptions in the random oracle model [3].

4.1 Details of our proposed scheme

Our scheme consists of four algorithms as follows.

1. Setup: The system parameters are as follows. Let n, k, m and t ∈ N be parameters for a Goppa code of
length n = 2m, dimension k and error correcting capability t = n−k

logn
2

such that t-decoding has complexity

at least 2λ for a security parameter λ. Let g : {0, 1}∗ → {0, 1}n−k, h : {0, 1}∗ → {0, 1}n−k be random
oracles, and fh(M),i(.) : {0, 1}n−k → {0, 1}n−k is a random permutation that encrypts messages of n− k
bits with keys h(M) for i ∈ {s, v}, where the indices of s and v are used for a signer and a designated
verifier, respectively. It is assumed that H̃ be a (n−k)×n parity check matrix of a random binary Goppa
code and DECH̃ be its t-decoding algorithm. The public key is pk = H = UH̃P , and the secret key is
sk = (DECH̃ , U, P ), where U is a random binary non-singular (n−k)× (n−k) matrix and P is a random
n×n binary permutation matrix. Therefore, public parameters are Para = {n, k,m, t, g(.), fh(M),i(.), h}.

2. Sign: To generate a strong designated verifier signature θ on the message M ∈ {0, 1}∗, the signer chooses
random numbers r and xv from Fn2 such that wH(r) ≤ t and wH(xv) ≤ t, computes y = Hvr

T and
α = f−1h(M),s(g(r, y,Hs, Hv,M) ⊕ fh(M),v(Hvx

T
v )) and xs = DECH̃s

(U−1s α)Ps. If xs = ⊥, it chooses an-

other r, and repeats the signing procedure. The signature θ on the message M is (xs, xv, y).

3. Ver: Given Para, Hs, Hv and a signature θ = (xs, xv, y), the designated verifier first computes r′ =
PTv DECH̃v

(U−1v y), the signature θ on the message M is valid and outputs 1 if and only if fh(M),s(Hsx
T
s )⊕

fh(M),v(Hvx
T
v ) = g(r′, y,Hs, Hv,M), and wH(r′) ≤ t, wH(xs) ≤ t and wH(xv) ≤ t; otherwise, it outputs

0 and the signature is invalid.

4. Sim: To simulate a strong designated verifier signature θ on the message M ∈ {0, 1}∗, the designated
verifier chooses random numbers r and xs from Fn2 such that wH(r) ≤ t and wH(xs) ≤ t, computes
y = Hvr

T and α = f−1h(M),v(g(r, y,Hs, Hv,M)⊕ fh(M),s(Hsx
T
s )) and xv = DECH̃v

(U−1v α)Pv. If xv = ⊥, it

chooses another r, and repeats the simulation procedure. The simulated signature θ on the message M
is (xs, xv, y).

Correctness. The correctness of the proposed scheme when the signature is generated by the Sign al-
gotithem is as follows, and we use y = Hvr

T , α = f−1h(M),s(g(r, y,Hs, Hv,M) ⊕ fh(M),v(Hvx
T
v )) and

xs = DECH̃s
(U−1s α)Ps in what follows.

r′ = PTv DECH̃v
(U−1v y)

= PTv DECH̃v
(U−1v Hvr

T )

= PTv DECH̃v
(U−1v (UvH̃vPv)r

T )

= PTv DECH̃v
(H̃vPvr

T )
= PTv Pvr

T

= r.

(8)



9

fh(M),s(Hsx
T
s )⊕ fh(M),v(Hvx

T
v )

= fh(M),s(Hs(DECH̃s
(U−1s α)Ps)

T )⊕ fh(M),v(Hvx
T
v )

= fh(M),s(UsH̃sPs(DECH̃s
(U−1s α)Ps)

T )⊕ fh(M),v(Hvx
T
v )

= fh(M),s(UsH̃sPs(P
T
s (DECH̃s

(U−1s α))T ))⊕ fh(M),v(Hvx
T
v )

= fh(M),s(UsU
−1
s α)⊕ fh(M),v(Hvx

T
v )

= fh(M),s(α)⊕ fh(M),v(Hvx
T
v )

= fh(M),s(f
−1
h(M),s(g(r, y,Hs, Hv,M)⊕ fh(M),v(Hvx

T
v )))⊕ fh(M),v(Hvx

T
v )

= g(r, y,Hs, Hv,M)⊕ fh(M),v(Hvx
T
v )⊕ fh(M),v(Hvx

T
v )

= g(r, y,Hs, Hv,M) = g(r′, y,Hs, Hv,M).

