
Multilateral White-Box Cryptanalysis:

Case study on WB-AES of CHES Challenge 2016

Hyunjin Ahn1, and Dong-Guk Han1,2

1 Department of Financial Information Security, Kookmin University, Seoul, Korea
2 Department of Mathematics, Kookmin University, Seoul, Korea

{ahz012, christa}@kookmin.ac.kr

Abstract. The security requirement of white-box cryptography (WBC)
is that it should protect the secret key from a white-box security model
that permits an adversary who is able to entirely control the execution
of the cryptographic algorithm and its environment. It has already been
demonstrated that most of the WBCs are vulnerable to algebraic at-
tacks from a white-box security perspective. Recently, a new differential
computation analysis (DCA) attack has been proposed that thwarts the
white-box implementation of block cipher AES (WB-AES) by monitoring
the memory information accessed during the execution of the algorithm.
Although the attack requires the ability to estimate the internal infor-
mation of the memory pattern, it retrieves the secret key after a few
attempts. In addition, it is proposed that the hardware implementation
of WB-AES is vulnerable to differential power analysis (DPA) attack.
In this paper, we propose a DPA-based attack that directly exploits the
intermediate values of WB-AES computation without requiring to uti-
lize memory data. We also demonstrate its practicability with respect
to public software implementation of WB-AES. Additionally, we investi-
gate the vulnerability of our target primitive to DPA by acquiring actual
power consumption traces of software implementation.

Keywords: White-Box Cryptanalysis, Side-Channel Attack, Software
Implementation

1 Introduction

The management of secret keys is as important as the design of robust crypto-
graphic algorithms. In order to disable key extraction, secure memory techniques
have been introduced, such as ARM TrustZone1 technology that prevents leak-
age of sensitive information from the memory. However, the inevitably high cost
is a drawback of this approach . White-box cryptography is an attempt for solv-
ing this problem by interleaving the secret key in the software program. The
technique aims to hide the sensitive data in the cryptographic implementation
in order to make it difficult to discover the data from there.

1 http://www.arm.com/products/processors/technologies/trustzone/



From this concept, the white-box (WB) security model has come that en-
sures protection against an adversary who is presumed able to take full con-
trol of the device that is processing the cryptographic algorithm. In particular,
the attacker can take anything from the source code to the entire information
corresponding to the algorithmic computation. In 2002, Chow et al. proposed
concrete WBC implementation for Data Encryption Standard (DES) [4] and
Advanced Encryption Standard (AES) [5]. However, a variety of studies have
demonstrated that these implementations are vulnerable to algebraic attacks
[2, 10, 13, 14]. Xiao et al. propose a new design of WB-AES in [17] that is ro-
bust against the BilletGilbertEch-Chatbi (BGE) attack that is regarded as an
effective algebraic attack [2] against Chow’s WB-AES implementation.

Recently, in [3], Bos et al. introduced a novel attack method DCA obtains a
secret key by exploiting information about the memory that is accessed during
Chow’s WB-AES execution. The attack applies DPA by using mean-difference on
the memory data to distinguish the correct key. Pascal et al. [15] demonstrates
DPA vulnerability of the WB-AES hardware implementation through power
consumption traces measured by an actual evaluation board embedding FPGA
chip. Unlike the novel attack, the attack by Pascal et al. adopts correlation
coefficient instead of mean-difference.

In this paper, we introduce differential data analysis (DDA), which reveals
the secret key by applying DPA to the overall output values of the table look-up
operation during WB-AES computation. An adversary who can access the entire
intermediate values within the WB-AES is readily able to perform an attack.
We demonstrate the effectiveness of this attack against the public WB-AES
software implementation of the CHES Challenge 20162. From the attack, all of
the secret key bytes are successfully recovered with over 200 acquired traces.
In addition, we verify the vulnerability of our target WB-AES in relation to
its power consumption measured from an XMEGA128D4 microprocessor. The
attack retrieves 14 of the 16 key bytes with at least 2,000 acquired software
traces.

The remainder of this paper is organized as follows. Section 2 describes the
basic design of WB-AES and previously mentioned both SCA-based attacks.
In Section 3, we introduce our DDA attack and investigate its performance.
In Section 4, we use a ChipWhisperer-Lite evaluation board to experimentally
determine whether the WB-AES is vulnerable to software power consumption
trace. Section 5 concludes this paper with mention of further work.

2 Preliminaries

2.1 White-Box AES Implementation

In this section, we briefly introduce the WB-AES architecture of Chow et al. [5],
who referred to the basic design. The WB-AES computation comprises a series

2 This contest was held as part of the Conference on Cryptographic Hardware and
Embedded Systems 2016 (CHES 2016) to test the secret-key recovery skills of the
participant. Available from https://ctf.newae.com/



of table look-up operations that take advantage of three different types of table
as follows:

- TBoxTy table: Tyj ◦ T r
i (x) = Tyj(T

r
i (x)) = Tyj(Sbox(x⊕ k̂r−1[i]))

- XOR table: XOR(x, y) = x⊕ y

- TBox table: T 10
i (x) = Sbox(x⊕ k̂9[i])⊕ k10[i]

where i ∈ {0, ..., 15} is the index of the state byte, r ∈ {1, ..., 9} is the round,

j ∈ {0, ..., 3} is the input index of MixColumns, and k̂ is the round key which
takes into account ShiftRows. The XOR table yields the exclusive-or of two 4-
bit inputs, x and y. The TBox table has 8-bit input and output values, and the
TBoxTy table yields 32-bit output from 8-bit input. For the MixColumns, four
Tyj tables are exploited as if AES T-table implementation [7], which are defined
as follows:

Ty0(x) = x ·


02
01
01
03

 , T y1(x) = x ·


03
02
01
01

 , T y2(x) = x ·


01
03
02
01

 , Ty3(x) = x ·


01
01
03
02

 .

Finally, for four input bytes x0, x1, x2 and x3, MixColums is identical to
Ty0(x0) ⊕ Ty1(x1) ⊕ Ty2(x2) ⊕ Ty3(x3), where the exclusive-or is fulfilled by
combining multiple XOR tables. The round function of AES is performed with
ShiftRows, TBboxTy, and XOR tables in sequence, while the final round com-
prises ShiftRows and the TBox table.

Because WB security permits an attacker who is able to fully control WBC
computation, in this case, it is easy to extract a secret key from the corresponding
look-up table. Note that an adversary can readily access the contents of tables
by using a disassembler or debugger. Intuitively, a secret-key byte is determined
through investigation of a TBoxTy table with key candidates of 28. In order to
protect the table-based WB-AES implementation, an internal encoding rule is
applied. For a table T , we make a new protected table T

′
= g ◦ T ◦ f−1 by

determining both the input encoding f and output encoding g of the bijection
function.

