
Efficient KDM-CCA Secure Public-Key Encryption

for Polynomial Functions

Shuai Han1,2, Shengli Liu1,2,3, and Lin Lyu1,2

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{dalen17,slliu,lvlin}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. KDM[F]-CCA secure public-key encryption (PKE) protects the security of message f(sk),
with f ∈ F , that is computed directly from the secret key, even if the adversary has access to a
decryption oracle. An efficient KDM[Faff]-CCA secure PKE scheme for affine functions was proposed
by Lu, Li and Jia (LLJ, EuroCrypt2015). We point out that their security proof cannot go through
based on the DDH assumption.

In this paper, we introduce a new concept Authenticated Encryption with Auxiliary-Input AIAE and
define for it new security notions dealing with related-key attacks, namely IND-RKA security and weak
INT-RKA security. We also construct such an AIAE w.r.t. a set of restricted affine functions from the
DDH assumption. With our AIAE,

– we construct the first efficient KDM[Faff]-CCA secure PKE w.r.t. affine functions with compact
ciphertexts, which consist only of a constant number of group elements;

– we construct the first efficient KDM[Fdpoly]-CCA secure PKE w.r.t. polynomial functions of bounded
degree d with almost compact ciphertexts, and the number of group elements in a ciphertext is
polynomial in d, independent of the security parameter.

Our PKEs are both based on the DDH & DCR assumptions, free of NIZK and free of pairing.

Keywords: public-key encryption, key-dependent messages, chosen-ciphertext security, authenticated
encryption, related-key attack

1 Introduction

Traditional Chosen-Ciphertext Attack (CCA) security of a public-key encryption (PKE) scheme
considers the security of messages chosen by an adversary, even if the adversary obtains the public
key pk, challenge ciphertexts of the messages, and has access to a decryption oracle (which provides
decryption services to the adversary but refuses to decrypt the challenge ciphertexts). Note that
the adversary cannot compute messages directly from secret keys, since it does not possess the
secret keys. Therefore, CCA security does not cover the corner, where messages closely depend on
the secret keys, say the secret keys themselves or functions of the secret keys. This issue was first
identified in [GM84]. Later the security of key-dependent messages was formalized as KDM-security
[BRS02]. KDM-security is an important notion, and has found wide applications, like hard disk
encryption [BHHO08], cryptographic protocols [CL01], etc.

KDM-security w.r.t. a set of functions F is denoted by KDM[F]-security. The larger F is, the
stronger the security is. Roughly speaking, n-KDM[F]-security of PKE considers such a scenario:
an adversary is given public keys (pk1, pk2, · · · , pkn) of n users and an encryption oracle. Whenever
the adversary queries a function f ∈ F , the encryption oracle will always reply with an encryption
of a constant say 0, or always reply with an encryption of f(sk1, sk2, · · · , skn). If the adversary

cannot tell which case it is, the PKE is n-KDM[F]-CPA secure. If the adversary has also access
to a decryption oracle in the scenario, then KDM[F]-CPA security is improved to KDM[F]-CCA
security. Obviously, KDM-CCA security notion is stronger than KDM-CPA.

KDM[F]-CPA Security. The BHHO scheme [BHHO08] was the first PKE achieving KDM[Faff]-
CPA security based on the Decisional Diffie-Hellman (DDH) assumption, where Faff denotes the
set of affine functions. It was later generalized by Brakerski and Goldwasser [BG10] to KDM[Faff]-
CPA secure PKE schemes based on the Subgroup Indistinguishability Assumption (including the
QR and the DCR assumptions). These schemes have incompact ciphertexts containing O(`) group
elements, where ` denotes the security parameter.

A variant of Regev’s scheme [Reg05] was shown to be KDM[Faff]-CPA secure and has compacter
ciphertexts by Applebaum et al. [ACPS09].

Barak et al. [BHHI10] proposed KDM-CPA secure PKE w.r.t. a very large function set, i.e.,
the function set of boolean circuits of bounded size p = p(`). However, their scheme is inflexible
and highly impractical, since its encryption algorithm depends on the bound p and the number of
users, and the ciphertext contains a garbled circuit of size at least p = p(`).

Brakerski et al. [BGK11] amplified the BHHO scheme to KDM[Fdpoly]-CPA security w.r.t. the

set of polynomial functions of bounded degree d. However, their ciphertext contains O(`d+1) group
elements.

It is Malkin et al. [MTY11] who designed the first efficient PKE scheme achieving KDM[Fdpoly]-
CPA security. Their ciphertext contains only O(d) group elements, thus d can be polynomial in ` in
their case. The function set Fdpoly is characterized by a polynomial-size Modular Arithmetic Circuit
in [MTY11].

KDM[F]-CCA Security. KDM[F]-CCA security of PKE is far more difficult to design than
KDM[F]-CPA security. Camenisch et al. [CCS09] gave the first solution, following Naor-Yung’s
paradigm, which needs a KDM-CPA secure PKE, a CCA-secure PKE and a non-interactive zero-
knowledge (NIZK) proving that the two PKEs encrypt the same message.

NIZK is not practical in general, except Groth-Sahai proofs [GS08]. When following [CCS09]’s
approach, the only possible way to get an efficient KDM-CCA secure PKE, is using Groth-Sahai
proofs together with an efficient KDM-CPA secure PKE. However, many existing efficient KDM-
CPA secure schemes, such as [ACPS09, MTY11], are not based on pairing-friendly groups, thus
not compatible with Groth-Sahai’s efficient NIZK.

Another work by Galindo et al. [GHV12] is based on the Matrix DDH assumption over pairing-
friendly groups. Their scheme has compact ciphertexts, but only obtains a bounded form of KDM-
CCA security, i.e., the number of encryption queries is limited to be linear in the size of the secret
key.

To get an efficient KDM-CCA secure PKE, Hofheinz [Hof13] proposed another approach, which
uses a new tool called “lossy algebraic filter”. His work results in the first PKE enjoying both
KDM-CCA security and compact ciphertexts (consisting only of a constant number of group ele-
ments). However, the function set Fcirc only consists of selection functions f(sk1, · · · , skn) = ski
and constant functions.

It is quite challenging to enlarge F for KDM[F]-CCA security while still keeping PKE effi-
cient. One effort was recently made by Lu, Li and Jia [LLJ15], who proposed the first efficient
KDM[Faff]-CCA secure PKE with compact ciphertexts. We call their construction the LLJ scheme.

2

Table 1. Comparison between PKEs either achieving KDM-CCA security or against function set Fdpoly. Here ` is the

security parameter. Fcirc, Faff and Fdpoly denote the set of selection functions, the set of affine functions and the set
of polynomial functions of bounded degree d, respectively. “CCA” means the scheme is KDM-CCA secure. “Free of
Pairing” asks whether the scheme is free of pairing. |CT| shows the size of ciphertext. G, ZN3 , ZN2 and ZN̄ are the
underlying groups. s can be any integer greater than 1. The symbol “?” means that the security proof is not rigorous.

Scheme Set CCA? Free of Pairing? |CT| Assumption

[BHHO08] + [CCS09] Faff
√

− (6`+ 13)|G| DDH

[BGK11] Fdpoly −
√

(`d+1)|G| DDH or LWE

[MTY11] Fdpoly −
√

(d+ 2)|ZNs | DCR

[Hof13] Fcirc
√

− 6|ZN3 | + 49|G| DDH & DCR

[LLJ15] Faff ?
√

3|ZN2 | + 3|ZNs | + |ZN̄ | DDH & DCR

Our scheme in §5 Faff
√ √

9|ZN2 | + 9|ZNs | + 2|ZN̄ | DDH & DCR

Our scheme in §6 Fdpoly

√ √
9|ZN2 | + (8d9 + 1)|ZNs | + 2|ZN̄ | DDH & DCR

There is an essential building block called “Authenticated Encryption” (AE) in their scheme. The
KDM[Faff]-CCA security heavily relies on a so-called INT-Faff-RKA security of AE. INT-Faff-RKA
security of AE means that a PPT adversary cannot forge a fresh forgery (f∗, ae.ct∗) such that
AE.Decf∗(k)(ae.ct

∗) 6= ⊥, even if the adversary observes multiple outputs of AE.Encfj(k)(mj) with
his choice of (fj ,mj). Unfortunately, we found that the INT-Faff-RKA security proof of the specific
AE does not go through to the DDH assumption, which in turn affects the KDM[Faff]-CCA security
proof of the LLJ scheme. Our essential observation is that the DDH adversary is not able to employ
the fresh forgery from the adversary of AE to solve the DDH problem, since the DDH adversary
does not have any trapdoor to convert the computing power (forgery) to a decision bit.

As for KDM[Fdpoly]-CCA security, [CCS09]’s paradigm is the unique path to it up to now.

Unfortunately, the only efficient KDM[Fdpoly]-CPA secure scheme [MTY11] does not compose well

with Groth-Sahai proofs, so it has to resort to the general NIZK. Other KDM[Fdpoly]-CPA secure

schemes either is highly impractical [BHHI10] or has ciphertext containing O(`d+1) group elements
[BGK11], which grows exponentially with the degree d.

Our Contribution. We work on the design of efficient PKE with KDM[Faff]-CCA security and
KDM[Fdpoly]-CCA security.

– We identify the proof flaw in [LLJ15], where an efficient KDM[Faff]-CCA secure PKE was
claimed. We show that for “Authenticated Encryption” (AE) used in the LLJ scheme, the INT-
Faff-RKA security reduction to the DDH assumption does not work. This proof flaw directly
affects the KDM[Faff]-CCA security proof of the LLJ scheme.

– We provide the first efficient KDM[Faff]-CCA secure PKE w.r.t. affine functions with compact
ciphertexts. Our scheme has ciphertexts consisting only of a constant number of group elements
and is free of NIZK.

– We provide the first efficient KDM[Fdpoly]-CCA secure PKE w.r.t. polynomial functions of bounded
degree d with almost compact ciphertexts. Our scheme is free of NIZK. The number of group
elements in a ciphertext is polynomial in d, independent of the security parameter `.

We summarize known PKEs either achieving KDM-CCA security or against function set Fdpoly

in Table 1.

3

Our Approach. The challenge for KDM[F]-CCA security of PKE lies in the fact that the ad-
versary A has multiple access to the encryptions of f(sk) and decryption oracle Dec(sk, ·), with
f ∈ F and sk the secret key. Let us consider only one secret key for simplicity. The information of
sk might be leaked completely via encryptions of f(sk).

To solve this problem, we follow a KEM+DEM style and construct our PKE with three building
blocks: KEM, E and AIAE, as shown in Fig. 1.

• We propose a new concept “Authenticated Encryption with Auxiliary-Input” (AIAE). We define
for it new security notions dealing with related-key attacks, namely weak INT-F ′-RKA security
and IND-F ′-RKA security.
• We design the other building blocks KEM and E . KEM.Enc encapsulates a key k for AIAE, and

the encapsulation kem.ct serves as an auxiliary input aux for AIAE.Enc. E .Enc encrypts m to
get a ciphertext E .ct, which serves as an input for AIAE.Enc.

We show how to achieve KDM[F]-CCA security with our three building blocks.

– E .Enc can behave like an entropy filter (the concept was named in [LLJ15]) for F . That is,
through some computationally indistinguishable change, some entropy of sk is always reserved
even if multiple encryptions of fj(sk) are given to A. Here fj ∈ F is chosen by A.

– The fresh keys kj used by AIAE.Enc can be expressed as functions of a base key k∗, i.e., kj =
f ′j(k

∗), where f ′j ∈ F ′ for some function set F ′. We stress that F ′ might be different from F .
– KEM.Enc is able to use the remaining entropy of sk to protect the base key k∗, via some

computationally indistinguishable change.
– The weak INT-F ′-RKA security of AIAE guarantees: given multiple AIAE ciphertext-auxiliary

input pair (aiae.ctj , auxj) encrypted by f ′j(k
∗), it is infeasible for a PPT algorithm to forge a

new (f ′, aiae.ct, aux) satisfying (1) AIAE.Decf ′(k∗)(aiae.ct, aux) 6= ⊥; (2) if aux = auxj for some j
then f ′ = f ′j .

