Rotational Cryptanalysis in the Presence of
Constants

Tomer Ashur! and Yunwen Liul2*

! Dept. Electrical Engineering (ESAT), KU Leuven and iMinds, Leuven, Belgium
2 College of Science, National University of Defense Technology, Changsha, China
[tomer.ashur,yunwen.liu]@esat.kuleuven.be

Abstract. Rotational cryptanalysis is a statistical method for attack-
ing ARX constructions. It was previously shown that ARX-C, i.e., ARX
with the injection of constants can be used to implement any function. In
this paper we investigate how rotational cryptanalysis is affected when
constants are injected into the state. We introduce the notion of an RX-
difference, generalizing the idea of a rotational difference. We show how
RX-differences behave around modular addition, and give a formula to
calculate their transition probability. We experimentally verify the for-
mula using SPECK32/64, and present a 7-round distinguisher based on
RX-differences. We then discuss two types of constants: round constants,
and constants which are the result of using a fixed key, and provide rec-
ommendations to designers for optimal choice of parameters.

Keywords: Rotational cryptanalysis, ARX, RX-difference

1 Introduction

The Addition-Rotation-XOR (ARX) structure is a common design for symmetric-
key primitives. The popularity of the structure stems from the fact that by using
only three operations, namely addition modulo 2", cyclic rotation, and XOR,
good confusion and diffusion can be achieved. Examples to the large variety
of ARX-based cryptographic primitives include two of the five SHA-3 compe-
tition finalists Skein [12] and BLAKE [2], the stream ciphers Salsa20 [5] and
ChaCha [4], block ciphers such as TEA [26], XTEA [22] and SPECK [3], and the
MAC algorithm Chaskey [20].

Like with many other structures, differential cryptanalysis [6] and linear
cryptanalysis [19] are the two main approaches for the analysis of ARX-based
designs, and a number of heuristic search tools towards finding differential char-
acteristics and linear trails are proposed, for example, [7,9,17,18]. Along with
these two general methods, rotational cryptanalysis, a dedicated method for ana-
lyzing ARX constructions, drew a lot of attention since its publication. Although
the idea of tracking rotational input pairs can be found before being formalized,

* Corresponding author

see for example, [11,25], rotational cryptanalysis was first proposed as a generic
attack technique against ARX-based designs by Khovratovich and Nikoli¢ in
2010 [13] and applied to Threefish, the ARX-based block cipher underlying the
hash function Skein. Most notably, the rotational rebound attack [15], which is
an extension of rotational cryptanalysis, is by far the best attack against Skein,
to date.

In 2015, Khovratovich et al. showed some inaccuracies in the application of
the technique [14]. More specifically, they pointed out that the independence
assumption in [13] does not hold when an output of a modular addition is di-
rectly given as input to another modular addition. They refer to this event as
a “chained modular addition”, and show that when such a chain exists, the
transition probability over both additions is not independent. The latter result
does not invalidate the rotational rebound attack since the probability was es-
timated experimentally. However it does show that further research is needed
before rotational cryptanalysis is fully understood.

Similar to the modular chains, another issue that was not rigorously analyzed
in [13] and its subsequent works, is the injection of constants. The impact of con-
stants to ARX systems is noticed in, for example, that the designers of the block
cipher SEA [25] assert that their construction can resist rotational cryptanalysis
due to the nonlinear key schedule and the injection of pseudo-random constants.
When an ARX structure includes the injection of constants it is called ARX-C,
and it was proven in [13] that this structure is complete, i.e., that any function
can be implemented through an ARX-C construction. In most papers on rota-
tional cryptanalysis, heuristic experiments are made to address the influence of
constants.

In this paper, we present a novel way to compute the rotational probability
of a pair of inputs when constants are injected into the state. We do so by
combining the propagation rules of differences through modular addition, with
those of rotational cryptanalysis. Informally speaking, when applying rotational
cryptanalysis to an ARX primitive with the XOR of constants, it can be regarded
as a merge of rotational cryptanalysis and differential cryptanalysis. We verify
our results empirically using SPECK32/64 and present a 7-round distinguisher
based on this technique. As a result, we can propose countermeasures against
rotational cryptanalysis, which can serve as guidelines for future ARX designs.