Figure 1 (a) depicts four result bytes of round 1 that adopts internal encoding,
and Figure 1 (b) shows round 2. In the figure, Lr

0, Lr
1, Lr

2, Lr
3 are the four 8-bit-

to-8-bit invertible linear transformations (known as mixing bijections) in round
r. The transformation Lr+1 is identical to Lr+1

0 ‖Lr+1
13 ‖L

r+1
10 ‖L

r+1
7 due to the

ShiftRows of round r + 1. The mixing bijection (MB) is a 32-bit-to-32-bit one,
and MB−1

0 , MB−1
1 , MB−1

2 and MB−1
3 are 8-bit-to-32-bit tables. In addition,

to thwart code lifting attacks [6], an external encoding rule is applied in many
WBC implementations. The entire storage for the look-up tables is 508 KB, and
the WB-AES is 55 times slower than software implementation of the standard
AES. We refer the interested reader to [5, 11].



Fig. 1: WB-AES round structure applying internal encoding to rounds 1 (a) and 2 (b).

2.2 State-of-the-art SCA on WBC

In this section, we describe two recently published white-box cryptanalyses that
exploit the side-channel information emitted during a WBC computation [3, 15].
These both assume that the attacker is able to acquire a number of traces with
randomly chosen plaintext and does not need to consider external encoding of
the target WBC. In other words, either the target did not have external encoding
applied to it or the attacker knows the encoding rule if the WBC includes the
external encoding technique.

Differential Computation Analysis (DCA). Bos et al. [3] proposed the
novel attack method of DCA that thwarts WB-AES by using a software execu-
tion trace comprising the memory addresses and data accessed throughout the
WBC operation. The DCA procedure comprises four steps: an optional first step
and three fundamental steps. In the first optional step, the attacker measures
a software execution trace throughout the overall WBC computation, followed
by identifying where the WBC is manipulated by visualizing the trace using the
method presented in [12]. The attacker is now able to acquire multiple software
execution traces with diminished storage capacity by intensively collecting only
a portion of the WBC computation. In the second step, the attacker takes the
traces with random plaintext and converts them to binary representations (ze-



ros or ones) to make them suitable for a conventional DPA tool in the third
step. Finally, the attacker reveals the secret key by using the original DPA tool
exploiting mean-difference on the converted software execution trace instead of
power consumption.

Differential Power Analysis on Hardware Implementation. Sasdrich et
al. [15] presented the results of a practical DPA attack using a correlation co-
efficient on a hardware implementation of the WB-AES activated on an FPGA
platform. They implemented the algorithm conceptually in hardware and demon-
strated the extent to which it was vulnerable to DPA in a gray-box security
model. They theoretically proved the existence of a security flaw in the struc-
ture of their target algorithm and examined it with a SAKURA-X evaluation
board. This was the first investigation of the weakness of WBC taking into ac-
count hardware power consumption as side-channel information.

3 Vulnerabilities Raising out of WBC Implementation

The existing SCA on WB-AES (described in Section 2.2) extracts the secret
key from a software execution trace comprising memory data and addresses, as
well as the power consumption for FPGA implementation by using a DPA-based
distinguisher with the output of the first-round Sbox as an intermediate value.
Both vulnerabilities arise from a correlation between the considered side-channel
information and the intermediate value. These relations yield the fact that there
exist some intermediate results of WB-AES that are related more significantly
to the Sbox output than to the side-channel source. Note that most of the side-
channel information includes noise as well as sensitive data. In conclusion, DPA
for the intermediate value of the WB-AES computation outperforms one for the
power consumption trace as side-channel information. Hereinafter, for the sake
of simplicity, we denote the DPA attack on the computational data of WBC
as DDA. In addition, although DCA applies mean-difference in [3], we adopt
Pearsons correlation coefficient for each type of attack (DDA, DCA, and DPA)
as if it was a correlation power analysis (CPA) [1] instead of a mean-difference
in order to investigate in the identical manner.

We calibrate the performance of our DDA on the public WB-AES of the
CHES Challenge 2016. Although it has been demonstrated already that the
WB-AES has vulnerabilities (20 participants recovered the secret key of the
target in the challenge), we exploit the implementation merely to estimate the
ability of our DDA. The target implementation uses 4,048 look-up tables and 41
local variables (8-bit data) to store the table results. The WB-AES computation
comprises 4,080 table load and store operations; the loaded value is set to one
of the variables. We denote the set of stored intermediate values during the
WB-AES execution as a data trace that comprises 4,080 samples for our target.

For DDA evaluation. we acquire 5,000 data traces according to randomly
chosen plaintext per execution and modify them into two different types. The



first is a binary representation (Bit-data trace), and the other comprises a Ham-
ming weight value of the data trace elements (HW-data trace). Because Tyj ◦T r

i

yields Sbox output (Si), two times polynomial multiplication of MixColumns
({02} · Si) and three times product ({03} · Si), we take into account the three
results of Tyj ◦ T r

i as intermediate values in the DDA. We note that existing
research on DCA and DPA demonstrates that both the software execution trace
and current trace for hardware implementation may be significantly related to
the 1-bit output of Sbox. Intuitively, we can expect that the relation results from
Tyj ◦T r

i yielding Si even if the WB-AES has the table for MB ◦Tyj ◦T r
i instead

of Tyj ◦ T r
i . In the same context, both {02} · Si and {03} · Si can also refer to

both DCA and DPA as intermediate values.
Figure 4 (a) in the Appendix shows the DDA results of Bit-data trace for

eight individual bits of three intermediate values, and Figure 4 (b) presents the
results of HW-data trace. To distinguish between success or failure, we impose a
relative distinguishing margin3 (RelMarg) that signals a successful attack when
its value is positive. Tables 1 and 2 summarize both sets of results, respectively.
The table elements indicate the number of bits for each intermediate value, which
are given when RelMarg ≥ 0.1 and are marked in gray in Figure 4. In DDA on
Bit-data trace with intermediate value Si, 15 key bytes are revealed (except for
the 13th one) while the others recover the overall secret key. In general, attack
results that exploit HW-data trace perform less well than the other type because
there are no intermediate values with which recovery of the overall key bytes is
possible. Nevertheless, the attack retrieves the full secret key when the results
of three intermediate values are combined.