(9)

If θ = (xs, xv, y) is a valid strong designated verifier signature on the message M , r′ = r, and the relation
fh(M),s(Hsx

T
s ) ⊕ fh(M),v(Hvx

T
v ) = g(r′, y,Hs, Hv,M) holds. Note that, if the signature is simulated by the

Sim algorithm, its correctness can be shown in a similar way.

4.2 Analysis of the proposed scheme

In this subsection, the properties of the proposal, unforgeability, non-transferability and privacy of the signer’s
identity are proved in the random oracle model (see [3] for the background).

Unforgeability, non-transferability and privacy of the signer’s identity of our proposed scheme are proved
in Theorems 1, 2 and 3, respectively.

Theorem 1. If the GPBD problem is (τGPBD, εGPBD)-hard and GD problem is (τGD, εGD)-hard, then the
proposed scheme is (τ, qg, qf , qs, qsim, qv, ε)- strongly unforgeable against adversary A such that

εGPBD ≥
ε−εGD−

(qs+qsim)(2(qs+qsim)+qg))

(n
t)

qf
,

τGPBD ≤ τ + 3mt2(qv + qs + qsim),

(10)

where n, k, t and m are system’s constants. In addition, qg, qf , qs, qsim and qv are the number of queries to
oracles g(.), fh(M),i(.) Sign, Sim and Ver, respectively.

Proof. It is assumed that there is an adversary A against unforgeability of the scheme with success probability
ε. We construct another algorithm C to solve GPBD problem with success probability εGPBD. Given a random
binary matrix H∗ and a random vector s∗, algorithm C outputs x∗ such that H∗(x∗)T = s∗ and wH(x∗) ≤ t.
Note that substituting the public key of the signer or the designated verifier with a random binary matrix
H∗ changes the success probability of the simulator C with advantage at most εBD to solve the permuted
Goppa code distinguishing.

The algorithm C runs Setup on a security parameter λ to generate public parameters Para = {n, k,m, t},
and gets a random instance of the GPBD problem, (n, k,m, t,H∗, s∗), to set signer’s public key, Hs and
designated verifier’s public key, Hv, to H∗. Then, it invokes the adversary A on Para, Hv and Hs. The
adversary A runs in time at most τ , makes qg queries to the random oracle g(.) and qf queries to the cipher
oracle fh(M),i(.), and makes qs queries to the Sign oracle, qsim queries to the Sim oracle and qv queries to
the Ver oracle, and can win the unforgeability game with probability at least ε1 = ε − εBD. Algorithm C
maintains initially empty associative tables Tg[.] to simulate the random oracle g(.) and Tf [.] to simulate the
cipher oracle fh(M),i(.), and answers A’s oracle queries as described below.

– g(.) queries: If Tg[.] is defined for query (r, y,Hs, Hv,M), then, C returns its value; otherwise, C chooses

Tg[r, y,Hs, Hv,M ]
$← {0, 1}n−k , and returns g(r, y,Hs, Hv,M) to A.

– fh(M),i(.) queries or f−1h(M),i(.) queries : If Tf [.] is defined for each query f−1h(M),i = Hix
T
i , then, C re-

turns its value; otherwise, C chooses Tf [Hix
T
i ]

$← {0, 1}n−k, and returns its value to A. Similarly, for
queries in form of fh(M),i = (fh(M),¬i(H¬ix

T
¬i)⊕ g(r, y,Hs, Hv,M)), C searches Tf [.] to return the value

of f−1h(M),i = Hix
T
i ; if its value has not been defined, it returns a random value from {0, 1}n−k.

