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Abstract. KDM[F]-CCA secure public-key encryption (PKE) protects the security of message f(sk),
with f € F, that is computed directly from the secret key, even if the adversary has access to a
decryption oracle. An efficient KDM[Fag]-CCA secure PKE scheme for affine functions was proposed
by Lu, Li and Jia (LLJ, EuroCrypt2015). We point out that their security proof cannot go through
based on the DDH assumption.

In this paper, we introduce a new concept Authenticated Encryption with Auziliary-Input AIAE and
define for it new security notions dealing with related-key attacks, namely IND-RKA security and weak
INT-RKA security. We also construct such an AIAE w.r.t. a set of restricted affine functions from the
DDH assumption. With our AIAE,

— we construct the first efficient KDM[F,q]-CCA secure PKE w.r.t. affine functions with compact
ciphertexts, which consist only of a constant number of group elements;

— we construct the first efficient KDM[]—"goly}—CCA secure PKE w.r.t. polynomial functions of bounded
degree d with almost compact ciphertexts, and the number of group elements in a ciphertext is
polynomial in d, independent of the security parameter.

Our PKEs are both based on the DDH & DCR assumptions, free of NIZK and free of pairing.

Keywords: public-key encryption, key-dependent messages, chosen-ciphertext security, authenticated
encryption, related-key attack

1 Introduction

Traditional Chosen-Ciphertext Attack (CCA) security of a public-key encryption (PKE) scheme
considers the security of messages chosen by an adversary, even if the adversary obtains the public
key pk, challenge ciphertexts of the messages, and has access to a decryption oracle (which provides
decryption services to the adversary but refuses to decrypt the challenge ciphertexts). Note that
the adversary cannot compute messages directly from secret keys, since it does not possess the
secret keys. Therefore, CCA security does not cover the corner, where messages closely depend on
the secret keys, say the secret keys themselves or functions of the secret keys. This issue was first
identified in [GM84]. Later the security of key-dependent messages was formalized as KDM-security
[BRS02]. KDM-security is an important notion, and has found wide applications, like hard disk
encryption [BHHOOS], cryptographic protocols [CLO01], etc.

KDM-security w.r.t. a set of functions F is denoted by KDM[F]-security. The larger F is, the
stronger the security is. Roughly speaking, n-KDM|[F]-security of PKE considers such a scenario:
an adversary is given public keys (pky, pke, - - - , pky) of n users and an encryption oracle. Whenever
the adversary queries a function f € F, the encryption oracle will always reply with an encryption
of a constant say 0, or always reply with an encryption of f(ski,sks,--- ,sky). If the adversary



cannot tell which case it is, the PKE is n-KDM[F]-CPA secure. If the adversary has also access
to a decryption oracle in the scenario, then KDM[F]-CPA security is improved to KDM[F]-CCA
security. Obviously, KDM-CCA security notion is stronger than KDM-CPA.

KDM|F]-CPA Security. The BHHO scheme [BHHOO08] was the first PKE achieving KDM|[F,g]-
CPA security based on the Decisional Diffie-Hellman (DDH) assumption, where F,g denotes the
set of affine functions. It was later generalized by Brakerski and Goldwasser [BG10] to KDM[F,gq]-
CPA secure PKE schemes based on the Subgroup Indistinguishability Assumption (including the
QR and the DCR assumptions). These schemes have incompact ciphertexts containing O(¢) group
elements, where ¢ denotes the security parameter.

A variant of Regev’s scheme [Reg05] was shown to be KDM[F,g]-CPA secure and has compacter
ciphertexts by Applebaum et al. [ACPS09].

Barak et al. [BHHI10] proposed KDM-CPA secure PKE w.r.t. a very large function set, i.e.,
the function set of boolean circuits of bounded size p = p(¢). However, their scheme is inflexible
and highly impractical, since its encryption algorithm depends on the bound p and the number of
users, and the ciphertext contains a garbled circuit of size at least p = p(¥).

Brakerski et al. [BGK11] amplified the BHHO scheme to KDM[]—"gOly]—CPA security w.r.t. the

set of polynomial functions of bounded degree d. However, their ciphertext contains O(¢4+1) group
elements.

It is Malkin et al. [MTY11] who designed the first efficient PKE scheme achieving KDM[}"gOly]—
CPA security. Their ciphertext contains only O(d) group elements, thus d can be polynomial in ¢ in
their case. The function set .Fgoly is characterized by a polynomial-size Modular Arithmetic Circuit

in [MTY11].

KDM[F]-CCA Security. KDM[F]-CCA security of PKE is far more difficult to design than
KDM|[F]-CPA security. Camenisch et al. [CCS09] gave the first solution, following Naor-Yung’s
paradigm, which needs a KDM-CPA secure PKE, a CCA-secure PKE and a non-interactive zero-
knowledge (NIZK) proving that the two PKEs encrypt the same message.

NIZK is not practical in general, except Groth-Sahai proofs [GS08]. When following [CCS09]’s
approach, the only possible way to get an efficient KDM-CCA secure PKE, is using Groth-Sahai
proofs together with an efficient KDM-CPA secure PKE. However, many existing efficient KDM-
CPA secure schemes, such as [ACPS09, MTY11], are not based on pairing-friendly groups, thus
not compatible with Groth-Sahai’s efficient NIZK.

Another work by Galindo et al. [GHV12] is based on the Matrix DDH assumption over pairing-
friendly groups. Their scheme has compact ciphertexts, but only obtains a bounded form of KDM-
CCA security, i.e., the number of encryption queries is limited to be linear in the size of the secret
key.

To get an efficient KDM-CCA secure PKE, Hofheinz [Hof13] proposed another approach, which
uses a new tool called “lossy algebraic filter”. His work results in the first PKE enjoying both
KDM-CCA security and compact ciphertexts (consisting only of a constant number of group ele-
ments). However, the function set Fe;c only consists of selection functions f(ski,--- ,sky) = sk;
and constant functions.

It is quite challenging to enlarge F for KDM[F]-CCA security while still keeping PKE effi-
cient. One effort was recently made by Lu, Li and Jia [LLJ15], who proposed the first efficient
KDM|[Fag]-CCA secure PKE with compact ciphertexts. We call their construction the LLJ scheme.



Table 1. Comparison between PKEs either achieving KDM-CCA security or against function set }'goly. Here ¢ is the

security parameter. Feirc, Fag and ]-'P‘)ioly denote the set of selection functions, the set of affine functions and the set
of polynomial functions of bounded degree d, respectively. “CCA” means the scheme is KDM-CCA secure. “Free of
Pairing” asks whether the scheme is free of pairing. |CT| shows the size of ciphertext. G, Zy3, Zy2 and Zy are the

underlying groups. s can be any integer greater than 1. The symbol “?” means that the security proof is not rigorous.

Scheme Set | CCA? | Free of Pairing? |CT] Assumption
[BHHOOS] + [CCS09] | Fagr |/ — (60 + 13)|G]| DDH

[BGK11] Flag| - vV (€4 H|G] DDH or LWE
[MTY11] Flay| - i (d+2)|Zns]| DCR

[Hof13] Feire| v — 6|Zys| + 49|G]| DDH & DCR

[LLJ15] Fatt ? 4 3|Znz2| + 3|Zns| + |Zg| DDH & DCR

Our scheme in §5 Fatt Vv Vv 9|Znz2| + 9Zns| + 2|Z 5| DDH & DCR

Our scheme in §6 | Fioy| +/ 4 9|Zyz2| + (8d° +1)|Zn+| + 2|Zx| | DDH & DCR

There is an essential building block called “Authenticated Encryption” (AE) in their scheme. The
KDM|[F,q]-CCA security heavily relies on a so-called INT-F,g-RKA security of AE. INT-F,g-RKA
security of AE means that a PPT adversary cannot forge a fresh forgery (f*,ae.ct*) such that
AE.Decy+ (i (ae.ct*) # L, even if the adversary observes multiple outputs of E.Encfj(k) (mj) with
his choice of (fj, m;). Unfortunately, we found that the INT-F,g-RKA security proof of the specific
AE does not go through to the DDH assumption, which in turn affects the KDM[F,q]-CCA security
proof of the LLJ scheme. Our essential observation is that the DDH adversary is not able to employ
the fresh forgery from the adversary of AE to solve the DDH problem, since the DDH adversary
does not have any trapdoor to convert the computing power (forgery) to a decision bit.

As for KDM[}"goly]—CCA security, [CCS09]’s paradigm is the unique path to it up to now.
Unfortunately, the only efficient KDM[]-"goly]—CPA secure scheme [MTY11] does not compose well

with Groth-Sahai proofs, so it has to resort to the general NIZK. Other KDM[]:goly]—CPA secure
schemes either is highly impractical [BHHI10] or has ciphertext containing O(¢4*!) group elements

[BGK11], which grows exponentially with the degree d.

Our Contribution. We work on the design of efficient PKE with KDM[F,g]-CCA security and
KDM[fgoly]—CCA security.

— We identify the proof flaw in [LLJ15], where an efficient KDM[F.4]-CCA secure PKE was
claimed. We show that for “Authenticated Encryption” (AE) used in the LLJ scheme, the INT-
Fa-RKA security reduction to the DDH assumption does not work. This proof flaw directly
affects the KDM[F,g]-CCA security proof of the LLJ scheme.

— We provide the first efficient KDM[F,g]-CCA secure PKE w.r.t. affine functions with compact
ciphertexts. Our scheme has ciphertexts consisting only of a constant number of group elements
and is free of NIZK.

— We provide the first efficient KDM[}"goly]—CCA secure PKE wr.t. polynomial functions of bounded
degree d with almost compact ciphertexts. Our scheme is free of NIZK. The number of group
elements in a ciphertext is polynomial in d, independent of the security parameter £.

We summarize known PKEs either achieving KDM-CCA security or against function set Fgoly
in Table 1.



Our Approach. The challenge for KDM[F]-CCA security of PKE lies in the fact that the ad-
versary A has multiple access to the encryptions of f(sk) and decryption oracle Dec(sk, -), with
f € F and sk the secret key. Let us consider only one secret key for simplicity. The information of
sk might be leaked completely via encryptions of f(sk).

To solve this problem, we follow a KEM+DEM style and construct our PKE with three building
blocks: KEM, &£ and AIAE, as shown in Fig. 1.

e We propose a new concept “Authenticated Encryption with Auziliary-Input” (AIAE). We define
for it new security notions dealing with related-key attacks, namely weak INT-F'-RKA security
and IND-F"-RKA security.

e We design the other building blocks KEM and £. KEM.Enc encapsulates a key k for AIAE, and
the encapsulation kem.ct serves as an auxiliary input aux for AIAE.Enc. &£.Enc encrypts m to
get a ciphertext £.ct, which serves as an input for AIAE.Enc.

We show how to achieve KDM[F]-CCA security with our three building blocks.

— £.Enc can behave like an entropy filter (the concept was named in [LLJ15]) for F. That is,
through some computationally indistinguishable change, some entropy of sk is always reserved
even if multiple encryptions of f;(sk) are given to A. Here f; € F is chosen by A.

— The fresh keys k; used by AIAE.Enc can be expressed as functions of a base key k*, i.e., k; =
fi(k*), where fi € F' for some function set F'. We stress that 7' might be different from F.

— KEM.Enc is able to use the remaining entropy of sk to protect the base key k*, via some
computationally indistinguishable change.

— The weak INT-F"-RKA security of AIAE guarantees: given multiple ATAE ciphertext-auxiliary
input pair (aiae.ctj, aux;) encrypted by f]’-(k*), it is infeasible for a PPT algorithm to forge a
new (f',aiae.ct,aux) satisfying (1) AIAE.Decy -+ (aiae.ct,aux) # L; (2) if aux = aux; for some j
then f'= fl.

— Decryption oracle can reject all invalid ciphertexts that are not properly generated by the en-
cryption algorithm, via some computationally indistinguishable change. If the invalid ciphertext
makes KEM.Dec decapsulate a key f/(k*), AIAE.Dec will output L, due to its weak INT-F'-RKA
security. Otherwise, the invalid ciphertext will be rejected by £.Dec or KEM.Dec, due to the
remaining entropy of sk. As a result, no extra information about sk is leaked.

— The IND-F'-RKA security of AIAE ensures: given multiple ATAE ciphertext-auxiliary input pair
(aiae.ct;, aux;) with key f}(k*) encrypting either mq or my, it is infeasible for a PPT algorithm
to distinguish which case it is, even if fj’» € F' is submitted by the algorithm.

— By the IND-F'-RKA security of AIAE, the encryption of £.ct can be replaced with an encryption
of all zeros. Then the KDM[F]-CCA security follows.

With this approach, we can construct PKEs possessing KDM[F,g]-CCA and KDM[F¢

1Ooly]-CCA
security respectively, by designing specific building blocks.

Comparison with LLJ. We inherit the idea of utilizing RKA security of AE to achieve KDM
security from LLJ. However, our approach deviates from LLJ in three aspects.

1. The structure of our scheme is different from LLJ. It is also possible to explain the LLJ scheme
with three components KEM, £ and AE, see Appendix B. However, their components were com-
posed in a different way. In the LLJ scheme, the output kem.ct of KEM serves as an additional
input for £.Enc. With their structure, £ is expected to authenticate kem.ct. In our approach,
kem.ct is the auxiliary input of AIAE, thus can be authenticated by AIAE.
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Fig. 1. Our approach of PKE construction. Here KEM and £ share the same public/secret key pair. AIAE.Enc uses k
output by KEM to encrypt £.ct with auxiliary input aux := kem.ct, and outputs ciphertext aiae.ct.

2. The syntax and security requirements of our AIAE are different from LLJ’s AE. Their AE does
not support auxiliary input, and the security proof of their AE instantiation has some problem,
as shown in Section 3.

3. Our KEM and £ are newly designed building blocks which compose well with our AIAE. We give

two designs of £ to support KDM[F,g]-CCA and KDM[fgoly]—CCA security respectively.

2 Preliminaries

Let ¢ € N denote the security parameter. For ¢, j € N with ¢ < j, define [4, j] :== {i,i+1,--- ,j} and
[7] :={1,2,--- ,j}. Denote by s <—s S the operation of picking an element s from set S uniformly
at random. For an algorithm A, denote by y <—s A(x;r), or simply y <s .A(x), the operation of
running A with input 2 and randomness r and assigning output to y. Let ¢ denote the empty
string. For a primitive XX and a security notion YY, we typically denote the advantage of a PPT
adversary A by Adv;&, A(0) and define Advyy(¢) := maxppr.4 Adv%% A(0). Let 2720 denote the

value upper bounded by 27¢¢ for some constant ¢ > 0.

Games. Our security proof will be game-based security reductions. A game G starts with an
INITIALIZE procedure and ends with a FINALIZE procedure. There are also some optional procedures
Procy, - ,PROC,, performing as oracles. All procedures are described using pseudo-code, where
initially all variables are empty strings £ and all sets are empty. An adversary A is executed in game
G if it first calls INITIALIZE, obtaining its output. Then the adversary may make arbitrary oracle-
queries to procedures PROC; according to their specification, and obtain their outputs. Finally it
makes one single call to FINALIZE. By G* = b we means that the game G outputs b after interacting

with A, and b is in fact the output of FINALIZE. By a S b we mean that a equals b or is computed
as b in game G.

2.1 Public-Key Encryption and KDM-CCA Security

A public-key encryption (PKE) scheme is made up of four PPT algorithms PKE = (Setup, Gen, Enc,
Dec): Setup (1) generates a public parameter prm, which implicitly defines a secret key space S and
a message space M; Gen(prm) takes as input the public parameter prm and generates a public/secret
key pair (pk,sk); Enc(pk,m) takes as input the public key pk and a message m, and outputs
a ciphertext pke.ct; Dec(sk, pke.ct) takes as input the secret key sk and a ciphertext pke.ct and



outputs either a message m or a failure symbol L. The correctness of PKE requires that, for all
prm s Setup(1¢), all (pk,sk) <—s Gen(prm), all m € M and all pke.ct <—s Enc(pk,m), it holds that
Dec(sk, pke.ct) = m.

Let n € N and F be a family of functions from SK" to M. We define the n-KDM|[F]-CCA
security via the security game in Fig. 2.

Procedure INITIALIZE: Procedure ENC(f € F,i € [n]): | Procedure DEC(pke.ct,i € [n]):
prm s Setup(1°). mi = f(ski, - ,skn). If (pke.ct,i) € Qeae, Return L.
For ¢ € [n] mo = 0lm1l, Return Dec(sk;, pke.ct).

(pk;, ski) <—s Gen(prm). pke.ct <—s Enc(pk;, mg).
B «+s{0,1}.  // challenge bit | Qeac := Qenc U {(pke.ct,i)}. Procedure FINALIZE(S'):
Return (prm, pky,---,pk,,). Return pke.ct. Return (8" = B).

Fig. 2. n-KDM[F]-CCA security game for PKE.

Definition 1 (KDMJ[F]-CCA Security for PKE). A public-key encryption scheme PKE is
n-KDM[F]-CCA secure if for any PPT adversary A, Advﬁﬂ"&:ﬁf“(ﬁ) := | Pr[n-KDM[F]-CCA* =
1] — 1/2] is negligible in ¢, where game n-KDM|F]-CCA is specified in Fig. 2.

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) consists of three PPT algorithms KEM = (KEM.Gen, KEM.
Enc, KEM.Dec): KEM.Gen(1%) outputs a public/secret key pair (pk, sk); KEM.Enc(pk) uses the public
key pk to compute a key k and a ciphertext (or encapsulation) kem.ct; KEM.Dec(sk, kem.ct) takes
as input the secret key sk and a ciphertext kem.ct, and outputs either a key k or a failure symbol
L. The correctness of KEM requires that, for all (pk,sk) <—s KEM.Gen(1¢) and all (k, kem.ct)
s KEM.Enc(pk), it holds that KEM.Dec(sk, kem.ct) = k.