HH
HHHinter.

i
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 rate

Si 1 2 2 2 2 1 3 3 3 1 3 3 2 0 4 1 15/16

{02} · Si 1 2 2 1 2 1 2 1 3 4 2 3 1 1 4 4 16/16

{03} · Si 3 4 4 4 3 1 2 5 4 5 2 3 3 2 2 2 16/16

total 5 8 8 7 7 3 7 9 10 10 7 9 6 3 10 7 -

Table 1: Summary of DDA on Bit-data trace with three intermediate values

From our DDA attack results on Bit-data trace, we note that our target im-
plementation (the WB-AES of the CHES Challenge 2016) has essential security
weaknesses in its design. Because our DDA on HW-data trace successfully re-
veals the overall secret key, it is likely that the WB-AES is vulnerable to DPA
on the power consumption trace obtained from software implementation using
a Hamming-weight model.

3 This distinguisher was proposed by Whitnall et al. [16]. It is positive if the correct key

is revealed or negative if it fails to recover the key. RelMarg = ρ(k∗)−max{ρ(k)|k 6=k∗}√
var{ρ(k)|k∈K}

,

where ρ is person’s correlation coefficient, k∗ is the correct key, var{·} is the variance
of ·, and K is guess key space.



H
HHHHinter.

i
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 rate

Si 2 0 1 1 2 1 0 2 3 0 3 3 2 0 2 2 12/16

{02} · Si 1 0 1 1 3 3 1 0 2 2 2 3 2 0 3 2 13/16

{03} · Si 0 3 2 2 2 1 3 4 2 2 0 2 4 2 1 1 14/16

total 3 3 4 4 7 5 4 6 7 4 5 8 8 2 6 5 -

Table 2: Summary of DDA on HW-data trace with three intermediate values

4 Practical Experiments

In this section we show experimental results of DCA and DPA on our target
WB-AES. By comparing DCA with DDA on Bit data trace, we identify how
well the DCA is able to follow attack performance of the DDA. Through DPA
on actual power consumption trace for software implementation we verify if the
WB-AES has vulnerability in that environment. As previously mentioned, in
this section, we apply correlation coefficient not mean-difference on both DCA
and DPA.

4.1 DCA attack

Prior to DPA weakness verification of the WB-AES in the software implemen-
tation environment, we investigate the vulnerability on DCA. The process from
executable file generation to software execution trace acquisition is run in Linux.
We compile the WB-AES as a 32-bit binary on 64-bit Debian 8 with Address
Space Layout Randomization (ASLR) disabling. In order to collect memory us-
age information during the WB-AES computation, we exploit the freely down-
loadable public tool TracerPIN4, which uses Intel’s Dynamic Binary Instrumen-
tation (DBI) tool Pin [9].

As stated in [3], there are three type of software execution trace. However, we
only exploit the accessed memory address. In fact, we experimentally identify
that both software execution traces for address and accessed data are suitable
for thwarting our target with DCA, while the stack data is not. Furthermore, the
former two traces have significantly similar attack performances. We record 5,000
software execution traces during operation of our compiled executable file with
arbitrary plaintext per every execution. Table 3 summarizes the attack results
under the conditions identical to those of the DDA of the previous section, and
Figure 5 presents them in detail. Although the overall bits revealing the secret
key are not the same as the ones in Figure 4 (a), attack performance is reasonably
similar. Both attacks recover 15 of the 16 key bytes when the intermediate value
of Si and the full secret key for {02} · Si or {03} · Si.

4 https://github.com/SideChannelMarvels



H
HHHHinter.

i
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 rate

Si 2 2 2 2 3 2 3 2 3 1 3 2 2 0 4 2 15/16

{02} · Si 1 2 2 2 3 1 2 1 3 4 2 2 1 1 4 2 16/16

{03} · Si 3 4 3 4 3 1 2 6 4 4 1 3 3 1 2 1 16/16

total 6 8 7 8 9 4 7 9 10 9 6 7 6 2 10 5 -

Table 3: Summary of DCA on memory address data with three intermediate values

4.2 DPA attack

Our aim is to examine the weakness of the WB-AES with respect to a DPA at-
tack on the software-implementation environment. To do so, we acquire multiple
power consumption traces from a ChipWhisperer-Lite board [8], manipulating
the WB-AES with randomly chosen plaintext at every execution. The board
comprises two main parts, the main board and the target board, and measures
the power consumption on the target board that is equipped with an Atmel
XMEGA128D4-u processor with 128 KB of flash memory. Unfortunately, the
code size of the WB-AES is too large to be programmed into the board. There-
fore, we compile the portion of the source code that leaks sensitive information
helping key recovery. We note that the purpose of this experiment is to investi-
gate whether we can retrieve the secret key from the software power consump-
tion, and not to undertake a practical examination. Because the first round of
WB-AES is computed per each column exploiting four Sbox outputs (cf. Figure
1), we take four trace types for each column. Concretely, the first portion com-
prises specific table look-up operations that have one of the four plaintext bytes
plain[0], plain[5], plain[10] and plain[15] as input. Figure 2 shows the source
code of the portion exploited to acquire the first type of trace. The code has
7,364 bytes for the program and 4,336 bytes for the data when it is compiled
with option ’-Os’ optimizing code size. In a similar way, the rest of the portion
types are decided.

We are now able to program each type of portion code into our board and
collect the power consumption trace. However, there is a constraint on perform-
ing a DPA attack on the measured traces. In the code portion, the table look-up
operation is processed through a user-defined function (lookup nibble) that yields
a 4-bit output from a declared table corresponding to an input value as follows:

#define lookup nibble (t, i) (t[i >> 1] >> ((i&1) ∗ 4)&0xf).
If i is odd, then the function computes t[i >> 1] >> 4&0xf , while it operates

t[i >> 1]&0xf if i is even. Therefore, the look-up function outputs through a
distinct operation process based on the type of input value. Figure 3 shows both
power consumption traces from the ChipWhisperer-Lite board manipulating the
first portion code with odd (a) and even (b) plaintext, respectively. The code
portion is performed during 1,643 samples for odd values and 1,003 samples for
even plaintext. A look-up operation is conducted within approximately 48 and 28
samples, respectively. Therefore, if we acquire multiple power consumption traces
with randomly chosen plaintext, we come up against a misalignment problem.



Fig. 2: Overall source code of the portion for the first type of trace. Four red variables
are the overwriting operation into plaintext bytes.

As previously mentioned, because we concentrate on investigating the existence
of vulnerability in the software power consumption trace, we leave how to solve
the problem out of the discussion, and instead measure both traces for each odd
and even plaintext.

In aggregate, we take eight types of measured trace for four code portions
and two plaintext types (even and odd) and acquire 50,000 traces per trace type.
Table 4 summarizes the attack results and Figure 6 presents them in detail. The
attack retrieves 14 of the 16 key bytes with only 1,000 measured traces with
respect to each plaintext type. In conclusion, DPA thwarts the WB-AES of the
CHES Challenge 2016 by acquiring 8,000 software traces overall, 1,000 for each
of the eight types of traces.