– Decryption oracle can reject all invalid ciphertexts that are not properly generated by the en-
cryption algorithm, via some computationally indistinguishable change. If the invalid ciphertext
makes KEM.Dec decapsulate a key f ′(k∗), AIAE.Dec will output ⊥, due to its weak INT-F ′-RKA
security. Otherwise, the invalid ciphertext will be rejected by E .Dec or KEM.Dec, due to the
remaining entropy of sk. As a result, no extra information about sk is leaked.

– The IND-F ′-RKA security of AIAE ensures: given multiple AIAE ciphertext-auxiliary input pair
(aiae.ctj , auxj) with key f ′j(k

∗) encrypting either m0 or m1, it is infeasible for a PPT algorithm
to distinguish which case it is, even if f ′j ∈ F ′ is submitted by the algorithm.

– By the IND-F ′-RKA security of AIAE, the encryption of E .ct can be replaced with an encryption
of all zeros. Then the KDM[F]-CCA security follows.

With this approach, we can construct PKEs possessing KDM[Faff]-CCA and KDM[Fdpoly]-CCA
security respectively, by designing specific building blocks.

Comparison with LLJ. We inherit the idea of utilizing RKA security of AE to achieve KDM
security from LLJ. However, our approach deviates from LLJ in three aspects.

1. The structure of our scheme is different from LLJ. It is also possible to explain the LLJ scheme
with three components KEM, E and AE, see Appendix B. However, their components were com-
posed in a different way. In the LLJ scheme, the output kem.ct of KEM serves as an additional
input for E .Enc. With their structure, E is expected to authenticate kem.ct. In our approach,
kem.ct is the auxiliary input of AIAE, thus can be authenticated by AIAE.

4

KEM.Enc

E.Enc
AIAE.Enc

ENCRYPTION DECRYPTION

KEM.Dec

?

AIAE.Dec

?

E.Dec

pk

m
E.ct

k

kem.ct=aux kem.ct

aiae.ct

sk

k

E.ct m-
-

-

?

-

-
- -

-
-

?
-

Fig. 1. Our approach of PKE construction. Here KEM and E share the same public/secret key pair. AIAE.Enc uses k
output by KEM to encrypt E .ct with auxiliary input aux := kem.ct, and outputs ciphertext aiae.ct.

2. The syntax and security requirements of our AIAE are different from LLJ’s AE. Their AE does
not support auxiliary input, and the security proof of their AE instantiation has some problem,
as shown in Section 3.

3. Our KEM and E are newly designed building blocks which compose well with our AIAE. We give
two designs of E to support KDM[Faff]-CCA and KDM[Fdpoly]-CCA security respectively.

2 Preliminaries

Let ` ∈ N denote the security parameter. For i, j ∈ N with i < j, define [i, j] := {i, i+ 1, · · · , j} and
[j] := {1, 2, · · · , j}. Denote by s ←$ S the operation of picking an element s from set S uniformly
at random. For an algorithm A, denote by y ← $ A(x; r), or simply y ← $ A(x), the operation of
running A with input x and randomness r and assigning output to y. Let ε denote the empty
string. For a primitive XX and a security notion YY, we typically denote the advantage of a PPT
adversary A by AdvYY

XX,A(`) and define AdvYY
XX(`) := maxPPTA AdvYY

XX,A(`). Let 2−Ω(`) denote the

value upper bounded by 2−c·` for some constant c > 0.

Games. Our security proof will be game-based security reductions. A game G starts with an
Initialize procedure and ends with a Finalize procedure. There are also some optional procedures
Proc1, · · · ,Procn performing as oracles. All procedures are described using pseudo-code, where
initially all variables are empty strings ε and all sets are empty. An adversary A is executed in game
G if it first calls Initialize, obtaining its output. Then the adversary may make arbitrary oracle-
queries to procedures Proci according to their specification, and obtain their outputs. Finally it
makes one single call to Finalize. By GA ⇒ b we means that the game G outputs b after interacting

with A, and b is in fact the output of Finalize. By a
G
= b we mean that a equals b or is computed

as b in game G.

2.1 Public-Key Encryption and KDM-CCA Security

A public-key encryption (PKE) scheme is made up of four PPT algorithms PKE = (Setup,Gen,Enc,
Dec): Setup(1`) generates a public parameter prm, which implicitly defines a secret key space SK and
a message spaceM; Gen(prm) takes as input the public parameter prm and generates a public/secret
key pair (pk, sk); Enc(pk,m) takes as input the public key pk and a message m, and outputs
a ciphertext pke.ct; Dec(sk, pke.ct) takes as input the secret key sk and a ciphertext pke.ct and

5

outputs either a message m or a failure symbol ⊥. The correctness of PKE requires that, for all
prm←$ Setup(1`), all (pk, sk)←$ Gen(prm), all m ∈ M and all pke.ct←$ Enc(pk,m), it holds that
Dec(sk, pke.ct) = m.

Let n ∈ N and F be a family of functions from SKn to M. We define the n-KDM[F]-CCA
security via the security game in Fig. 2.

Procedure Initialize:

prm←$ Setup(1`).

For i ∈ [n]

(pki, ski)←$ Gen(prm).

β ←$ {0, 1}. // challenge bit

Return (prm, pk1, · · · , pkn).

Procedure Enc(f ∈ F , i ∈ [n]):

m1 := f(sk1, · · · , skn).

m0 := 0|m1|.

pke.ct←$ Enc(pki,mβ).

QENC := QENC ∪ {(pke.ct, i)}.
Return pke.ct.

Procedure Dec
(
pke.ct, i ∈ [n]

)
:

If (pke.ct, i) ∈ QENC , Return ⊥.

Return Dec(ski, pke.ct).

Procedure Finalize(β′):

Return (β′ = β).

Fig. 2. n-KDM[F]-CCA security game for PKE.

Definition 1 (KDM[F]-CCA Security for PKE). A public-key encryption scheme PKE is
n-KDM[F]-CCA secure if for any PPT adversary A, Advkdm-cca

PKE,A (`) := |Pr[n-KDM[F]-CCAA ⇒
1]− 1/2| is negligible in `, where game n-KDM[F]-CCA is specified in Fig. 2.

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) consists of three PPT algorithms KEM = (KEM.Gen,KEM.
Enc,KEM.Dec): KEM.Gen(1`) outputs a public/secret key pair (pk, sk); KEM.Enc(pk) uses the public
key pk to compute a key k and a ciphertext (or encapsulation) kem.ct; KEM.Dec(sk, kem.ct) takes
as input the secret key sk and a ciphertext kem.ct, and outputs either a key k or a failure symbol
⊥. The correctness of KEM requires that, for all (pk, sk) ← $ KEM.Gen(1`) and all (k, kem.ct) ←
$ KEM.Enc(pk), it holds that KEM.Dec(sk, kem.ct) = k.

2.3 Authenticated Encryption: One-Time Security and Related-Key Attack Security

Definition 2 (Authenticated Encryption). An authenticated encryption (AE) scheme AE =
(AE.Setup,AE.Enc,AE.Dec) consists of three PPT algorithms:

• AE.Setup(1`) outputs a system parameter prmAE, which is an implicit input to AE.Enc and
AE.Dec. The parameter prmAE implicitly defines a message space M and a key space KAE.
• AE.Enc(k,m) takes as input a key k ∈ KAE and a message m ∈ M, and outputs a ciphertext
ae.ct.
• AE.Dec(k, ae.ct) takes as input a key k ∈ KAE and a ciphertext ae.ct, and outputs a message
m ∈M or a rejection symbol ⊥.

Correctness of AE requires that, for all prmAE ←$ AE.Setup(1`), all k ∈ KAE, all m ∈ M and all
ae.ct←$ AE.Enc(k,m), it holds that AE.Dec(k, ae.ct) = m.

The security notions for AE include One-time ciphertext-indistinguishability (IND-OT) and
One-time ciphertext-integrity (INT-OT). The IND-OT and INT-OT securities of AE are formalized
via the security games in Fig. 3.

6

Procedure Initialize:

prmAE ←$ AE.Setup(1`), k←$ KAE.

β ←$ {0, 1}. // challenge bit

Return prmAE.

Procedure Enc(m0,m1): // one query

If |m0| 6= |m1|, Return ⊥.

ae.ct←$ AE.Enc(k,mβ).

Return ae.ct.

Procedure Finalize(β′):

Return (β′ = β).

Procedure Initialize:

prmAE ←$ AE.Setup(1`), k←$ KAE.

Return prmAE.

Procedure Enc(m): // one query

ae.ct←$ AE.Enc(k,m).

Return ae.ct.

Procedure Finalize
(
ae.ct∗

)
:

If ae.ct∗ = ae.ct, Return 0.

Return (AE.Dec(k, ae.ct∗) 6= ⊥).

Fig. 3. Games IND-OT (left) and INT-OT (right) for defining securities of AE.

Definition 3 (One-Time Security for AE). An authenticated encryption scheme AE is one-
time secure (OT-secure) if it is IND-OT secure and INT-OT secure, i.e., for any PPT adversary A,
both Advind-ot

AE,A (`) := |Pr[IND-OTA ⇒ 1] − 1/2| and Advint-otAE,A (`) := Pr[INT-OTA ⇒ 1] are negligible
in `, where games IND-OT and INT-OT are specified in Fig. 3.

Let F be a family of functions from KAE to KAE. The F-Related-Key Attack for AE scheme
was formalized in [LLJ15], and RKA security notions characterize the ciphertext indistinguisha-
bility (IND-F-RKA) and integrity (INT-F-RKA) even if the adversary has multiple access to the
encryption oracle and designates a function f ∈ F each time such that the encryption oracle uses
f(k) as the key. See Fig. 4 for the IND-F-RKA and INT-F-RKA games.

Procedure Initialize:

prmAE ←$ AE.Setup(1`), k←$ KAE.

β ←$ {0, 1}. // challenge bit

Return prmAE.

Procedure Enc(m0,m1, f ∈ F):

If |m0| 6= |m1|, Return ⊥.

ae.ct←$ AE.Enc(f(k),mβ).

Return ae.ct.

Procedure Finalize(β′):

Return (β′ = β).

Procedure Initialize:

prmAE ←$ AE.Setup(1`), k←$ KAE.

Return prmAE.

Procedure Enc(m, f ∈ F):

ae.ct←$ AE.Enc(f(k),m).

QENC := QENC ∪
{(
f, ae.ct

)}
.

Return ae.ct.

Procedure Finalize
(
f∗ ∈ F , ae.ct∗

)
:

If
(
f∗, ae.ct∗

)
∈ QENC, Return 0.

Return (AE.Dec(f∗(k), ae.ct∗) 6= ⊥).

Fig. 4. Games IND-F-RKA (left) and INT-F-RKA (right) for defining securities of AE.

Definition 4 (IND-RKA and INT-RKA Securities for AE). An authenticated encryption
scheme AE is IND-F-RKA secure and INT-F-RKA secure, if for any PPT adversary A, both
Advind-rka

AE,A (`) := |Pr[IND-F-RKAA ⇒ 1] − 1/2| and Advint-rkaAE,A (`) := Pr[INT-F-RKAA ⇒ 1] are
negligible in `, where games IND-F-RKA and INT-F-RKA are specified in Fig. 4.

7

2.4 DCR, DDH, DL and IVd Assumptions

Let GenN(1`) be a PPT algorithm outputting (N, p, q), where p, q are safe primes of ` bits and
N = pq, such that N̄ = 2N + 1 is also a prime. Let s ∈ N and T = 1 + N . Define QRNs :={
a2 mod N s

∣∣ a ∈ Z∗Ns

}
, SCRNs :=

{
a2Ns−1

mod N s
∣∣ a ∈ Z∗Ns

}
, and RUNs :=

{
T r mod N s

∣∣ r ∈
[N s−1]

}
. Then SCRNs is a cyclic group of order φ(N)/4, and QRNs = SCRNs ⊗ RUNs , where ⊗

denotes internal direct product. Let QRN̄ :=
{
a2 mod N̄

∣∣ a ∈ ZN̄
}

, then QRN̄ is a cyclic group
of order N = pq.