2.3 Authenticated Encryption: One-Time Security and Related-Key Attack Security

Definition 2 (Authenticated Encryption). An authenticated encryption (AE) scheme AE =
(AE.Setup, AE.Enc, AE.Dec) consists of three PPT algorithms:

° AE.Setup(lZ) outputs a system parameter prmag, which is an implicit input to AE.Enc and
AE.Dec. The parameter prmag implicitly defines a message space M and a key space KA.

e AE.Enc(k,m) takes as input a key k € Kag and a message m € M, and outputs a ciphertext
ae.ct.

e AE.Dec(k,ae.ct) takes as input a key k € Kag and a ciphertext ae.ct, and outpuls a message
m € M or a rejection symbol L.

Correctness of AE requires that, for all prmpag <—s AE.Setup(1%), all k € Kag, all m € M and all
ae.ct «—s AE.Enc(k,m), it holds that AE.Dec(k, ae.ct) = m.

The security notions for AE include One-time ciphertext-indistinguishability (IND-OT) and
One-time ciphertext-integrity (INT-OT). The IND-OT and INT-OT securities of AE are formalized
via the security games in Fig. 3.



Procedure INITIALIZE:

Procedure INITIALIZE:

prm,e <3 AE.Setup(1%), k <s Kae.
B «s{0,1}. // challenge bit

Return prmpe.

prmg <3 AE.Setup(19), k <s Kae.

Return prmyg.

Procedure ENC(m): // one query
ae.ct s AE.Enc(k,m).

Procedure ENC(mg,m1): // one query
If |mo| # |m1], Return L.
ae.ct <—s AE.Enc(k,mg).

Return ae.ct.

Return ae.ct.
Procedure FINALIZE (ae.ct*) :

If ae.ct™ = ae.ct, Return 0.

Procedure FINALIZE(B'):
) Return (AE.Dec(k, ae.ct™) # L).

Return (8’ = B).

Fig. 3. Games IND-OT (left) and INT-OT (right) for defining securities of AE.

Definition 3 (One-Time Security for AE). An authenticated encryption scheme AE is one-
time secure (OT-secure) if it is IND-OT secure and INT-OT secure, i.e., for any PPT adversary A,
both Advxléfjt(ﬁ) := | Pr[IND-OT# = 1] — 1/2| and AdeA"Et"fo(f) .= Pr[INT-OT* = 1] are negligible
in £, where games IND-OT and INT-OT are specified in Fig. 3.

Let F be a family of functions from KCag to Kag. The F-Related-Key Attack for AE scheme
was formalized in [LLJ15], and RKA security notions characterize the ciphertext indistinguisha-
bility (IND-F-RKA) and integrity (INT-F-RKA) even if the adversary has multiple access to the
encryption oracle and designates a function f € F each time such that the encryption oracle uses
f(k) as the key. See Fig. 4 for the IND-F-RKA and INT-F-RKA games.

Procedure INITIALIZE: Procedure INITIALIZE:
prmae <s AE.Setup(1%), k <8 Kae. || prmag s AE.Setup(1°), k <s Kae.
B <s {0,1}. // challenge bit Return prmpg.

Return prmpg.
Procedure ENnc(m, f € F):
Procedure ENc(mg,m1, f € F): ae.ct s AE.Enc(f(k),m).

If |mo| # |ma|, Return L. Qene := Qenc U {(f, ae.ct)}.
ae.ct +—s AE.Enc(f(k), mg). Return ae.ct.

Return ae.ct.

Procedure FINALIZE(f* € F,ae.ct*):
Procedure FINALIZE(S'): If (f*,ae.ct”) € Qene, Return 0.
Return (8" = B). Return (AE.Dec(f*(k),ae.ct®) # 1).

Fig.4. Games IND-F-RKA (left) and INT-F-RKA (right) for defining securities of AE.

Definition 4 (IND-RKA and INT-RKA Securities for AE). An authenticated encryption
scheme AE is IND-F-RKA secure and INT-F-RKA secure, if for any PPT adversary A, both
Adviaid 7k (¢) == |Pr[IND-F-RKA? = 1] — 1/2| and AdviE7¢(0) := Pr[INT-F-RKA4 = 1] are
negligible in £, where games IND-F-RKA and INT-F-RKA are specified in Fig. 4.



2.4 DCR, DDH, DL and IV; Assumptions

Let GenN(1%) be a PPT algorithm outputting (N, p,q), where p,q are safe primes of £ bits and
N = pq, such that N = 2N + 1 is also a prime. Let s € N and T = 1 4+ N. Define QR . :=
{a2 mod N* ‘ a € 74 s}, SCRys := {ast_l mod N* ‘ a € 7} s}, and RUys := {TT mod N* | r €
[N*~1]}. Then SCRys is a cyclic group of order ¢(N)/4, and QRys = SCRys ® RUys, where ®
denotes internal direct product. Let QR g := {a2 mod N ‘ a € ZN}, then QR is a cyclic group
of order N = pq.

For X € RUys, the discrete logarithm dlog,(X) € [N*7!] can be efficiently computed given
only N and X [DJ01]. Note that Z%;, = Zy ® Zy @ SCRys @ RU s, hence for any u = u(Zsg) - u(Z5) -
u(SCRys) - T® € Zhys, u?™) = T2¢WN) € RUpys and

dlogy(u?™) /¢(N) mod N°~' = z. (1)

Definition 5 (DCR Assumption). The Decisional Composite Residuosity (DCR) Assumption
holds w.r.t. GenN and group QR s if for any PPT adversary A, the following advantage is negligible
in l:

Adv‘éceZNjA(f) = | Pr[A(N,u) = 1] — Pr[A(N,v) = 1] |,

where (N, p,q) <s GenN(1%), u s QR =, v <—s SCRys.

The DCR assumption implies the Interactive Vector (IV4) assumption according to [BG10]. We
adopt the version in [LLJ15].

Definition 6 (IV,; Assumption). The [V Assumption holds w.r.t. GenN and group QR ys if for
any PPT adversary A, the following advantage is negligible in £:

Advd  4(6) = | Pr [ASYa (N, gy, -+, ga) = b] — 1/2]

)

where (N, p,q) s GenN(1%), g1,--- ,gq <s SCRys, b <5 {0,1}, and the oracle CHAL%Vd(-) can be
queried by A adaptively. A submits (61,---,04) to the oracle. CHAL%Vd(él, -+, 0q) selects random

r s [[N/4]]. If b = 0, the oracle returns (g}, ,g}); otherwise it returns (giT°,- -, gT%),
where T' =1+ N.

Definition 7 (DDH Assumption). The Decisional Diffie-Hellman (DDH) Assumption holds
w.r.t. GenN and group QR if for any PPT adversary A, the following advantage is negligible in £:

AdvEin,4(0) == | Pr[A(N,p,q. g1, 92,91, 95) = 1] = Pr[A(N,p,q, 91,92, 97, 95) = 1]

)

where (N,p, q) <—s GenN(1%), g1, 92 < QRy, z,y <s Zx \ {0}.

Definition 8 (DL Assumption). The Discrete Logarithm (DL) Assumption holds w.r.t. GenN
and group SCRys if for any PPT adversary A, the following advantage is negligible in £:

Adv‘élenN7A(€) = Pr [A(N,p, q,9,9%) = :L‘],

where (N, p,q) <s GenN(1%), g <—s SCRys, s [p(N)/4].



2.5 Collision Resistant Hashing and Universal Hashing

Definition 9 (Collision Resistant Hashing). A family of functions H = {H : X — Y} is
collision-resistant if for any PPT adversary A, the following advantage is negligible in £:

AdV§]4(0) == Pr [H s H, (2.2') s A(H) © H(z) =H(z) A = #2].

Definition 10 (Universal Hashing [WC81]). A family of functions H = {H : X — Y} is
universal, if for all distinct x, 2" € X, it follows that

Pr[H<sH : H(z)=H(")] <1/]Y|

We will sometimes abuse notation and say that a function H is universal if H is randomly chosen
from a universal family of functions H.

3 AE of the LLJ Scheme and Its INT-RKA Security

The LLJ scheme [LLJ15] makes use of an important primitive “Authenticated Encryption” AE. Its
KDM|F,g]-CCA security heavily relies on the IND-F,g-RKA security and INT-F,5-RKA security
of their AE. LLJ claimed INT-F,q-RKA security of their AE, however, we point out that their
security proof does not go through to the DDH assumption, which in turn affects the KDM|F,g|-
CCA security proof of the LLJ scheme.

Let us briefly review LLJ’s AE as follows. The public parameter is prmag = (IV ,N,g) where
N =pg, N = 2N + 1, and g is a generator of group QR . Let AE be an IND-OT and INT-OT
secure authenticated encryption, and H be a 4-wise independent hash function. The secret key space
is Zy.

* ) and invokes x <-s AE.Enc(k,m). Tt

— AE.Enc(k,m) computes u = ¢g" with 7 +—s Zy, = H(u
outputs the ciphertext (u, x).

— AE.Dec(k, (u, x)) computes x = H(u*, u) and outputs m/L « AE.Dec(x, x).

In the LLJ scheme, AE should have RKA security w.r.t. Fog = {f : k+—ak +b | a # 0}.
Let us check their security proof. See Table 2. The proof idea is to use the DDH assumption
to make sure that each sy, A € [Q.], is random to the adversary. Then the INT-OT of AE
guarantees that the adversary cannot make a fresh forgery ( f* = (a*,b"), (u*,x*)) such that
AE.Dec(a*k + b*, (u*, x*)) # L.

In [LLJ15], the indistinguishability of Game 1.(i — 1) and Game 1. is reduced to the DDH
assumption. A PPT algorithm B is constructed to solve the DDH problem by employing an INT-
Fag-RKA adversary A. Given the challenge (g, g™, g, Z), B wants to tell whether Z = ¢g*"i or Z =
g% for a random z;. B simulates the INT-F,g-RKA game for A by computing x; = H(Z%g"% , ¢g™).
If Z = ¢g*"i, B simulates Game 1.(i — 1) for A; if Z = g%, B simulates Game 1.i for A.

The problem is now that B does not know the value of secret key & (it knows ¢g¥). When A sub-
mits a fresh forgery (f* = (a*,b*), (u*, x*)), Bis not able to see whether AE.Dec(a*k + b*, (u*, x*)) #
L or not without the knowledge of k. More precisely, B can not compute x* = H(u** k0" 4*) =
H ((u*k)“* VAL u*) from ¢* and u*, unless it is able to compute the CDH value «** from ¢* and u*.
Without x*, it is hard for B to decide whether AE.Dec(x*, x*) # L or not. In other words, B cannot
find an efficient (PPT) way to transform the computing power (forgery) of A into its own decisional



Table 2. INT-F,5-RKA security proof of AE in the LLJ scheme; we point out a flaw in the security reduction from
Game 1.(i — 1) to Game 1.7, denoted by “?”.

ENc(max, fx = (ax,by)) oracle, A € [Q],

’ . . Assumptions
where Q. is the number of encryption queries

T 8 Zn; ux = g™ kx o= H{ ™ ),
Game 0 o A A g o (: ») —
Xx <=8 AE.Enc(kx, my); return ae.cty 1= (ux, xx)-

Game 1 Same as Game 0 except &y := H((g*™)**¢g"™®* ¢g™). | Game 1 = Game 0

For A =1,--- i, the same as Game 1 except
Ky 1= H((gz'\)“*g""'\b’\,g”) with z) <$ Zn;

For A\=i+1,---Q., the same as Game 1.

Game 2 Game 2 = Game 1.Q. INT-OT of AE

Game 1.7 DDH (?)

power (decision bit) to determine (g, g, g%, Z) to be a DDH tuple or a random tuple. The failure
of the INT-F,g-RKA security proof results in the failure of the KDM[F.g]-CCA proof of the LLJ
scheme since INT-F,-RKA security is used to prevent a KDM[F,q]-CCA adversary from learning
more information about the secret key by querying some invalid ciphertexts for decryption.

4 Authenticated Encryption with Auxiliary-Input

We do not see any hope of successfully fixing the security proof of the LLJ’s AE in [LLJ15].
Alternatively, we resort to a different building block, namely AIAE. The intuition is as follows. If
LLJ’s AE is regarded as (ElGamal + OT-AE), we can design a new AIAE as (Kurosawa-Desmedt
[KD04] + OT-AE). But a new problem with our design arises: the secret key of KEM [KDO04]
consists of several elements, i.e., k = (ky, k2, k3, k4). The affine function of k is too complicated to
prove the INT-F,g-RKA security. Fortunately, (a weak) INT-RKA security follows w.r.t. a smaller
restricted affine function set Frag = {f i (k1, ko, ks, ka) — a-(k1, ka, ks, ka)+ (b1, ba, b3, by) ‘ a # 0}.

To make our AIAE serve KDM-CCA security of our PKE construction in Fig. 1, we have the
following requirements.

e AIAE must have auxiliary input aux.

o A weak INT-F-RKA security is defined for AIAE. Compared to INT-F-RKA security, the weak
version has an additional special rule for the adversary’s forgery (aux*, f*,aiae.ct*) to be suc-
cessful: if the adversary has already queried (m,aux®, f) to the encryption oracle ENC, it must

hold that f* = f.

Next, we introduce the formal definitions of Authenticated Encryption with Auxiliary-Input, its
IND-F-RKA Security and Weak INT-F-RKA Security.

4.1 AIAE and Its Related-Key Attack Security

Definition 11 (AIAE). An auziliary-input authenticated encryption (AIAE) scheme AIAE =
(AIAE.Setup, AIAE.Enc, AIAE.Dec) consists of three PPT algorithms:

o AIAE.Setup(1%) outputs a system parameter prmaag, which is an implicit input to AIAE.Enc and
AlAE.Dec. The parameter prmpag implicitly defines a message space M, a key space Kaag and
an auziliary-input space AUX .
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e AIAE.Enc(k,m,aux) takes as input a key k € Kaag, a message m € M and an auziliary input
aux € AUX, and outputs a ciphertext aiae.ct.

e AIAE.Dec(k, aiae.ct,aux) takes as input a key k € Kag, a ciphertext aiae.ct and an auziliary
input aux € AUX, and outputs a message m € M or a rejection symbol L.

Correctness of AIAE requires that, for all prmpaag s AIAE.Setup(1¢), all k € Kaiag, all m € M,
all aux € AUX and all aiae.ct <—s AIAE.Enc(k, m, aux), we have that AIAE.Dec(k, aiae.ct,aux) = m.

If the auxiliary-input space AUX = () for all possible parameters prmaag, the above definition
is reduced to traditional AE.

Let F be a family of functions from Kaag to Kaae. We define the related-key security notions
for auxiliary-input authenticated encryption scheme AIAE via Fig. 5.

Procedure INITIALIZE:
Prmajag <$ AIAE.Setup(lZ), k <$ KalaE-

Return prmpjae.

Procedure INITIALIZE:

prmyae 5 AIAE.Setup(1%), k s Kaiae.
B s {0,1}. // challenge bit

Procedure ENC(m,aux, f € F):
Return prmpjae.

aiae.ct s AIAE.Enc(f(k), m, aux).
Qene = Qene U {(aux, f,aiae.ct) }.

Quuxr = Qauxr U {(aux, f)}.
Return aiae.ct.

Procedure ENC(mg,m1,aux, f € F):
If |mo| # |ma|, Return L.

aiae.ct < AIAE.Enc(f(k), mg, aux).
Return aiae.ct. Procedure FINALIZE (aux®, f* € F,aiae.ct”):
If (aux*,f*,aiae.ct*) € Qene, Return 0.
If there exists (aux, f) € Q auxr such that
Return (8" = ). aux = aux™ but f # f*, Return 0.
Return (AIAE.Dec(f*(k), aiae.ct™,aux™) # L).

Procedure FINALIZE(S'):

// Special rule

Fig. 5. Games IND-F-RKA (left) and weak-INT-F-RKA (right) for defining securities of auxiliary-input authenticated
encryption scheme AIAE. We note that the weak INT-F-RKA security needs a special rule to return 0 in FINALIZE

as shown in the shadow.

Definition 12 (IND-F-RKA and Weak INT-F-RKA Securities for ATAE). An auziliary-
input authenticated encryption scheme AIAE is IND-F-RKA secure and weak INT-F-RKA se-
cure, if for any PPT adversary A, both AdefdAEfﬁ(f) = | Pr[IND-F-RKAA = 1] — 1/2| and
Adv}’(ﬁ&lé;ﬂ“'rka(f) := Pr[weak-INT-F-RKAA = 1] are negligible in ¢, where games IND-F-RKA
and weak-INT-F-RKA are specified in Fig. 5.

4.2 Construction of AIAE from OT-secure AE and DDH Assumption

Let AE = (AE.Setup, AE.Enc, AE.Dec) be a traditional (without auxiliary-input) authenticated en-
cryption scheme with key space ag and message space M. Let H; = {H; : {0,1}* — Zyn} and
Ho = {H2 : QRy — Kag} be two families of hash functions with [Kag|/|QRy| (= |Kag|/N)
< 2720 The proposed scheme AIAE = (AIAE.Setup, AIAE.Enc, AIAE.Dec) with key space Kaag =
(Zn)*, message space M and auxiliary-input space AUX = {0,1}* is defined in Fig. 6.
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prmajae <8 AIAE.Setup(1°): (c1,¢2,X) < AIAE.Enc(k,m,aux): | m/L < AIAE.Dec(k, (c1, c2, x),aux):
N GenN(1°
(N, q) ¢=s GenN(1), Parse k = (k1, ko, ks, k1) € (Zn)*. | Parse k = (k1, k2, ks, ka) € (Zn)™.

i.e., pick two ¢-bit safe primes p

) w +s Zn\{0}. If (c1,c2) ¢ QR% V (c1,¢0) = (1,1),
and .q, such that 2pg + 1 is also (cr,c2) = (g, %) € QR?V. Retu)rf N 7V ( )=1(1,1)
_ 2 prime, and N :=pg. t:=Hi(c1,c2,aux) € Zn. t := Hi(c1,c2,aux) € Zn.
N:=2N+1. gi,g92 <3 QRy. K = Ho (Cllc1+k3t ) 012€2+k4t) € Kne. | ko= H2(Cllcl+k3t .c§2+k4t) € Kac.
Hi s, Ha s _7-[2. X s AE.Enc(k, m). m/L < AE.Dec(k, X).
PrMajae ‘= (Napa%N:glag?aHhHZ)’ Return <CI,C2,X>~ Return m/J_

Return prmpae.