Note that, C keeps the table Tf [.] which remembers whether fh(M),i is the answer to fh(M),i(Hix
T
i ) or



10

f−1h(M),i is the answer to f−1h(M),i(fh(M),¬i(H¬ix
T
¬i)⊕ g(r, y,Hs, Hv,M)).

– Sign queries: For a query (Hs, Hv,M), C chooses random numbers r, xs and xv from Fn2 such that wH(r) ≤
t, wH(xs) ≤ t and wH(xv) ≤ t, and computes y = Hvr

T and α = fh(M),s(Hsx
T
s ) ⊕ fh(M),v(Hvx

T
v ). If

Tg[r, y,Hs, Hv,M ] has already been defined, then, C halts, returns ⊥, and sets bad ← true; otherwise,
it sets Tg[r, y,Hs, Hv,M ] ← α. Hence, the strong designated verifier signature θ = (xs, xv, y) on the
message M with respect to public keys Hs and Hv is sent to A.

– Sim queries: For a query (Hv, Hs,M), C chooses random numbers r, xv and xs from Fn2 such that wH(r) ≤
t, wH(xv) ≤ t and wH(xs) ≤ t, and computes y = Hvr

T and α = fh(M),s(Hsx
T
s ) ⊕ fh(M),v(Hvx

T
v ). If

Tg[r, y,Hs, Hv,M ] has already been defined, then, C halts, returns ⊥, and sets bad ← true; otherwise,
it sets Tg[r, y,Hs, Hv,M ] ← α. Hence, the strong designated verifier signature θ = (xs, xv, y) on the
message M with respect to public keys Hs and Hv is sent to A.

– Ver queries: For a query (xs, xv, y,Hv, Hs,M), C looks for the tuple (r, y,Hv, Hs,M) at table Tg[.] such
that y = Hvr

T and wH(r) ≤ t to obtain g(r, y,Hv, Hs,M), then searches the table Tf [.] for queries in form
of Hsx

T
s and Hvx

T
v queries to obtain fh(M),s = fh(M),s(Hsx

T
s ) and fh(M),v = fh(M),v(Hvx

T
v ), and then

checks if fh(M),s(Hsx
T
s )⊕ fh(M),v(Hvx

T
v ) = g(r, y,Hv, Hs,M) holds, and wH(xv) ≤ t and wH(xs) ≤ t or

no. If all relations hold, the designated verifier signature is valid and returns 1; otherwise, it returns 0 to A.

– Finally, it is assumed that A outputs a signature θ∗ = (x∗s, x
∗
v, y
∗) on the message M∗ with respect to

public keys pks = Hs and pkv = Hv with probability ε1, and wins if 1← Ver(Para, pks, pkv, skv, θ
∗,M∗),

and A has not made Sign query for input of (pks, pkv,M
∗) and Sim query on input of (pkv, pks,M

∗).

The probability of A in returning a forged signature θ∗ is ε2 = Pr[E0] Pr[E1|E0], where definitions of
events E0 and E1 are given as follows.

– E0 : Algorithm C does not abort as a result of Sign and Sim simulations.
– E1: Adversary A wins the forgery game.

To lower-bound the probability of Pr[E0] and Pr[E1|E0], we need to compute the probability Pr[¬bad],
where the event bad indicate that C aborts in the Sign and Sim simulation. These probabilities are computed
as follows.

Claim 1. Pr[E0] = Pr[¬bad] ≥ 1− (qs+qsim)(qg+2qs+2qsim)

(n
t)

.

Proof. The probability of the event E0 is computed as follows.

– Case 1. If (r, y,Hv, Hs,M) generated in one Sign or Sim simulation has been occurred by chance in a
previous query to the oracle g(.), we have bad← true. Since there are at most qg + qs + qsim entries
in the table Tg[.] and the number of r randomly chosen from Fn2 , wH(r) = t, is

(
n
t

)
, the probability

of this event for one Sign query or Sim query is at most
(qg+qs+qsim)

(n
t)

. Hence, the probability of this

event for qs + qsim queries is at most
(qs+qsim)(qg+qs+qsim)

(n
t)

.