HHH
HHinter.
i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 rate

Si 1 0 0 1 0 0 1 0 3 0 3 3 1 0 1 0 8/16

{02} · Si 0 0 0 1 0 1 2 0 2 1 1 1 0 0 1 0 8/16

{03} · Si 1 2 2 2 1 0 1 2 2 0 1 3 2 0 0 0 11/16

total 2 2 2 4 1 1 4 2 7 1 5 7 3 0 2 0 -

Table 4: Summary of DPA on software trace with three intermediate values. Each table
element is the sum of the results of both plaintext types.



Fig. 3: Measured power consumption traces from ChipWhisperer-Lite manipulating
first code portion: (a) trace with respect to odd plaintext; (b) acquired when value is
even.



5 Conclusions and Further Work

In this paper we proposed DDA attack which recovered the secret key by apply-
ing DPA based distinguishment method on multiple entire intermediate values
of WB-AES execution. Through actual experiments, we verified the feasibility
of the attack with public WB-AES software implementation supported at the
CHES Challenge 2016. Our attack retrieved the overall secret key from the tar-
get WBC with only 200 acquisitions of intermediate data. Unlike the DCA, an
adversary is able to use this attack without any memory information if they
possess the source code or know the look-up tables of the target.

In addition, we investigated the availability of DPA in the WB-AES software
implementation. In order to program our target onto the ChipWhisperer-Lite
board, we selected the portion of the source code that leaks significant secret-key
information. From DPA on the power consumption trace manipulating the code
portion, we revealed 14 of the 16 secret-key bytes with 1,000 measured traces.
However, as already mentioned in Section 4, we have to solve the alignment
problem in order to make DPA feasible on our target and conduct DPA taking
into account the complete source code and not just a portion. We leave this
additional evaluation for future work.

References

1. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In: M. Joye, and J.-J. Quisquater (eds.) CHES 2004. LNCS, vol. 3156, pp.
16-29. Springer, Heidelberg (2004)

2. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a White Box AES Imple-
mentation. In: H. Handschuh, and M. A. Hasan (eds.) SAC 2004. LNCS, vol. 3357,
pp. 227-240. Springer, Heidelberg (2005)

3. J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen. Differential Computation
Analysis: Hiding your White-Box Designs is Not Enough. IACR Cryptology ePrint
Archive, 2015, https://eprint.iacr.org/2015/753.pdf

4. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A White-Box DES
Implementation for DRM Applications. In: J. Feigenbaum (eds.) DRM 2002. LNCS,
vol. 2696, pp. 1-15. Springer, Heidelberg (2003)

5. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-Box Cryptography
and an AES Implementation. In: K. Nyberg, and H. Heys (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250-270. Springer, Heidelberg (2003)

6. C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-Box Security Notions
for Symmetric Encryption Schemes. In: T. Lange, K. Lauter, and P. Lisonĕk (eds.)
SAC 2013. LNCS, vol. 8282, pp. 247-264. Springer, Heidelberg (2014)

7. J. Daemen, and V. Rijmen. AES Proposal: Rijndael. Technical Report. Available
at http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

8. C. OFlynn, and Z. D. Chen. ChipWhisperer: An Open-Source Platform for Hard-
ware Embedded Security Research. In: E. Prouff (eds.) COSADE 2014. LNCS, vol.
2014, pp. 243-260. Springer, Switzerland (2014)

9. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallance, V. J.
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools with



Dynamic Instrumentation. In: V. Sarkar, and M. W. Hall (eds.) ACM 2005. pp.
190-200

10. T. Lepoint, M. Rivain, Y. D. Mulder, P. Roelse, and B. Preneel. Two Attacks on
a White-Box AES Implementation. In: T. Lange, K. Lauter, and P. Lisonĕk (eds.)
SAC 2013. LNCS, vol. 8282, pp. 265-285. Springer, Heidelberg (2014)

11. J. A. Muir. A Tutorial on White-box AES. IACR Cryptology ePrint Archive, 2013,
https://eprint.iacr.org/2013/104.pdf

12. C. Mougey, and F. Gabriel. Désobfuscation de DRM par at-
taques auxiliaires. In: Symposium sur la sécurité des tech-
nologies de l’information et des communications 2014.
https://www.sstic.org/2014/presentation/dsobfuscation de drm par attaques auxiliaires/

13. T. D. Mulder, P. Roelse, and B. Preneel. Revisiting the BGE Attack on
a White-Box AES Implementation. IACR Cryptology ePrint Archive, 2013,
https://eprint.iacr.org/2013/450.pdf

14. W. Michiels, P. Gorissen, and H. D. L. Hollmann. Cryptanalysis of a Generic Class
of White-Box Implementations. In: R. M. Avanzi, L. Keliher, and F. Sica (eds.) SAC
2008. LNCS, vol. 5381, pp. 414-428. Springer, Heidelberg (2009)

15. P. Sasdrich, A. Moradi, and T. G’́uneysu. White-Box Cryptography in the Gray
Box A Hardware Implementation and its Side Channels . In: T. Peyrin (eds.) FSE
2016. LNCS, vol. 9783, pp. 185-203. Springer, Heidelberg (2016)

16. C. Whitnall, E. Oswald. A fair evaluation framework for comparing side-channel
distinguishters. Journal of Cryptographic Engineering, 1(2): pp. 145-160. Springer,
Verlag (August 2011)

17. Y. Xiao, and X. Lai. A Secure Implementation of White-Box AES. In: 2nd Inter-
national Conference on Computer Science and its Applications, CSA 2009. pp. 1-6.
IEEE 2009

A Synthesis of Attack Results on WB-AES of CHES
Challenge 2016



c7 c6 c5 c4 c3 c2 c1 c0 c7 c6 c5 c4 c3 c2 c1 c0

0 8.298 -5.318 -4.067 -5.426 -1.328 -4.036 -5.021 -4.360 0 5.614 -4.672 -3.599 -5.667 7.373 -4.905 -5.299 -1.355

1 -5.261 -3.633 -6.269 8.533 2.298 -4.497 -5.164 -4.635 1 -5.095 -5.244 -6.133 -2.845 0.905 -4.620 -4.827 -4.497

2 1.647 -5.161 -4.568 1.256 -2.624 -6.629 -6.639 -4.996 2 4.779 -5.152 -4.338 0.545 -4.847 -3.868 -4.902 -5.239