For X ∈ RUNs , the discrete logarithm dlogT (X) ∈ [N s−1] can be efficiently computed given
only N and X [DJ01]. Note that Z∗Ns = Z2⊗Z′2⊗SCRNs⊗RUNs , hence for any u = u(Z2) ·u(Z′2) ·
u(SCRNs) · T x ∈ Z∗Ns , uφ(N) = T x·φ(N) ∈ RUNs and

dlogT (uφ(N))/φ(N) mod N s−1 = x. (1)

Definition 5 (DCR Assumption). The Decisional Composite Residuosity (DCR) Assumption
holds w.r.t. GenN and group QRNs if for any PPT adversary A, the following advantage is negligible
in `:

AdvdcrGenN,A(`) :=
∣∣Pr [A(N, u) = 1]− Pr [A(N, v) = 1]

∣∣,

where (N, p, q)←$ GenN(1`), u←$ QRNs, v ←$ SCRNs.

The DCR assumption implies the Interactive Vector (IVd) assumption according to [BG10]. We
adopt the version in [LLJ15].

Definition 6 (IVd Assumption). The IVd Assumption holds w.r.t. GenN and group QRNs if for
any PPT adversary A, the following advantage is negligible in `:

AdvivdGenN,A(`) :=
∣∣Pr

[
AChalbIVd (N, g1, · · · , gd) = b

]
− 1/2

]∣∣,

where (N, p, q)←$ GenN(1`), g1, · · · , gd ←$ SCRNs, b←$ {0, 1}, and the oracle ChalbIVd(·) can be

queried by A adaptively. A submits (δ1, · · · , δd) to the oracle. ChalbIVd(δ1, · · · , δd) selects random

r ← $ [bN/4c]. If b = 0, the oracle returns (gr1, · · · , grd); otherwise it returns (gr1T
δ1 , · · · , grdT δd),

where T = 1 +N .

Definition 7 (DDH Assumption). The Decisional Diffie-Hellman (DDH) Assumption holds
w.r.t. GenN and group QRN̄ if for any PPT adversary A, the following advantage is negligible in `:

AdvddhGenN,A(`) :=
∣∣Pr

[
A(N, p, q, g1, g2, g

x
1 , g

x
2) = 1

]
− Pr

[
A(N, p, q, g1, g2, g

x
1 , g

y
2) = 1

]∣∣,

where (N, p, q)←$ GenN(1`), g1, g2 ←$ QRN̄ , x, y ←$ ZN \ {0}.

Definition 8 (DL Assumption). The Discrete Logarithm (DL) Assumption holds w.r.t. GenN
and group SCRNs if for any PPT adversary A, the following advantage is negligible in `:

AdvdlGenN,A(`) := Pr
[
A(N, p, q, g, gx) = x

]
,

where (N, p, q)←$ GenN(1`), g ←$ SCRNs, x←$ [φ(N)/4].

8

2.5 Collision Resistant Hashing and Universal Hashing

Definition 9 (Collision Resistant Hashing). A family of functions H = {H : X −→ Y} is
collision-resistant if for any PPT adversary A, the following advantage is negligible in `:

Advcr
H,A(`) := Pr

[
H←$ H, (x, x′)←$ A(H) : H(x) = H(x′) ∧ x 6= x′

]
.

Definition 10 (Universal Hashing [WC81]). A family of functions H = {H : X −→ Y} is
universal, if for all distinct x, x′ ∈ X , it follows that

Pr
[
H←$ H : H(x) = H(x′)

]
≤ 1/|Y|.

We will sometimes abuse notation and say that a function H is universal if H is randomly chosen
from a universal family of functions H.

3 AE of the LLJ Scheme and Its INT-RKA Security

The LLJ scheme [LLJ15] makes use of an important primitive “Authenticated Encryption” AE. Its
KDM[Faff]-CCA security heavily relies on the IND-Faff-RKA security and INT-Faff-RKA security
of their AE. LLJ claimed INT-Faff-RKA security of their AE, however, we point out that their
security proof does not go through to the DDH assumption, which in turn affects the KDM[Faff]-
CCA security proof of the LLJ scheme.

Let us briefly review LLJ’s AE as follows. The public parameter is prmAE = (N, N̄, g) where
N = pq, N̄ = 2N + 1, and g is a generator of group QRN̄ . Let AE be an IND-OT and INT-OT
secure authenticated encryption, and H be a 4-wise independent hash function. The secret key space
is ZN .

– AE.Enc(k,m) computes u = gr with r ←$ ZN , κ = H(uk, u) and invokes χ←$ AE.Enc(κ,m). It
outputs the ciphertext 〈u, χ〉.

– AE.Dec(k, 〈u, χ〉) computes κ = H(uk, u) and outputs m/⊥ ← AE.Dec(κ, χ).

In the LLJ scheme, AE should have RKA security w.r.t. Faff = {f : k 7−→ak + b | a 6= 0}.
Let us check their security proof. See Table 2. The proof idea is to use the DDH assumption
to make sure that each κλ, λ ∈ [Qe], is random to the adversary. Then the INT-OT of AE
guarantees that the adversary cannot make a fresh forgery

(
f∗ = (a∗, b∗), 〈u∗, χ∗〉

)
such that

AE.Dec(a∗k + b∗, 〈u∗, χ∗〉) 6= ⊥.
In [LLJ15], the indistinguishability of Game 1.(i − 1) and Game 1.i is reduced to the DDH

assumption. A PPT algorithm B is constructed to solve the DDH problem by employing an INT-
Faff-RKA adversary A. Given the challenge (g, gri , gk, Z), B wants to tell whether Z = gkri or Z =
gzi for a random zi. B simulates the INT-Faff-RKA game for A by computing κi = H(Zaigribi , gri).
If Z = gkri , B simulates Game 1.(i− 1) for A; if Z = gzi , B simulates Game 1.i for A.

The problem is now that B does not know the value of secret key k (it knows gk). When A sub-
mits a fresh forgery

(
f∗ = (a∗, b∗), 〈u∗, χ∗〉

)
, B is not able to see whether AE.Dec(a∗k + b∗, 〈u∗, χ∗〉) 6=

⊥ or not without the knowledge of k. More precisely, B can not compute κ∗ = H(u∗a
∗k+b∗ , u∗) =

H
(
(u∗k)a

∗ ·u∗b∗ , u∗
)

from gk and u∗, unless it is able to compute the CDH value u∗k from gk and u∗.
Without κ∗, it is hard for B to decide whether AE.Dec(κ∗, χ∗) 6= ⊥ or not. In other words, B cannot
find an efficient (PPT) way to transform the computing power (forgery) of A into its own decisional

9

Table 2. INT-Faff-RKA security proof of AE in the LLJ scheme; we point out a flaw in the security reduction from

Game 1.(i− 1) to Game 1.i, denoted by “?”.

Enc(mλ, fλ = (aλ, bλ)) oracle, λ ∈ [Qe],

where Qe is the number of encryption queries
Assumptions

Game 0
rλ ←$ ZN ; uλ := grλ ; κλ := H(u

(aλk+bλ)
λ , uλ);

χλ ←$ AE.Enc(κλ,mλ); return ae.ctλ := 〈uλ, χλ〉.
−

Game 1 Same as Game 0 except κλ := H((gkrλ)aλgrλbλ , grλ). Game 1 = Game 0

Game 1.i
For λ = 1, · · · , i, the same as Game 1 except

κλ := H((gzλ)aλgrλbλ , grλ) with zλ ←$ ZN ;
DDH (?)

For λ = i+ 1, · · ·Qe, the same as Game 1.

Game 2 Game 2 = Game 1.Qe INT-OT of AE

power (decision bit) to determine (g, gri , gk, Z) to be a DDH tuple or a random tuple. The failure
of the INT-Faff-RKA security proof results in the failure of the KDM[Faff]-CCA proof of the LLJ
scheme since INT-Faff-RKA security is used to prevent a KDM[Faff]-CCA adversary from learning
more information about the secret key by querying some invalid ciphertexts for decryption.

4 Authenticated Encryption with Auxiliary-Input

We do not see any hope of successfully fixing the security proof of the LLJ’s AE in [LLJ15].
Alternatively, we resort to a different building block, namely AIAE. The intuition is as follows. If
LLJ’s AE is regarded as (ElGamal + OT-AE), we can design a new AIAE as (Kurosawa-Desmedt
[KD04] + OT-AE). But a new problem with our design arises: the secret key of KEM [KD04]
consists of several elements, i.e., k = (k1, k2, k3, k4). The affine function of k is too complicated to
prove the INT-Faff-RKA security. Fortunately, (a weak) INT-RKA security follows w.r.t. a smaller
restricted affine function set Fraff =

{
f : (k1, k2, k3, k4) 7−→ a·(k1, k2, k3, k4)+(b1, b2, b3, b4)

∣∣ a 6= 0
}

.
To make our AIAE serve KDM-CCA security of our PKE construction in Fig. 1, we have the

following requirements.

• AIAE must have auxiliary input aux.
• A weak INT-F-RKA security is defined for AIAE. Compared to INT-F-RKA security, the weak

version has an additional special rule for the adversary’s forgery (aux∗, f∗, aiae.ct∗) to be suc-
cessful: if the adversary has already queried (m, aux∗, f) to the encryption oracle Enc, it must
hold that f∗ = f .

Next, we introduce the formal definitions of Authenticated Encryption with Auxiliary-Input, its
IND-F-RKA Security and Weak INT-F-RKA Security.

4.1 AIAE and Its Related-Key Attack Security

Definition 11 (AIAE). An auxiliary-input authenticated encryption (AIAE) scheme AIAE =
(AIAE.Setup,AIAE.Enc,AIAE.Dec) consists of three PPT algorithms:

• AIAE.Setup(1`) outputs a system parameter prmAIAE, which is an implicit input to AIAE.Enc and
AIAE.Dec. The parameter prmAIAE implicitly defines a message space M, a key space KAIAE and
an auxiliary-input space AUX .

10

• AIAE.Enc(k,m, aux) takes as input a key k ∈ KAIAE, a message m ∈ M and an auxiliary input
aux ∈ AUX , and outputs a ciphertext aiae.ct.
• AIAE.Dec(k, aiae.ct, aux) takes as input a key k ∈ KAE, a ciphertext aiae.ct and an auxiliary

input aux ∈ AUX , and outputs a message m ∈M or a rejection symbol ⊥.

Correctness of AIAE requires that, for all prmAIAE ←$ AIAE.Setup(1`), all k ∈ KAIAE, all m ∈ M,
all aux ∈ AUX and all aiae.ct←$ AIAE.Enc(k,m, aux), we have that AIAE.Dec(k, aiae.ct, aux) = m.

If the auxiliary-input space AUX = ∅ for all possible parameters prmAIAE, the above definition
is reduced to traditional AE.

Let F be a family of functions from KAIAE to KAIAE. We define the related-key security notions
for auxiliary-input authenticated encryption scheme AIAE via Fig. 5.

Procedure Initialize:

prmAIAE ←$ AIAE.Setup(1`), k←$ KAIAE.

β ←$ {0, 1}. // challenge bit

Return prmAIAE.

Procedure Enc(m0,m1, aux, f ∈ F):

If |m0| 6= |m1|, Return ⊥.

aiae.ct←$ AIAE.Enc(f(k),mβ , aux).

Return aiae.ct.

Procedure Finalize(β′):

Return (β′ = β).

Procedure Initialize:

prmAIAE ←$ AIAE.Setup(1`), k←$ KAIAE.

Return prmAIAE.

Procedure Enc(m, aux, f ∈ F):

aiae.ct←$ AIAE.Enc(f(k),m, aux).

QENC := QENC ∪
{(

aux, f, aiae.ct
)}

.

QAUXF := QAUXF ∪
{

(aux, f)
}

.

Return aiae.ct.

Procedure Finalize
(
aux∗, f∗ ∈ F , aiae.ct∗

)
:

If
(
aux∗, f∗, aiae.ct∗

)
∈ QENC , Return 0.