Fig. 6. Construction of the DDH-based AIAE from AE.

The correctness of AIAE follows from the correctness of AE directly. Note that the factors p, q
of N in prmpjag are not needed in the encryption and decryption algorithms of AIAE. Jumping
ahead, the factors p, g are necessary when the security of the PKEs presented in Sections 5 and 6
is reduced to the security of AIAE. We now show the RKA-security of AIAE through the following
theorem.

Theorem 1. If the underlying scheme AE is OT-secure, the DDH assumption holds w.r.t. GenN
and QR y, Hi is collision resistant and Ha is universal, then the resulting scheme AIAE in Fig. 6 is
IND-Fop-RKA and weak INT-Fqp-RKA secure, where the restricted affine function set is defined
as erﬁ = {f(&b) : (K1, ko, ks, kq) € Zjlv —> (aky1 + b1, aka + b, aks + b3, aky + by) € Zjlv ‘ a €
Z}kv, b= (bl,bg,b3, b4) S Z?V}

Proof of IND-F,.4-RKA security of AIAE in Theorem 1. The proof proceeds with a sequence
of games, as shown in Fig. 7. Suppose that A is a PPT adversary against the IND-F,,-RKA security
of AIAE, who makes at most Q). times of ENC queries. Let Pr;[-] (resp., Pry[-]) denote the probability
of a particular event occurring in game G; (resp., game G}).

— Game Gp: This is the original IND-F,.4-RKA security game. Let Win denote the event that

B = B. Then by definition, AdvRiA™ (¢) = | Pri[Win] — 3|.
Denote prmajag = (N,p,q,N,g1,g92,H1,H2) and k = (kq, ko, k3, k4). To answer the A-th

(A € [Qe]) ENC query (my o, mz1,auxy, fa), where fy = (ax,bx = (bx1,bx2,013,b04)) € Frafts
the challenger proceeds as follows:
1. pick wy < Zy\{0} and compute (cx1,cr2) := (91, g5*) € QR%,
2. compute a tag ty := Hi(ca 1,60 2,aux)) € Zn,
3. compute an encryption key for AE scheme using a related key fx(k):

Ky = H2(Cg\tfi\lﬂ+b,\,1)+(%k3+b>\,3)tx _Cg\?gk2+bx,2)+(axk4+b>\,4)tA) € Kag,
4. invoke xy s AE.Enc(ky, m) g),
and returns the challenge ciphertext (cx 1,c¢x 2, X)) to the adversary A.

— Game Gy, i € [Qc + 1]: This game is the same as game Gj, except that, the challenger does
not use secret key k to answer the A\-th (A € [i — 1]) ENC query at all, and instead, it changes
steps 1, 3 to steps 1/, 3’ as follows:

1'. pick wy 1, w2 s Zy\{0} and compute (cx1,cr2) := (g, "1 g5 ),

12



INITIALIZE: // Games G1-Gz
(N, p,q) < GenN(1%).

ENC(mA,O, mx,1,auxy, f)\)t

// Games Gy ;, , the A-th query

Parse fa = (ax,bx) € Frasr.

N:=2N+1=2pq+1.

R If1<A<i,

<—$ v -

9, 92 QRy W, 1, Wx,2 <3 ZN\{O}.

H1 —$ Hl, H2 —$ HQ. w1 wy 2 2
4 (CA¢176A12) = (gl 5027 )6 QRN

(k17k2,/€3,k4) <3 ZN-
_ ] ]CAE.

Prmajae ‘= (N7p7q7N7glvg27 H1>H2)~ IfA=3s

k = (k‘l,kz,kg, k‘4)
B <s {0,1}.

Return prmpag.

w; s Z\{0}.

(cipsci2) = (97", 957) € QRY

Wi, 1, W;i,2 <$ ZN\{O}

(cip,ci) = (g, ", 9, %) € QRY.

t; == Hl(ci,l,ci,g,auxi) €ZN.

(C(ai’ﬂ+bi,1)+(a1‘,k3+b1‘,,3)ti
7,1

(aiko+b; ikatbi 4)t;
05:127 2+b; 2)+(aikatb; a) 7,) € Kag.

// challenge bit

ENC(mx,0,mx,1,auxx, f3):

/] G1, [G1,Q.+1, Ga], G2, the A-th query
Parse fy = (ax, ba) € Fras.
wy <% ZN\{O}.
(en,en2) = (917, 957) € QR
WA, 1, WH,2 <$ ZN\{O}.
(ex1sex2) = (g, ", 9, %) € QRY.
th = H1(CA,1,CA72,EIUXA) cZn.

(axki+by 1)+ (axks+by 3)ty
R) = H2 (C>\ 1 !

(axka+by,2)+(axks+bx 4)tx
Cr2 2 4 ) € Kae-

Xx <8 AE.Enc(kx,mx 8)-
X <8 AE.Enc(HA,U‘mA‘O‘)
Return (cx,1,¢x,2, XA)-

Rqi ‘= Ho

Ifi <A< Qe,
wH <3 ZN\{O}
(ea1,en2) == (91, 957) € QRY.

t = H1(C)\71,C)\7273LIX)\) € Zn.

(axki+by 1)+ (axks+by 3)ts
Ky = Ha (c/\ ]

‘axkodby o)+ (axkatby 1)t
'CE\,; 2+bx,2)+(ax x,4) A) € Kag.

Xx <8 AE.Enc(kx, mx ).

Return (cx,1,¢x,2, XA)-

FINALIZE(B'):
Return (8" = B).

// Games G1-G2

Fig. 7. Games Gi1, {G1,;, ﬁ,i}ie[Qe], G1,9.+1, G2 for the proof of IND-Fr.g-RKA security of AIAE.

3’. choose an encryption key k) <—s Kag randomly for the AE scheme.
The challenger still answers the A-th (A € [i,Q.]) ENC query as in Gy, i.e., using steps 1, 3.
Clearly Gy ; is identical to Gy, thus Pr;[Win] = Prq 1[Win].

— Game G’Li, i € [Qc]: This game is the same as game Gy ;, except that the challenger answers

the i-th ENC query using steps 1’, 3 (rather than steps 1, 3 in game Gi,), e,

1", pick w; 1, w; 2 <s Zx\{0} and compute (c;1,¢i0) := (97" 95 "),
3 . compute an encryption key for AE with

)i 1= H2(ngllik1+bi,1)+(ai/€3+bi,3)ti ‘65:121']?2+bi,2)+(aik4+bi,4)ti) € Kag.

The only difference between Gy ; and G’LZ- is the distribution of (g1, g2, ¢i1, ¢ 2). In game Gy 5,
(91,92,¢i1,¢i2) is a DDH tuple, while in game G’Li, it is a random tuple. It is straightforward
to construct a PPT adversary to solve the DDH problem w.r.t. GenN and QR y, thus we have

that | Pry;[Win] — Pry »[Win] | < Advg@hy (0).

We analyze the difference between G’Li and Gy ;41 via the following lemma.

Lemma 1. For alli € [Q.],

Pl“l,i/ [Wln] - Pr17i+1[Win] ‘ < 1/(N — 1) + 9—12(£)
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Proof. The only difference between games G,Li and Gyp ;41 is the computation of x; in the ¢-th
ENC query. In game G’Li, k; is properly computed, while in game Gy ;11, it is chosen from Kag
uniformly.
Denote w := dlog, go € Zy. We consider the information about the secret key k =
(k1, ko, ks, kq) that is used in game G’M
e For the A\-th (A € [i — 1]) query, ENC does not use k at all since s, is randomly chosen.
e For the A\-th (A € [i + 1,Q.]) query, ENC can use k1 + wks and k3 + wk4 to compute ky:

(axki+bx 1)+ (axks+bx3)tx  (axke+by2)+(axkatby 4)tx
H2(C,\,1 G2 )

((9111))\)(aAk1+b>\,1)“'(CLAkS“'b)\,B)t)\ . (giﬂwk)(fl)\kQ+bA,2)+(CLAk4+b)\,4)tA) (2)

K

Ho
Hy (giv,\a/\'((lkl + wha))+tx- (ks + wkd))) giﬂx((bx,l-i-wbx,z)ﬂ/\'(b,\,3+wb,\,4)))

)

where wy = dlog,, cx1 = dlogy,cy2 € Zy\{0}.
e For the i-th query, ENC uses w; 1k1 + w;2wko and w; 1k3+ w; owks to compute x;, where
w1 = dlogglci71,wi72 = dlogmci,g € Zn\{0}:

ik1+b; ik3+b; 3)t; iko+b; ika+b; 4)t;
)y = Hz(cgal 1+bi,1)+H(aiks+bi3)ts Cz('an 2+bi 2)+(aiks+bi 4) z)

_ Wi,1\ (aik1+b;,1)+(aiks+bi3)t WWi, 2\ (aik2+bi,2)+(aika+bi4)t;
= Hy((g" o i) sk it (0o b ok s ®
a;-(((wi,1k1 + wi gwka))+t;-(wi1ks + wi2wka]))  (wy,1b1,i4+wi,2wh; 2)+ti-(w;,1b; 34-w; 2wh; 1)
:H2(91 01 )
A x

With probability 1 — 1/(N — 1), it holds that w;; # w;2, and in this case, the value of
(wi 1k1 + w; 2wks) is independent of k1 4+ wky and uniformly distributed over Zy. Then as long
as a; € Z}y, X will be uniform over QR (which is generated by g1) and independent of Ha.
Since Hg is universal, by the Leftover Hash Lemma (cf. Lemma 7 in Appendix A), k; = Ha(X) is
statistically close to the uniform distribution over Xag. Thus G’Li is statistically close to Gy 41,
and |Pr17i/[Win] — PI‘171‘+1[Win] ’ < 1/(N — 1)+2_Q(€) |

— Game Gy: This game is the same as game Gy g, 41, except that, to answer the A-th (A € [Q.])
ENC query, the challenger changes step 4 to step 4’:
4. invoke xy <s AE.Enc(ry, 0™rol),

In game Gy ¢, +1, the challenger computes the AE encryption of m) g under encryption key x
in ENC, while in game Go it computes the AE encryption of 00l in ENc. Both in games G1,Q.+1
and G, we have that each k) is chosen uniformly from /Cag and independent of other parts of the
game. Therefore we can reduce the differences between G1 g, +1 and Gg to the IND-OT security of
AE by a standard hybrid argument, and have that | Pry g, 41 [Win]—Pr2[Win] | < Q. -Advind-ot (p),

Now in game Gg, since the challenger always encrypts the constant message 00!, the challenge
bit 8 is completely hidden. Then Pry[Win] = 1/2.

Taking all things together, the IND-F,4-RKA security of AIAE follows. |

Proof of Weak INT-F7,,4#-RKA security of AIAE in Theorem 1. Again, we prove it through
a sequence of games, as shown in Fig. 8. These games are defined almost the same as those in the
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INITIALIZE: // Games Go-G1,Q.+1

(N,p,q) < GenN(1%). N :=2N +1=2pg+1.

91,92 <3 QRyg. Hi < Hi, He <3 Ho.
(i1, ka, k3, ka) <3 Z.

prmane == (N, p, ¢, N, g1, g2, H1, Ha).
k= (k1. ko, ks, ka).

Return prmpag.

ENC(may,auxy, fi): // the A-th query
// Games Gi 4,
Parse fn = (ax,bx) € Fras-
1<\ <,
Wx,1,Wx,2 <3 ZN\{O}
(ex1sene) = (g; "9, %) € QRY.
Kx <3 Kae.

ENC(max, auxy, fa): // the A-th query
// Games Go-G,

Parse fa = (ax,bx) € Fran.

wx s Zn\{0}.

(ex1,ex2) = (917, 95) € QRY.

wx,1,Wwx,2 <$ Zn\{0}.

(ex1,en2) = (91,95 %) € QRY.

tx :=Hi(ea1,cn,2,auxy) € Zn.

(axki4+bx,1)+(axkz+bx 3)tx
o = ol

axka+bx2)+(arka+by 4)t
.C()\,; 24bx,2)+(axkatbx 4) A) € Kac.

Xx <8 AE.Enc(kx, my).

Qene = Qene U {(auxx, fa, (ex,1,6x,2,X2)) }-
Quauxr = Qauxr U{(auxx, fa)}.

O7uag = Qa0 U{(cr,1,0xr,2,auxx,tx)}.

If A=1,

w; +s Zn\{0}.

(ci,ci2) = (917, 95") € QRY.
Wi 1, Wi,2 <$ ZN\{O}

(cinyci2) = (g, "', g5 %) € QRY.
t; = Hl(c,-,l,ci,g,auxi) cZn.

Return (ca,1, a2, X2)-

FINALIZE (aux®, f*, (c}, ¢5, X")):
J/ Games Go,
If (aux*,f*, <CT7C§7X*>) € Qene,
Return 0.

K 1= H2(cl(.fll"'k1+bivl)+(“ik3+bi’3>t"' If there exists (auxx, fa) € Qauxr such that
.cgfgk2+bi’2)+(aik4+bi’4>ti) € Kae. aux) = aux™ but f\ # f*,

Return 0.

Parse f* = (a*,b") € Fran.

If (ci,c5) ¢ QR?\—, V(ct,e5) = (1,1),
Return 0.

t* := Hi(ct, c5,aux™) € Zy.

Ifi <A< Qe
wy 3% ZN\{O}.
(C/\,17C)\,2) = (giux7g;1/>\) € QR?(]
ty = H1(C>\)1,C>\72,aUX)\) € Zn.

(axk1+bx 1)+ (axks+bx 3)tx
k= Ha(cy ]

_Cg\tg\kz-"—b/\,z)-‘r(axk4+bx,4)ix) € Kat.

Xx <8 AE.Enc(kx, my).

Qene = Qenve U {(auxx, fa, (ex,1,6x.2, X)) }-
Quuxr = Qauxr U{(auxx, fr)}.

O7ac = Q7ac U{(ca1,cx2,auxx,tr)}
Return (cx,1,¢x,2, XA)-

If there exists (ca,1,¢x,2,auxx, tx) € Q7.ag such that
tx =t* but (e,1,cx,2,auxy) # (cf, 5, aux™),
Return 0.
o e H2(Ci(a*k1+bf)+(a*ks+b§)t*

*ko+b5)+(a*ka+b))t"
'C;(a 2+ 2) (a™ka+ 4) ) c ICAE~

Return (AE.Dec(k™,x™) # L).

Fig. 8. Games Go, G1, {G1,i, Gl }ic[g.], G1,q.+1 for the proof of weak INT-Frag-RKA security of AIAE.

previous proof. Suppose that A is a PPT adversary against the weak INT-F,,g-RKA security of
AIAE, who makes at most (). times of ENC queries.

— Game Gq: This is the original weak-INT-F,,4-RKA security game.
Denote prmaag = (N,p,q,N,g1,92,H1,Hs) and k = (kq, ko, k3, ks). To answer the A-th
(A € [Qc]) ENC query (my,auxy, fx), the challenger proceeds with steps 1~4, similar to the
previous proof, and returns the challenge ciphertext (cy 1, ¢ 2, xa) to the adversary A. Moreover,

the challenger will put (aux,\,f,\, <c>\71,c,\72,x>\>) to a set Qgpre, put (auxy, f)) to a set Qayxr,
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and put (cy1,cy2,auxy,ty) to a set Q7 4¢. Finally, the adversary outputs a forgery (aux*, f*=
(a*,b" = (b7, 05,03, b3)), (c], 3, X*>)

Denote by Forge the event that the following FINALIZE procedure outputs 1:

If (aux*,f*, (c’{,cg,x*)) € Qene, Return 0.

If there exists (auxy, f)) € Qauxr such that auxy, = aux™ but fy # f*, Return 0.

If (¢}, ¢5) ¢ QR% V (¢}, ¢3) = (1,1), Return 0.

w(a* k1 +b%)+(a* ks +b3)t* c*(a*k2+b;)+(a*k4+bz)t*)

1 "Gy :

o t*:=Hi(c],ch,aux*), k* = Hg(c
Return (AE.Dec(k*, x*) # L).
By definition, it follows that, Adv}’(ﬁfé:%t'rka (¢) = Pro[Forge].

Game Gp: This game is the same as game Gg, except that, the challenger adds the following
new rule to the FINALIZE procedure:
o If there exists (cy1,¢x2,auxy, ty) € Q7.ag such that ty = t* but (cy 1, ¢x 2, auxy) # (cf, ¢35, aux®),
Return 0.
Since ty = Hi(cy1,602,auxy) and t* = Hi(c], ¢35, aux*), any difference between Gy and G;
will imply a collision of Hy. Thus | Pro[Forge] — Pry[Forge] | < Advgy, (¢).

Game Gy, ¢ € [Qc + 1]: This game is the same as game Gj, except that, the challenger does
not use secret key k to answer the A\-th (A € [i — 1]) ENC query at all, and instead, it changes
the steps 1, 3 to the steps 1/, 3’ respectively, as in the previous proof.

Clearly Pr;[Forge] = Pry 1[Forge].

Game G’lyi, i € [Qc]: This game is the same as game G ;, except that the challenger answers the
i-th ENC query using steps 1/, 3 (rather than steps 1, 3 in game Gy ;), as in the previous proof.

The only difference between G; ; and Gll,i is the distribution of (g1, g2, ¢ 1, ¢i2). In game Gy 4,
(91,92,¢i1,¢i2) is a DDH tuple, while in game G/Li’ it is a random tuple. It is straightforward
to construct a PPT adversary to solve the DDH problem w.r.t. GenN and QR 5. We stress that
the PPT adversary (simulator) can detect the occurrence of event Forge efficiently since it can
choose the secret key k = (k1, k2, k3, k4) itself. Thus we can reduce the difference between G ;
and G’Li to the DDH assumption smoothly via the following lemma.

Lemma 2. For alli € [Q.], |Pri;[Forge] — Pry[Forge] | < Adv&dh (0).

Proof. We construct a PPT adversary B to solve the DDH problem. B is given (N,p,q,
g1,92, 97", 95%), where (N, p,q) <—s GenN(1%), g1, g2 +s QRy, and aims to distinguish whether
x1 =x2 <3 Zn \ {0} or z1,29 <—s Zn \ {0}.