3 -5.389 -4.783 -3.615 11.556 -6.005 -6.470 -5.208 8.685 3 -5.883 -5.505 -5.023 4.872 -5.624 -4.588 -5.487 -2.407

4 0.706 -3.964 -4.011 -4.911 -4.077 -0.855 9.755 1.999 4 1.136 -5.731 -4.964 -4.291 -5.192 0.224 4.649 -1.732

5 -5.427 -5.653 0.404 0.847 -6.246 -3.440 -6.015 1.260 5 -5.006 -5.160 -4.471 1.297 -4.481 -4.241 -3.822 -5.296

6 -4.806 -4.211 1.815 -4.964 1.295 -4.687 -5.166 1.404 6 -6.186 -3.317 -5.688 -6.312 -2.917 -6.638 -4.890 -0.065

7 8.959 -5.425 -5.615 -5.439 8.726 1.007 -5.093 -5.037 7 -4.065 -5.123 -5.500 -4.788 5.470 1.161 -5.163 -5.117

8 -5.432 0.625 -5.589 1.599 -3.165 9.029 8.767 -4.659 8 -5.415 4.572 -4.962 -2.757 -3.360 7.172 1.427 -3.579

9 -5.184 -4.926 -4.393 7.325 -3.730 -4.506 -4.867 -5.494 9 -5.457 -6.324 -2.652 0.969 -4.671 -5.161 -4.994 -3.211

10 8.296 0.247 -5.384 -4.236 11.531 -4.459 -5.590 11.558 10 1.422 -1.844 -5.720 -5.948 9.401 -4.646 -5.466 9.507

11 -5.988 1.252 -3.156 -4.655 -5.210 -4.959 9.331 8.029 11 -5.436 4.653 -5.790 -5.022 -5.014 -4.107 4.668 7.500

12 8.253 -4.710 -5.219 -4.960 -4.710 7.559 -4.895 -5.641 12 4.723 -4.557 -4.779 -4.829 -4.856 4.643 -5.208 -5.568

13 -6.995 -4.063 -4.132 -5.617 0.315 -4.520 -4.804 -0.467 13 -5.153 -3.850 -5.514 -3.130 -4.569 -3.879 -4.693 -4.828

14 2.927 -5.671 11.940 2.030 -6.436 1.797 -4.810 -4.429 14 1.897 -5.134 8.727 -2.718 -4.527 -3.902 -4.011 -5.288

15 0.179 -0.434 -5.868 -4.450 -5.266 -4.940 8.187 -4.437 15 4.263 -2.906 -4.856 -4.089 -4.692 -6.913 5.632 -5.334

c7 c6 c5 c4 c3 c2 c1 c0 c7 c6 c5 c4 c3 c2 c1 c0

0 -5.318 -4.067 -5.426 -5.756 -6.787 -5.021 -5.417 8.298 0 -4.672 -3.599 -5.667 -4.751 -5.320 -5.299 -4.156 5.614

1 -3.633 -6.269 8.533 -3.747 -4.732 -5.164 1.318 -5.261 1 -5.244 -6.133 -2.845 -3.582 -6.218 -4.827 -3.347 -5.095

2 -5.161 -4.568 1.256 -5.126 -4.678 -6.639 -4.842 1.647 2 -5.152 -4.338 0.545 -4.328 -6.434 -4.902 -3.981 4.779

3 -4.783 -3.615 11.556 0.945 -5.418 -5.208 -0.087 -5.389 3 -5.505 -5.023 4.872 -4.563 -4.708 -5.487 -3.361 -5.884

4 -3.964 -4.011 -4.911 -3.928 8.108 9.755 -5.566 0.706 4 -5.731 -4.964 -4.291 -4.975 4.815 4.649 -1.396 1.136

5 -5.653 0.404 0.847 -6.227 7.001 -6.015 -0.825 -5.427 5 -5.160 -4.471 1.297 -5.333 1.167 -3.822 2.066 -5.006

6 -4.211 1.815 -4.964 -4.792 7.434 -5.166 -5.394 -4.806 6 -3.317 -5.688 -6.312 -4.949 9.242 -4.890 -4.375 -6.186

7 -5.425 -5.615 -5.439 -0.048 -5.584 -5.093 -6.077 8.959 7 -5.123 -5.500 -4.788 -2.173 -4.088 -5.163 -5.596 -4.065

8 0.625 -5.589 1.599 -5.288 -5.815 8.767 1.863 -5.432 8 4.572 -4.962 -2.757 -6.420 -4.834 1.427 -3.547 -5.415

9 -4.926 -4.393 7.325 1.931 7.886 -4.867 1.497 -5.184 9 -6.324 -2.652 0.969 1.759 4.450 -4.994 -2.901 -5.457

10 0.247 -5.384 -4.236 9.304 -4.673 -5.590 -5.212 8.296 10 -1.844 -5.720 -5.948 1.655 -5.212 -5.466 -5.693 1.422

11 1.252 -3.156 -4.655 -5.079 8.625 9.331 -6.468 -5.988 11 4.653 -5.790 -5.022 -5.481 1.593 4.668 -4.741 -5.436

12 -4.710 -5.219 -4.960 -4.941 0.785 -4.895 -5.782 8.253 12 -4.557 -4.779 -4.829 -5.495 5.055 -5.208 -4.721 4.723

13 -4.063 -4.132 -5.617 -4.215 -7.966 -4.804 8.519 -6.995 13 -3.850 -5.514 -3.130 -3.413 -5.282 -4.693 -0.537 -5.153

14 -5.671 11.940 2.030 -4.626 -5.626 -4.810 1.882 2.927 14 -5.134 8.727 -2.718 -3.772 -4.703 -4.011 3.683 1.897

15 -0.434 -5.868 -4.450 2.309 1.247 8.187 1.162 0.179 15 -2.906 -4.856 -4.089 -4.813 0.995 5.632 -2.726 4.263

c7 c6 c5 c4 c3 c2 c1 c0 c7 c6 c5 c4 c3 c2 c1 c0

0 -4.549 -6.355 -7.176 10.796 1.391 7.846 -4.327 -5.417 0 -0.812 -4.881 -5.033 -3.019 -5.816 -3.448 -5.619 -4.156

1 -4.495 8.782 0.951 -0.126 7.604 -6.816 11.546 1.318 1 -5.823 7.379 -5.476 -2.934 4.502 -5.193 1.859 -3.347

2 7.493 8.295 1.370 0.345 7.873 -4.355 -5.169 -4.842 2 4.718 -4.321 -4.811 -4.452 7.304 -5.359 -5.455 -3.981