The rest of this paper is organized as follows: in Section 2 we describe our
notation, and briefly recall the basis of rotational cryptanalysis. A closed formula
for calculating the rotational probability in ARX-C is presented in Section 3. In
Section 4 we experimentally verify our results, and discuss possible countermea-
sures. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Notations

We present our notations in Table 1.

Table 1. The notations used throughout the paper.

z = (Tp-1,+*,Z1,20) |An n-bit boolean vector; x¢ is the least significant bit
z; N yi The bitwise AND operation between the bit in x; and the bit in y;
z|ly The concatenation of x and y
|z] The hamming weight of the boolean vector z
SHL(x) A non-cyclic left shift of x by one bit
z|y The vector bitwise OR operation
T <Ky A cyclic left shift of « by ~ bits
i3 T 1
lo<y A characteristic function which evaluates to 1 if and only if z; < y; for all ¢
(I®SHL)(x) z@® SHL(x)
L(z)* The v most significant bits of x
R(x)* The n — v least significant bits of
R'(z)* The v least significant bits of x
L'(z)* The n — v most significant bits of z

* Note that z = L(z)||R(z) = L' (2)||R ().

2.2 Rotational Cryptanalysis

Similar to differential cryptanalysis, rotational cryptanalysis takes advantage of
the high probability in the propagation of rotational pairs (x,2 <€) through
the ARX operations. The following proposition provides a general way to com-
pute the propagation of a rotational pair through the modular addition:

Proposition 1 ([10]). For z,y € Fon, and 0 <y < n,

PrizcHy) <K 7=y By <y)]=0+27""+2""+27")/4
The probability is maximized to 27 141% when n is large and v = 1.
Whenever the two inputs to the round modular addition are independent
and uniformly distributed, the probabilities of consecutive modular sums can be
directly multiplied. However, as was shown in [14], if a modular chain exists, the
probability requires an adjustment to the formula, and the resulting probability
is in fact smaller. A similar effect was noticed for linear cryptanalysis in [23],
and for differential cryptanalysis in [16].

2.3 Description of SPECK

SPECK is a family of lightweight block ciphers designed by the NSA in 2013 [3].
A member of the family is denoted by SPECK2n/mn, where the block size is 2n
for n € {16,24,32,48,64}, and the key size is mn for m € {2,3,4}, depending
on the desired security.

The round function of SPECK receives two words (¥ and y?), and a round
key k;, all of size n, and outputs two words of size n, ("t and y**1), such that

(0D Dy = By (2@ gDy = (f, (2D, 4 D), fr, (2D, D) @ (v <« B)),

M.

——H

- Q] ¥

Fig. 1. One round of SPECK

where f, (-,) is
o@D,y @) = (@ 3> a) ByY) @ k.

The SPECK key schedule algorithm uses the same round function to generate
the round keys. Let K = (I;,—2, ..., lo, ko) be a master key for SPECK2n, where
li, ko € Fan. The sequence of round keys k; is generated as

kiv1 = fee(lis ki) @ (ki < B)

for
livm—1 = fet(lis ki),

with ¢t = ¢ the round number starting from 0.

The rotation offset (v, 8) is (7,2) for SPECK32, and (8,3) for the larger
versions. A single round of SPECK with m = 4 is depicted in Figure 1. For more
details, we refer the interested reader to the original design [3].

With regards to cryptanalysis, the longest distinguishers for SPECK32/64
are a linear distinguisher for 9 rounds with correlation 27'* due to Yao et al.
published in [27], and a 9-round differential distinguisher with probability 273%
due to Biyukov et al. published in [8].

3 Rotational Cryptanalysis in the Presence of Constants

In [13], it was shown that ARX-C, i.e., an ARX construction with constants,
is complete. This means that any function can be implemented using the ARX-
C operations. In most cases, the constants are injected into the state either

through an XOR operation or through modular addition. When the constant c is
rotational-invariant, i.e., ¢ = ¢ < v, for some v, XORing with ¢ does not change
the rotational property of a rotational pair (z,z < 7). However, whenever c is
not rotational-invariant, the properties of the output require further inspection.