If there exists (aux, f) ∈ QAUXF such that

aux = aux∗ but f 6= f∗, Return 0.
// Special rule

Return (AIAE.Dec(f∗(k), aiae.ct∗, aux∗) 6= ⊥).

Fig. 5. Games IND-F-RKA (left) and weak-INT-F-RKA (right) for defining securities of auxiliary-input authenticated

encryption scheme AIAE. We note that the weak INT-F-RKA security needs a special rule to return 0 in Finalize

as shown in the shadow.

Definition 12 (IND-F-RKA and Weak INT-F-RKA Securities for AIAE). An auxiliary-
input authenticated encryption scheme AIAE is IND-F-RKA secure and weak INT-F-RKA se-
cure, if for any PPT adversary A, both Advind-rka

AIAE,A(`) := |Pr[IND-F-RKAA ⇒ 1] − 1/2| and

Advweak-int-rka
AIAE,A (`) := Pr[weak-INT-F-RKAA ⇒ 1] are negligible in `, where games IND-F-RKA

and weak-INT-F-RKA are specified in Fig. 5.

4.2 Construction of AIAE from OT-secure AE and DDH Assumption

Let AE = (AE.Setup,AE.Enc,AE.Dec) be a traditional (without auxiliary-input) authenticated en-
cryption scheme with key space KAE and message space M. Let H1 = {H1 : {0, 1}∗ → ZN} and
H2 = {H2 : QRN̄ → KAE} be two families of hash functions with |KAE|/|QRN̄ | (= |KAE|/N)
≤ 2−Ω(`). The proposed scheme AIAE = (AIAE.Setup,AIAE.Enc,AIAE.Dec) with key space KAIAE =
(ZN)4, message space M and auxiliary-input space AUX = {0, 1}∗ is defined in Fig. 6.

11

prmAIAE ←$ AIAE.Setup(1`):

(N, p, q)←$ GenN(1`),

i.e., pick two `-bit safe primes p

and q, such that 2pq + 1 is also

a prime, and N := pq.

N̄ := 2N + 1. g1, g2 ←$ QRN̄ .

H1 ←$ H1, H2 ←$ H2.

prmAIAE := (N, p, q, N̄ , g1, g2,H1,H2).

Return prmAIAE.

〈c1, c2, χ〉 ←$ AIAE.Enc(k,m, aux):

Parse k = (k1, k2, k3, k4) ∈ (ZN)4.

w ←$ ZN\{0}.
(c1, c2) := (gw1 , g

w
2) ∈ QR2

N̄ .

t := H1(c1, c2, aux) ∈ ZN .

κ := H2

(
ck1+k3t
1 · ck2+k4t

2

)
∈ KAE.

χ←$ AE.Enc(κ,m).

Return 〈c1, c2, χ〉.

m/⊥ ← AIAE.Dec
(
k, 〈c1, c2, χ〉, aux

)
:

Parse k = (k1, k2, k3, k4) ∈ (ZN)4.

If (c1, c2) /∈ QR2
N̄ ∨ (c1, c2) = (1, 1),

Return ⊥.

t := H1(c1, c2, aux) ∈ ZN .

κ := H2

(
ck1+k3t
1 · ck2+k4t

2

)
∈ KAE.

m/⊥ ← AE.Dec(κ, χ).

Return m/⊥.

Fig. 6. Construction of the DDH-based AIAE from AE.

The correctness of AIAE follows from the correctness of AE directly. Note that the factors p, q
of N in prmAIAE are not needed in the encryption and decryption algorithms of AIAE. Jumping
ahead, the factors p, q are necessary when the security of the PKEs presented in Sections 5 and 6
is reduced to the security of AIAE. We now show the RKA-security of AIAE through the following
theorem.

Theorem 1. If the underlying scheme AE is OT-secure, the DDH assumption holds w.r.t. GenN
and QRN̄ , H1 is collision resistant and H2 is universal, then the resulting scheme AIAE in Fig. 6 is
IND-Fraff-RKA and weak INT-Fraff-RKA secure, where the restricted affine function set is defined
as Fraff :=

{
f(a,b) : (k1, k2, k3, k4) ∈ Z4

N 7−→ (ak1 + b1, ak2 + b2, ak3 + b3, ak4 + b4) ∈ Z4
N

∣∣ a ∈
Z∗N , b = (b1, b2, b3, b4) ∈ Z4

N

}
.

Proof of IND-Fraff-RKA security of AIAE in Theorem 1. The proof proceeds with a sequence
of games, as shown in Fig. 7. Suppose thatA is a PPT adversary against the IND-Fraff-RKA security
of AIAE, who makes at most Qe times of Enc queries. Let Pri[·] (resp., Pri′ [·]) denote the probability
of a particular event occurring in game Gi (resp., game G′i).

– Game G1: This is the original IND-Fraff-RKA security game. Let Win denote the event that
β′ = β. Then by definition, Advind-rka

AIAE,A(`) =
∣∣Pr1[Win]− 1

2

∣∣.
Denote prmAIAE = (N, p, q, N̄ , g1, g2,H1,H2) and k = (k1, k2, k3, k4). To answer the λ-th

(λ ∈ [Qe]) Enc query (mλ,0,mλ,1, auxλ, fλ), where fλ = 〈aλ, bλ = (bλ,1, bλ,2, bλ,3, bλ,4)〉 ∈ Fraff,
the challenger proceeds as follows:
1. pick wλ ←$ ZN\{0} and compute (cλ,1, cλ,2) := (gwλ1 , gwλ2) ∈ QR2

N̄ ,
2. compute a tag tλ := H1(cλ,1, cλ,2, auxλ) ∈ ZN ,
3. compute an encryption key for AE scheme using a related key fλ(k):

κλ := H2

(
c

(aλk1+bλ,1)+(aλk3+bλ,3)tλ
λ,1 · c(aλk2+bλ,2)+(aλk4+bλ,4)tλ

λ,2

)
∈ KAE,

4. invoke χλ ←$ AE.Enc(κλ,mλ,β),
and returns the challenge ciphertext 〈cλ,1, cλ,2, χλ〉 to the adversary A.

– Game G1,i, i ∈ [Qe + 1]: This game is the same as game G1, except that, the challenger does
not use secret key k to answer the λ-th (λ ∈ [i − 1]) Enc query at all, and instead, it changes
steps 1, 3 to steps 1′, 3′ as follows:
1′. pick wλ,1, wλ,2 ←$ ZN\{0} and compute (cλ,1, cλ,2) := (g

wλ,1
1 , g

wλ,2
2),

12

Initialize: // Games G1-G2

(N, p, q)← GenN(1`).

N̄ := 2N + 1 = 2pq + 1.

g1, g2 ←$ QRN̄ .

H1 ←$ H1, H2 ←$ H2.

(k1, k2, k3, k4)←$ Z4
N .

prmAIAE := (N, p, q, N̄ , g1, g2,H1,H2).

k := (k1, k2, k3, k4).

β ←$ {0, 1}. // challenge bit

Return prmAIAE.

Enc(mλ,0,mλ,1, auxλ, fλ):

// G1, G1,Qe+1,G2 , G2 , the λ-th query

Parse fλ = 〈aλ, bλ〉 ∈ Fraff.

wλ ←$ ZN\{0}.
(cλ,1, cλ,2) := (g

wλ
1 , g

wλ
2) ∈ QR2

N̄ .

wλ,1, wλ,2 ←$ ZN\{0}.
(cλ,1, cλ,2) := (g

wλ,1
1 , g

wλ,2
2) ∈ QR2

N̄ .

tλ := H1(cλ,1, cλ,2, auxλ) ∈ ZN .

κλ := H2

(
c
(aλk1+bλ,1)+(aλk3+bλ,3)tλ
λ,1

·c(aλk2+bλ,2)+(aλk4+bλ,4)tλ
λ,2

)
∈ KAE.

κλ ←$ KAE.

χλ ←$ AE.Enc(κλ,mλ,β).

χλ ←$ AE.Enc(κλ, 0
|mλ,0|).

Return 〈cλ,1, cλ,2, χλ〉.

Enc(mλ,0,mλ,1, auxλ, fλ):

// Games G1,i, G′1,i , the λ-th query

Parse fλ = 〈aλ, bλ〉 ∈ Fraff.

If 1 ≤ λ < i,

wλ,1, wλ,2 ←$ ZN\{0}.
(cλ,1, cλ,2) := (g

wλ,1
1 , g

wλ,2
2) ∈ QR2

N̄ .

κλ ←$ KAE.

If λ = i,

wi ←$ ZN\{0}.
(ci,1, ci,2) := (gwi1 , gwi2) ∈ QR2

N̄ .

wi,1, wi,2 ←$ ZN\{0}.
(ci,1, ci,2) := (g

wi,1
1 , g

wi,2
2) ∈ QR2

N̄ .

ti := H1(ci,1, ci,2, auxi) ∈ ZN .

κi := H2

(
c
(aik1+bi,1)+(aik3+bi,3)ti
i,1

·c(aik2+bi,2)+(aik4+bi,4)ti
i,2

)
∈ KAE.

If i < λ ≤ Qe,
wλ ←$ ZN\{0}.
(cλ,1, cλ,2) := (g

wλ
1 , g

wλ
2) ∈ QR2

N̄ .

tλ := H1(cλ,1, cλ,2, auxλ) ∈ ZN .

κλ := H2

(
c
(aλk1+bλ,1)+(aλk3+bλ,3)tλ
λ,1

·c(aλk2+bλ,2)+(aλk4+bλ,4)tλ
λ,2

)
∈ KAE.

χλ ←$ AE.Enc(κλ,mλ,β).

Return 〈cλ,1, cλ,2, χλ〉.

Finalize(β′): // Games G1-G2

Return (β′ = β).

Fig. 7. Games G1, {G1,i,G
′
1,i}i∈[Qe], G1,Qe+1, G2 for the proof of IND-Fraff-RKA security of AIAE.

3′. choose an encryption key κλ ←$ KAE randomly for the AE scheme.
The challenger still answers the λ-th (λ ∈ [i, Qe]) Enc query as in G1, i.e., using steps 1, 3.

Clearly G1,1 is identical to G1, thus Pr1[Win] = Pr1,1[Win].

– Game G′1,i, i ∈ [Qe]: This game is the same as game G1,i, except that the challenger answers
the i-th Enc query using steps 1′, 3 (rather than steps 1, 3 in game G1,i), i.e.,
1′. pick wi,1, wi,2 ←$ ZN\{0} and compute (ci,1, ci,2) := (g

wi,1
1 , g

wi,2
2),

3 . compute an encryption key for AE with

κi := H2

(
c

(aik1+bi,1)+(aik3+bi,3)ti
i,1 · c(aik2+bi,2)+(aik4+bi,4)ti

i,2

)
∈ KAE.

The only difference between G1,i and G′1,i is the distribution of (g1, g2, ci,1, ci,2). In game G1,i,
(g1, g2, ci,1, ci,2) is a DDH tuple, while in game G′1,i, it is a random tuple. It is straightforward
to construct a PPT adversary to solve the DDH problem w.r.t. GenN and QRN̄ , thus we have
that

∣∣Pr1,i[Win]− Pr1,i′ [Win]
∣∣ ≤ AdvddhGenN(`).

We analyze the difference between G′1,i and G1,i+1 via the following lemma.

Lemma 1. For all i ∈ [Qe],
∣∣Pr1,i′ [Win]− Pr1,i+1[Win]

∣∣ ≤ 1/(N − 1) + 2−Ω(`).