3 8.048 8.161 2.253 1.094 -5.381 0.336 -5.450 -0.087 3 3.690 -2.811 2.080 -2.383 -5.026 0.390 -4.615 -3.361

4 -4.118 8.506 8.887 8.974 -4.569 -5.055 -5.749 -5.566 4 -4.996 1.145 -5.426 4.673 -3.864 -4.140 -4.842 -1.396

5 7.996 -6.277 -4.922 -4.971 -5.992 -4.295 -5.043 -0.825 5 -3.581 -5.570 -2.050 -2.293 -5.174 -4.276 -4.060 2.066

6 -0.072 -6.880 -6.506 10.928 11.952 -5.535 -4.744 -5.394 6 4.727 -5.235 -4.679 5.270 5.816 -5.241 -5.105 -4.375

7 7.872 0.773 6.989 8.498 8.400 -4.883 7.565 -6.077 7 9.367 -3.175 -5.313 4.503 6.650 -4.662 1.433 -5.596

8 -3.886 -6.665 1.043 1.368 -5.704 11.038 0.805 1.863 8 -2.188 -4.351 -2.431 4.398 -4.937 9.307 -3.431 -3.547

9 -4.186 8.460 10.715 -5.520 1.381 8.146 -5.134 1.497 9 -3.685 -2.390 5.065 -5.148 1.418 -5.004 -5.477 -2.901

10 -4.935 7.258 -4.746 -5.690 -6.384 -4.535 1.663 -5.212 10 -5.303 -2.565 -5.290 -5.106 -3.142 -5.525 -2.972 -5.693

11 8.774 8.210 -7.293 -5.086 6.938 -6.211 -5.205 -6.468 11 -2.894 4.872 -5.179 -6.064 7.534 -4.717 -3.719 -4.741

12 -1.046 -6.272 1.567 8.774 -5.328 -5.857 7.447 -5.782 12 3.947 -2.509 3.651 4.089 -4.693 -4.969 9.984 -4.721

13 0.939 1.241 -6.033 -5.223 -5.912 -4.674 -6.073 8.519 13 5.495 1.512 -3.794 -5.408 -5.055 -3.510 -5.013 -0.537

14 -4.586 7.396 -5.630 -6.339 -5.043 -5.902 -4.839 1.882 14 -5.230 -3.650 -5.302 -4.936 -4.158 -4.578 -5.827 3.683

15 -5.600 0.205 7.519 -5.114 -5.650 -5.554 -5.787 1.162 15 -4.620 1.567 -3.290 -5.830 -5.544 -5.439 -4.977 -2.726

K
e
y
 
B
y
t
e

Target bit

K
e
y
 
B
y
t
e

(a) (b)

Target bit

K
e
y
 
B
y
t
e

Target bit

K
e
y
 
B
y
t
e

Target bit

K
e
y
 
B
y
t
e

Target bit

Target bit

K
e
y
 
B
y
t
e

Inter. value
࢏ࡿ :

Inter. value
:  ૙૛ ⋅ ࢏ࡿ

Inter. value
:  ૙૜ ⋅ ࢏ࡿ

Inter. value
࢏ࡿ :

Inter. value
:  ૙૛ ⋅ ࢏ࡿ

Inter. value
:  ૙૜ ⋅ ࢏ࡿ

Fig. 4: (a) DDA results on Bit-data trace with individual bits of each of three interme-
diate values; (b) results on HW-data trace.



c7 c6 c5 c4 c3 c2 c1 c0 c7 c6 c5 c4 c3 c2 c1 c0

0 8.478 -4.595 -5.106 -5.001 1.599 -4.793 -5.530 -4.685 0 -4.595 -5.106 -5.001 -5.963 -5.529 -5.530 -5.737 8.478

1 -5.504 -5.361 -4.709 7.822 1.876 -5.493 -4.734 -5.149 1 -5.361 -4.709 7.822 -3.946 -4.578 -4.734 1.420 -5.504

2 1.083 -5.636 -4.618 1.094 -5.067 -4.724 -5.533 -4.710 2 -5.636 -4.618 1.094 -6.287 -5.108 -5.533 -5.014 1.083

3 -3.713 -5.739 -4.792 8.001 -4.996 -6.166 -4.179 8.723 3 -5.739 -4.792 8.001 1.128 -5.313 -4.179 0.722 -3.713

4 1.379 -5.052 -3.098 -4.362 -5.116 1.376 9.300 0.797 4 -5.052 -3.098 -4.362 -5.828 7.134 9.300 -6.809 1.379

5 -5.941 -5.202 0.526 1.356 -5.895 -4.774 -5.375 1.357 5 -5.202 0.526 1.356 -5.668 0.421 -5.375 -0.966 -5.941

6 -6.853 -5.158 1.449 -6.129 2.436 -5.444 -6.132 1.422 6 -5.158 1.449 -6.129 -6.062 7.511 -6.132 -5.153 -6.853

7 8.925 -4.783 -6.104 -4.697 7.487 0.377 -6.744 -5.293 7 -4.783 -6.104 -4.697 0.589 -4.374 -6.744 -4.971 8.925

8 -5.020 0.554 -5.492 1.219 -4.024 8.510 8.955 -4.387 8 0.554 -5.492 1.219 -4.499 -5.552 8.955 1.798 -5.020

9 -5.013 -3.748 -4.367 8.269 -4.331 -3.780 -4.412 -5.643 9 -3.748 -4.367 8.269 1.346 7.325 -4.412 1.119 -5.013

10 7.089 0.518 -4.079 -4.404 11.623 -4.040 -4.936 11.807 10 0.518 -4.079 -4.404 7.991 -4.975 -4.936 -5.079 7.089

11 -5.440 0.015 -2.890 -5.369 -4.122 -4.974 8.504 7.334 11 0.015 -2.890 -5.369 -3.907 8.912 8.504 -4.814 -5.440

12 8.066 -5.348 -4.218 -7.153 -4.551 8.390 -5.705 -6.886 12 -5.348 -4.218 -7.153 -5.618 0.645 -5.705 -5.137 8.066

13 -6.224 -3.692 -3.602 -5.676 0.332 -4.657 -5.298 0.898 13 -3.692 -3.602 -5.676 -4.327 -6.322 -5.298 8.913 -6.224

14 1.945 -5.686 12.282 1.515 -4.711 1.562 -5.409 -4.485 14 -5.686 12.282 1.515 -4.887 -4.102 -5.409 1.983 1.945