In general, when a constant ¢ that is not rotational-invariant is XORed into a
rotational pair (z,z <), the output pair (z ® ¢, (z <K v) @ ¢), no longer form
a rotational pair. If this pair is given as an input to the modular addition, the
basic formula in Proposition 1 for computing the propagation of the rotational
property can no longer be used.

In the sequel, we define a ((a1, az2), v)-rotational-XOR-difference (or in short-
hand notation ((a1, az2),v)-RX-difference and RX-difference when (a1, az),v are
clear), to be a rotational pair with rotation v under translations a; and as, i.e.,
(x®aq, (x K v)@ag); we call such a pair an RX-pair. Note that when a1 = as =
0, they simply become a rotational pair. Our goal is to estimate the transition
probability with respect to modular addition of two input RX-differences, to an
output RX-difference. Without loss of generality, we consider the case where the
input rotational pairs are (z @ a1,y ® b1) and (% ®as, Sy @ bs), and compute

the probability of (z @ a1) B (y ®b1) ® Ay = (T @ az) B (Y @ by) ® As.

Theorem 1. Let x,y € Faon be independent uniform random variables. Let
ai, by, as,by, A1, Ay be constants in Fon. Then,

Prl(z @ a) By ®b) @A = (T ®ay) B(Y @by) B A

= L1@SHL)(6:®6,065)®1=<SHL((5:865)| (62©53)) 27 ISHL(@G190)[(9:00))] . 9=3

.9~ ISHL((61®33)[(32803))| | 9—1.415

(1)

+ L1eSHL)(5:©5:065) X SHL((5,853)|(5:653))

where

and)
03 = R(A1)® L (Ay).

Note that when all the constants are 0, i.e., a1 = as = by = by = A1 = Ay =0,
Theorem 1 predicts Pr[ﬁlﬂy ! ?], which is the normal case for rotational
cryptanalysis.

Before moving to prove Theorem 1, we introduce the following two lemmata:

Lemma 1 ([24]). Let (1,¢2,(3 € Fan be constants. Let x,y € Fan be indepen-
dent uniform random wvariables. The probability of the differential equation

rHy=(2®0)Byok) o (2)

18
1(I€BSHL)(41®42®C3)jSHL((QGBCs)I(Cz@Cg)) .9~ |SHL((¢19¢3)(C29Cs))| (3)

Proof. The complete proof can be found in [24].

The following example is provided for a better understanding of Lemma 1.

FEzxzample 1. Let n =8, (1 = E16, (2 = 916 and (3 = F74¢, we have
(I®SHL)(¢1 @ 2 @ (3) = 1046,

SHL((¢1 @ ¢3)|(¢2 @ (3)) = FEge,

and
|ISHL((¢1 @ (3)|(¢2 @ (3))| = |[FEsg]| = 7.

We evaluate the characteristic function 1(rasHL)(¢i @) <SHL(C®C)|(CBE))
and see that it is equal to 1 since no bit in (I ®SHL)(¢1 ® (2 ® (3) is larger than

the respective bit in SHL((¢1 © (3)|(¢2 @ (3)). The probability is then computed
to be 2-1SHL(GO&G)(GOG)] — 9T,

Lemma 2. Let (1,(2,(3 € Fan be constants. For independent uniform random
variables x,y € Fon, the probability of

rByBl=(00)Byo) g (4)

18
(1@ S HL) (@ Coc)81<SHL(G o) (o) - 21 HGewleow)l ()

Proof. ! Denote the bitwise complement of & € Fa» by Z. We have that B % =
—1, where —1 = 2" H 1. Thus

THy=(—-1B2)H(-18y)=Bz8yH2.

ThuszHyH1=B(@xHBy)B1l=(zBy) = (zBy) ® (—1). Hence, Equation 4
becomes

By e (-1)=Te)BT)G,
which is equivalent to
rBy=(z20)Blee)e G
From Lemma 1, the probability of Equation 4 is

L(1GSHL) (06 ®C)B1<SHL(C0¢) (Coe)) - 2O O@IGEWI - (6)

which concludes the proof. a
We can now prove Theorem 1.

1 A previous version of this paper included a different proof. The authors thank Ernst
Schulte-Geers for pointing out a way to simplify it as presented here.