13

Proof. The only difference between games G′1,i and G1,i+1 is the computation of κi in the i-th
Enc query. In game G′1,i, κi is properly computed, while in game G1,i+1, it is chosen from KAE

uniformly.
Denote w := dlogg1

g2 ∈ ZN . We consider the information about the secret key k =
(k1, k2, k3, k4) that is used in game G′1,i.
• For the λ-th (λ ∈ [i− 1]) query, Enc does not use k at all since κλ is randomly chosen.
• For the λ-th (λ ∈ [i+ 1, Qe]) query, Enc can use k1 + wk2 and k3 + wk4 to compute κλ:

κλ = H2

(
c

(aλk1+bλ,1)+(aλk3+bλ,3)tλ
λ,1 · c(aλk2+bλ,2)+(aλk4+bλ,4)tλ

λ,2

)

= H2

(
(gwλ1)(aλk1+bλ,1)+(aλk3+bλ,3)tλ · (gwwλ1)(aλk2+bλ,2)+(aλk4+bλ,4)tλ

)
(2)

= H2

(
g
wλaλ·((k1 + wk2)+tλ·(k3 + wk4))
1 · gwλ·((bλ,1+wbλ,2)+tλ·(bλ,3+wbλ,4))

1

)
,

where wλ = dlogg1
cλ,1 = dlogg2

cλ,2 ∈ ZN\{0}.
• For the i-th query, Enc uses wi,1k1 + wi,2wk2 and wi,1k3+ wi,2wk4 to compute κi, where
wi,1 = dlogg1

ci,1, wi,2 = dlogg2
ci,2 ∈ ZN\{0}:

κi = H2

(
c

(aik1+bi,1)+(aik3+bi,3)ti
i,1 · c(aik2+bi,2)+(aik4+bi,4)ti

i,2

)

= H2

(
(g
wi,1
1)(aik1+bi,1)+(aik3+bi,3)ti · (gwwi,21)(aik2+bi,2)+(aik4+bi,4)ti

)
(3)

= H2

(
g
ai·((wi,1k1 + wi,2wk2)+ti·(wi,1k3 + wi,2wk4))

1 · g(wi,1b1,i+wi,2wbi,2)+ti·(wi,1bi,3+wi,2wbi,4)
1︸ ︷︷ ︸

,X

)
.

With probability 1 − 1/(N − 1), it holds that wi,1 6= wi,2, and in this case, the value of
(wi,1k1 +wi,2wk2) is independent of k1 +wk2 and uniformly distributed over ZN . Then as long
as ai ∈ Z∗N , X will be uniform over QRN̄ (which is generated by g1) and independent of H2.
Since H2 is universal, by the Leftover Hash Lemma (cf. Lemma 7 in Appendix A), κi = H2(X) is
statistically close to the uniform distribution over KAE. Thus G′1,i is statistically close to G1,i+1,

and
∣∣Pr1,i′ [Win]− Pr1,i+1[Win]

∣∣ ≤ 1/(N − 1)+2−Ω(`).

– Game G2: This game is the same as game G1,Qe+1, except that, to answer the λ-th (λ ∈ [Qe])
Enc query, the challenger changes step 4 to step 4′:
4′. invoke χλ ←$ AE.Enc(κλ, 0

|mλ,0|).
In game G1,Qe+1, the challenger computes the AE encryption of mλ,β under encryption key κλ

in Enc, while in game G2 it computes the AE encryption of 0|mλ,0| in Enc. Both in games G1,Qe+1

and G2, we have that each κλ is chosen uniformly from KAE and independent of other parts of the
game. Therefore we can reduce the differences between G1,Qe+1 and G2 to the IND-OT security of
AE by a standard hybrid argument, and have that

∣∣Pr1,Qe+1[Win]−Pr2[Win]
∣∣ ≤ Qe ·Advind-ot

AE (`).

Now in game G2, since the challenger always encrypts the constant message 0|mλ,0|, the challenge
bit β is completely hidden. Then Pr2[Win] = 1/2.

Taking all things together, the IND-Fraff-RKA security of AIAE follows.

Proof of Weak INT-Fraff-RKA security of AIAE in Theorem 1. Again, we prove it through
a sequence of games, as shown in Fig. 8. These games are defined almost the same as those in the

14

Initialize: // Games G0-G1,Qe+1

(N, p, q)← GenN(1`). N̄ := 2N + 1 = 2pq + 1.

g1, g2 ←$ QRN̄ . H1 ←$ H1, H2 ←$ H2.

(k1, k2, k3, k4)←$ Z4
N .

prmAIAE := (N, p, q, N̄ , g1, g2,H1,H2).

k := (k1, k2, k3, k4).

Return prmAIAE.

Enc(mλ, auxλ, fλ): // the λ-th query

// Games G1,i, G′1,i

Parse fλ = 〈aλ, bλ〉 ∈ Fraff.

If 1 ≤ λ < i,

wλ,1, wλ,2 ←$ ZN\{0}.
(cλ,1, cλ,2) := (g

wλ,1
1 , g

wλ,2
2) ∈ QR2

N̄ .

κλ ←$ KAE.

If λ = i,

wi ←$ ZN\{0}.
(ci,1, ci,2) := (gwi1 , gwi2) ∈ QR2

N̄ .

wi,1, wi,2 ←$ ZN\{0}.
(ci,1, ci,2) := (g

wi,1
1 , g

wi,2
2) ∈ QR2

N̄ .

ti := H1(ci,1, ci,2, auxi) ∈ ZN .

κi := H2

(
c
(aik1+bi,1)+(aik3+bi,3)ti
i,1

·c(aik2+bi,2)+(aik4+bi,4)ti
i,2

)
∈ KAE.

If i < λ ≤ Qe,
wλ ←$ ZN\{0}.
(cλ,1, cλ,2) := (g

wλ
1 , g

wλ
2) ∈ QR2

N̄ .

tλ := H1(cλ,1, cλ,2, auxλ) ∈ ZN .

κλ := H2

(
c
(aλk1+bλ,1)+(aλk3+bλ,3)tλ
λ,1

·c(aλk2+bλ,2)+(aλk4+bλ,4)tλ
λ,2

)
∈ KAE.

χλ ←$ AE.Enc(κλ,mλ).

QENC := QENC ∪
{(

auxλ, fλ, 〈cλ,1, cλ,2, χλ〉
)}

.

QAUXF := QAUXF ∪ {(auxλ, fλ)}.
QT AG := QT AG ∪ {(cλ,1, cλ,2, auxλ, tλ)}.
Return 〈cλ,1, cλ,2, χλ〉.

Enc(mλ, auxλ, fλ): // the λ-th query

// Games G0-G1, G1,Qe+1

Parse fλ = 〈aλ, bλ〉 ∈ Fraff.

wλ ←$ ZN\{0}.
(cλ,1, cλ,2) := (g

wλ
1 , g

wλ
2) ∈ QR2

N̄ .

wλ,1, wλ,2 ←$ ZN\{0}.
(cλ,1, cλ,2) := (g

wλ,1
1 , g

wλ,2
2) ∈ QR2

N̄ .

tλ := H1(cλ,1, cλ,2, auxλ) ∈ ZN .

κλ := H2

(
c
(aλk1+bλ,1)+(aλk3+bλ,3)tλ
λ,1

·c(aλk2+bλ,2)+(aλk4+bλ,4)tλ
λ,2

)
∈ KAE.

κλ ←$ KAE.

χλ ←$ AE.Enc(κλ,mλ).

QENC := QENC ∪
{(

auxλ, fλ, 〈cλ,1, cλ,2, χλ〉
)}

.

QAUXF := QAUXF ∪ {(auxλ, fλ)}.
QT AG := QT AG ∪ {(cλ,1, cλ,2, auxλ, tλ)}.
Return 〈cλ,1, cλ,2, χλ〉.

Finalize
(
aux∗, f∗, 〈c∗1, c∗2, χ∗〉

)
:

// Games G0, G1-G1,Qe+1

If
(
aux∗, f∗, 〈c∗1, c∗2, χ∗〉

)
∈ QENC,

Return 0.

If there exists (auxλ, fλ) ∈ QAUXF such that

auxλ = aux∗ but fλ 6= f∗,

Return 0.

Parse f∗ = 〈a∗, b∗〉 ∈ Fraff.

If (c∗1, c
∗
2) /∈ QR2

N̄ ∨ (c∗1, c
∗
2) = (1, 1),

Return 0.

t∗ := H1(c∗1, c
∗
2, aux

∗) ∈ ZN .

If there exists (cλ,1, cλ,2, auxλ, tλ) ∈ QT AG such that

tλ = t∗ but (cλ,1, cλ,2, auxλ) 6= (c∗1, c
∗
2, aux

∗),

Return 0.

κ∗ := H2

(
c
∗(a∗k1+b∗1)+(a∗k3+b∗3)t∗

1

·c∗(a
∗k2+b∗2)+(a∗k4+b∗4)t∗

2

)
∈ KAE.

Return (AE.Dec(κ∗, χ∗) 6= ⊥).

Fig. 8. Games G0, G1, {G1,i,G
′
1,i}i∈[Qe], G1,Qe+1 for the proof of weak INT-Fraff-RKA security of AIAE.

previous proof. Suppose that A is a PPT adversary against the weak INT-Fraff-RKA security of
AIAE, who makes at most Qe times of Enc queries.

– Game G0: This is the original weak-INT-Fraff-RKA security game.

Denote prmAIAE = (N, p, q, N̄ , g1, g2,H1,H2) and k = (k1, k2, k3, k4). To answer the λ-th
(λ ∈ [Qe]) Enc query (mλ, auxλ, fλ), the challenger proceeds with steps 1∼4, similar to the
previous proof, and returns the challenge ciphertext 〈cλ,1, cλ,2, χλ〉 to the adversaryA. Moreover,
the challenger will put

(
auxλ, fλ, 〈cλ,1, cλ,2, χλ〉

)
to a set QENC , put (auxλ, fλ) to a set QAUXF ,

15

and put (cλ,1, cλ,2, auxλ, tλ) to a set QT AG . Finally, the adversary outputs a forgery
(
aux∗, f∗ =

〈a∗, b∗ = (b∗1, b
∗
2, b
∗
3, b
∗
4)〉, 〈c∗1, c∗2, χ∗〉

)
.

Denote by Forge the event that the following Finalize procedure outputs 1:

• If
(
aux∗, f∗, 〈c∗1, c∗2, χ∗〉

)
∈ QENC , Return 0.

• If there exists (auxλ, fλ) ∈ QAUXF such that auxλ = aux∗ but fλ 6= f∗, Return 0.

• If (c∗1, c
∗
2) /∈ QR2

N̄ ∨ (c∗1, c
∗
2) = (1, 1), Return 0.

• t∗ := H1(c∗1, c
∗
2, aux

∗), κ∗ := H2

(
c
∗(a∗k1+b∗1)+(a∗k3+b∗3)t∗

1 · c∗(a
∗k2+b∗2)+(a∗k4+b∗4)t∗

2

)
.

Return (AE.Dec(κ∗, χ∗) 6= ⊥).

By definition, it follows that, Advweak-int-rka
AIAE,A (`) = Pr0[Forge].

– Game G1: This game is the same as game G0, except that, the challenger adds the following
new rule to the Finalize procedure:

• If there exists (cλ,1, cλ,2, auxλ, tλ) ∈ QT AG such that tλ = t∗ but (cλ,1, cλ,2, auxλ) 6= (c∗1, c
∗
2, aux

∗),
Return 0.

Since tλ = H1(cλ,1, cλ,2, auxλ) and t∗ = H1(c∗1, c
∗
2, aux

∗), any difference between G0 and G1

will imply a collision of H1. Thus
∣∣Pr0[Forge]− Pr1[Forge]

∣∣ ≤ AdvcrH1
(`).

– Game G1,i, i ∈ [Qe + 1]: This game is the same as game G1, except that, the challenger does
not use secret key k to answer the λ-th (λ ∈ [i − 1]) Enc query at all, and instead, it changes
the steps 1, 3 to the steps 1′, 3′ respectively, as in the previous proof.

Clearly Pr1[Forge] = Pr1,1[Forge].

– Game G′1,i, i ∈ [Qe]: This game is the same as game G1,i, except that the challenger answers the
i-th Enc query using steps 1′, 3 (rather than steps 1, 3 in game G1,i), as in the previous proof.