B will simulate game Gj; or G'Li for adversary A. First, B picks Hy < s H1, Ho < s Ho
randomly, sets prmaag == (N,p,q, N = 2N + 1, g1, go, H1, H2) and sends prmajag to A. Then B
generates the secret key k = (kq, ko, k3, kq) itself.

To answer the A-th (A € [Q.]) ENC query (my,auxy, fr), where fy = (ax,bx = (bx 1,022,023,
bra)) € Frafr, B prepares the challenge ciphertext as follows:
e If X\ € [i — 1], B proceeds the same as in games Gy ; and G’ll That is, B picks wy 1, wy 2 <

s Zn\{0} randomly and sets (cy 1, ¢y 2) == (g;’“’l,g;”*’z’) S QR?V. Then B chooses k) <s Kag

and invokes x) <—s AE.Enc(ky, my).
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o If A € [i 4+ 1,Qc], B proceeds the same as in games Gy ; and Gy ;. That is, B picks wy <

s Zy\{0} randomly and sets (cx1,ca2) = (9;>,95") € QR%. Then B computes ¢ :=

axki+by1)+(arks+by3)tn  (arkatby2)+(arkatby )t .
Hi(ca 1, ea2, auxy), Ky = Hg(cg\f 102, 1)H(axks +05,)ix cg\g 20x,2)H(axkatosa) *), and invokes

X\ 8 AE.EnC(/ﬁJ,\,m)\).
e If A = 4, B embedded its DDH challenge to (c¢i1,¢i2) = (97", 6¢5%). Then it computes

. . (a‘k1+b'71)+(a'k3+b~73)t- (a-k2+b',2)+(a'k4+b-,4)t‘ .
ti = Hi(ci1, ¢i2,aux), ki == H2(Ci,1z ' ' P ‘ ‘ i Z), and invokes

X5 <$ AE.Enc(/{i, mz)

B returns the challenge ciphertext (cy 1, ¢y 2, X)) to A. Moreover, B puts (aux,\, s (exisens X/\>)
to Qene, (auxy, fa) to Qayxr, and (cx1,cx2,auxy, ty) to Qrag.

In the case of that (N,p,q,91,92,97",95°) is a DDH tuple, ie., 21 = 22 +sZy \ {0}, B
simulates game Gy, perfectly with A; in the case of that (N,p,q, 91, 92,91, 95°) is a random
tuple, i.e., x1,z2 <—s Zy \ {0}, B simulates game G/Ll- perfectly with A.

Finally B receives a forgery (aux"‘7 1, ¢, X*>) from A, where f* = (a*,b* = (b7, 03,3, b})) €
Frafi- B determines whether or not the FINALIZE procedure outputs 1 using the secret key
k = (k1, ka2, ks, k4). That is,

If (aux*, (e, cg,x*)) € Qene, B outputs 0 (to its DDH challenger).

If there exists (auxy, f)) € Qayxr such that auxy = aux* but f\ # f*, B outputs 0.
If (¢f,c3) ¢ QR% V (ci,e5) = (1,1), B outputs 0.

W H2(Ci(a*k1+b’l‘)+(a*k3+b§)t* ‘ C;(a*k2+b’2‘)+(a*k4+b2)t*)'

t* := Hi(c}, ¢, aux®),
If there exists (cy 1, €y 2,auxy, ty) € Q7 .4g such that ty = t* but (cy 1, cx 2, auxy) # (¢}, ¢35, aux®),
B outputs 0.

e Output (AE.Dec(x*, x*) # L).
With the secret key k = (k1, ko, k3, k4), B simulates FINALIZE perfectly, the same as in games
Gy,; and G'M, and B outputs 1 to its DDH challenger if and only if FINALIZE outputs 1, i.e., the
event Forge occurs.
As a consequence, | Pry ;[Forge] — Pry y[Forge] | < Advé‘i’;,\,vg(f) and Lemma 2 follows. |

We analyze the difference between G/l,i and Gy ;41 via the following lemma.
Lemma 3. For alli € [Q.], Pry[Forge] < Pry,1[Forge] + AdviE<i(¢) + 1/(N — 1) + 2790,

Proof. The only difference between games G/Li and Gj ;41 is the computation of x; in the i-th
ENC query. In game Gll,i’ k; is properly computed, while in game Gy ;41, it is chosen from Kag
uniformly.
Denote w := dlog, g» € Zy. We consider the information about the secret key k =

(k1, ko, ks, k4) that is used in game G’1Z

e For the A\-th (A € [i — 1]) query, ENC does not use k at all since k) is randomly chosen.

e For the A-th (A € [i + 1, Q¢]) query, similar to the proof of Lemma 1, ENC can use k; + wko

and k3 + wk4 to compute ky.
e For the i-th query, similar to the proof of Lemma 1 (see Eq. (3)), ENC uses

(wi71k1 + wi72wk2) +t; - (wi71k3 + wi72wk4) (4)

to compute k;, where w; 1 = dlogg, ¢i 1, w;2 = dlog,ci2 € ZN\{0}:

—H ai-([(wi,1k1 + wigwko) +1i - (wi1ks + wipwka)])  (w; 1b1 i 4+wi gwbi o)+t (wi 1b; 3-w; 2wb; 4)
ki =Ha (g g ).

~~

£95%¢
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e The FINALIZE procedure, which defines the event Forge, uses
(wik1 + wywks) +t* - (wiks + wiwky) (5)
to compute £*, where (wj = dlog,, ¢}, w5 = dlog,,c3) € Z3\{(0,0)}:
F = H2(Cj(a*kl—l—bf)—&-(a*kg—i-b;)t* ) C;(a*k2+b§)+(a*k4+b1)t*)

= Hy((gh) (@ kit bD+(@ katb)E™ (1003 (@ ko +05) (@ ha+0)1"

—H a*((wiky +wiwks) +t* - (wiks + wiwka))  (wibj+wiwbs)+t*(wibl+wiwdy)
= M2 ( 91 "9 ) .

N~

L2y

With probability 1 — 1/(N — 1), it holds that w;; # w; 2. In this case, we divide the event
Forge to the following two sub-events:

e Sub-event: Forge A t; # t*.
Let us first consider the event t; # t*. We show that

| Progfti # '] = Progalts # 7] | <2720,

It is easy to see that (4) is independent of k1 +wks and k3 + wky, and uniformly distributed

over Zy. Then as long as a; € Z};, X will be uniformly distributed over QR 5 and indepen-

dent of Ha. By the Leftover Hash Lemma, x; = Ho(X) is statistically close to the uniform

distribution over Kag. Then Gll,i is statistically close to Gj ;11 before A queries FINALIZE.

As a result, t; # t* will occur with almost the same probability in games G/Li and Gy j41.
Next we consider the event Forge conditioned on t; # t*. We show that

}Prlvi/[Forge ’ t; 7& t*] — Pr17i+1[Forge ’ t; 75 t*] | < 279(5)' (6)

It is straightforward to see that (4) is independent of k1 +wks, k3 +wk4 and (5) when ¢; # t*.
With a similar argument, x; = Ha(X) is statistically close to the uniform distribution over
Kag. Then G ; is statistically close to Gy11 when t; # t*. Therefore (6) follows.

In conclusion, we have that

Pry o [Forge A t; # t*] < Pry;y1[Forge A t; # t*] + 290 < Pry ;1[Forge] + tO}

e Sub-event: Forge A t; = t*.

By the new rule added in game G;, Forge and ¢; = t* will imply (c;1,¢i2,aux;) =
(¢}, c3,aux*). In addition, Forge and aux; = aux® will imply that f; = f*, this is due to the
special rule in the weak-INT-RKA game (see Fig. 4). Then it is straightforward to check that
(4) = (5), X =Y and k; = k*, and (4) (which equals (5)) is independent of k; + wks and
k3 + wky, thus uniformly distributed over Zy. Then as long as a; (which equals a*) € Z},,
X (which equals Y) will be uniformly distributed over QRy and independent of Hy. By
the Leftover Hash Lemma, x; = x*= Ha(X) = Ha(Y) is statistically close to the uniform
distribution over ICag. Also in this sub-event, (aux*, f*, ¢}, ) = (aux;, fi, ¢i1,¢i2) implies
X* # xi, therefore AE.Dec(k*, x*) # L will hold with probability at most Advi¥!(¢). Then
we have the following claim. We give the full description of the reduction in Appendix C.1.

Claim 1. Pryy[Forge A t; = t*] < Adviol(¢)+2-9),
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Combining the above two sub-events together, Lemma 3 follows. |

Now in game Gi .41, the challenger does not use the secret key k to compute sy at all,
hence k = (k1, ko, ks, k4) is uniformly random to the adversary A. As a result, in the FINALIZE
procedure defining the event Forge,

* a*-(((wiky + wiwka) +t° - (wiks + wiwka))  (wib}+whwby)+t* (w}bj+wiwb})
KT =Hs(g, " 91 ).

/

2y
The term (wik1 +wiwks) +t* - (wiks + wiwks) is uniformly distributed over Zy. Then as long
as a* € Zy, Y will be uniformly distributed over QR 5 and independent of Hy. By the Leftover
Hash Lemma, «* = Hy(Y) is statistically close to the uniform distribution over Kag. Thus
AE.Dec(x*, x*) # L will hold with probability at most AdvxE®(¢). Then Pry g, 1[Forge] <
AdvE“ (€) + 2720,
Taking all things together, the weak INT-F,.4-RKA security of AIAE follows. |
Remark 1. Our AIAE enjoys the following property: k = Ho (c]f1+k3t : c§2+k4t) will be statistically
close to the uniform distribution over ICag, as long as any element k; in (k1, k2, k3, k4) is chosen uni-
formly at random. As a result, the OT-security of AE will guarantee that AIAE.Dec((k1, k2, k3, k1),
aiae.ct,aux) = L holds for any (aiae.ct, aux) except with probability Advii-ot(¢) < Advicek-intrka gy,
This fact will be used in the security proof of the PKEs presented in Sections 5 and 6.

Remark 2. We stress that the problem in the INT-F,g-RKA security proof of LLJ’s AE does not
appear here. The weak INT-F,.g-RKA security of our AIAE can be reduced to the DDH assumption
smoothly. More precisely, in the security analysis of games G; ; and G,Li (cf. Lemma 2), the simulator
chooses the secret key itself and uses it to detect the occurrence of event Forge efficiently. Therefore

the simulator can always make use of the difference between Pr; ;[Forge] and Pry ;/[Forge] to solve
the DDH problem.

5 PKE with n-KDM|[F,g|-CCA Security

Let AIAE = (AIAE.Setup, AIAE.Enc, AIAE.Dec) be the DDH-based auxiliary-input authenticated
encryption scheme constructed from OT-secure AE, with key space (Zy)* and a suitable message
space M (cf. Fig. 6). Following our approach in Fig. 1, we have to design the other two building
blocks.

KEM: With respect to this AIAE, we design a KEM which can encapsulate a key tuple (k1, ko, k3, k4)
S (ZN)4.

E: With respect to the affine function F,g, we design a public-key encryption £ such that £.Enc
can be changed to an entropy filter for affine functions in a computationally indistinguishable
way.

The proposed PKE = (Setup, Gen, Enc, Dec) is defined in Fig. 9, where the shadowed parts describe
algorithms of building blocks KEM and £.

The correctness of PKE follows from the correctness of AIAE, £ and KEM directly. We now show
its KDM-CCA-security through the following theorem.
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prm <—s Setup(1°): (pk, sk) <$ Gen(prm):

prmyae <$ AIAE.Setup(1), where Z1,Y1, T2, Y2, T3, Y3, Ta, Ya <3 HNTQH
Prmane = (N,p,¢, N, g1, 92, H1, Ha), (ha,ha, hs, ha) := (91" 92", 95 95 %, 95 294, 92 " 95 **)
N=pq, N=2N+1, 51,52 € QR. mod N*.

prmyae := (N, N, g1, g2, H1, Ha). pk := (h1, h2, hs, ha).

91, 92,93, 94, gs <% SCRys. sk := (z1,y1, T2, Y2, T3, Y3, T4, Ya).

Return prm := (prmyag, 91,92, 93, 94, g5 )- Return (pk, sk).

(aux, aiae.ct) < Enc(pk,m): m € [N*7"] m/ L « Dec(sk, (aux, aiae.ct)):

// (k,aux) <—s KEM.Enc(pk): // k/ L + KEM.Dec(sk, aux):

k= (k1,k2, k3, ka) <5 ZN. 7 ¢ [15]]- Parse aux = (u1,- - ,Us,€1, - ,€4).

(w1, u2, us, us, us) := (91, 95, 93, 94, g5 ) mod N2 If eruitudl, eausul?, esuzuf®, esuj*ul* € RUyo2

(e1,e2,e3,eq) := (ATF, h5T*2 h5T*s hiT ) (K1, ka2, ks, ka) := (dlogp(eruf*uy"), dlogy (e2u3?uf?),
mod N2. dlogy (esu3®uf?), dlog,(eauguf*)) mod N.

aux := (U1, -+ ,Us,€1," " ,€4). k := (k1, ko2, k3, ka).

/] €.ct <3 E.Enc(pk, m): Else, Return L.

1,72, 73,74 <8 [| Z]]. &.ct/L «+ AIAE.Dec(k, aiae.ct, aux).

(1, Uz, U3, Ua, Us, Ue, U7, Ug) = (91", g*, 952, 952, | /) m/L < E.Dec(sk, € ct):
95%,95%, 95", g5*) mod N*. Parse £.ct = (@1, , s, € t).

€:= hi'h2hPh}*T™ mod N°. If eyt Gyt a2 ay> aZ3 adt urt alt € RUys

t:=g1" mod N € Zn. m := dlog, (&} 48! a5 ay> ag® ug’ iy  ag*) mod N1,

E.ct:= (Ui, - ,Us,Et). If t = ¢gi" mod N,

aiae.ct «s AIAE.Enc(k, E.ct, aux). Return m.

Return (aux, aiae.ct). Else, Return L.

Fig. 9. Construction of PKE from AIAE. The shadowed parts describe algorithms of building blocks KEM and £. Here
P, q contained in prmuae are not provided in prmj g, since they are not necessary in the encryption and decryption
algorithms of AIAE.

Theorem 2. If the underlying scheme AIAE is IND-Fqp-RKA and weak INT-F,.5-RKA secure,
the DCR assumption holds w.r.t. GenN and group QRys, and the DL Assumption holds w.r.t. GenN
and group SCRys, then the resulting scheme PKE in Fig. 9 is n-KDM[F,g]-CCA secure.

Proof of Theorem 2. Suppose that A is a PPT adversary against the n-KDM[F,g]-CCA security
of PKE, who makes at most Q). times of ENC queries and ()4 times of DEC queries. We prove the
theorem by defining a sequence of games. A rough description of differences between adjacent games
is summarized in Table 3. (We also illustrate the games via Figs. 13-15 in Appendix D.) Before
presenting the full detailed proof, we first give a high-level description how n-KDM|[F,g]-CCA
security is achieved.

(1) For the n secret key tuples, each tuple can be divided into two parts: for i € [n], sk; =
(%4, Yi5)j=1 = ((%i,9i)j=1 mod N, (2, vi;)j—, mod ¢(N)/4).

(2) Each secret key tuple can be generated by adding a random shift (Em,yi’j)?:l to a fixed base
(xj,yj)jf:p Le., sk; = (-ri,jayi,j)?:l = (mjayj)?:l + (Tz‘,j,?i,j)?:y

(3) Every public key tuple pk; = (hj1,- - ,hia) only reveals information about the (mod ¢(N)/4)
part of the secret key tuple sk;.
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(4) For each encryption query from the adversary (f,y), if the ENC oracle encrypts fy(ski, - - -, sky),
the ciphertext might reveal information about sk; through £.ct. We have to change this fact
such that the leaked information about sk; in ENC is bounded.

— By IV assumption, we can change the generation of £.ct by oracle ENC such that it does not
reveal any information about (xj,yj);*:l mod N, i.e., the (mod N) part of the base secret
key tuple.

— By IV, assumption, we can change the generation of kem.ct(= aux) by oracle ENC such
that it encapsulates a different key, other than the key used in AIAE.Enc. If AIAE.Enc uses
key (rakj + S/\,j)?zl, then KEM.Enc encapsulates (r) - (k7 — ajaj — ajryy) — - (g5 +
ajr1Tiy 5) + s,\,j)?zl mod N. Thus, (kf,---,k}) is now protected by (xj,yj)§:1 mod N.

(5) Oracle DEC might also leak information about (z;, yj)§:1 mod N. Therefore, we change how
oracle DEC works so that decryption does not use (z;, yj)?zl mod N any more. Observe that as
long as the ciphertext queried by the adversary satisfies Vj € [5],u; € SCRy2 and Vj € [8],4; €
SCRys, DEC can use ¢(N) and the (mod ¢(N)/4) part of secret key for decryption.

— If 35 € [5],u; ¢ SCR 2 in the ciphertext queried by the adversary, we expect that AIAE.Dec
will reject, due to its weak INT-F..g-RKA security.

— If 35 € [8],4; ¢ SCRys in the ciphertext queried by the adversary, we expect decryption
will result in ¢ # ¢7* mod N, so £.Dec will reject.

(6) Consequently, both (z;, yj)?zl mod N and (k7,--- , k}) are random to the adversary, and AIAE.Enc
always uses the restricted affine function of (k7,--- ,k}) for encryption. Then IND-F,s-RKA
security of AIAE implies the n-KDM|[F,g]-CCA security.

In the proof, G1-Gy are dedicated to deal with the n-user case; the aim of G3-G4 is to eliminate
the use of the (mod N) part of (z;, yﬂ?zl in ENC; the aim of Gs-Gg is to use (z;, yj)?zl mod N to
hide the AIAE’s base key (k},--- ,k}) in ENC, however, DEC may still leak the information about
(a:j,yj)?zl mod N; the aim of G7-Gg is to eliminate the use of (:L’j,yj)?zl mod N in DEc; finally,
in Gg-Gyg, the IND-Fp.g-RKA security of AIAE is used to prove the n-KDM[F,g]-CCA security of
PKE, since (k7,--- ,kj}) is perfectly hided by (x]-,yj)?:l mod N.