Theorem 1. Let x,y € Faon be independent uniform random variables. Let
ai, by, as, by, A1, Ay be constants in Fon. Then

Pr[zx@al)ﬁﬂ(y@bl)@Al:(YQBGQ)E(?@bz)@Az]:

L(10SHL)(6,®6:®63)®1<SHL((51®63)|(52®63)) .9 ISHL((8:®63)[(82983))] . 9=3 4 (7)

L(10SHL) (61 06:080) < SHL((6:08)| (5208)) - 21 1 {(0180)[(8:280))] . 9=1.415
where 61,92, and J3 are as before.

Proof. Let C' be the carry vector of (z @ ay) 8 (y @ b1) and let C}_ be the

carry bit in position n — v (i.e., C}L_v is the most significant carry produced

by (R(z) @ R(a1)) B (R(y) ® R(b1))). We write (z ®a1) B (y ®b1) ® A, from
Equation 7 as the concatenation of its left and right parts.

ﬁx@a1)ﬁﬂ(y@b1)@A1
= ((L(z) ® L(a1)) B (L(y) ® L(b1)) B C,_,) ® L(A)]]
((R(z) @ R(a1)) B (R(y) ® R(b1))) & R(A;)
= ((R(z) ® R(a1)) B (R(y) © R(b1))) & R(A)|
((L(z) ® L(a1)) B (L(y) ® L(b1)) B Cy_,) & L(A1).

Similarly, let C? be the carry vector of (?@ag) =2 (?@bg), and C,% the carry
bit in position 7 (i.e., C2 is the most significant carry produced by ((L(z) &

R (a2))B(L(y) ® R (bs)). we can write (& @ a2) B (%Y @ by) ® A, from Equation
7 as the concatenation of its left and right parts.

by)) B C2) & L' (Ay)|
((L(z) ® R (a2)) B (L(y) @ R (b2))) & R (Ay).

We get that

(z@al)EEl(y@bl)GBﬂl = (%@02)5(?@1’2)@A2
if and only if

((R(z) & L'(a2)) B (R(y) & L' (b2)) BC2) & L' (Ay) =
(R(z) ® R(a1)) B (R(y) ® R(by)) ® R(A,),

and

((L(z) & L(a1)) B (L(y) & L(b1)) BC,_,) & L(A1) =

/ / / 9
(L(z) ® R (a2)) B (L(y) @ R (b2))) ® R (42). v
Replacing
R(z') = R(z) & L (a2)
R(y") = R(y) & L' (b),
we can rewrite Equation 8 as
R(zNBRYHBC: = (10)
(R(z") & R(a1) ® L (a2)) B (R(y") & R(b1) & L (b2)) & R(A1) © L' (Ay).
Similarly, by setting
L(z*) = L(z) @ L(ay)
L(y") = L(y) ® L(b1),
Equation 9 reduces to
Lz*)BLy*)BC)_, =
(L(z*) ® L(a1) ® R (a2)) B (L(y*) @ L(b1) @ R (b2))) ® R (A2) ® L(Ay).
(11)

We can compute the probability of Equation 10 and Equation 11 by means
of Lemma 1 and Lemma 2 based on the values of C}%W and Cg.

Case 1: C,% = 0, the probability is the difference propagation probability
and can be calculated by means of Lemma 1.

Case 2: C’g =1, we solve the differential equations using Lemma 2.

Similarly,

Case 3: C’}L_W = 0, the probability is the difference propagation probability
and can be calculated by Lemma 1.

Case 4: C}LJ/ = 1, we solve the differential equations using Lemma 2.

When v =1, L(+), R/(-) represent a single bit, hence,
CL_ =L(a)) ® L(by) ® L(A)) ® R (a2) & R (ba) @ R (Ay).