The only difference between G1,i and G′1,i is the distribution of (g1, g2, ci,1, ci,2). In game G1,i,
(g1, g2, ci,1, ci,2) is a DDH tuple, while in game G′1,i, it is a random tuple. It is straightforward
to construct a PPT adversary to solve the DDH problem w.r.t. GenN and QRN̄ . We stress that
the PPT adversary (simulator) can detect the occurrence of event Forge efficiently since it can
choose the secret key k = (k1, k2, k3, k4) itself. Thus we can reduce the difference between G1,i

and G′1,i to the DDH assumption smoothly via the following lemma.

Lemma 2. For all i ∈ [Qe],
∣∣Pr1,i[Forge]− Pr1,i′ [Forge]

∣∣ ≤ AdvddhGenN(`).

Proof. We construct a PPT adversary B to solve the DDH problem. B is given (N, p, q,
g1, g2, g

x1
1 , gx2

2), where (N, p, q) ←$ GenN(1`), g1, g2 ←$ QRN̄ , and aims to distinguish whether
x1 = x2 ←$ ZN \ {0} or x1, x2 ←$ ZN \ {0}.
B will simulate game G1,i or G′1,i for adversary A. First, B picks H1 ← $ H1, H2 ← $ H2

randomly, sets prmAIAE := (N, p, q, N̄ = 2N + 1, g1, g2,H1,H2) and sends prmAIAE to A. Then B
generates the secret key k = (k1, k2, k3, k4) itself.

To answer the λ-th (λ ∈ [Qe]) Enc query (mλ, auxλ, fλ), where fλ = 〈aλ, bλ = (bλ,1, bλ,2, bλ,3,
bλ,4)〉 ∈ Fraff, B prepares the challenge ciphertext as follows:

• If λ ∈ [i− 1], B proceeds the same as in games G1,i and G′1,i. That is, B picks wλ,1, wλ,2 ←
$ ZN\{0} randomly and sets (cλ,1, cλ,2) := (g

wλ,1
1 , g

wλ,2
2) ∈ QR2

N̄ . Then B chooses κλ ←$ KAE

and invokes χλ ←$ AE.Enc(κλ,mλ).

16

• If λ ∈ [i + 1, Qe], B proceeds the same as in games G1,i and G′1,i. That is, B picks wλ ←
$ ZN\{0} randomly and sets (cλ,1, cλ,2) := (gwλ1 , gwλ2) ∈ QR2

N̄ . Then B computes tλ :=

H1(cλ,1, cλ,2, auxλ), κλ := H2

(
c

(aλk1+bλ,1)+(aλk3+bλ,3)tλ
λ,1 · c(aλk2+bλ,2)+(aλk4+bλ,4)tλ

λ,2

)
, and invokes

χλ ←$ AE.Enc(κλ,mλ).
• If λ = i, B embedded its DDH challenge to (ci,1, ci,2) := (gx1

1 , gx2
2). Then it computes

ti := H1(ci,1, ci,2, auxi), κi := H2

(
c

(aik1+bi,1)+(aik3+bi,3)ti
i,1 · c(aik2+bi,2)+(aik4+bi,4)ti

i,2

)
, and invokes

χi ←$ AE.Enc(κi,mi).
B returns the challenge ciphertext 〈cλ,1, cλ,2, χλ〉 toA. Moreover, B puts

(
auxλ, fλ, 〈cλ,1, cλ,2, χλ〉

)

to QENC , (auxλ, fλ) to QAUXF , and (cλ,1, cλ,2, auxλ, tλ) to QT AG .
In the case of that (N, p, q, g1, g2, g

x1
1 , gx2

2) is a DDH tuple, i.e., x1 = x2 ← $ ZN \ {0}, B
simulates game G1,i perfectly with A; in the case of that (N, p, q, g1, g2, g

x1
1 , gx2

2) is a random
tuple, i.e., x1, x2 ←$ ZN \ {0}, B simulates game G′1,i perfectly with A.

Finally B receives a forgery
(
aux∗, f∗, 〈c∗1, c∗2, χ∗〉

)
fromA, where f∗ = 〈a∗, b∗ = (b∗1, b

∗
2, b
∗
3, b
∗
4)〉 ∈

Fraff. B determines whether or not the Finalize procedure outputs 1 using the secret key
k = (k1, k2, k3, k4). That is,
• If

(
aux∗, f∗, 〈c∗1, c∗2, χ∗〉

)
∈ QENC , B outputs 0 (to its DDH challenger).

• If there exists (auxλ, fλ) ∈ QAUXF such that auxλ = aux∗ but fλ 6= f∗, B outputs 0.
• If (c∗1, c

∗
2) /∈ QR2

N̄ ∨ (c∗1, c
∗
2) = (1, 1), B outputs 0.

• t∗ := H1(c∗1, c
∗
2, aux

∗), κ∗ := H2

(
c
∗(a∗k1+b∗1)+(a∗k3+b∗3)t∗

1 · c∗(a
∗k2+b∗2)+(a∗k4+b∗4)t∗

2

)
.

• If there exists (cλ,1, cλ,2, auxλ, tλ) ∈ QT AG such that tλ = t∗ but (cλ,1, cλ,2, auxλ) 6= (c∗1, c
∗
2, aux

∗),
B outputs 0.
• Output (AE.Dec(κ∗, χ∗) 6= ⊥).

With the secret key k = (k1, k2, k3, k4), B simulates Finalize perfectly, the same as in games
G1,i and G′1,i, and B outputs 1 to its DDH challenger if and only if Finalize outputs 1, i.e., the
event Forge occurs.

As a consequence,
∣∣Pr1,i[Forge]− Pr1,i′ [Forge]

∣∣ ≤ AdvddhGenN,B(`) and Lemma 2 follows.

We analyze the difference between G′1,i and G1,i+1 via the following lemma.

Lemma 3. For all i ∈ [Qe], Pr1,i′ [Forge] ≤ Pr1,i+1[Forge] + Advint-otAE (`) + 1/(N − 1) + 2−Ω(`).

Proof. The only difference between games G′1,i and G1,i+1 is the computation of κi in the i-th
Enc query. In game G′1,i, κi is properly computed, while in game G1,i+1, it is chosen from KAE

uniformly.
Denote w := dlogg1

g2 ∈ ZN . We consider the information about the secret key k =
(k1, k2, k3, k4) that is used in game G′1,i.
• For the λ-th (λ ∈ [i− 1]) query, Enc does not use k at all since κλ is randomly chosen.
• For the λ-th (λ ∈ [i+ 1, Qe]) query, similar to the proof of Lemma 1, Enc can use k1 +wk2

and k3 + wk4 to compute κλ.
• For the i-th query, similar to the proof of Lemma 1 (see Eq. (3)), Enc uses

(wi,1k1 + wi,2wk2) + ti · (wi,1k3 + wi,2wk4) (4)

to compute κi, where wi,1 = dlogg1
ci,1, wi,2 = dlogg2

ci,2 ∈ ZN\{0}:

κi = H2

(
g
ai·((wi,1k1 + wi,2wk2) + ti · (wi,1k3 + wi,2wk4))

1 · g(wi,1b1,i+wi,2wbi,2)+ti·(wi,1bi,3+wi,2wbi,4)
1︸ ︷︷ ︸

,X

)
.

17

• The Finalize procedure, which defines the event Forge, uses

(w∗1k1 + w∗2wk2) + t∗ · (w∗1k3 + w∗2wk4) (5)

to compute κ∗, where (w∗1 = dlogg1
c∗1, w

∗
2 = dlogg2

c∗2) ∈ Z2
N\{(0, 0)}:

κ∗ = H2

(
c
∗(a∗k1+b∗1)+(a∗k3+b∗3)t∗

1 · c∗(a
∗k2+b∗2)+(a∗k4+b∗4)t∗

2

)

= H2

(
(g
w∗1
1)(a∗k1+b∗1)+(a∗k3+b∗3)t∗ · (gww

∗
2

1)(a∗k2+b∗2)+(a∗k4+b∗4)t∗
)

= H2

(
g
a∗·((w∗1k1 + w∗2wk2) + t∗ · (w∗1k3 + w∗2wk4))

1 · g(w∗1b
∗
1+w∗2wb

∗
2)+t∗·(w∗1b∗3+w∗2wb

∗
4)

1︸ ︷︷ ︸
,Y

)
.

With probability 1 − 1/(N − 1), it holds that wi,1 6= wi,2. In this case, we divide the event
Forge to the following two sub-events:

• Sub-event: Forge ∧ ti 6= t∗.
Let us first consider the event ti 6= t∗. We show that

∣∣Pr1,i′ [ti 6= t∗]− Pr1,i+1[ti 6= t∗]
∣∣ ≤ 2−Ω(`).

It is easy to see that (4) is independent of k1 +wk2 and k3 +wk4, and uniformly distributed
over ZN . Then as long as ai ∈ Z∗N , X will be uniformly distributed over QRN̄ and indepen-
dent of H2. By the Leftover Hash Lemma, κi = H2(X) is statistically close to the uniform
distribution over KAE. Then G′1,i is statistically close to G1,i+1 before A queries Finalize.
As a result, ti 6= t∗ will occur with almost the same probability in games G′1,i and G1,i+1.

Next we consider the event Forge conditioned on ti 6= t∗. We show that
∣∣Pr1,i′ [Forge | ti 6= t∗]− Pr1,i+1[Forge | ti 6= t∗]

∣∣ ≤ 2−Ω(`). (6)

It is straightforward to see that (4) is independent of k1+wk2, k3+wk4 and (5) when ti 6= t∗.
With a similar argument, κi = H2(X) is statistically close to the uniform distribution over
KAE. Then G′1,i is statistically close to G1,i+1 when ti 6= t∗. Therefore (6) follows.

In conclusion, we have that

Pr1,i′ [Forge ∧ ti 6= t∗] ≤ Pr1,i+1[Forge ∧ ti 6= t∗] + 2−Ω(`) ≤ Pr1,i+1[Forge] + 2−Ω(`).

• Sub-event: Forge ∧ ti = t∗.
By the new rule added in game G1, Forge and ti = t∗ will imply (ci,1, ci,2, auxi) =

(c∗1, c
∗
2, aux

∗). In addition, Forge and auxi = aux∗ will imply that fi = f∗, this is due to the
special rule in the weak-INT-RKA game (see Fig. 4). Then it is straightforward to check that
(4) = (5), X = Y and κi = κ∗, and (4) (which equals (5)) is independent of k1 + wk2 and
k3 + wk4, thus uniformly distributed over ZN . Then as long as ai (which equals a∗) ∈ Z∗N ,
X (which equals Y) will be uniformly distributed over QRN̄ and independent of H2. By
the Leftover Hash Lemma, κi = κ∗= H2(X) = H2(Y) is statistically close to the uniform
distribution over KAE. Also in this sub-event, (aux∗, f∗, c∗1, c

∗
2) = (auxi, fi, ci,1, ci,2) implies

χ∗ 6= χi, therefore AE.Dec(κ∗, χ∗) 6= ⊥ will hold with probability at most Advint-otAE (`). Then
we have the following claim. We give the full description of the reduction in Appendix C.1.

Claim 1. Pr1,i′ [Forge ∧ ti = t∗] ≤ Advint-otAE (`)+2−Ω(`).

18

Combining the above two sub-events together, Lemma 3 follows.

Now in game G1,Qe+1, the challenger does not use the secret key k to compute κλ at all,
hence k = (k1, k2, k3, k4) is uniformly random to the adversary A. As a result, in the Finalize
procedure defining the event Forge,

κ∗ = H2

(
g
a∗·((w∗1k1 + w∗2wk2) + t∗ · (w∗1k3 + w∗2wk4))

1 · g(w∗1b
∗
1+w∗2wb

∗
2)+t∗·(w∗1b∗3+w∗2wb

∗
4)

1︸ ︷︷ ︸
,Y

)
.

The term (w∗1k1 +w∗2wk2) + t∗ · (w∗1k3 +w∗2wk4) is uniformly distributed over ZN . Then as long
as a∗ ∈ Z∗N , Y will be uniformly distributed over QRN̄ and independent of H2. By the Leftover
Hash Lemma, κ∗ = H2(Y) is statistically close to the uniform distribution over KAE. Thus
AE.Dec(κ∗, χ∗) 6= ⊥ will hold with probability at most Advint-otAE (`). Then Pr1,Qe+1[Forge] ≤
Advint-otAE (`) + 2−Ω(`).