– Case 2. If C previously used the same randomness r from Fn2 , wH(r) = t, in one Sign or Sim simula-
tion, we have bad← true. Since there are at most qs+qsim Sign and Sim simulations, this probability

is at most (qs+qsim)

(n
t)

. Therefore, for qs + qsim Sign and Sim queries, the probability of this event is at

most (qs+qsim)2

(n
t)

.

Claim 2. Pr[E1|E0] ≥ ε1.

Proof. The value of Pr[E1|E0] is the probability that A wins the forgery game provided that C does
not abort as a result of A’s Sign (Sim) and Ver queries. If C did not abort as a result of A’s queries,
all its responses to those queries are valid. Therefore, by hypothesis A will win the forgery game with
probability at least ε1.



11

Therefore, the probability that A returns a tuple (x∗s, x
∗
v, y
∗, g, f−1h(M∗),s, fh(M∗),v) is at least

ε1 −
(qs + qsim)(2(qs + qsim) + qg))(

n
t

) .

Since g(.) is a random oracle, the probability of the event that g = g(r∗, y∗, Hs, Hv,M
∗) is less than 1

2(n−k) ,
unless it is asked during the attack. Hence, in what follows it is likely that the query (r∗, y∗, Hs, Hv,M

∗) has
been asked during a successful attack. Similarly, fh(M∗),i(.) or f−1h(M∗),i(.), i ∈ {s, v} is the cipher oracle and

the the probability of the event that fh(M∗),v = fh(M∗),v(Hvx
∗T
v ) and f−1h(M∗),s = f−1h(M∗),s(fh(M∗),v(Hvx

∗T
v )⊕

g(r∗, y∗, Hs, Hv,M
∗)) is less than 2

2(n−k) , unless they are asked during the attack.
The lower bound of probability of wining the forgery game after making queries to g(.) and fh(M∗),i(.)

oracles is at least

ε1 −
(qs + qsim)(2(qs + qsim) + qg))(

n
t

) − 3

2(n−k)
.

Algorithm C employs A, guesses an index 1 ≤ β ≤ qf , and hopes that β be the index of the query

fh(M∗),s = (g(r∗, y∗, Hs, Hv,M
∗) ⊕ fh(M∗),v(Hvx

∗T
v )) to oracle f−1h(M∗),i(.). Then, C responses with s∗ for

that query, and the probability of this event is 1
qf

. Since the tuple (x∗s, x
∗
v, y
∗, g, f−1h(M∗),s, fh(M∗),v) is a valid

signature, we have wH(x∗s) ≤ t, wH(x∗v) ≤ t and

Hsx
∗T
s = f−1h(M∗),s(fh(M∗),v(Hvx

∗T
v )⊕ g(r∗, y∗, Hs, Hv,M

∗)).

With substituting the value of f−1h(M∗),s(fh(M∗),v(Hvx
∗T
v )⊕ g(r∗, y∗, Hs, Hv,M

∗)) with s∗, we have

Hsx
∗T
s = s∗

with probability at least

ε− εGD − (qs+qsim)(2(qs+qsim)+qg))

(n
t)

qf
.

As a consequence, x∗s = x∗ is a t-decodable of s∗.
Algorithm C’s run-time τGPBD is A’s run-time, τ , plus the time required to respond to qs Sign queries,

qsim Sim queries and qv Ver queries. Each Sign, Sim or Ver simulation takes three syndrome computations,
where each one costs about mt2. Therefore, C’s run-time is τGPBD ≤ τ+3mt2(qv+qs+qsim). This completes
the proof.

Theorem 2. The proposed scheme is non-transferable.

Proof. To prove non-transferability of the proposal, we show that the designated verifier signature simulated
by the designated verifier is indistinguishable from the one created by the signer. Hence, we have to show
that probabilities of the two following signatures are the same.