In addition, notice that the carry bit of L(x)H L(y) is independent with that
of R(xz)H R(y) when z,y are independent random variables, we have for large n
and y = 1, Pr[C2 = 0] = 3/4 and Pr[C},_ = 0] = 1/2, since the carry for 1-bit
addition is biased, however, for the addition of two random bit strings, the most
significant carry bit can be regarded as balanced. Then,

Pr[C2 =0,C}_, = 0] =214
Pr[C2=0,C)_, =1 =214
Pr[C] =1,C,_, =0 =2"°
Pr[C3 =1,C,_, =1]=27"

Therefore, the probability is calculated as

Pr[Cg =0,Cp] -PrlzBy = (x® &) 8B (y®dy) ® 3]+
Pr[Cs = l,C,lkv] PrizByBl=(zx®d) B (y D) dds),

which concludes the proof. a

Remark 1. The above theorem shows the propagation of RX-differences through
a modular addition and how to compute its probability. Given that the inputs are
(z®ar,y®by) and (T ®ag, iy ©bo) with RX differences (((a1, az2), 1), ((b1,b2),1)).
Let z = ((z @ a))B(y®by)) and 2 = ((F @ az) B (%Y ® b)), then the formula

predicts the probability that z, 2’ forms a ((0, 41 & As),)—RX—difference.

4 Experimental Verification

Note that the theoretical probability formula in Theorem 1 holds for any ARX-C
systems, in this section we verify our results empirically using the round function
of SPECK32/64 as an example. Note that the distinguisher we present in this
section covers only 7 rounds of SPECK32/64, and is not intended to improve the
cryptanalysis of SPECK rather than to show that the proposed technique works
in practice. We then discuss design recommendations for future ARX designs.
All the necessary code for repeating the experiments described in this section
can be found at [1].

4.1 Application to SPECK32/64

Using a greedy algorithm, we obtained a 6-round trail with RX-differences for the
key-schedule of SPECK32/64. In Table 2 we compare the probability predicted by
Theorem 1 and the probability obtained by iterating all 232 possible (z,y) with
a fixed tuple (a1,b1, A1, as,ba, As). As is evident from Table 2, the values match
perfectly. In Table 3 we present the empirical probability of the trail over 233
uniformly chosen keys. Interestingly, the probability of the full trail is lower than
the one predicted by simply multiplying the round probabilities, suggesting that
the left and right inputs to the round function are not independent. Nevertheless,
this trail suggests that a weak-key class of size 272° - 264 = 239 exists, leading to
a 7-round distinguisher for SPECK32/64.

We used this trail to construct a 7-round distinguisher for SPECK32/64. We
started by generating a 64-bit random master-key and checked if it belongs to
the weak-key class (i.e., if the resulting subkeys satisfy the trail in Table 3). Once

Table 2. A table comparing the transition probability predicted through The-
orem 1 and the empirical probability for uniformly chosen x and y, and a fixed
(a1,b1, A1, ag,be, Ay). All RX-differences are in hexadecimal notation.

Round|ai|b1 |A1| a2 |b2| Az |Predicted | Empirical| Accumulated

Prob. Prob. Prob.

1 ololol o ol o 5= TATs [5—T4T5 5~ TAT5

9 ololol o lol o 9—1.415 | 9-1.415 9—2.83

3 ol1lol o [1] 2 9-2.415 | 9-2.415 9—5.245

4 ol2l6!l o lol s 9—2.415 | 9-2.415 9766

5 olplcal o |B| 78 | 26415 | 9-6.415 9—14.075

6 | 0|F4| 0 |1000|50[1088| 277415 | 9~T4l5 Q2149

Total 22119

Table 3. A table describing a 6-round trail, leading to a weak-key class of size
239 in SPECK32/64. All RX-differences are in hexadecimal notation.

Round|ai|b1 |[A1| as |ba| Ao Empirical
accumulated Prob.
1 Jolofo] o Jof o o~ 1415
2 |olojo| o |o| O 22873
3 |o|1lo]| o |1] 2 Q7243
4 |ol2]/6] 0 |0 8 279632
5 |o|D|cal o |B| 78 9—18.016
6 |0 |F4| 0 [1000|50(1088 Q25046

an appropriate key was found, we used it to encrypt 232 chosen plaintexts with a
((0,0),1)-RX difference. Using Theorem 1, we found a possible trail taking into
account the RX-difference propagation through the modular addition, and the
RX-difference coming through the key injection.