15 1.022 0.500 -7.300 -6.374 -4.226 -4.892 7.015 -4.293 15 0.500 -7.300 -6.374 0.994 0.979 7.015 -5.115 1.022

c7 c6 c5 c4 c3 c2 c1 c0

0 -6.937 -5.202 -7.573 11.101 1.699 7.936 -5.219 -5.737

1 -5.746 2.256 -0.099 -0.550 1.593 -5.615 10.884 1.420

2 7.049 8.151 0.773 0.304 7.873 -4.968 -5.132 -5.014

3 7.844 8.442 1.023 2.450 -5.269 -0.329 -4.923 0.722

4 -5.691 7.407 9.391 8.723 -5.938 -4.902 -5.051 -6.809

5 7.375 -6.335 -5.066 -6.811 -5.999 -5.019 -4.484 -0.966

6 0.095 -5.789 -7.336 10.878 11.574 -4.315 -5.634 -5.153

7 7.580 1.295 8.183 8.210 7.908 -5.366 8.395 -4.971

8 -5.432 -6.397 1.257 0.884 -5.711 11.807 1.732 1.798

9 -5.161 8.014 11.299 -5.755 0.444 8.721 -4.799 1.119

10 -5.110 7.257 -5.298 -6.003 -6.820 -6.041 -0.111 -5.079

11 7.763 7.828 -5.420 -5.119 7.494 -5.629 -4.121 -4.814

12 -0.424 -6.161 2.398 8.152 -5.676 -6.811 7.936 -5.137

13 0.593 0.726 -5.470 -4.913 -4.697 -3.958 -7.454 8.913

14 -6.870 7.977 -5.999 -5.585 -6.575 -5.146 -4.681 1.983

15 -5.784 0.860 7.721 -5.470 -5.804 -4.798 -5.187 -5.115

Target bit

K
e
y
 
B
y
t
e

Target bit

K
e
y
 
B
y
t
e

Target bit

K
e
y
 
B
y
t
e

Inter. value
࢏ࡿ :

Inter. value
:  ૙૛ ⋅ ࢏ࡿ

Inter. value
:  ૙૜ ⋅ ࢏ࡿ

Fig. 5: DCA attack results of accessing memory addresses during WB-AES computa-
tion.



c7 c6 c5 c4 c3 c2 c1 c0 c7 c6 c5 c4 c3 c2 c1 c0

0 -0.336 -3.462 -3.625 -4.026 -2.049 -4.640 -5.947 -2.497 0 -2.657 -1.135 -4.773 -2.026 1.839 -3.152 -2.785 -3.040

1 -4.361 -1.307 -4.003 -0.705 -3.417 -3.778 -4.057 -3.310 1 -3.551 -3.092 -5.308 -3.545 -4.046 -3.440 -4.573 -3.064

2 -1.145 -2.315 -3.685 -3.731 -3.922 -3.795 -3.062 -5.852 2 -1.165 -3.315 -3.206 -1.727 -4.369 -3.377 -3.830 -5.501

3 -4.779 -1.948 -4.728 6.837 -5.011 -1.846 -2.641 -6.813 3 -2.087 -3.662 -5.605 -2.356 -5.909 -1.325 -4.297 -2.469

4 0.293 -1.746 -4.025 -3.272 -3.796 -0.942 -4.098 -2.665 4 -5.266 -3.040 -4.338 -2.544 -4.298 -1.111 -4.070 -3.664

5 -5.162 -1.791 -4.360 -1.217 -1.698 -3.899 -3.627 -5.979 5 -1.740 -2.839 -3.956 -2.909 -4.054 -3.255 -4.005 -1.467

6 -5.312 -4.393 2.525 -3.090 -2.839 -5.251 -4.363 0.061 6 -3.906 -1.067 -3.289 -3.988 -1.972 -2.641 -4.936 -3.108

7 -7.342 -3.773 -3.467 -5.116 -0.663 -2.389 -5.110 -3.353 7 -3.452 -1.583 -5.331 -3.636 -3.154 -3.442 -2.485 -3.149

8 -3.089 -2.650 -2.442 1.077 -3.948 2.446 6.875 -2.522 8 -5.097 -1.095 -5.635 -3.785 -2.135 -2.964 -2.305 -4.883

9 -2.952 -2.418 -2.979 -2.263 -4.023 -4.066 -5.298 -2.645 9 -3.894 -2.976 -1.830 -1.718 -4.380 -1.716 -1.657 -1.976

10 -2.675 -1.647 -5.396 -4.737 2.454 -3.893 -2.951 1.637 10 -3.591 -4.195 -1.831 -3.327 2.045 -4.575 -3.080 -0.808

11 -3.379 -2.824 -5.643 -4.681 -1.987 -4.276 -0.132 4.578 11 -3.917 -1.417 -5.241 -4.597 -3.387 -0.654 2.507 1.875

12 -4.473 -3.366 -6.587 -3.165 -3.730 3.350 -4.751 -4.840 12 -5.347 -1.009 -2.315 -4.363 -3.495 0.572 -4.105 -3.683

13 -4.466 -2.196 -5.281 -4.178 -4.655 -4.219 -2.419 -4.417 13 -3.500 -1.882 -4.529 -2.645 -3.987 -1.080 -3.017 -3.746

14 -1.373 -1.967 -0.198 -3.405 -2.896 0.118 -4.847 -5.395 14 -5.844 -3.067 2.956 -2.841 -3.812 -3.479 -4.857 -4.047

15 -0.833 -2.148 -7.907 -2.696 -3.396 -1.658 0.061 -4.357 15 -2.972 -2.822 -5.696 -4.896 -4.241 -4.418 -4.431 -4.626

c7 c6 c5 c4 c3 c2 c1 c0 c7 c6 c5 c4 c3 c2 c1 c0

0 -3.462 -3.625 -4.026 -5.377 -4.129 -5.947 -1.311 -0.336 0 -1.135 -4.773 -2.026 -1.788 -2.207 -2.785 -3.108 -2.657

1 -1.307 -4.003 -0.705 -4.275 -2.501 -4.057 -1.470 -4.361 1 -3.092 -5.308 -3.545 -5.273 -4.515 -4.573 -1.866 -3.551

2 -2.315 -3.685 -3.731 -1.192 -4.147 -3.062 -3.545 -1.145 2 -3.315 -3.206 -1.727 -3.890 -2.055 -3.830 -1.769 -1.165

3 -1.948 -4.728 6.837 -0.849 -3.743 -2.641 0.475 -4.779 3 -3.662 -5.605 -2.356 -2.451 -4.010 -4.297 -2.237 -2.087

4 -1.746 -4.025 -3.272 -1.250 0.446 -4.098 -4.489 0.293 4 -3.040 -4.338 -2.544 -3.783 -3.821 -4.070 -1.197 -5.266