θ = (xs, xv, y) :


r

$← Fn2 : wH(r) ≤ t
xv

$← Fn2 : wH(xv) ≤ t
y = Hvr

T

α = f−1M,s(g(r, y,Hs, Hv,M)⊕ fM,v(Hvx
T
v ))

xs = DECH̃s
(U−1s α)Ps ∧ xs 6= ⊥

(11)

θ′ = (x′s, x
′
v, y
′) :



r′
$← Fn2 : wH(r′) ≤ t

x′s
$← Fn2 : wH(x′s) ≤ t

y′ = Hvr
′T

α = f−1M,v(g(r′, y′, Hs, Hv,M)⊕ fM,s(Hsx
′T
s ))

x′v = DECH̃v
(U−1v α)Pv ∧ x′v 6= ⊥

(12)



12

Let θ be a valid signature which is randomly chosen from the set of all valid signer’s signatures intended
to the verifier. Subsequently, we have distributions of probabilities as follows:

Pr
θ

= Pr
r;xv

[
θ = θ

]
= (

∑t
i=1

(
n
i

)(
n
t

) )2, (13)

and

Pr
θ′

= Pr
r′;x′s

[
θ = θ′

]
= (

∑t
i=1

(
n
i

)(
n
t

) )2, (14)

This analysis means that both distributions of probabilities are the same. Hence, our proposal satisfies
non-transferability or signer ambiguity property.

Theorem 3. If the GPBD problem is (τGPBD, εGPBD)-hard and GD problem is (τGD, εGD)-hard, then the
proposed scheme is (τ, qg, qf , qs, qsim, qv, ε)-PSI secure against adversary A such that

εGPBD ≥ ε− εBD − 3
2(n−k) ,

τGPBD ≤ τ + (qs + qsim)(t!(m3t2) + 2mt2),
(15)

where n, k, t and m are system’s constants. In addition, qg, qf , qs, qsim and qv are the number of queries to
oracles g(.), fh(M),i(.) Sign, Sim and Ver, respectively.

Proof. It is assumed that there is an adversary A against privacy of the signer’s identity of the scheme with
success probability ε + 1

2 . Then, we construct another algorithm C to solve GPBD problem with success
probability εGPBD. Given a random binary matrix H∗ and a random vector s∗, algorithm C outputs r∗ such
that H∗(r∗)T = s∗ and wH(r∗) ≤ t. Note that substituting the public key of the designated verifier with a
random binary matrix H∗ changes the success probability of the simulator C with advantage at most εBD
to solve the permuted Goppa code distinguishing.

The algorithm C runs Setup on a security parameter λ to obtain the public parameters Para = {n, k,m, t},
signers’ public keys Hs0 and Hs1 and their corresponding secret keys. It gets a random instance of the GPBD
problem, (n, k,m, t,H∗, s∗), and sets designated verifier’s public key to H∗, and invokes the adversary A on
Para signers’s public keys Hs0 and Hs1 and designated verifier public key Hv = H∗. The adversary A runs in
time at most τ , makes qg to the random oracle g(.), qf queries to the cipher oracle fh(M),i(.), qs queries to the
Sign oracle, qsim queries to the Sim oracle and qv queries to the Ver oracle, and can win the PSI game with
probability at least ε1 = ε− εBD + 1

2 . Algorithm C maintains initially empty associative tables Tg[.] and Tf [.]
to simulate oracles g(.) and fh(M),i(.), respectively. Also, C keeps a list Ts[.] to store issued signatures, and
answers A’s random and cipher oracle queries as explained in Theorem 1. Algorithm C responses Sign (Sim)
and Ver queries as explained below.Note that since the scheme is perfectly non-transferable, it is enough to
consider just Sign queries instead of considering Sign and Sim queries to simplify the proof.

– Sign queries: For a query (b,Hsb , Hv,M), b ∈ {0, 1}, C generates the strong designated verifier signature
θb = (xsb , xv, y) on the message M following the real Sign algorithm since it knows signer’s secret key.
Then, θb is sent to A.

– Ver queries: For a query (b, θb, Hv, Hsb ,M), b ∈ {0, 1}, if the signature θb was ever returned by C, and
it is in Ts[.], it returns 1 meaning that the signature is valid; otherwise, it returns 0 meaning that the
signature is invalid.