— Game Gg: This is the original n-KDM[F,g]-CCA game. Let Win denote the event that 8 = .
Then by definition, AdvEFE 5 (£) = | Pro[Win] — 3|.
Denote by pk; = (hi1,--- ,hi4) and sk; = (zi1,¥i1, -, Ti4,Yia) the public and secret keys
of the i-th user respectively, i € [n].

— Game G;: This game is the same as game Gg, except that, when answering the DEC query
((aux, aiae.ct),i € [n]), the challenger outputs L if (aux,aiae.ct) = (auxy,aiae.ct)) for some
A € [Q.], where (auxy, aiae.cty) is the challenge ciphertext for the A-th ENC query (fx,i)).
Case 1: ((aux, aiae.ct),i) = ((auxy, aiae.cty),iy).
DEc will output L in game Gy since ({auxy,aiae.cty), i) is prohibited by DEC.
Case 2: (aux, aiae.ct) = (auxy, aiae.cty) but i # iy.
We show that in game Gy, DEC will output L, due to eA71u§f’11u?§\’;‘21 ¢ RUpy2, with
overwhelming probability. Recall that uy1 = g1*,ur2 = g5*,ex1 = h;-";,lTkM, S

Ti1, Yil _ pTx ik AT ATAY L (. —1\ragpky, 2
exttiyy tyy = hit T (g1) " (92) ! = (hiy,1hy )T mod N7,
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Table 3. Brief description of the security proof of Theorem 2.

H Changes between adjacent games \ Assumptions ‘

Go || The original n-KDM-CCA security game. —
G ||DEC: Reject if (aux, aiae.ct) = (auxy, aiae.cty) for some A € [Q.]. Go ~5s Gy
INITIALIZE: sample secret keys with
Gz _ _ G1 = G2
(Ti,1, Y01, Tia, Yia) = (T, 91, 5 Ta,Ya) + (T 1, Y15 5 Ti4, Yia)-
Gs [|ENC(fx,ix): use the secret keys to run KEM.Enc and £.Enc Gy = G3
ENC(fa,ix): when ENC oracle encrypts affine function of secret keys, £.ct is computed G~ Ga b
Ga with (ﬂkj)je[S] = (gzkvlTélv T ’g‘?\ATSS) instead of (gI/\J? T vg?\A)' ’ Aicv Y
ENC does not use (z;,y;)j—; mod N any more if (§;);c(s) is carefully chosen. °
ENC(fx,ix): kem.ct = aux of KEM.Enc is computed with
(urg)seps) = (g5 T*9)™) g5 instead of (g*) - Gu ~. G5 by
Gs Now KEM.Enc encapsulates four keys ICVs
(k%j — 7T (ozjsci,j + aj+1yi,j))j:1 mod N
but (kx;)j—1 is the key used in AIAE.Enc.
ENC(fx,ix): Sample ky j := rakj + sx,; for j € [4].
Now KEM.Enc encapsulates four keys
Ge * _ _ 4 G5 = Ge
(ra(k — ajaj — ajay;) — raleyTi; + og4afis) + sx;) ;- mod N
but (rak} + sx;j)j—1 is the key used in AIAE.Enc.
Gz ||DEC: Use ¢(N) and secret keys to answer decryption queries. Gs = Gy
DEc: Add an additional rejection rule. Reject if G7 = Gg if
Bad’ := (Ju; ¢ SCRyz) or Bad := (Vu; € SCRy2) A (3d; ¢ SCRy+) happens. | neither Bad’ nor
Bad’ and Bad can be detected by using ¢(N). Now only the (mod ¢(N)/4) part of | Bad happens.
Gs secret key and ¢(N) are used in DEC.
The randomness of (ajz; + @;+1y;)j=; mod N perfectly hides (ki,--- , ki) in ENc,| Pr[Bad’] = negl
thus (k7,---, k1) is uniform. due to weak
(rak} + sx,j)j=1 is the key used in AIAE.Enc. INT-Frag-RKA
Bad’ may lead to a fresh successful forgery for AIAE. security of AIAE
G ||INITIALIZE: Sample an independent random tuple (kf,--- , k). Gs = Gg to
ENC(fx,4x): Use (rak} + sx,;)j—1 in AIAE.Enc. the adversary
ENC: Encrypt zeros instead of the affine function of secret keys. Gg =, Gyo by
Gio Bad happens with negligible probability, since t # ¢ mod N in DEC. IND‘.-FraH‘RKA
security of AIAE.
Adversary A wins with probability 1/2. Pr[I/B—:;a] = negl

where h;, 1 and h; 1 are parts of public key of different users ¢y and % respectively and are
uniformly distributed over SCRys. So hihlh;f # 1, hence eA,luf\f’fu%’\f’; ¢ RUp2, except
with probability 27,

By a union bound, Gy and G; are identical except with probability Qg - 2@, therefore
| Pro[Win] — Pry[Win] | < Qq - 279,

Game Go: This game is the same as game Gj, except that, the challenger samples the se-

cret keys sk; = (2i1,Yi1, " ,%i4,Yi4), ¢ € [n], in a different way. First, it chooses ran-
dom (z1,y1,- -+ ,24,ya) and (Ti1, i1, -, Tia, Yia), © € [n], from [LN2/4H, then it computes
(i1, Yids - Tias Yia) = (@1, 91, 2, y4) + (Ti1, Yigs -+ Ty Ui g) mod [ N?/4] for i € [n].
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Obviously, the secret keys sk; = (21, Y1, - , %i4, i) are uniformly distributed. Hence G
is identical to Gi, and Pr;[Win] = Pry[Win].

Game Gz: This game is the same as game Go, except that, when responding to the adversary’s
A-th (A € [Qc]) ENC query (fy, 1), instead of using the public keys pk;, = (hiy 1, -, hiy4),

the challenger uses the secret keys sk;, = (i, 1, Yi\ 1, » Tiy 4, Vi, 4) tO prepare (ex1, - ,ex4)
and €, as follows:
—Tiy,1 _yz 1 —Tiy,4 —Yiy 4 2
o (ext, ena) = (uy " uy o™ Tk ... sy, Uy 5 T*r4) mod N2,

377,/\1»« y2>\1~ :L"LAQ'V y7,>\2~ xzk3~ yz/\3~ $’L>\4~ yz/\4 m s
® CNIT Uy Uy Uy g Uy Uy 5y 67Uy ™% mod N*.

Observe that for j € {1,2,3,4},

&2 P TR = (g " g I TR 2y T I TR mod N2,

6)‘7.7 (3N ] ]“F >\7] >\7]+1
a1 Paxdmmg Tiyd ~Yin,1\Fy Tiyd —Yiy4\Fy 4m
th1 ) hu YA (91 9o ) "'(94 g5 ) AT
G5 ~_I1>\ 1~—Yiy,1 —Tiy, N yz/\ 4 m s
B
Uy ™ Uy g u>\7 T mod N°.

Thus Gs is identical to Ga, and Pry[Win] = Prg[Win].

Game Gg4: This game is the same as game Gg, except that, in the case of the challenge bit 5 = 1,
to answer the A-th (A € [Q.]) ENC query (fa, 7)), the challenger does not use (x1,y1, -+ ,%4,Ys)
mod N to compute €, any more, and instead, it computes (@1, -+ ,Uyg) and € as follows:

PY (ﬁ)\,la ce 7&)\,8) = (g?:,lTZ?:l i1 g;iJTZ?:l b¢,17g£>:,2TZ?:1 a¢,27g§>:,2TZ?:l bi,27

gg)"STZ?:l i3 gz)"stzlzl bi,37 gZ’\ATZ?ﬂ @id ggAATE?ﬂ b’i;4) mod N?,

0 ¢y = h” ! ..hf;‘*iTZ?:l 3 5=1(0i g (5 =TFiy )41 (Fi~Tiy ) HE 104 N3,

where f) = ({ai,hbi,la w54, 054} ien), ©) € Fafr-
Observe that,

5 G4 H4 hr/\J TZ’L 123 1((1”(96”-—961)\])—1—6”(3/” yl/\J))+

ex = llj=1 "y
— H4 h”\ﬂ Tzl 1ZJ 1(@i g (i —2iy 5) 40,5 (Yi,i—Viy 5))+c
J=1"ix,j
R L e e A
_ 4 X, @i\ " Tind (RIS by ) TYing | my
= H] 1( T2 i m) ( ) 1T2171 m) T
_ -731/\ 1~— yz/\ 1 xz/\4~ yz/\4 mi s
= Uy MUy Uy, T™ mod N?¥, (7)

where the third equality follows from mq =" | (a;1251 +bigyi1 + - -+ @ia%ia + biayia) +c.

We analyze the difference between Gz and G4 via the following lemma.

Lemma 4. There exists a PPT adversary By against the 1Vs assumption w.r.t. GenN and
QR s, such that | Prg[Win] — Pry[Win] | < Advis 5, (£).

Proof. According to the last line of Eq. (7), €x can be computed from (@)1, -+ ,%yg) in the
same way as in Gg and G4. Hence the only difference between Gs and G4 is the distribution of
(Uxi,- -+ ,Uyg) themselves.
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HALy

It is straightforward to construct a PPT adversary Bf (N,g1,--+,95) to solve the
IV5 problem. B; is given (N, g1, - ,g5) and has access to its CHAL?V5 oracle. Now B; sim-
ulates game Gz or G4 for adversary A. First, B prepares the parameter prm and generates
public and secret keys (pk;,sk;), i € [n], as G3 and G4. To answer the A-th (A € [Q.]) ENC
query (fx,ix), where fx = ({ai1,bi1, -+ @i, biaticm),c) € Fa, B1 proceeds as follows: it
queries its own CHAL?V5 oracle with (Y7 @i, D orq bit, %, %, %), (%, Y i @i, > g bi2, %, %),
(v, %, >0 @iz, > g bis,*), (x,%,%,> " | @ia,» iy bia), where the symbol “¢” denotes dummy
messages. Then By obtains its challenges (i 1, Uy 2, ¥, ¥, %), (¥, Ux 3, Ux 4, %, %), (%, %, Ux 5, U6, *),
(%, %, %,y 7,Uyg), and neglects “x” terms. According to the CHAL%’V5 oracle, (@1, ,Uxg) is

Case 1 (b=0): ( A1 TA1 Ta2  Ta2 Tas Az Taa Taa

9199997, 937,957, 947,947,957 ) or

Case 2 (b = 1): (g?:’lTZ?:l @1 g;i’lTZ?:l bia , gg):’zTZ?:1 43,2 gg):’zTZ?:1 biy2’
gg)"BTZ?:1 @3 gz)"gTZ?:1 bi,3 , gz/\ATZ?:l Qi g?‘ATZ?:l biv4).

Next B; uses the obtained (t@y 1, - , %)) and the secret keys to compute € via Eq. (7) for A.
In the meantime, By can also simulate DEC for A since it knows the secret keys. Finally, By
outputs 1 if the event Win occurs.

In Case 1, By perfectly simulates game Gs for A. In Case 2, B; perfectly simulates game
Gy for A. Any difference between Prs[Win| and Pry[Win| results in B;’s advantage over the IVj
problem. |

Game Gjz: This game is the same as game Gy, except that, the challenger chooses random
r* € [[N/4]] and o1, -+ ,a5 € Zy beforehand (in INITIALIZE). In addition, to respond to the
A-th (X € [Qc]) ENC query (fy,iy), the challenger computes (uy 1, - ,uy5) as follows:

® (uk,lv T ,U)\’5) = ((g{*Tal)”’ T (gg*Tas)T)\) mod N2.

The only difference between G4 and Gy is the distribution of (uy 1, - ,uys5). In game Gy,
(un1, -, urs) = (g1, + ,g5*) mod N2, while in game Gs, (ux1,- -+ ,uxs) = ((g] T*)"™, -,
(g£"T5)™) mod N2. Similar to the previous lemma, it is straightforward to construct a PPT
adversary to solve IVs problem by employing the power of adversary .A. Thus ’Pr4 [Win] —
Pr5[Win] ‘ < AdvinnN(E), and its proof is similar to the previous one.

Game Gg: This game is the same as game Gy, except that, the challenger chooses a random tuple
k* = (ki, k3, k%, k}) beforehand (in INITIALIZE). In addition, to respond to the A-th (A € [Q.])
ENC query (f),iy), the challenger uses a different way to generate ky = (kx1,kxz2,kx3,kx4)
and (ex 1, - ,exq4):
o pick sy = (5)1,512,50,3,5)4) s Zj and 1) s HN/4H uniformly, and compute k) =
(k)\J, k)\72, k)\73, k‘)\A) = (7“)\/{{ + S\1,c ,T)\kz + 8)\74).

— r*rxpry-(kF—a1xi, 1—qayi, 1)+s r*ramgry- (kY —oazi, a—asyi, 4)+s
[} (6)\’1’ e 76)\74) = (hiA,I T A ( 1 ixs Yiy, ) A,l,. . 7h’i)\,4 T ( 4 iy, Yiy, ) )\’4)'

Clearly k) is uniformly distributed over Zjlv, as in game Gs. At the same time, observe that
for j € {1,2,3,4},
Gs | —Tiyg  “Yixgdmkaj _ (TG \—=TATiy (AT G\ =AYy KA
€xg = Uy Uy TrxNG = (gj T J) A Tiy g (9j+1T J+1) A Yin.d RN
o TG TYiiNer ey ki —rac (@i, Q1Y
= (y; )T a(agziy jFogi1yiy .5)

Go prrarac(k; —ogmiy j=aii1viy ) F555 mod N2
X,J] :
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Thus Gg is identical to G, and Prs[Win] = Prg[Win].

— Game Gr7: This game is the same as game Gg, except for a modification to answering the DEC
queries ((aux, aiae.ct),i € [n]). The challenger uses the i-th user’s secret key sk; = (x;1,yi1, -,
Ti 4, Yia) together with ¢(IN) to compute the decryption of ciphertext (aux, aiae.ct), where aux =
(uy,--- ,us,e1, -+ ,eq). More precisely, it computes k = (k:l, -, kq) and m as follows:

 (ay,--,af) = (dlogT(u1 )/6(N),- -, dlogy(u§™) /¢(N)) mod N,

(- 74) 1= (dlogp (e ™) [9(N), - ,dlogT< 7 ™M)/¢(IV)) mod N,
k= (ki, - ,ka) = (a@i1 + byi1 + 7{, coe L almia+ akyia +v4) mod N,
o Ect= (g, - ,us,&t)/ L + AIAE. Dec(k aiae.ct, aux),

_ _ N) _
o (G, ,a5) = (dlogp(@l™)/e(N), -, dlogr(ag™)/¢(N)) mod N+,
7 = dlogr(e?™)) /¢(N) mod N*~1,
m = Q171 + QoYi1 + G3Ti0 + QuYio + AsTi3 + AeYis + GrTig + Agyia + 7 mod N1

According to Eq. (1), for j € {1,2,3,4}, we have that

k; —dlogT(eJ x”u?ﬂrjl) dlogT((eJ T ]y:]l) )/(;S( )modN

= dlogy(uf™ ) Jo(N >+dlogT<u§?i’f””>/¢< )+ dlogy (¢7™) /¢ ()
& dlogy (u]™) /6 (N) -5 + dlogp(uft)) /S (V) -yi,ﬁdlogT(e;’?( N/$(N),

/ /
Yj+1 75

£ <

1 ~Yil ~T4,2 ~Yi 2 ~Ti,3 ~VYi,3 ~Ti 4 ~ yz4 s—1
—dlogT(eu1 Uy gy U U Uy Ug )modN

S dlogg (@) JS(N) i1 + - - + dlogg(ag ™) /S(N) -yi.a + dlogp(e?™N) /$(N).

a1 asg v

These changes are conceptual. So Gr is identical to Gg, and Prg[Win] = Prz[Win].

— Game Gg: This game is the same as game G7, except that, the challenger adds an additional
rejection rule when answering DEC queries as follows:

e ifa) A0V ---Va;#0 V a1 #0V---Vag#0, return L.

That is, the challenger will not output m in DEC unless of = -+ =af =0and &3 = --- =
ag = 0 holds. Thus the values of (z; ;, ym-)?:l mod N, in particular (x;, yj)?zl mod N, are not
used any more in DEC.

Let Bad denote the event that .4 makes a DEC query ((aux, aiae.ct),i € [n]), such that

erus " ustt e equytugt € RUy2 A AIAE.Dec(k, aiae.ct, aux) # L (8)
A By gy g s gt € RUys At = g mod N 9)
A(af #0V--Vab#0 V @ #0V---Vag #0).
Clearly, games G; and Gg are the same until Bad happens. Therefore, we have that ’ Pr7[Win] —
Prg[Win] | < Prg[Bad].

To prove that G7 and Gg are indistinguishable, we have to show that Prg[Bad] is negligible.
This is not an easy task, and we further divide Bad to two disjoint sub-events:
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* Bad’ denotes the event that A makes a DEC query such that
Conditions (8), (9) hold A (a] #0V---Vaj #0).

+ Bad denotes the event that A makes a DEC query such that
Conditions (8), (9) hold A (aj =---=a5=0) A (&1 #0V---Vasg#0).

Then Prg[Bad] < Prg[Bad’] + Prg[Bad]. We give an upper bound for Prg[Bad’] via the following
lemma. The analysis of Prg[Bad] is deferred to subsequent games.

Lemma 5. Prg[Bad’] < 2Qq - AdviiixE ™7k (0) + Qg - 2720,

Proof. In game Gg, the challenger will not output m in DEC unless of = --- = af = 0 and
a1 = -+ = ag = 0 holds. As a result, the information of ¢(N) and the (mod ¢(NN)/4) part of all
the secret keys, i.e., (zi1,¥i1,  ,%i4,Yia) mod ¢(N)/4, i € [n], is enough for answering DEC
queries. In particular, the values of (z1,y1,- -+ ,%4,y4) mod N are not needed in DEC.
We further divide Bad’ to the following two sub-events:
* Bad’-1 denotes the event that A makes a DEC query such that
Conditions (8), (9) hold A (a] 0V .-V af # 0)
A (35 €], of/aj # /o mod N).

x Bad’-2 denotes the event that .4 makes a DEC query such that
Conditions (8), (9) hold A (a] #0V---Vaj #0)
A (a}/ar =--- = ajs/as mod N).