5 -1.791 -4.360 -1.217 -4.671 4.761 -3.627 -3.541 -5.162 5 -2.839 -3.956 -2.909 -2.989 -2.617 -4.005 -1.742 -1.740

6 -4.393 2.525 -3.090 -2.050 2.730 -4.363 -3.098 -5.312 6 -1.067 -3.289 -3.988 -4.901 -3.993 -4.936 -4.506 -3.906

7 -3.773 -3.467 -5.116 -5.071 -4.901 -5.110 -1.814 -7.342 7 -1.583 -5.331 -3.636 -3.066 -2.957 -2.485 -2.838 -3.452

8 -2.650 -2.442 1.077 -4.232 -3.223 6.875 -1.788 -3.089 8 -1.095 -5.635 -3.785 -4.812 -0.697 -2.305 -3.375 -5.097

9 -2.418 -2.979 -2.263 -2.015 1.787 -5.298 -4.142 -2.952 9 -2.976 -1.830 -1.718 -4.047 -1.353 -1.657 -2.399 -3.894

10 -1.647 -5.396 -4.737 2.581 -3.010 -2.951 -4.335 -2.675 10 -4.195 -1.831 -3.327 -2.691 -6.188 -3.080 -0.991 -3.591

11 -2.824 -5.643 -4.681 -3.606 -4.077 -0.132 -2.596 -3.379 11 -1.417 -5.241 -4.597 -5.321 -1.696 2.507 -2.448 -3.917

12 -3.366 -6.587 -3.165 -3.604 -1.834 -4.751 -2.508 -4.473 12 -1.009 -2.315 -4.363 -4.359 -0.378 -4.105 -4.031 -5.347

13 -2.196 -5.281 -4.178 -3.525 -4.155 -2.419 -4.422 -4.466 13 -1.882 -4.529 -2.645 -4.341 -3.888 -3.017 -1.918 -3.500

14 -1.967 -0.198 -3.405 -4.423 -4.931 -4.847 -1.238 -1.373 14 -3.067 2.956 -2.841 -2.516 -4.824 -4.857 -1.122 -5.844

15 -2.148 -7.907 -2.696 -1.542 -2.709 0.061 -2.727 -0.833 15 -2.822 -5.696 -4.896 -3.341 -3.970 -4.431 -2.949 -2.972

c7 c6 c5 c4 c3 c2 c1 c0 c7 c6 c5 c4 c3 c2 c1 c0

0 -6.563 -1.734 -4.361 6.152 -4.036 -4.742 -4.033 -1.311 0 -1.612 -3.718 -4.388 -3.255 -4.511 -3.527 -1.178 -3.108

1 -3.436 1.169 -4.400 -2.412 4.519 -5.354 -4.634 -1.470 1 -1.242 -0.715 -1.864 -2.761 -1.976 -3.467 -3.441 -1.866

2 3.559 -3.935 -4.702 -4.350 3.386 -5.859 -3.848 -3.545 2 -2.801 -3.099 -3.254 -3.698 -3.283 -2.178 -4.113 -1.769

3 4.627 -3.315 -4.348 -2.238 -2.823 2.066 -1.788 0.475 3 -0.411 -2.111 -1.812 -2.447 -3.285 -4.097 -3.908 -2.237

4 -3.683 -2.066 -4.888 -3.401 -2.650 -1.088 -4.342 -1.197 4 -2.808 -2.920 -3.926 1.060 -2.855 -3.792 -3.062 -4.489

5 -4.123 -4.948 -4.506 -4.547 -5.618 -3.817 -1.864 -3.541 5 -4.115 -2.558 -4.983 -3.126 -2.736 -2.987 -3.610 -1.742

6 -1.043 -3.078 -4.290 -1.148 -1.818 -2.186 -4.519 -3.098 6 -0.756 -4.161 -1.362 -5.412 1.075 -4.294 -1.394 -4.506

7 2.713 -1.825 -5.241 5.829 -0.167 -4.814 -3.575 -1.814 7 0.866 -3.768 -5.518 -2.028 -0.840 -4.873 -4.537 -2.838

8 -4.490 -3.491 -5.033 -2.030 -5.621 3.553 -2.667 -1.788 8 -1.780 -4.394 -3.890 -2.762 -3.218 2.788 -1.388 -3.375

9 -3.388 -4.325 -0.282 -1.520 -4.368 -1.761 -3.797 -4.142 9 -4.098 -1.224 -2.126 -3.496 -3.254 -3.054 -3.847 -2.399

10 -5.434 3.549 -4.786 -4.704 -5.287 -5.065 -2.355 -4.335 10 -4.526 -1.624 -1.405 -3.175 -3.571 -2.939 -3.987 -0.991

11 -4.022 2.410 -5.190 -6.149 1.521 -5.123 -3.612 -2.596 11 -4.115 -3.913 -1.176 -2.354 1.207 -4.418 -1.584 -2.448

12 1.840 -1.380 0.859 4.626 -3.988 -3.208 -1.542 -2.508 12 -1.749 -3.953 -3.215 -0.248 -2.407 -3.080 -0.195 -4.031

13 -0.429 -2.770 -5.060 -3.665 -2.243 -4.875 -3.471 -4.422 13 -2.628 -2.154 -2.889 -4.283 -3.478 -2.967 -3.342 -1.918

14 -5.999 -4.948 -4.431 -4.765 -1.901 -4.247 -2.856 -1.238 14 -4.479 -2.853 -3.972 -3.372 -1.354 -2.528 -3.307 -1.122

15 -3.820 -3.564 -5.710 -4.495 -4.293 -4.800 -3.544 -2.727 15 -4.421 -0.999 -4.663 -3.793 -4.148 -2.868 -4.753 -2.949

K
e
y
 
B
y
t
e

K
e
y
 
B
y
t
e

(a) (b)

K
e
y
 
B
y
t
e

K
e
y
 
B
y
t
e

Target bit Target bit

K
e
y
 
B
y
t
e

K
e
y
 
B
y
t
e

Target bit Target bit

Target bit Target bitInter. value
࢏ࡿ :

Inter. value
:  ૙૛ ⋅ ࢏ࡿ

Inter. value
:  ૙૜ ⋅ ࢏ࡿ

Inter. value
࢏ࡿ :

Inter. value
:  ૙૛ ⋅ ࢏ࡿ

Inter. value
:  ૙૜ ⋅ ࢏ࡿ

Fig. 6: DPA attack results of measured power consumption during WB-AES computa-
tion operated in ChipWhisperer-Lite with two types of chosen plaintext: (a) yield from
odd plaintext measurements; (b) results of even plaintext acquisition. The even and
odd plaintext comprise only odd or even values per byte, respectively.