– Adversary A asks for the challenge strong designated verifier signature on the message M , and C in
its response chooses b ∈ {0, 1} at random, and computes θb in a way that it chooses xv from Fn2 such
that wH(xv) ≤ t, sets y = s∗, makes g(.) query on the tuple (>, s∗, Hsb , H

∗,M) to obtain α, where
> is a special string. Then, it computes xs = DECH̃s

(U−1s α)Ps. If xs = ⊥, it chooses another α for
Tg[>, s∗, Hsb , H

∗,M ], and repeats the signing procedure. Then, the signature θb and public keys Hs0 ,
Hs1 and Hv are sent to A.



13

– Adversary A continues to make a number of queries to the random oracle, cipher oracle, Sign (Sim)
and Ver oracles with exception that it cannot query Ver oracle on the challenge signature θb. During
simulation of the signature scheme, C updates its answers to the random oracle queries. For g(.) queries
in form of (r, y,Hs, Hv,M), where y 6= s∗, a random value from {0, 1}n−k is returned. If y = s∗ and
wH(r) ≤ t, a random value from {0, 1}n−k is returned and > is replaced by r.

– Finally, it is assumed that A returns b′ = b with non-negligible probability ε1 = ε− εBD.

The probability of C in returning r∗, the solution to the random instance of the GPBD problem is
computed as follows. Algorithm C simulates Sign (Sim) and Ver queries perfectly since it knows signers’
secret keys. In a successful attack, A has to make query to the g(.) oracle on the tuple (r∗, s∗, Hsb , H

∗,M),
where s∗ = H∗r∗T . Otherwise, since g(.) is a random oracle, its outputs are random, and A does not have
information about g = g(r∗, s∗, Hsb , H

∗,M), unless it guesses its value with probability at most 2−(n−k).
Similarly, fh(M),i(.) is a cipher oracle, and the probability that fh(M),sb = fh(M),sb(Hsbx

T
sb

) and fh(M),v =

fh(M),v(Hvx
T
v ) is less than 2

2(n−k) . Hence, it is likely that all these queries are asked during a successful attack.
As a consequence, the solution r∗, wH(r∗) ≤ t to the problem instance s∗ is obtained with probability

εGPBD ≥ (ε− εBD +
1

2
)− (

1

2
+

3

2n−k
) = ε− εBD −

3

2n−k
.

Algorithm C’s run-time τGPBD is A’s run-time, τ , plus the time required to respond to qs Sign queries,
qsim Sim queries and qv Ver queries. Each Sign or Sim simulation takes two syndrome computations which
each one costs mt2 bit operations and t! decodings which each one needs m3t2 bit operations. Therefore, C’s
run-time is τGPBD ≤ τ + (qs + qsim)(t!(m3t2) + 2mt2). This completes the proof.

5 Efficiency Analysis

Each signer’s public key, H, is a 2m ×mt matrix which takes mt2m bits to be stored, and also the signature
θ in our scheme consists of three elements xs, xv and r, where all are n = 2m-bit vectors of weight t which

each one takes log
(2m

t )
2 bits to be stored. Hence, the size of the signature θ is 3 log

(2m

t )
2 . Computational cost

of signature scheme is computed as follows. Signature generation or signature simulation, Sign or Sim algo-
rithm, takes two syndrome computations which each one costs mt2 bit operations and t! decodings which
each one needs m3t2 bit operations. As a consequence, the strong designated verifier signature generation or
simulation costs t!(m3t2) + 2mt2. Signature verification, Ver algorithm, needs two syndrome computations
and one decoding, and so it costs 2mt2 +m3t2. Computational costs for Sign, Sim and Ver and signature size
are summarized in Table 1.

Table 1. Computation costs of our scheme

Computational Sign Sim Ver Signature
Costs Cost Cost Cost Size

The proposal t!(m3t2) t!(m3t2) (m3t2) 3 log
(2

m

t )
2

+2mt2 +2mt2 +2mt2

To have an efficient signature scheme, it is recommended that the number of decoding computations for
signing messages are reduced, so the parameter t should be small as possible. In 2001, Courtois et al. [7]
proposed to use m = 16 and t = 9, but these parameters are not resistant against the generalized birthday
attack [11]. In 2009, Finiasz and Sendrier [11] recommended m = 22 and t = 9, and with these parameters,
the security level is 281.7 and the generalized birthday attack can be prevented. For parameters m = 22 and
t = 9, each signer’s public key is about 99MBytes, signature size will be 530 bits, Sign or Sim takes 239.8 bit
operations, and Ver costs 219.8 bit operations. However, the size of public keys in code-based cryptography
such as Dallot scheme [8] and our scheme is large, some efforts have been done to reduce it [27, 22].