Taking all things together, the weak INT-Fraff-RKA security of AIAE follows.

Remark 1. Our AIAE enjoys the following property: κ = H2

(
ck1+k3t

1 · ck2+k4t
2

)
will be statistically

close to the uniform distribution over KAE, as long as any element kj in (k1, k2, k3, k4) is chosen uni-
formly at random. As a result, the OT-security of AE will guarantee that AIAE.Dec((k1, k2, k3, k4),
aiae.ct, aux) = ⊥ holds for any (aiae.ct, aux) except with probability Advint-otAE (`) ≤ Advweak-int-rka

AIAE (`).
This fact will be used in the security proof of the PKEs presented in Sections 5 and 6.

Remark 2. We stress that the problem in the INT-Faff-RKA security proof of LLJ’s AE does not
appear here. The weak INT-Fraff-RKA security of our AIAE can be reduced to the DDH assumption
smoothly. More precisely, in the security analysis of games G1,i and G′1,i (cf. Lemma 2), the simulator
chooses the secret key itself and uses it to detect the occurrence of event Forge efficiently. Therefore
the simulator can always make use of the difference between Pr1,i[Forge] and Pr1,i′ [Forge] to solve
the DDH problem.

5 PKE with n-KDM[Faff]-CCA Security

Let AIAE = (AIAE.Setup,AIAE.Enc,AIAE.Dec) be the DDH-based auxiliary-input authenticated
encryption scheme constructed from OT-secure AE, with key space (ZN)4 and a suitable message
space M (cf. Fig. 6). Following our approach in Fig. 1, we have to design the other two building
blocks.

KEM: With respect to this AIAE, we design a KEM which can encapsulate a key tuple (k1, k2, k3, k4)
∈ (ZN)4.

E : With respect to the affine function Faff, we design a public-key encryption E such that E .Enc
can be changed to an entropy filter for affine functions in a computationally indistinguishable
way.

The proposed PKE = (Setup,Gen,Enc,Dec) is defined in Fig. 9, where the shadowed parts describe
algorithms of building blocks KEM and E .

The correctness of PKE follows from the correctness of AIAE, E and KEM directly. We now show
its KDM-CCA-security through the following theorem.

19

prm←$ Setup(1`):

prmAIAE ←$ AIAE.Setup(1`), where

prmAIAE = (N, p, q, N̄ , ḡ1, ḡ2,H1,H2),

N = pq, N̄ = 2N + 1, ḡ1, ḡ2 ∈ QRN̄ .

prm′AIAE := (N, N̄, ḡ1, ḡ2,H1,H2).

g1, g2, g3, g4, g5 ←$ SCRNs .
Return prm := (prm′AIAE, g1, g2, g3, g4, g5).

〈aux, aiae.ct〉 ←$ Enc(pk,m): m ∈
[
Ns−1

]
//
(
k, aux

)
←$ KEM.Enc(pk):

k = (k1, k2, k3, k4)←$ Z4
N . r ←$

[⌊
N
4

⌋]
.

(u1, u2, u3, u4, u5) := (gr1 , g
r
2 , g

r
3 , g

r
4 , g

r
5) mod N2.

(e1, e2, e3, e4) := (hr1T
k1 , hr2T

k2 , hr3T
k3 , hr4T

k4)

mod N2.

aux := (u1, · · · , u5, e1, · · · , e4).

// E .ct←$ E .Enc(pk,m):

r̃1, r̃2, r̃3, r̃4 ←$
[⌊
N
4

⌋]
.

(ũ1, ũ2, ũ3, ũ4, ũ5, ũ6, ũ7, ũ8) := (gr̃11 , gr̃12 , gr̃22 , gr̃23 ,

gr̃33 , gr̃34 , gr̃44 , gr̃45) mod Ns.

ẽ := hr̃11 h
r̃2
2 h

r̃3
3 h

r̃4
4 T

m mod Ns.

t := gm1 mod N ∈ ZN .

E .ct := (ũ1, · · · , ũ8, ẽ, t).

aiae.ct←$ AIAE.Enc
(
k, E .ct, aux

)
.

Return 〈aux, aiae.ct〉.

(pk, sk)←$ Gen(prm):

x1, y1, x2, y2, x3, y3, x4, y4 ←$
[⌊
N2

4

⌋]
.

(h1, h2, h3, h4) := (g−x11 g−y12 , g−x22 g−y23 , g−x33 g−y34 , g−x44 g−y45)

mod Ns.

pk := (h1, h2, h3, h4).

sk := (x1, y1, x2, y2, x3, y3, x4, y4).

Return (pk, sk).

m/⊥ ← Dec
(
sk, 〈aux, aiae.ct〉

)
:

// k/⊥ ← KEM.Dec(sk, aux):

Parse aux = (u1, · · · , u5, e1, · · · , e4).

If e1u
x1
1 uy12 , e2u

x2
2 uy23 , e3u

x3
3 uy34 , e4u

x4
4 uy45 ∈ RUN2

(k1, k2, k3, k4) :=
(
dlogT (e1u

x1
1 uy12),dlogT (e2u

x2
2 uy23),

dlogT (e3u
x3
3 uy34), dlogT (e4u

x4
4 uy45)

)
mod N .

k := (k1, k2, k3, k4).

Else, Return ⊥.

E .ct/⊥ ← AIAE.Dec
(
k, aiae.ct, aux

)
.

//m/⊥ ← E .Dec(sk, E .ct):
Parse E .ct = (ũ1, · · · , ũ8, ẽ, t).

If ẽũx11 ũy12 ũx23 ũy24 ũx35 ũy36 ũx47 ũy48 ∈ RUNs
m := dlogT (ẽũx11 ũy12 ũx23 ũy24 ũx35 ũy36 ũx47 ũy48) mod Ns−1.

If t = gm1 mod N ,

Return m.

Else, Return ⊥.

Fig. 9. Construction of PKE from AIAE. The shadowed parts describe algorithms of building blocks KEM and E . Here

p, q contained in prmAIAE are not provided in prm′AIAE, since they are not necessary in the encryption and decryption

algorithms of AIAE.

Theorem 2. If the underlying scheme AIAE is IND-Fraff-RKA and weak INT-Fraff-RKA secure,
the DCR assumption holds w.r.t. GenN and group QRNs, and the DL Assumption holds w.r.t. GenN
and group SCRNs, then the resulting scheme PKE in Fig. 9 is n-KDM[Faff]-CCA secure.

Proof of Theorem 2. Suppose that A is a PPT adversary against the n-KDM[Faff]-CCA security
of PKE, who makes at most Qe times of Enc queries and Qd times of Dec queries. We prove the
theorem by defining a sequence of games. A rough description of differences between adjacent games
is summarized in Table 3. (We also illustrate the games via Figs. 13-15 in Appendix D.) Before
presenting the full detailed proof, we first give a high-level description how n-KDM[Faff]-CCA
security is achieved.

(1) For the n secret key tuples, each tuple can be divided into two parts: for i ∈ [n], ski =
(xi,j , yi,j)

4
j=1 =

(
(xi,j , yi,j)

4
j=1 mod N, (xi,j , yi,j)

4
j=1 mod φ(N)/4

)
.

(2) Each secret key tuple can be generated by adding a random shift (xi,j , yi,j)
4
j=1 to a fixed base

(xj , yj)
4
j=1, i.e., ski = (xi,j , yi,j)

4
j=1 := (xj , yj)

4
j=1 + (xi,j , yi,j)

4
j=1.

(3) Every public key tuple pki = (hi,1, · · · , hi,4) only reveals information about the (mod φ(N)/4)
part of the secret key tuple ski.

20

(4) For each encryption query from the adversary (fλ, iλ), if the Enc oracle encrypts fλ(sk1, · · · , skn),
the ciphertext might reveal information about ski through E .ct. We have to change this fact
such that the leaked information about ski in Enc is bounded.

– By IVd assumption, we can change the generation of E .ct by oracle Enc such that it does not
reveal any information about (xj , yj)

4
j=1 mod N , i.e., the (mod N) part of the base secret

key tuple.

– By IVd assumption, we can change the generation of kem.ct(= aux) by oracle Enc such
that it encapsulates a different key, other than the key used in AIAE.Enc. If AIAE.Enc uses
key (rλk

∗
j + sλ,j)

4
j=1, then KEM.Enc encapsulates

(
rλ · (k∗j − αjxj − αj+1yj)− rλ · (αj x̄iλ,j +

αj+1ȳiλ,j) + sλ,j
)4
j=1

mod N . Thus, (k∗1, · · · , k∗4) is now protected by (xj , yj)
4
j=1 mod N .

(5) Oracle Dec might also leak information about (xj , yj)
4
j=1 mod N . Therefore, we change how

oracle Dec works so that decryption does not use (xj , yj)
4
j=1 mod N any more. Observe that as

long as the ciphertext queried by the adversary satisfies ∀j ∈ [5], uj ∈ SCRN2 and ∀j ∈ [8], ũj ∈
SCRNs , Dec can use φ(N) and the (mod φ(N)/4) part of secret key for decryption.

– If ∃j ∈ [5], uj /∈ SCRN2 in the ciphertext queried by the adversary, we expect that AIAE.Dec
will reject, due to its weak INT-Fraff-RKA security.

– If ∃j ∈ [8], ũj /∈ SCRNs in the ciphertext queried by the adversary, we expect decryption
will result in t 6= gm1 mod N , so E .Dec will reject.

(6) Consequently, both (xj , yj)
4
j=1 mod N and (k∗1, · · · , k∗4) are random to the adversary, and AIAE.Enc

always uses the restricted affine function of (k∗1, · · · , k∗4) for encryption. Then IND-Fraff-RKA
security of AIAE implies the n-KDM[Faff]-CCA security.

In the proof, G1-G2 are dedicated to deal with the n-user case; the aim of G3-G4 is to eliminate
the use of the (mod N) part of (xj , yj)

4
j=1 in Enc; the aim of G5-G6 is to use (xj , yj)

4
j=1 mod N to

hide the AIAE’s base key (k∗1, · · · , k∗4) in Enc, however, Dec may still leak the information about
(xj , yj)

4
j=1 mod N ; the aim of G7-G8 is to eliminate the use of (xj , yj)

4
j=1 mod N in Dec; finally,

in G9-G10, the IND-Fraff-RKA security of AIAE is used to prove the n-KDM[Faff]-CCA security of
PKE, since (k∗1, · · · , k∗4) is perfectly hided by (xj , yj)

4
j=1 mod N .

– Game G0: This is the original n-KDM[Faff]-CCA game. Let Win denote the event that β′ = β.
Then by definition, Advkdm-cca

PKE,A (`) =
∣∣Pr0[Win]− 1

2

∣∣.
Denote by pki = (hi,1, · · · , hi,4) and ski = (xi,1, yi,1, · · · , xi,4, yi,4) the public and secret keys

of the i-th user respectively, i ∈ [n].

– Game G1: This game is the same as game G0, except that, when answering the Dec query
(〈aux, aiae.ct〉, i ∈ [n]), the challenger outputs ⊥ if 〈aux, aiae.ct〉 = 〈auxλ, aiae.ctλ〉 for some
λ ∈ [Qe], where 〈auxλ, aiae.ctλ〉 is the challenge ciphertext for the λ-th Enc query (fλ, iλ).

Case 1: (〈aux, aiae.ct〉, i) = (〈auxλ, aiae.ctλ〉, iλ).

Dec will output ⊥ in game G0 since (〈auxλ, aiae.ctλ〉, iλ) is prohibited by Dec.

Case 2: 〈aux, aiae.ct〉 = 〈auxλ, aiae.ctλ〉 but i 6= iλ.

We show that in game G0, Dec will output ⊥, due to eλ,1u
xi,1
λ,1 u

yi,1
λ,2 /∈ RUN2 , with

overwhelming probability. Recall that uλ,1 = grλ1 , uλ,2 = grλ2 , eλ,1 = hrλiλ,1T
kλ,1 , so

eλ,1u
xi,1
λ,1 u

yi,1
λ,2 = hrλiλ,1T

kλ,1 · (grλ1)xi,1(grλ2)yi,1 = (hiλ,1h
−1
i,1)rλT kλ,1 mod N2,

21

Table 3. Brief description of the security proof of Theorem 2.