Recall that (o, -+, a5) are chosen in INITIALIZE.
We will consider the two sub-events in game Gg separately via the following two claims.

Claim 2. Prg[Bad'-1] < Q4 - Adviyiag ™ (0) + Qq - 271,

Proof. In game Gg, the values of (z1,y1,- - ,24,y4) mod N are not used in DEC, and the compu-
tation of £y = gTB mod N in ENC only uses the values of (z1,y1, - ,2z4,y4) mod ¢(INV)/4, since
the order of g1 € SCRys is ¢(IN)/4. Thus the only information about (x1,y1, -+ ,24,y4) mod N
leaked to A is through the computation of (e 1, - ,ex4) in ENC, which may leak the values
of (amqx1 + agy1), (exa + asya), (aszs + asys), (auxs + asys) mod N: for j € {1, 2,3, 4},

— prmaprac (R =gy =19y i) T80 mod N2

eA?] (>%V]
_ hg:ZATrA-(kj*ajxrajﬂyj*ajiu,raj+1?§u,j)+sx,j mod N2. (10)
9. N ——  ——

.
Ly

If Bad’-1 occurs, for concreteness, say that o /ay # afy/as mod N, then
ki = ajxin +abyin + 1 = aja1 + abyr + ) F1 + agfin + ) mod N,

the value of k; is independent of (a3x1+a9y;) mod N, thus uniformly distributed over Zy from
the point of view of A. By Remark 1, for k = (k1, ko, ks, k4) where k1 <s Zy, AIAE.Dec(k, aiae.ct,
aux) # L happens with probability at most Adviegk-int-rka gy 4 9=2(0),
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Then Prg[Bad'-1] < Qg - (Adv¥k-int-rka gy 4 9-2(0)) by a union bound. |

Claim 3. Prg[Bad’-2] < Q- Advxﬁ&lé—int—rka(e).

Proof. Similar to the discussion in the proof of the previous claim, in game Gg, the only
information about (x, Yi, ,x4,y4) mod N and k* = (kT, k3, k3, k}) involved is through ENc,
which uses the value of ky := (k] — a1 — aayn), ko := (k:2 — Ty — a3y2), kg = (k3 — agwg —
auys), ks = (ki — s — azys) mod N via computing (e 1,--- ,exq) (see Eq. (10)), and also
uses ky =7y - (K], k3, k5, k}) + (sx1,- -+ ,sx4) as the encryption key of AIAE.Enc.

Note that because of the randomness of (21,41, ,24,ys) mod N, (ki, ko, k3, k4) are uni-
formly distributed and independent of (k}, k3, k3, k}). Therefore it is possible to construct an al-
gorithm to simulate DEC and ENC of game Gg without k* = (k}, k5, k3, k}) and (21, y1,- -+ , %4, ya)
mod N. The algorithm can also simulate AIAE.Enc as long as it has access to a weak INT-F,.4-
RKA encryption oracle of the AIAE scheme.

More precisely, we construct a PPT adversary Ba(prmpjag), which has access to ENCajag ora-
cle, against the weak INT-F,g-RKA security of the AIAE scheme, where prmajag = (N, p,q, -+ ).
By does not choose k* = (ki, k5, k3, k}) in INITIALIZE any more, and it implicitly sets k*
to be the encryption key used by its weak INT-F,g-RKA challenger Bg does not choose
(x1,y1, - ,24,y4) mod N either, and instead, it chooses k = (kl,krg,kg,k4) uniformly from
LY. By picks (w1,y1,- - ,24,ys) mod ¢(N)/4 and (Ti1,Y;1, - Tia,Uia) € [[N?/4]], 1 €

[n], randomly. To simulate ENC, By can use (Z;, ;,7. k; ) _, to compute (ey j) _; via Eq.

Yiyis
(10), and use (@-J,yi’j);*:l, i € [n], to compute €y. Note that Ba is able to compute t) =
g;"? mod N, even if 8 = 1, because it knows the (mod ¢(N)/4) part of all the secret keys, i.e.,
(:U],yj) _, mod ¢(N)/4 and (:1;,7J,yz7]) _; mod ¢(N)/4, i € [n]. Then By submits (£.cty,auxy,
(rx,sn = (81,7 ,824))) to its own ENCA|AE oracle, and obtains aiae.cty. The final ciphertext
is (auxy, aiae.cty). According to the weak-INT-F,.4-RKA security game, the ENCajag oracle will
encrypt £.cty with the auxiliary input aux, under the transformed key k) = ry - k™ + sy, that
is, the ENCpjag oracle behaves as AIAE.Enc(kA,é’.ct)\,aux)\). Thus Bs’s simulation of ENC is
identical to Gg. For DEC, By answers decryption queries with ¢(N)= (p — 1)(¢ — 1) and the
(mod ¢(N)/4) part of all the secret keys, just like Gg.

Suppose A makes a DEC query ((aux, aiae.ct),i € [n]), such that Bad’-2 occurs. For concrete-
ness, say that r := o) /a3 = -+ = af/as # 0 mod N, then for j € {1,2,3,4},

kj = ajwij +alyig +75 =1 (i + ajayig) + 95 mod N
=r- k‘; —-r- (k‘; — QT — Q1Y — QTG — ajﬂgji,j) + ’7} mod N

jij — @jy1Yig) +; mod N

i,

=r- k‘; —7r- (l;‘j — QT — O(j+1177;7]’) + ’}/} =7r-: /i'; + 85 mod N.

L.
=s;

Thus k = (k1,- -+ ,k4) = T k* +s, where s := (s1,- -+, S4). B2 can compute (r,s = (81, ,84))
as above using (Ei,j,yi,j,k:j)?:l, and outputs (aux, (r, s),aiae.ct) to its weak INT-F..g-RKA
challenger as a forgery. We analyze the success probability of By as follows:

27



Firstly, a valid decryption query from 4 satisfies (aux, aiae.ct) # (auxy, aiae.cty) for all A € [Q.],
thus (aux, (r,s),aiae.ct) # (auxy, (ry,sz),aiae.cty) will hold for all X € [Q.], i.e., By always
outputs a fresh forgery.

Secondly, if aux = aux) for some X\ € [Q.], then it is easy to have that of = ay - ry, -+ ,af =
as - ry and thus r = ry. Furthermore for j € [4], it clearly holds that fy§~ =7r)- (I;:j — QT —
Ozj+1§i7j) + Saj (Cf. Eq. (10)), thus 8j=—T" (kj — QT — aj+1gz-7j) -+ ’y} = S\, and s = s).
That is, if aux = aux) for some A € [Q.], then it holds that (r,s) = (ry,sx). Obviously it
satisfies the additional special rule required for the weak INT-F,.s-RKA security.

Finally, if Bad’-2 occurs in this decryption query, then AIAE.Dec(k, aiae.ct, aux) =% 1, where
k=1 k" +s, will imply that By’s forgery is successful.

In conclusion, we have that Prg[Bad’-2] < Qg - Advxfﬁé:g’;t'rk“ ). I

Combining the above two claims, it holds that
Prg[Bad’] < 2Qq - Advirak-intrka gy 4 @, . 9720
and Lemma 5 follows. |

Game Gg: This game is the same as game Gg, except that, the challenger chooses another random
tuple k™ = (k}, k%, k%, k) besides k* = (k7 k3, k5, k%) in INITIALIZE. In addition, to answer the
Ath (A € [Qc]) ENC query (fy,i)), the challenger uses a different key for AIAE to compute
aiae.cty:

e set ky = (k»\’l, ki>\,2, ]{:>\,3, k‘>\,4) = (T)Jff + SA 1, ,’I”)\]{:Z + S>\,4);

e invoke aiae.cty <s AIAE.Enc(EA,S.ctA, auxA).

But the challenger still uses k* = (k], k3, k3, k}) to compute (ex 1, - ,ex4).

In game Gg, the only place that needs the value of (x1,y1,- -+ ,x4,y4) mod N is the compu-
tation of (ex 1, --- ,ex4) in ENC. More precisely, for j € {1,2, 3,4},

exj = hZ?TU'(k;_ajxi*’j_aj“y”’j)Jr”’j mod N?
_ h?j*r?\T’”A'(k;_o‘jxj_O‘J'Jrlyj_o‘jjixJ_O‘J'HQMJ)"'S)\J mOd N2.
5]

We stress that the computation of t) = g;nﬁ mod N in ENC only uses the values of (x1,y1,- -+ , x4,
y4) mod ¢(N)/4, since the order of g1 € SCRys is ¢(IN)/4. We also note that neither k* =
(kY, k5, k5, k}) nor (x1,y1,--- ,24,y4) mod N is involved in DEC since DEC rejects the cipher-
text unless of =---=af =0and &3 = --- = ag = 0. As a result, k* = (k], k3, k3, k}) is totally

hidden by the entropy of (x1,y1,- - ,24,y4) mod N and is uniformly random to A.
Thus the challenger can use an independent kK= (k¥,--- k) to compute ky, and use ky to
do the encryption of the AIAE scheme in ENC, as in Gg.

Then games Gg and Gg are identically distributed from the point of view of A, thus we have
Prg[Win] = Prg[Win| and Prg[Bad] = Prg[Bad|.

Game Gyg: This game is the same as game Gg, except that, to answer the A\-th (A € [Q.]) ENC
query (fx,7)), the challenger computes aiae.cty as follows:

e invoke aiae.cty s AIAE.Enc(ky, 0%, aux,).

28



That is, the challenger computes the AIAE encryption of a constant 0°M instead of £.cty in
Enc. B S
Note that in games Gg and Gy, the key k*f (k3, k3, k3, k}) is used only in the computation of
the AIAE encryption, where it uses ky = 7y - K+ Sx, SA = (Sa,1,°+ ,Sx4), as the encryption key.
The difference between Gg and Gig can be reduced to the IND-Fp,4-RKA security of the AIAE
scheme directly. Thus we have that both | Prg[Win] — Prig[Win] |, |Prg[Bad] — Prig[Bad] | <
Advind-rka (f)
AIAE .

Now in Gig, the challenger computes the AIAE encryption of a constant 0 in ENc, thus the
challenge bit (5 is completely hidden. Then Prig[Win] = %
We give an upper bound for Prig[Bad] via the following lemma.

Lemma 6. Prlo[é;ﬂ <(Qq+1)-2770 £ AdvE ().

Proof. In game Gjg, neither DEC nor ENC uses the values of (z1,y1, - ,24,y4) mod ¢(N)/4.
The only information leaked about them lies in the public keys pk;, i € [n], which reveal the
values of (w1x] +way1), (waxe +w3y2), (wszs + ways), (wazs + wsys) mod ¢(N)/4, where we
denote w; := dlog,g; mod ¢(N)/4 for some base g € SCRys, j € [5].

We may divide Bad to the following two sub-events:
* Bad-1 denotes the event that 4 makes a DEC query such that

Conditions (8), (9) hold A (aj =---=af=0) A (&1 #0V---Vag#0)
AN (dl/wl#&g/wg vV 5[3/11)2755(4/’[03 vV d5/w3#d6/w4 vV d7/w4#dg/w5).

+ Bad-2 denotes the event that A makes a DEC query such that
Conditions (8), (9) hold A (aj =---=a5=0) A (&1 #0V---Vag #0)

A (G1/wy = Gof/wy A ag/wy = Gu/ws A a5/ws = dg/ws A Gr/ws = dg/ws).
We will consider the two sub-events in game Gy separately via the following two claims.
Claim 4. Pryg[Bad-1] < Qg 220,
Proof. If Bad-1 occurs, for concreteness, say that &;/w; # do/we, then

m Q1w 1+Goy; 1+ dar1+aey1+a1Z,1+a2y; 1+ mod ¢(N)/4
g1 =9 =0 mod N,

and the value of (@121 4 aoy1) mod ¢(N)/4 is independent of (wyz1 +wayr) mod ¢(N)/4. Thus
g7" mod N is uniformly distributed over SCR s from the point of view of A, and ¢t = g7 mod N
will not hold except with a negligible probability 290,

Then by a union bound, Prig[Bad-1] < Qg -2, |

Claim 5. There exists a PPT adversary Bs against the DL assumption w.r.t. GenN and SCR s,
such that Prig[Bad-2] < Adv,\ g, (¢) + 279

Proof. In game Gqg, if Bad-2 occurs, then we can construct a PPT adversary Bs(N,p,q,g,h)
to compute the discrete logarithm of h based on ¢, where g, h € SCRys. With (N, p,q,g,h), Bs

simulates INITIALIZE as follows. B3 picks z;, z;- uniformly from [¢p(NN)/4], and sets g; := g% %5 for
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J € [5]. Then g; is uniformly distributed over SCRys. Next, B3 samples secret keys and computes
public keys just the same way as INITIALIZE in Gyg. Since B3 knows ¢(N) = (p—1)(¢—1) and all
the secret keys, it can perfectly simulates ENC and DEC the same way as Gig does. Furthermore,
zé is hidden by z; perfectly from the point of view of A. If we denote w := dlog,h mod ¢(V)/4,
then for j € [5], w; = dlog,g; = zj + w2} mod ¢(N)/4.

If Bad-2 occurs in DEC, for concreteness, say that a1 /wy = ag/wy # 0 mod ¢(N)/4, ie.,
gf@ = gg‘l # 1, then B3 can compute w by solving the equation w;d&s = wad; mod ¢(N)/4, or
equivalently,

2109 + w2 ag = 2901 + wzhdy mod ¢(N)/4.
Since z} is hidden from the point of view of A, then (z1G2 — 25G1) mod ¢(V)/4 is multiplica-
tive invertible except with probability 2=, Thus Bs will succeed in computing the discrete
logarithm of h based on g, and output w = (2]ag — 25&1) 71 - (2281 — 21G2) mod ¢(N)/4 to its
challenger. Clearly, we have Prig[Bad-2] < Advcélen,\,ﬁ3 () +2-90 ]

Combining the above two claims, it holds that
Prlo[é;a] < (Qd + 1) ’ 2_9(2) + Adv(élenN(g)7
and Lemma 6 follows. |

Taking all things together, the n-KDM[F,g]-CCA security of PKE follows. |

6 PKE with n—KDM[]:goly]—CCA Security

6.1 The Basic Idea

We consider how to construct a PKE which is n-KDM-CCA secure w.r.t. the set of polynomial
functions of bounded degree d, denoted by ]-'goly, where d can be polynomial in security parameter
¢. We will consider adversaries submitting f in the format of Modular Arithmetic Circuit (MAC)
[MTY11] (cf. Definition 13 in Appendix A), i.e., a polynomial-size circuit which computes f. In
particular, we do not require a prior bound on the size of circuits, but only require a prior bound d
on the degree of the polynomials. Our construction still follows the approach in Fig. 1. In fact, our
n—KDM[fgoly}—CCA secure PKE shares the same building blocks KEM and AIAE with the previous
PKE in Fig. 9 which has n-KDM|F,g]-CCA security. What we should do is to design a new building
block £, which can function as an entropy filter for polynomial functions. Our new & still share the
same secret/public key pair with KEM. Hence for i € [n], we have sk; = (zi1,¥:1, -+ ,Zi4,Yi4) and

pk; = (hit, -+, hia) with hip =g, ""'ge ™" -+ hia =g, g5 7" mod N*.

6.2 Reducing Polynomials of 8n Variables to Polynomials of 8 Variables

How to Reduce 8n-Variable Polynomial f) in ENC(fy,ix € [n]). In the n—KDl\/I[fgoly]—CCA

game, the adversary will submit (fy,ix € [n]) to ENC as its A-th KDM encryption query. Here fy

is a degree-d polynomial fA((:r¢7j, yi,j)ie[n],je[zl}) of the n secret keys, which has 8n variables. Note

8n+d

o @)= ©(d®) monomials, which is exponentially large.

that f) will contain at most (
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To reduce the number of monomials, we can always change the polynomial f ((z;, Yijie[n],jel4] )
of 8n variables to a polynomial f;\((x%j, Yiy,j) je[4]) of 8 variables as follows. Then f{ will contain
at most (8J8rd) = O(d®) monomials, which is polynomial in .

In INITIALIZE, the secret keys can be generated with z;; = z; + Z;; and y;; = y; +
gi; mod | N?/4| for i € [n] and j € [4]. Then with the values of (Z; j, ¥ij)ic[n],je[4], We can represent
(ijs Yij)ien jel4) as shifts of (@i, j, iy j)jep):

Tij = Tiyg T Tig = Tirgs  Yig = Ying T Yij — Ying>
and reduce the polynomial fy in 8n variables (z; ;, yi,j)ie[n],je[zl} to a polynomial f} in 8 variables
(Tir g yi/\J)jé[Zl]:
I(@ig,viglicmgein) = (@i g + Fig = Zi g, Ving + Tig = Jingielnl jela))

Ti,j Yi,j

— f/ R — ..c1 ,Cc2 €3 C4 _C5 ,C6 ,.C7 ,C8
= A ((@iy 5y Vi) jeny) = > Aler,es) ~ Tiy,1Yiy,1%0y 2Yiy ,2%05 3Yi, 305,45 40
0<cr+tes<d

The resulting polynomial f3 is also of degree at most d, and the coefficients A(cy - cg) ar€ determined
by (i'i,jvgi,j)ie[n]yjem Completely.

How to Determine Coefficients a, ... ) for f, Efficiently with Only (Z;;, i ;)ic/n] jej-
Repeat choosing values of (4, j,¥i, j)jel) randomly, feeding MAC (which functions as fx) with
input of (LEi/\J + Zij — Tiy gy Ying T Yij — gix:j)ie[n],je%]a where (ji,jvgi,j)ie[n],j€[4} always takes the
values chosen in INITIALIZE, and recording the output of MAC. After about (SJgd) = O(d®) times, we
can extract all a(c, ... ¢5) by simply solving a system of linear equations (with A(ey,m cs) unknowns):

IN((@in g + Tig — Tiy gy Yinj + Tig — Tingicljcld])

_ . eC1 Cc2 Cc3 C4 C5 C6 c7 C8
= > ey, e8) " Ty 1¥iy 1%45 2Y5, 2045 ,3Y4y,3T i, ,4Y5, 4
0<ci+-+cg<d

This can be done in time polynomial in /.
6.3 How to Design £: A Warmup

Let us first consider a simple case: design £ w.r.t. a specific type of monomials

/
f)\((-xiA,j, yz;,j)je[4]) =G Ty 1Yiy,1%0y,2Yiy 200y ,3Yiy,3%iy,4Yiy 4+

We describe the encryption and decryption algorithms £.Enc, £.Dec in Fig. 10.