We repeated this experiment using 27 keys. The average number of keys we
had to discard before finding a “good” key was 35538653 = 2251, suggesting
that the weak-key class is indeed of size 23°. In Table 4 we present the trail,
the predicted probability, and the average empirical probability. The average
number of input pairs with a ((0,0),1)-difference following the full 7-round trail
is 1.33, suggesting a probability of 273!°8 whereas this probability should be
(2732)7 = 27224 for a random permutation. Moreover, when taking the differen-
tial effect into account (i.e., only checking how many pairs satisfy the required
RX-difference in the last round), we see that the average number of such pairs
is 3.83, suggesting a probability of 273006,

10

Table 4. A table describing the RX-distinguisher for 7-round SPECK32/64. All
RX-differences are in hexadecimal notation, and « (i.e., the rotation amount) is
1.

Round|Input diff. |Key diff.|Output diff. Predicted Empirical
(left,right) (left,right) |accumulated Prob.|accumulated Prob.
0 0,0 0 0,0 o~ T4T5 o~ TAT5
1 0,0 0 0,0 9—2.83 9—2.85
9 0,0 3 3,3 9—4.245 9—4.27
3 3,3 4 607, 60B 9866 Q868
4 607, 60B 11 40E, 1¢22 9~18.075 g~15.01
5 | 40E,1C22| 1B8 | 3992,491A Q2149 g2Lad
6 |3992,491A| 1668 | 333F, 1756 231905 9316

4.2 Discussion

When designing a new primitive using the ARX structure, constants can come
in two forms: known round constants or unknown constants resulting from the
key injection.

When open-key attack models are considered (i.e., related-key, weak-key, and
known-key), the resistance against rotational cryptanalysis depends on the qual-
ity of the key-schedule and its round constants. For example, Skein’s underlying
block cipher, Threefish, uses constants of low Hamming weight in its key sched-
ule. Along with the fact that the key is only injected once every four rounds,
the RX-differences can propagate with relatively high probability or even be
canceled under certain circumstance, leading to attacks against round-reduced
Threefish. When taking this approach, designers can use Theorem 1 to find how
many rounds are required before the number of “good” keys drops to 0.

When open-key attacks are not allowed and uniformly distributed round
keys are XORed into the round function, Theorem 1 can be used to derive aver-
age case security bounds, similar to other statistical attacks such as differential
cryptanalysis and linear cryptanalysis. In this case, the round constants should
be chosen to ensure that RX-differences in consecutive rounds cannot be easily
canceled by the key injection.

5 Conclusion

As a recently proposed cryptanalytic technique, the impact of rotational crypt-
analysis on ARX constructions is not yet well-understood. In this paper, we
generalize the notion of a rotational-pair into a pair with RX-difference, and
show a rigorous approach to calculate the probability of rotational cryptanalysis
when constants are injected into the round function. We test our results and
present a 7-round distinguisher with RX-differences for SPECK32/64. As a re-
sult, we propose countermeasures against rotational cryptanalysis which would
be beneficial for future ARX designs. Future research may extend this analysis

11

to cases where the constants are injected through modular addition instead of
XOR, and to cases where the rotation amount differs from 1. We note that we
did not try to find the longest RX-difference trail for SPECK32/64, and it may be
possible that automatic search tools can extend it. Another interesting research
direction is to apply our formula to the larger versions of SPECK.

Thanks

The authors would like to thank Vincent Rijmen, Marc Stevens, Ernst Schulte-
Geers and the anonymous reviewers for their useful comments. This work was
supported in part by the Research Council KU Leuven: C16/15/058. In ad-
dition, this work was partially supported by the Research Fund KU Leuven,
0T/13/071, by the Flemish Government through FWO Thresholds G0842.13
and by European Union’s Horizon 2020 research and innovation programme
under grant agreement No 644052 HECTOR and grant agreement No H2020-
MSCA-ITN-2014-643161 ECRYPT-NET. Yunwen Liu is partially supported by
China Scholarship Council (CSC 201403170380) and National Natural Science
Foundation (No. 61672530).