14

6 Conclusion

In this paper, first we showed that the only candidate for strong designated verifier signature scheme based
on coding theory does not have signer ambiguity or non-transferability and it is not strongly unforgeable if a
designated verifier makes a signature public verifiable. Then, in order to have a code-based strong designated
verifier signature scheme as recommended by NISTIR 8105, a new construction was proposed, and its security
was proved under Goppa Parameterized Bounded Decoding and the Goppa Code Distinguishing assumptions
in the random oracle model. It should be emphasized that this post-quantum primitive can be widely employed
in electronic e-commerce services and auction protocols. As a future work, we focus on presenting its extension
to other forms of strong designated verifier signatures based on coding theory such as code-based (strong)
designated verifier proxy signature scheme.

7 Acknowledgements

The authors would like to appreciate anonymous reviewers for their valuable comments on this work.

References

1. C. Aguilar-Melchor, S. Bettaieb, P. Gaborit, and J. Schrek. A code-based undeniable signature scheme. In Proc. of
the 14th IMA Int. Conf. on Cryptography and Coding-IMACC 2013, pages 99–119, Oxford, UK, 17-19 December
2013. Springer-Verlag, Berlin.

2. P.S.L.M. Barreto, R. Misoczki, and M. A. Simplicio Jr. One-time signature scheme from syndrome decoding over
generic error-correcting codes. Journal of Systems and Software, 84(2):198–204, 2011.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In Proc.
of the 1st ACM Conf. on Computer and Communications Security (CCS 1993), pages 62–73, Fairfax, VA, USA,
3-5 November 1993. ACM, New York, NY.

4. E.R. Berlekamp, R.J. McEliece, and H.C.A. Van Tilborg. On the inherent intractability of certain coding problems.
IEEE Transactions on Information Theory, 24(3):384–386, 1978.

5. P. L. Cayrel, P. Gaborit, and M. Girault. Identity-based identification and signature schemes using correcting
codes. In Proc. of the Int. Workshop on Coding and Cryptology (WCC 2007), pages 69–78, Versailles, France,
16-20 April 2007. Springer-Verlag, Berlin.

6. L. Chen, S. Jordan, Y.K. Liu, D. Moody, R. Peralta, R.Perlner, and D. Smith-Tone. Report on
post-quantum cryptography. Internal Report 8105, National Institute of Standards and Technology,
http://dx.doi.org/10.6028/NIST.IR.8105, April 2016.

7. N. T. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital signature scheme. In
Proc. of the 7th Int. Conf. on the Theory and Application of Cryptology and Information Security-Advances
in Cryptology-ASIACRYPT 2001, pages 157–174, Gold Coast, Australia, 9-13 December 2001. Springer-Verlag,
Berlin.

8. L. Dallot. Towards a concrete security proof of Courtois, Finiasz and Sendrier signature scheme. In Proc. of the
2nd Western European Workshop on Research in Cryptology-WEWoRC 2007, pages 65–77, Bochum, Germany,
4-6 July 2008. Springer-Verlag, Berlin.

9. L. Dallot and D. Vergnaud. Provably secure code-based threshold ring signatures. In Proc. of the 12th Int. Conf.
on the Cryptography and Coding, pages 222–235, Cirencester, UK, 15-17 December 2009. Springer-Verlag, Berlin.

10. M. Finiasz. Nouvelles constructions utilisant des codes correcteurs derreurs en cryptographie clef publique. In
These de doctorat, cole Polytechnique, Paris, France (in French), October 2004.

11. M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosystems. In Proc. of the
15th Int. Conf. on the Theory and Application of Cryptology and Information Security-Advances in Cryptology-
ASIACRYPT 2009, pages 88–105, Tokyo, Japan, 6-10 December 2009. Springer-Verlag, Berlin.