Security proof. We can prove KDM-CCA security w.r.t. the specific type of monomials, i.e.,
a-Tiy 1Yiy 1 Tiy 2Yiy 2Tiy 3Yiy,3%iy 4Yiy 4, i1 & similar way as the proof of Theorem 2 (cf. Table 3). The
only difference lies in games G3-G4, which are related to £. We replace G3-G4 with the following
three steps (Step 1 - Step 3), as shown in Fig. 11. More precisely, we change the £.Enc part of
ENC so that it can reserve the entropy of (1,41, - ,24,y4) mod N, behaving like an entropy filter
w.r.t. this specific kind of monomials.

Suppose that the adversary submits (fy,ix € [n]) to ENC. Our aim is to reserve the entropy of

(l’j, yj)?zl HlOd N fI"OIn S.Enc(pkiA, f)\((l’i,j, yi,j)ie[n},j6[4} ) )
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E.ct s S.Enc(pk = (h1, ho, hs, h4),m): m/L E.Dec(sk = (z1,91, - 7arz4,y4),5.ct):
For I € [0, 8], Parse £.ct = (table, ¢, t).
Fia, Fre, Fus, e s [[ 3] Uo,1|Uo,2|" - - |Uo,8
(T, -, Ur8) = (91l 95" 79? 279? % U1, |U1,2| - |18
g 3’9413’94 ,g5l4) mod N°®. Parse table =
By o= hiP RoP2REPS LY mod N — -
Us,1|Us,2| - |Us,8
Uo,1 Uo,2 || Uos Do = g 1 g 5" g 57 Ug 47 Ug 5> U 60 7 g g+ mod N*.
1,1+ Oo| Uiz |-c-| TUis O = (1,1 /00) ™ My 5107 5200 370y 520y ¢, 7 ay §* mod N°.
table := | U21 |U2,2-0V1| '-| Us2s g 1= Gy 1 (Tiz,2/01) Vg 52Ty 521y 52 Uy §2 Uy 7 Uy §* mod N°.
ﬂ&l ﬂ&z e ﬁ&s . ’l~)7 178 = ﬁ;flﬂ;’gl ’Il;gzﬁgzzﬁ;gsﬂ;?ﬁ;?‘l (ﬁ&g/’fh)iy‘1 mod N?®.
€:= s -T™ mod N*. If €/9s € RUys, m := dlog;(é/0s) mod N1
t:=¢g" mod N € Zy. If t = g7* mod N, Return m.
Return €.ct := (table, é,t). Otherwise, Return L.

Fig. 10. £ designed for the specific type of monomials a - i, 1Yi,,1%4,,2Yiy,2%iy,3Yiy 3Ty ,4Yiy 4

Step 0: In INITIALIZE, the secret keys are generated with z;; = x; + Z;; and y;; = y; +
gi,j mod | N?/4| for i € [n], j € [4]. This is the same as Gy in the proof of Theorem 2.

Step 1: Use (Zij, Ui,j)icn],je[s) tO re-explain (fy,in € [n]) as (f},ix € [n]), and determine the
coefficient a of the monomial

/
I ( (xix7j7 Yix 7j)j€[4] ) = Q- Ty 1Yiy 143,20y ,2T45,3Yiy 30y ,4Yiy 4+

Step 2: Use secret key ski, = (i, j,¥iy.j)jel4) (together with public key pk;, = (hi, j)je) to

implement £.Enc (This corresponds to Gs in the proof of Theorem 2).

— Setup table, just like £.Enc.

— Compute 0g, - - - ,0g from table, just like £.Dec.

— Use g instead of Ug to compute € with é := g - TI(@ix5vixi)iela) mod N, and

- fA((xz;,jvyu,j)je[zx]) mod N.

It is easy to check that 0g,--- ,0g computed from table (via £.Dec) are identical to 0p,--- , Us

that are used to generate table (via £.Enc). Thus this change is conceptual.

Step 3: This corresponds to G4 in the proof of Theorem 2.
— table is set up in a similar way as in £.Enc, but with the following difference. The item of
row 1 and column 1 in table now is computed as 1,1 = (fLLlT“) -Up instead of 11,1 = 1,1 - Vo-
This change is computationally indistinguishable, due to the IV assumption. (We refer to
a detailed analysis in Appendix C.2.)

— Compute 09, -+ ,0g from table, just like £.Dec.
— & 1= by - T vaien) mod N*, and ¢ g Evinadien) oq N,
It is easy to check that 09 = g, 01 = - T~ axul,f}g = Qg - T7®1¥il oo g = g -

T i Aip 17 Tiy Yiy 4 178-T—fﬁ(<xw"ym‘>je[4J), thus & = dg- T ((@ixa¥ixs)icu) = g, Therefore
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E.ct +s E.Enc(fxr,ix € [n]):  //Step 1, [Sitgpi g,ﬁStieE}j, [Step 3 (Equivalent Form)]
For I € [0, 8],

TL,1, 71,2, 71,3, T1,4 <8 ~H%J] i i i ~ ) ]

(1,0 yins) = (91" 92", 95", 9577, 95" 94"% 94" g5 ) mod N*.

o o= hy" hy 2 hy P Ryt mod NG,

Uo,1 Uo,2 Up,3 |-+ | Uo,8 Uo,1|U0,2|U0,3 |- -+ |To,8
1,1 - Vo - - - N P R R
- o ~ Uu1,2 U1,3 | Uui,8 U1,1|U1,2|UL,3 | " " |ULS
’u,1’1T - Vo
table := U2,1 Uz - V1| U2,z |--+| Uzs |2 |U2,1|l2,2|l23 f2.8
U3,1 Uz |U3,3-DV2| | U3s8 U3, 1|U3,2|Us3,3| - |Us3,8
us,1 us,2 us,3 Us,g * U7 Ug,1|Us,2|Us,3 Uus,s

~ AT Tiy 1 A Yiy 1 A Tiy 2 A~ Yiy 2 A Tin,3 A Yin,3 A Tiy 4 A Yiy,4 P
Do := g N Ugo N Ugs N Ugys N Ugs ¥ Uge ™ Tgr TUgg > mod N*.
~ ~ ~ —x ~TYi 1 A" Tiy,2 A" Yiy,2 A %iy,3 A" Yiy,3"Tiy,4"Yiy,4

| Py— Tiy,1 P A0 P A0 A0 P Ao S|
01 1= (1,1 /Do)~ "INl Ny 3Ny 4N Ty 5Ny 6y 2y g mod NP
ln o ATTiy 1 N yis s Tiae2 T Yin 2 2 T80y 3 AT Yiy 3 ATy 4 2~ Yiy 4 s
U2 1= Ug g (ti2,2/01) " ¥ix: Ugz ™ Ug g™ Ugs ™ Ugg ™ U7 ™ Uy mod N*.,
| |
| |
| . |
! STy 1 AT Yin, 1 AT Ty 2 4 " Yiy 2 2" Tiy 3 A Yiy,3 ~ iy 4 !
e aTWiy Uiy 1Ty 2 Wiy 2 iy 8 LYy 8 LTy 4  N—wi 4 s
(D8 1= g N g g 7 gy gy s 5 s g g M (s /Br) At mod N

&= g - Tf;\((zix,jvyik,j)je[ﬂ) mod N&.
T T L (s e sy LT .
= 0g - T (ixd vina)icw) mod N*|

¢ glfA((Ij,A,jayiA,j)je[zi]) mod N € Znx.
Return €.ct := (table, €, t).

Fig. 11. Security proof of £.Enc as an entropy filter for specific monomials a - i, ,1Yi\ 1 Tiy,2Yiy,2%iy,3Yiy,3Tiy,4Yiy 4

we can also implement Step 3 equivalently as follows.

Step 3 (Equivalent Form):
— table is set up in a similar way as in £.Enc, but with the following difference. The item of
row 1 and column 1 in table is computed as 411 = (41,1T) - D instead of 411 = U1, - Up.
— é:=0vg mod N* and t := g{g((w”’j’yi*’j)jew) mod ¢(N)/4 mod N.
In this step, £.Enc does not use (1,1, ,24,y4) mod N at all (only uses (Zij, ¥ij)icln],jel4]
and (z1,y1, "+, Z4,y4) mod ¢(N)/4).

Consequently, through the computationally indistinguishable change, the entropy of (1, y1,- - , x4,
y4) mod N is reserved by the £.Enc part of ENC.

Similarly, DEC can be changed to do decryptions without (z;, yj)§:1 mod N. This can be done
with ¢(N) and the (mod ¢(N)/4) part of secret key. (This corresponds to G7-Gg in the proof of
Theorem 2). Use ¢(N) to make sure that all items in table of £.ct belong to SCRys. If not, reject
immediately. As a result, DEC does not leak any information of (x1,y1,-- ,24,y4) mod N. This
change is computationally indistinguishable, just like the analysis of Pr[Bad] as in the proof of
Theorem 2.
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6.4 The General £ Designed for fgoly

The previous subsection showed how to design & for a specific type of monomials. A general f{
of degree d contains at most (Sgd) = O(d®) monomials. To design a general £ for ]-"goly, we have
to consider all possible types of monomials. For each type of non-constant monomial, we create a
table and each table is associated with a o, which is called a title, and those ©’s are used to hide
message in €. We describe £.Enc and £.Dec in Fig. 12.

There are totally (Sgd) — 1 types of non-constant monomials of degree at most d if we neglect
the coefficients. Each type of non-constant monomial @7 ,y57 175 o 7! 0@5) 3y57 3257 4y;7 4 18 asso-
ciated with a tuple ¢ = (¢1, - - - ¢g), which determines degrees of each variable. Denote by S the set
containing all such tuples, i.e., S := {c = (e1,- - c8) ‘ 1<c+-+cg< d}.

c3

For each c = (¢1,---cg) € S, we generate ta ble(®) and its title 5(© for monomial xfijlyfilwmgyfig

T 3Yiy 3T5) 4Yis 4 via the algorithm TableGen illustrated in Fig. 12. Intuitively, TableGen generates

table© of 1+ ¢ + - -+ + cg rows. The O-th row of table(© is Uo,1," -, Up,g. The form of other rows
are similar to row 0 with a small difference: the next ¢; rows in the 1-st column are multiplied with
Vg, V1, -+ , V¢ —1 Tespectively; the next ¢y rows in the 2-nd column are multiplied with v.,, U¢,+1,

-, Vey+c,—1 respectively, and so forth. TableGen also generates a title 7© for table®). The product
of all the titles, i.e., [[.cs 709, is used to hide T™ in é.

On the other hand, the title 4(9 = #(©) can be recovered from table() with secret key sk =
(z1,y1," - ,24,ys) via the CalculateV algorithm in Fig. 12. Therefore, one can always use the secret
key to extract the titles (5(%))ces from tables (table(c))C one by one with CalculateV and then
recover m correctly.

€S

Security proof. The proof of KDM[FgOly]—CCA security is similar to that of Theorem 2 (cf. Table
3). But games G3-G4 should be replaced with the following three steps (Step 1 - Step 3), so that
the £.Enc part of ENC can be changed to work as an entropy filter, i.e., reserving the entropy of
(z1,y1, - ,24,y4) mod N, w.r.t. any polynomial of degree at most d.

Suppose that the adversary submits (fy, i) € [n]) to ENC. Our aim is to reserve the entropy of

(24, y5)j=1 mod N from E.Enc(pk;, , fx((2ij: vij)icp)jei)) )-

Step 0: In INITIALIZE, the secret keys are generated with z;; = x; + Z;; and y;; = y; +
yij mod | N2/4| for i € [n], j € [4]. This is the same as Gy in the proof of Theorem 2.

Step 1: Use (i j, Ui j)ic[n),jef4] to re-explain (fx,ix € [n]) as (f},4x € [n]), and determine the coef-
ficients a(, ... ) of each monomial of f3, as discussed in Subsection 6.2. Note that A(ey e es) = 0
if the associated monomial does not appear in f. Then

! . . . AW _ . C1 (&) Cc3 (] Cs Ce (64 C8
PA((@iy g2 Yirg)je) = ( Z) Sa(clf"ch) Tix 1Yin1Tiy 2Yix 2% iy 3Yix 3% aYin,a T 0
C1,*,C8)€

where § = a(g,... o) denotes the constant term of e

Step 2: Use secret key ski, = (i, j,¥i,.j) el (together with public key pk; = (hi, j)jes) to
implement £.Enc (This corresponds to Gg in the proof of Theorem 2).
— For each c = (¢1,-++ ,c8) €S
(1) (tablel®,5(e)) TableGen(pk;, ,c),
(2) 9(9 « CalculateV(sk;, ,tablel), c).

%)
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E.ct <3 £.Enc(pk,m): m/L « €.Dec(sk, €.ct):
Parse £.ct = ((table(c))ces, é,t).
For each ¢ = (¢1,--- ,c8) € S For each c = (¢1,-- ,c8) €S
(table®, ()} «—s TableGen(pk, c). (9« CalculateV (sk, table'®, c).
It e ([Lesd®)™" € RUNs
€ :=Ilecs - T™ mod N*. m = dlogy (& ([L.es®©) ") mod N>~
t:=g7" mod N € Zn. If t = g7* mod N, Return m.
Return £.ct := ((table(°>)c€s, e, t). Otherwise, Return L.

TableGen(pk = (h1, hz, hs, ha),c = (c1, -+ ,¢8)):

For each [ € {0,1,--- 725:1 ¢}
fl,lyfl,%":l,&fl 448 H_%J]
(ﬂz L ,ﬂzg) — (gll 17951 1’g;l27g§l,27g§l.37g~ 3’9214’921,4) mod N®.
b = h’ll 1hTz thL Bh'rl 4 mod N°.

g, 1 Up,2 B Up,8
Uy,1 * Vg Uy2 U1s
c1
rows
acl,l '170171 '&cl,Q acl,S
Uey+1,1 Uey+1,2 * Ve, ey +1,8
. . . . C2
table(®) := : : B : rows
Uey+cp,1 Ucy+c2,2 " Vei4ea—1 e uC1+C218
7 7 . )
quzl cj+1,1 “23:1 ci+1,2 “Z, 1¢j+1,8 o ] 1%
Cg
rows
U U BRI 7t U
Z§:1 ;1 Z?:l ¢ji2 E§ 16558 ZJ 161

Return (table<c),®(°) = Uys ) cj)‘
8

CalculateV(sk = (z1,91, - ,T4,ya), tablel®, c = (c1,- - ,Cg)):

1€{0,1,-- 28 1¢}

g 5200 3200 22 Ug 830y 221y o* mod N°
UO*u01uo2“03“04“05“06uo7“08 .
Foreach l € {1,--- ,c1}

N . . JUP
O = (1 /0-1)" luzzy uzs uz4 “15 uzey uz74“1§/4 mod N°.
For each l € {1 + 1, ,c1 4+ ¢c2}

O = 7 (4 1) Y145 T2 Y2 T3 Y3 p T4~ Y4a s
O o=y g (2 /O—1) "V A 20 S0y Py 7ty ¢t mod NP

7 8
For each [ € {37, ¢; + 1.+, 5% o)}
N AT ATYL T2 5 =YD 5 — T3 0 —Y3 5 — T4 (1 A —y4 s
VL= Uy g Uy g Uy 3~ Uy g~ Uy 57U 67Uy 7 (tu,8/D1-1) mod N°.

A(C) oA
Return 9'% := Uss_ e

Fig.12. Top: £.Enc (left) and £.Dec (right) of £ designed for F¢ poly; Middle: TableGen, which generates table(®
together with a title 5©; Bottom: CalculateV, which calculates a title 99 from table(® using secret key.
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— Use (f)(c))ces instead of (6(°))C€S to compute € with € := [[ .5 9@ A @iy 5:vixs)iel) mod N,

F((@iy 55Yiy 5)e04]) mod N

and t := g)
It is easy to check that for each ¢ = (¢1, -+ ,cg) € S, () computed from table(© via CalculateV

is identical to #(©) associated with table(® via TableGen. Thus this change is conceptual.

Step 3: This corresponds to G4 in the proof of Theorem 2.
— For each c = (c1, - ,c8) €S
(1) Compute tablel® via (table(®), 5(°)) s TableGen(pk;, ,c), but with one difference. The
item of row 1 and column j := min{: | 1 < i < 8,¢; # 0} in table(© now is computed
as U1; = (ﬁLjT“(Cl"“’Cs)) - 99 instead of i1 ; = @1 j - Up. This change is computationally
indistinguishable, due to the IV5 assumption.
(2) Invoke ©(©) «— CalculateV(sk;, , table(®), ¢) to extract a title () from the modified table(®).
— é:= HceS 5© . pIA(=iy5Wixd)ie) mod N*, and t := g{,’\((zi»ﬁy%]’)je[él]) mod N.
Observe that for each ¢ = (¢1,--+,¢c3) € S,

€1 2 €3 ,C4 .C5 ,C6 .CT 8
@(C) — @(C) LT Mersseg) iy aYin 1Ty 2Yiy 2%y 3Yiy 3Ty aYiy 4

Then € = Hces 5@ . AA(®iy5:iy.5)jel4))
= HceS o) Hces T e ’Cg)I:;’1y:§’1x§f\j’2y:;v2x§i»3y§§v3x§;v4y§§,4 (@i 5viy ) jela))
= Tlees o(©) .79,
where 0 is the constant term of f{. Therefore we can implement Step 3 equivalently as follows.