References

1. Ashur, T., Liu, Y.: Auxiliary Package for this Paper. http://homes.esat.
kuleuven.be/~tashur/Rotational_Cryptanalysis_in_the_Presence_of\
_Constants.zip

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST (2008)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SiMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual
Design Automation Conference - DAC 2015. pp. 175:1-175:6. ACM (2015)

4. Bernstein, D.J.: ChaCha, a variant of Salsa20. http://cr.yp.to/chacha.html

5. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: New stream cipher de-
signs, pp. 84-97. Springer (2008)

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1), 3-72 (1991)

7. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Topics in Cryptology - CT-RSA 2014, pp. 227-250. Springer (2014)

8. Biryukov, A., Velichkov, V., Corre, Y.L.: Automatic Search for the Best Trails in
ARX: Application to Block Cipher Speck. In: Peyrin, T. (ed.) Fast Software En-
cryption - 23rd International Conference, FSE 2016, Bochum, Germany, March 20-
23, 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9783,
pp- 289-310. Springer (2016), http://dx.doi.org/10.1007/978-3-662-52993-5_
15

9. Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best trails
in ARX: Application to block cipher SPECK. Cryptology ePrint Archive, Report
2016/409 (2016), http://eprint.iacr.org/

10. Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. Ph.D. thesis,
Ruhr-Universitt Bochum (2005)

12

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.

25.

26.

27.

Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on 12-round
Serpent. In: Progress in Cryptology-INDOCRYPT 2008, pp. 308-321. Springer
(2008)

Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (round 3)
(2010)

Khovratovich, D.; Nikoli¢, I.: Rotational cryptanalysis of ARX. In: Fast Software
Encryption. pp. 333-346. Springer (2010)

Khovratovich, D., Nikoli¢, 1., Pieprzyk, J., Sokolowski, P., Steinfeld, R.: Rota-
tional cryptanalysis of ARX revisited. In: Fast Software Encryption. pp. 519-536.
Springer (2015)

Khovratovich, D., Nikoli¢, I., Rechberger, C.: Rotational rebound attacks on re-
duced Skein. In: Advances in Cryptology-ASIACRYPT 2010, pp. 1-19. Springer
(2010)

Knudsen, L.R., Rijmen, V., Rivest, R.L., Robshaw, M.J.: On the design and secu-
rity of RC2. In: Fast Software Encryption. pp. 206-221. Springer (1998)

Leurent, G.: Construction of differential characteristics in ARX designs application
to Skein. In: Advances in Cryptology - CRYPTO 2013, pp. 241-258. Springer
(2013)

Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with
applications to SPECK and Chaskey. In: International Conference on Applied
Cryptography and Network Security. pp. 485-499. Springer (2016)

Matsui, M.: Linear cryptanalysis method for DES cipher. In: Advances in Cryp-
tology - EUROCRYPT 1993. pp. 386-397. Springer (1994)

Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In:
Selected Areas in Cryptography—SAC 2014, pp. 306-323. Springer (2014)

Mouha, N., Velichkov, V., De Canniere, C., Preneel, B.: The differential analysis
of S-functions. In: International Workshop on Selected Areas in Cryptography. pp.
36-56. Springer (2010)

Needham, R.M., Wheeler, D.J.: TEA extensions. Tech. rep. (1997)

Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Fast
Software Encryption. pp. 144-162. Springer (2006)

Schulte-Geers, E.: On CCZ-equivalence of addition mod 2". Designs, Codes and
Cryptography 66(1-3), 111-127 (2013)

Standaert, F.X., Piret, G., Gershenfeld, N., Quisquater, J.J.: SEA: A scalable en-
cryption algorithm for small embedded applications. In: Smart Card Research and
Advanced Applications, pp. 222-236. Springer (2006)

Wheeler, D.J.; Needham, R.M.: TEA, a tiny encryption algorithm. In: Fast Soft-
ware Encryption - FSE ’95. pp. 363-366. Springer (1995)

Yao, Y., Zhang, B., Wu, W.: Automatic Search for Linear Trails of the SPECK
Family. In: Lopez, J., Mitchell, C.J. (eds.) Information Security - 18th International
Conference, ISC 2015, Trondheim, Norway, September 9-11, 2015, Proceedings.
Lecture Notes in Computer Science, vol. 9290, pp. 158-176. Springer (2015), http:
//dx.doi.org/10.1007/978-3-319-23318-5_9

13