12. Q. Huang, D. S. Wong G. Yang, and W. Susilo. Efficient strong designated verifier signature schemes without
random oracle or with non-delegatability. International Journal of Information Security, 10(6):373–385, 2011.

13. X. Huang, W. Susilo, Y. Mu, and F. Zhang. Short (identity-based) strong designated verifier signature schemes.
In Proc. of the 2nd Int. Conf. on Information Security Practice and Experience, ISPEC 2006, pages 214–225,
Hangzhou, China, 11-14 April 2006. Springer-Verlag, Berlin.

14. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications. In Proc. of the
Int. Conf. on Theory and Application of Cryptographic Techniques, Advances in Cryptology EUROCRYPT 1996,
pages 143–154, Saragossa, Spain, 12-16 May 1996. Springer-Verlag, Berlin.



15

15. F. Laguillaumie and D. Vergnaud. Designated verifier signatures: anonymity and efficient construction from any
bilinear map. In Proc. of the 4th Int. Conf. on Security in Communication Networks, SCN 2004, pages 105–119,
Amalfi, Italy, 8-10 September 2004. Springer-Verlag, Berlin.

16. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-Holland, 1977.
17. K. P. Mathew, S. Vasant, and C. P. Rangan. A provably secure signature and signcryption scheme using the

hardness assumption in coding theory. In Proc. of the 16th Int. Conf. on Information Security and Cryptology-
ICISC 2013, pages 99–119, Seoul, Korea, 27-99 November 2013. Springer-Verlag, Berlin.

18. R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN Progress Report 42-44, (2):114–
116, 1978.

19. C.A. Melchor, P.L. Cayrel, P. Gaborit, and F. Laguillaumie. A new efficient threshold ring signature scheme
based on coding theory. IEEE Transactions on Information Theory, 57(7):4833–4842, 2011.

20. H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information
Theory, 15(2):159–166, 1986.

21. R. Overbeck. A step towards QC blind signatures. IACR Cryptology ePrint Archive, 2009.
22. P. S. L. M. Barreto R. Misoczki. Compact McEliece keys from Goppa codes. In Proc. of the 16th Int. Workshop on

Selected Areas in Cryptography, SAC 2009, pages 376–392, Calgary, Canada, 13-14 August 2009. Springer-Verlag,
Berlin.

23. S. Saeednia, S. Kremer, and O. Markowitch. An efficient strong designated verifier signature scheme. In Proc.
of the 6th Int. Conf. on Information Security and Cryptology, ICISC 2003, pages 40–54, Seoul, Korea, 27-28
November 2003. Springer-Verlag, Berlin.

24. N. Sendrier. Cryptosystmes cl publique bass sur les codes correcteurs derreurs. In Habilitation diriger les
recherches, Universit Pierre et Marie Curie, Paris, France (in French), March 2002.

25. M. Koochak Shooshtari, M. Ahmadian-Attari, and M. R. Aref. Provably secure strong designated verifier signature
scheme based on coding theory. International Journal of Communication Systems, doi: 10.1002/dac.3162.(?):??–
??, 2016.

26. P.W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Proc. of the 35th Annual
Symposium on Foundations of Computer Science, pages 124–134, Santa Fe, New Mexico, USA, 20-22 November
1994. IEEE.

27. P. Gaborit A. Otmani T. P. Berger, P. L. Cayrel. Reducing key length of the McEliece cryptosystem. In Proc. of the
2nd Int. Conf. on Cryptology in Africa, Progress in Cryptology AFRICACRYPT 2009, pages 77–97, Gammarth,
Tunisia, 21-25 June 2009. Springer-Verlag, Berlin.

28. D.S. Wong, K. Fung, J. K. Liu, and V.K. Wei. On the RS-code construction of ring signature schemes and a
threshold setting of RST. In Proc. of the 5th Int. Conf. on Information and Communications Security- ICICS
2003, pages 34–36, Huhehaote, China, 10-13 October 2003. Springer-Verlag, Berlin.

29. D. Zheng, X. Li, and K. Chen. Code-based ring signature scheme. International Journal of Network Security,
5(2):154–157, 2007.