Step 3 (Equivalent Form):
— For each c = (¢1,-++ ,c8) €S
Compute table(®) via (table(®), 5(9)) «s TableGen(pk;, ,c), but with one difference. The
item of row 1 and column j :=min{i | 1 <i < 8,¢; # 0} in table(© now is computed as
le’j = (ﬁl,jTa(C1w~,08)) - 7 instead of ’LALL]‘ = ald - .

o é — HCES 'E(C) . T(s mOd NS, and t= glf)\((xi/\,jvyi)\,j)jEH]) mod ¢(N)/4 mod N

In this step, £.Enc does not use (z1,y1, -+ ,74,y4) mod N at all (only uses (Z;j, ¥i,j)icin],jel4]
and (561,2/17 Ty 5U472J4) mod ¢(N)/4)

As a result, through the computationally indistinguishable change, the entropy of (x1,y1,- - , 24,
y4) mod N is reserved by the £.Enc part of ENC.

Similarly, DEC can be changed to do decryptions without (z;, yj)?zl mod N, the same argument
as in Subsection 6.3.
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A  Modular Arithmetic Circuit and Leftover Hash Lemma

Definition 13 (Modular Arithmetic Circuit [MTY11]). A Modular Arithmetic Circuit (MAC)
is a circuit whose inputs and constants belong to Zx for some K € N. Fach gate in this circuit is

+,— or - over Zi with unbounded number of fan-out. The size of a MAC is defined as the number

of gates in this circuit.

We state a simplified version of Leftover Hash Lemma [HILL99] with uniform input.
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Lemma 7 (Leftover Hash Lemma). Let H = {H : X — Y} be a family of universal hash
functions. Let X be the uniform distribution over X. Then for H < sH, where H and X are
independent, it holds that

A( (H,H(X)), (H,Uy)) < % VIV

where Uy is the uniform distribution over Y. In particular, if |Y|/|X| < 2790, (H H(X)) is
statistically close to the uniform distribution over H x ).

B The LLJ Scheme

We review the encryption algorithm of the LLJ scheme as follows.

The public parameter is prm = (N, g1, g2, N, g) where N = pq, g1 and gy are generators of group

SCRys, N =2N + 1, and g is a generator of group QRy.
Tr1 T2

The secret key is 21,22 € [[N?/4]] and public key is h = gi'g5>.

Let H be a universal hash function.

The ciphertext (uj,ug,e,ae.ct) is computed as follows.

— k<sZy, r<s[|N/4|] and 7 <s [[N/4]].

— u1 = g} mod N2 uy = g4 mod N2 e =h"T* mod N2.

— @y = g} mod N*, Gy = g5 mod N*, & =h"T™ mod N*¥, t = H(u1||uz||e||(¢]* mod N)).
— ae.ct «—s AE.Enc(k, t||@ ||t2]||€).

We explain their encryption algorithm with three components.

— KEM.Enc(h) outputs a key k and kem.ct = u||uz||e, where u; = g7 mod N?, us = g5 mod N? e =
R"T* mod N2, with k <—s Zy and r <s [| N/4]].

— E.Enc(h, m, kem.ct = uj||uz||e) outputs £.ct = t||iiy ||ti2||€, where @1 = g mod N*®, iy = g5 mod N*,
é =h"T™ mod N*, t = H(u1||uz||e||(¢7* mod N)), with 7 <s [|N/4]].

— Fe.ct s AE.Enc(k, £.ct = t]|a1||as]|é).

C Omitted Proofs

C.1 Proof of Claim 1

We construct a PPT adversary B against the INT-OT security of the AE scheme. Suppose that the
INT-OT challenger picks a secret key & <—s Kag randomly. B has access to the oracle ENCag(+) =
AE.Enc(k,-) one time.

B will simulate game Gll,i for adversary A. First, B prepares prmpag the same way as in G/u
That is, invoke (NV, p, q) <—s GenN(1¢), compute N := 2N + 1, pick g1, g2 = g% +—s QRy, Hy s Hi,
Hy s Ho randomly, and set prmajag := (IV,p,q, N, g1, g2, H1, H). B sends prmpjag to A.
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B does not generate the secret key k = (ki, k2, ks, k4) explicitly, and instead, it picks ki o,
153,4 s Zy randomly, and implicitly sets k1 +wko = /21,2 and k3 +wky = 153,4, where w = dlogglgg.

To answer the A\-th (A € [Q.]) ENC query (my,auxy, f1), where fy = (ax,bx = (bx1,bx2,0x3,
ba4)) € Frafi, B prepares the challenge ciphertexts as follows:

— If A € [i — 1], B does not use the secret key k at all, and proceeds the same way as in game G'“
That is, B picks wy1,wx2 s Zn\{0} randomly and sets (cx1,cx2) = (giyk’l,g;u“) € QR%.
Then B chooses k) s Kag and invokes x <—s AE.Enc(ky, my).

— If A € [i+1,Q.], B can always use the value of ]_ﬁ,g = k1 +wks and 123,4 = k3 +wky4 to prepare the
response. That is, B picks wy «—s Zy\{0} randomly and sets (cx1,cx2) := (¢, 95) € QR%.
Then B computes t) := Hi(cy 1, €2, auxy),

wxax-(k1,2+tx-k3a)  wa-((ba,1+wbx 2)+tr-(bx,3+wbx,4))
R) = HQ(gl "9 )a

and invokes x) <s AE.Enc(ky, m)).
According to Eq. (2) in the proof of Lemma 1, the simulation is perfect.

— If A =4, B does not use the secret key k at all, and instead, it will resort to its own ENCag(-) ora-
cle. More precisely, B picks w; 1, w; 2 <—s Zy\{0} randomly, computes (c; 1,¢;2) := (g, ", g5 °) €
QR% and t; := Hy(ci1,ci2,aux;). Then B implicitly sets x; = & as the secret key used by its
challenger, and queries its ENCag(+) oracle with m; and gets the challenge ;.

According to the ENCag(-) oracle, we have x; <—s AE.Enc(%, m;). As discussed in the proof of
Lemma 3, in game Gll,i? K; is statistically close to the uniform distribution over Kag. Therefore,

the simulation of B is identical to game G'LZ- except with a negligible probability 27,

B returns the challenge ciphertext (cy 1,c¢x 2, xa) to A. Moreover, B puts (aux,\7 s (extseas X/\>)
to Qene, (auxy, fa) to Qauxr, and (cx1,cx 2, auxy, tx) to Q7 ag.

Finally B receives a forgery (aux*, %, (c], e, X*>) from A, where f* = (a*,b* = (b7, b3,b5,b})) €
Fraff- B prepares its own forgery w.r.t. the AE scheme as follows.

o If (aux*,f*, (c*{,cg,x*» € Qene, B aborts the game.

e If there exists (auxy, fn) € Qauxr such that auxy = aux® but f\ # f*, B aborts.

o If (¢}, c3) ¢ QR% V (¢}, ¢3) = (1,1), B aborts.

o t*:=Hj(c],ch,aux®).

e If there exists (cy 1, cx2,auxy,ty) € Q7 4¢ such that ty = t* but (cy 1, ¢y 2, auxy) # (c], ¢35, aux*),
B aborts.

o If t* £ t;, B aborts. If t* = ¢;, B outputs x* to its INT-OT challenger.

We analyze the success probability of B. As discussed in the proof of Lemma 3, the sub-
event Forge At; = t* will imply that (aux*, f*,cj,c3) = (aux;, fi,ci1,¢i2), X* # Xi, 8* = ki and
AE.Dec(r*, x*) # L. Since B implicitly sets k; = & as the secret key used by its challenger, then
X* # Xi, &5 = k; and AE.Dec(k*, x*) # L implies that x* # x; and AE.Dec(%, x*) # L, i.e., x*
outputted by B is a fresh forgery.

In summary, B simulates game G/Li perfectly with A except with a negligible probability 2~
and B outputs a fresh forgery as long as the sub-event Forge A t; = t* occurs. Thus, we have that
Pry s [Forge A t; = t*] < Advf(%"logt(ﬁ) + 272 and the claim follows.
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C.2 Proof of Indistinguishability between Steps 2 and 3 in Subsection 6.3

To show that the difference between Step 2 and Step 3 can be reduced to the IV5 assumption, we
can construct a PPT adversary BCHAL%"S (N,g1,---,g5) tosolve the IV problem. First, B generates
secret and public keys in INITIALIZE as Step 0 does. When A submits an encryption query (fy, i) €
[n]), B re-explains (fx,ix € [n]) as (f},4x € [n]) as Step 1 does and obtains the coefficient a. Then
B simulates £.Enc as follows.

— For the 0-th row of table, B computes (o 1, - ,%,g) and 7y as in Step 2 and Step 3.
— For the 1-st row, B queries its own CHAL?\,5 oracle with (a,0, x, %, *), and obtains its challenge
(f 1,47 9, %, %, %), that is
Case (b= 0): (@}, ,) = (91", 95"") = (@11, 712) or
Case (b=1): (u171,u1,2) = (g 11 1T“,g;1 DEN(TRVARTEI)
B sets ﬁ171 = &T,l . 170, which is ’111,1 = U171 . 170 if b =0 and 11171 = ﬂl’lTa . 170 if b = 1. Then

B generates the rest elements (413, -- ,u1,8) in the 1-st row of table using its public keys, and
sets the 1-st row of table to be ’6171 =uj - ﬁo‘f/f{ 2‘&1 3‘- - ‘111 8‘

~ ~ ~ ~ ~ *Izl*yz1~$¢,2 ~yz4

B also computes 97 from (@] j, ] o, 81,3, -+ ,U1,8) via 0] 1=ty 1 Uy g Uy 3™ Uy g

which equals
Case (b=0): v =01 or
Case (b=1): 0] = 0,7 “¥int,
— For the 2-nd row, B queries its own CHAL{’V5 oracle with (0,a - z;, 1, %, *, ), remember that B

has the secret keys, and obtains its challenge (@3, U3 o, %, ¥, ) that is

Case (b= 0): (@3,,75,) = (9", 95™") = (@21, 7in2) or

Case (b= 1): (5,15 ,) = (977", g5 T""31) = (@ig,1, g T3 1),
B sets g2 := ’L~L272 07, that is, to g = U9 - U1 if b = 0 and g = (U 2T 31 ) (01T~ ir1) =
Ugo - 01 if b = 1. Thus 122 = U2 - ¥1 in both cases. Then B generates the rest elements

(Gg,3,--- ,Ugg) in the 2-nd row of table using its public keys, and sets the 2-nd row of table to
be ’ﬂ; 1‘@272 == ’ELS 92" ’Dﬂﬂg,g" N ‘agyg‘.

~ ~ ~ ~ ~ *le~*yzl~x12 —Yiy 4

B also computes 03 from (a3 1, U3 o, 2,3, ,Uz,8) Via 03 1=ty V lgy gz ™" - ligg™",

which equals
Case (b=10): 75 = g or
Case (b=1): 05 = DT @ ¥ix1¥ix1,
— For the 3-rd row, B queries its own CHAL%V5 oracle with (%, a -z, 1¥i, 1,0, %, *), and obtains its
challenge (%, @3 3, 43 4, %, *), that is
Case (b= 0): (u33,u5,) = (95, 9572) = (a3, 3,13.4) O
Case (b= 1): (5, ) = (g5 T "0 1Vnt, g*%) = (ig g7 "1 Vinst g ).
B sets 33 1= 1133 V3, snnllarly, it is easy to check that w33 = 133 - U2 in both cases. Then B
generates the rest elements in the 3-rd row of table using its public keys, and sets the 3-rd row

of table to be ”11371‘?13’2‘11373 = ’L~L§ 3" ’D;‘ﬁ;dﬂgﬁ" .- ‘ﬂg 8"
- . . - iy 1 Yiy 1 F Ty 2 Ky 2
B also computes @5 from (3,1, U3 2, U3 3, U3 4, U5, "+, Uss) Via 03 1= g Ugp ™ Ugg gy
—Tiy,3 ~—Yiy 4 .
Ugs " Ugg , which equals

Case (b =0): 15:3: = U3 or
Case (b= 1): 05 = 03T~ “Pix1¥in1%ix2,
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— For the 4~8-th rows, B computes table similarly as above.
— Finally B computes 0, - - - , 0g from table, just as in Step 2 and Step 3 (also as the original £.Dec

algorithm), and computes € := g - T @iy 5:vixi)iew) mod N*, t:= g{*((xi*’j’y”’j)je[‘q) mod N
using the secret keys.

If b = 0, B perfectly simulates Step 2. If b = 1, B perfectly simulates Step 3. Any difference between
Steps 2 and 3 results in B’s advantage over the IV5 problem.

D Figures for Proof of Theorem 2

INITTALIZE:

// Games Go-G10, [Gé-:G:l(i, G5-G10, Ga-Glo, G7-G107 Gg-Glo
Prmajag <—$ /—\IAE.Setup(lZ), where prmyae = (N,p,q, N, g1, G2, Hi, Ha).
prmk,AE = (N, N,gl,gz, H17 H2)
g1, 92, 93, 94, g5 <5 SCRys.
prm := (Prmujag; 91 92, g3, 94, G5 )-
) = (p - 1)g - 1)

P Y1, 5 T, Ya 8 ,[L%U 4

For ¢ € [n]
Tonyor ey cs (150
:rff'i,l,gi,h y Ti4,Yia <8 HNTJ] , 1:
(@i, Y, @iy Yia) = (@04 Tig, g1+ iy Tat Biayya + Gia) mod | A

(hig, hio, his, hia) == (g “lgy ", 794_”495_%4) mod N°.
pk; := (hi,1, hi2, hiz, hia).
ski == (T4,1,Yi,1,** » Ti4, Yira).

B s {0,1}. // challenge bit

r* 8 H%J] a1, 02,Q3,04, 05 <$ ZnN.

k* = (k7, k3, k3, kL) <3 Z%.

K" = (kY k3, k3, k) s Z%.

Return (prm, pky,- -, pk,,).

Fig. 13. Games Go-Gig for the proof of Theorem 2.
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ENC(fa,ix € [n]): // the A-th query
// Games Go-Gio, [G3=G10, G4-G10, G5-G10, G6-G10, Go-G10, G1o

Parse f)\ = ({ai,j,bi,j}ie[ 1,i€[4] ) € Fagr.
my = Z?zl(ai,lxi,l + bi1Yi1 + -+ Gi,4Ti4 + biayia) + c

0= 0™l
ka = (k15 kx2, bz, kaa) <8 Z.
m s [[F]]-
Sx = (Sa,1, 80,2, 2,3, Sx,4) <8 Zy.
J ka :=17x k" +sx € Zy.
(kxa,Ex2, ka3, kaa) := (Tak] + sx1,7ak3 + sx,2,7ak3 + sx,3,72k] + sx,4) mod N.
Jkx:=7x-K +s\ €ZK.

(kx1,kx2, kx s, kxa) == (TakT + sx,1,7ak5 + sx2,7ak3 + sx,3,7Ak3 + sx,4) mod N.
(ua1, - ,uxs) == (g7, ,gs*) mod N2.
(un,uns) o= (g1 T°)™, -, (g5 T*°)™) mod N2
(ex1,--+ s exa) i= (A} (TN oo R T*A4) mod N2,
(ex1,+ ,exa) = (u)\z”‘ lu;;ik’lTk*'l, e quu 4u;’?*’4T’“>"4) mod N2,
EX,1," " ,EN4) 1=
( (h:}\’r’\T” ()kl a1 0¢2yi)\,1)+3)\,17. .. h:)\’IZ\TT)\ (k3 —ouaiy a—os5ysy 4)+sa, ) mod N2,
auxy = (UA,1, L, UNB,EN L, ,6)\,4)-
Fa1, a2, as, Taa <8 [[ T )] i i
(ﬁ)\ 1, Ux2, 0, Ux7, Urg) 1= (91 179m L, g Mt g™ mod NO
= hjj VR ERIS R AT™ mod N°.
Ex =1y W ~A$2l%1 ~>\3;u zﬂxiu 2a>\§u 3~>\%u 371;;” 417‘>\1:k14TmB mod N°.
ta=1
(’l~l,>\,1,ﬂ>\ 2, 5 Ux 7,7?L>\,8) 0= (g?’szi il L. ,g;'\’4Tzi bi*4) mod N°®.

Piy = E (az 1(ZTin — Tiy 1 ) +bi,1(Gi,1 — Tiy,1) + -+ bia(Pija — ?ji,\,4))~
er = NI ST mod N

ty = g1 % mod N € Zn.

E.cty = (’l])uh cee ,’I]A,& ék,t)\).

aiae.cty <s AIAE.Enc(ky, £.ctx,auxy).

aiae.cty < AIAE.Enc(ky, £.ctx,auxy).

aiae.cty s AIAE.Enc(kx, 04, auxy).

Qene := Qenc U {((aux,\,aiae.ctﬁ,n)}.

Return (auxy, aiae.cty).

Fig. 14. Games Go-Gio for the proof of Theorem 2.
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DEC((aux, aiae.ct), i € [n]):

// Games Go-Gio, [G1-Giql, G7-G10, Gs-G1q,
If ({aux, aiae.ct),i) € Qenrc, Return L.
[If ({aux, aiae.ct), ) € Qenc, Return L]

Parse aux = (u1,- -+ ,us, €1, ,€4).
T; 1 Yil Ti,4  Yi4
If equ; " up" -+ eauy ug”t € RUy2

(k1 ka) = (dlogp(eruy” uy™"), -+, dlogp(esuy " *ui"*)) mod N.
(o, ab) = (dlogr(uf™)/@(N), - , dlogy (uf"™) /¢(N)) mod N.
(M, 74) == (dlogr(ef™) /$(N), -+ , dlogy(e§™) /() mod N.
(1, ka) i= (@l@in + abyin + 1, -+, Cuia + by +74) mod N.
k = (l{:l, kz, ks, k‘4)

Else, Return L.

E.ct/Ll + AIAE.Dec(k7 aiae.ct, aux).

Parse £.ct = (G, ,Us, €, ).

If eay ™ ayt - antayt € RUys
m = dlogp ()" ay"" - - iy *ag*) mod N1,
(@1, as) = (dlogp (@] ™) /$(N), -+ , dlogp (g ™) /(N)) mod N*~.
7 := dlogp(e*™)/$(N) mod N1,
m = @121 + G2yi1 + - + Gria + Gsyia + 5 mod N°Th

If t = g7* mod N, Return m.
Else, Return L.

FINALIZE(S'): // Games Go-Gio
Return (8 = B).

Fig. 15. Games Go-Gio for the proof of Theorem 2.
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