Changes between adjacent games Assumptions

G0 The original n-KDM-CCA security game. −
G1 Dec: Reject if 〈aux, aiae.ct〉 = 〈auxλ, aiae.ctλ〉 for some λ ∈ [Qe]. G0 ≈s G1

G2
Initialize: sample secret keys with

(xi,1, yi,1, · · · , xi,4, yi,4) := (x1, y1, · · · , x4, y4) + (xi,1, yi,1, · · · , xi,4, yi,4).
G1 = G2

G3 Enc(fλ, iλ): use the secret keys to run KEM.Enc and E .Enc G2 = G3

G4

Enc(fλ, iλ): when Enc oracle encrypts affine function of secret keys, E .ct is computed

with (ũλ,j)j∈[8] := (g
r̃λ,1
1 T δ1 , · · · , gr̃λ,45 T δ8) instead of (g

r̃λ,1
1 , · · · , gr̃λ,45).

Enc does not use (xj , yj)
4
j=1 mod N any more if (δj)j∈[8] is carefully chosen.

G3 ≈c G4 by
IV5

G5

Enc(fλ, iλ): kem.ct = aux of KEM.Enc is computed with

(uλ,j)j∈[5] :=
(
(gr
∗
j T

αj)rλ
)
j∈[5]

instead of
(
g
rλ
j

)
j∈[5]

.

Now KEM.Enc encapsulates four keys(
kλ,j − rλ · (αjxi,j + αj+1yi,j)

)4
j=1

mod N

but (kλ,j)
4
j=1 is the key used in AIAE.Enc.

G4 ≈c G5 by
IV5

G6

Enc(fλ, iλ): Sample kλ,j := rλk
∗
j + sλ,j for j ∈ [4].

Now KEM.Enc encapsulates four keys(
rλ(k∗j − αjxj − αj+1yj)− rλ(αj x̄i,j + αj+1ȳi,j) + sλ,j

)4
j=1

mod N

but (rλk
∗
j + sλ,j)

4
j=1 is the key used in AIAE.Enc.

G5 = G6

G7 Dec: Use φ(N) and secret keys to answer decryption queries. G6 = G7

G8

Dec: Add an additional rejection rule. Reject if

Bad′ := (∃uj /∈ SCRN2) or B̃ad := (∀uj ∈ SCRN2) ∧ (∃ũj /∈ SCRNs) happens.

Bad′ and B̃ad can be detected by using φ(N). Now only the (mod φ(N)/4) part of
secret key and φ(N) are used in Dec.
The randomness of (αjxj + αj+1yj)

4
j=1 mod N perfectly hides (k∗1 , · · · , k∗4) in Enc,

thus (k∗1 , · · · , k∗4) is uniform.
(rλk

∗
j + sλ,j)

4
j=1 is the key used in AIAE.Enc.

Bad′ may lead to a fresh successful forgery for AIAE.

G7 = G8 if
neither Bad′ nor

B̃ad happens.

Pr[Bad′] = negl
due to weak

INT-Fraff-RKA
security of AIAE

G9 Initialize: Sample an independent random tuple (k̄∗1 , · · · , k̄∗4). G8 = G9 to
Enc(fλ, iλ): Use (rλk̄

∗
j + sλ,j)

4
j=1 in AIAE.Enc. the adversary

G10

Enc: Encrypt zeros instead of the affine function of secret keys.

B̃ad happens with negligible probability, since t 6= gm1 mod N in Dec.

Adversary A wins with probability 1/2.

G9 ≈c G10 by
IND-Fraff-RKA

security of AIAE.

Pr[B̃ad] = negl

where hiλ,1 and hi,1 are parts of public key of different users iλ and i respectively and are
uniformly distributed over SCRNs . So hiλ,1h

−1
i,1 6= 1, hence eλ,1u

xi,1
λ,1 u

yi,1
λ,2 /∈ RUN2 , except

with probability 2−Ω(`).

By a union bound, G0 and G1 are identical except with probability Qd · 2−Ω(`), therefore∣∣Pr0[Win]− Pr1[Win]
∣∣ ≤ Qd · 2−Ω(`).

– Game G2: This game is the same as game G1, except that, the challenger samples the se-
cret keys ski = (xi,1, yi,1, · · · , xi,4, yi,4), i ∈ [n], in a different way. First, it chooses ran-
dom (x1, y1, · · · , x4, y4) and (x̄i,1, ȳi,1, · · · , x̄i,4, ȳi,4), i ∈ [n], from

[
bN2/4c

]
, then it computes

(xi,1, yi,1, · · · , xi,4, yi,4) = (x1, y1, · · · , x4, y4) + (xi,1, yi,1, · · · , xi,4, yi,4) mod bN2/4c for i ∈ [n].

22

Obviously, the secret keys ski = (xi,1, yi,1, · · · , xi,4, yi,4) are uniformly distributed. Hence G2

is identical to G1, and Pr1[Win] = Pr2[Win].

– Game G3: This game is the same as game G2, except that, when responding to the adversary’s
λ-th (λ ∈ [Qe]) Enc query (fλ, iλ), instead of using the public keys pkiλ = (hiλ,1, · · · , hiλ,4),
the challenger uses the secret keys skiλ = (xiλ,1, yiλ,1, · · · , xiλ,4, yiλ,4) to prepare (eλ,1, · · · , eλ,4)
and ẽλ as follows:

• (eλ,1, · · · , eλ,4) := (u
−xiλ,1
λ,1 u

−yiλ,1
λ,2 T kλ,1 , · · · , u−xiλ,4λ,4 u

−yiλ,4
λ,5 T kλ,4) mod N2,

• ẽλ := ũ
−xiλ,1
λ,1 ũ

−yiλ,1
λ,2 ũ

−xiλ,2
λ,3 ũ

−yiλ,2
λ,4 ũ

−xiλ,3
λ,5 ũ

−yiλ,3
λ,6 ũ

−xiλ,4
λ,7 ũ

−yiλ,4
λ,8 Tmβ mod N s.

Observe that for j ∈ {1, 2, 3, 4},

eλ,j
G2= hrλiλ,jT

kλ,j = (g
−xiλ,j
j g

−yiλ,j
j+1)rλT kλ,j

G3= u
−xiλ,j
λ,j u

−yiλ,j
λ,j+1 T

kλ,j mod N2,

ẽλ
G2= h

r̃λ,1
iλ,1
· · ·hr̃λ,4iλ,4

Tmβ = (g
−xiλ,1
1 g

−yiλ,1
2)r̃λ,1 · · · (g−xiλ,44 g

−yiλ,4
5)r̃λ,4Tmβ

G3= ũ
−xiλ,1
λ,1 ũ

−yiλ,1
λ,2 · · · ũ−xiλ,4λ,7 ũ

−yiλ,4
λ,8 Tmβ mod N s.

Thus G3 is identical to G2, and Pr2[Win] = Pr3[Win].

– Game G4: This game is the same as game G3, except that, in the case of the challenge bit β = 1,
to answer the λ-th (λ ∈ [Qe]) Enc query (fλ, iλ), the challenger does not use (x1, y1, · · · , x4, y4)
mod N to compute ẽλ any more, and instead, it computes (ũλ,1, · · · , ũλ,8) and ẽλ as follows:

• (ũλ,1, · · · , ũλ,8) :=
(
g
r̃λ,1
1 T

∑n
i=1 ai,1 , g

r̃λ,1
2 T

∑n
i=1 bi,1 , g

r̃λ,2
2 T

∑n
i=1 ai,2 , g

r̃λ,2
3 T

∑n
i=1 bi,2 ,

g
r̃λ,3
3 T

∑n
i=1 ai,3 , g

r̃λ,3
4 T

∑n
i=1 bi,3 , g

r̃λ,4
4 T

∑n
i=1 ai,4 , g

r̃λ,4
5 T

∑n
i=1 bi,4

)
mod N s,

• ẽλ := h
r̃λ,1
iλ,1
· · ·hr̃λ,4iλ,4

T
∑n
i=1

∑4
j=1(ai,j(x̄i,j−x̄iλ,j)+bi,j(ȳi,j−ȳiλ,j))+c mod N s,

where fλ = ({ai,1, bi,1, · · · , ai,4, bi,4}i∈[n], c) ∈ Faff.

Observe that,

ẽλ
G4=

∏4
j=1 h

r̃λ,j
iλ,j
· T

∑n
i=1

∑4
j=1(ai,j(x̄i,j−x̄iλ,j)+bi,j(ȳi,j−ȳiλ,j))+c

=
∏4
j=1 h

r̃λ,j
iλ,j
· T

∑n
i=1

∑4
j=1(ai,j(xi,j−xiλ,j)+bi,j(yi,j−yiλ,j))+c

=
∏4
j=1(g

−xiλ,j
j g

−yiλ,j
j+1)r̃λ,j · Tm1−

∑n
i=1

∑4
j=1(ai,jxiλ,j+bi,jyiλ,j)

=
∏4
j=1

(
g
r̃λ,j
j T

∑n
i=1 ai,j

)−xiλ,j(gr̃λ,jj+1T
∑n
i=1 bi,j

)−yiλ,j · Tm1

= ũ
−xiλ,1
λ,1 ũ

−yiλ,1
λ,2 · · · ũ−xiλ,4λ,7 ũ

−yiλ,4
λ,8 Tm1 mod N s, (7)

where the third equality follows from m1 =
∑n

i=1(ai,1xi,1 + bi,1yi,1 + · · ·+ ai,4xi,4 + bi,4yi,4) + c.

We analyze the difference between G3 and G4 via the following lemma.

Lemma 4. There exists a PPT adversary B1 against the IV5 assumption w.r.t. GenN and
QRNs, such that

∣∣Pr3[Win]− Pr4[Win]
∣∣ ≤ Adviv5

GenN,B1
(`).

Proof. According to the last line of Eq. (7), ẽλ can be computed from (ũλ,1, · · · , ũλ,8) in the
same way as in G3 and G4. Hence the only difference between G3 and G4 is the distribution of
(ũλ,1, · · · , ũλ,8) themselves.

23

It is straightforward to construct a PPT adversary BChalbIV5
1 (N, g1, · · · , g5) to solve the

IV5 problem. B1 is given (N, g1, · · · , g5) and has access to its ChalbIV5
oracle. Now B1 sim-

ulates game G3 or G4 for adversary A. First, B1 prepares the parameter prm and generates
public and secret keys (pki, ski), i ∈ [n], as G3 and G4. To answer the λ-th (λ ∈ [Qe]) Enc
query (fλ, iλ), where fλ = ({ai,1, bi,1, · · · , ai,4, bi,4}i∈[n], c) ∈ Faff, B1 proceeds as follows: it

queries its own ChalbIV5
oracle with (

∑n
i=1 ai,1,

∑n
i=1 bi,1, ∗, ∗, ∗), (∗,∑n

i=1 ai,2,
∑n

i=1 bi,2, ∗, ∗),
(∗, ∗,∑n

i=1 ai,3,
∑n

i=1 bi,3, ∗), (∗, ∗, ∗,∑n
i=1 ai,4,

∑n
i=1 bi,4), where the symbol “∗” denotes dummy

messages. Then B1 obtains its challenges (ũλ,1, ũλ,2, ∗̃, ∗̃, ∗̃), (∗̃, ũλ,3, ũλ,4, ∗̃, ∗̃), (∗̃, ∗̃, ũλ,5, ũλ,6, ∗̃),
(∗̃, ∗̃, ∗̃, ũλ,7, ũλ,8), and neglects “∗̃” terms. According to the ChalbIV5

oracle, (ũλ,1, · · · , ũλ,8) is

Case 1 (b = 0): (g
r̃λ,1
1 , g

r̃λ,1
2 , g

r̃λ,2
2 , g

r̃λ,2
3 , g

r̃λ,3
3 , g

r̃λ,3
4 , g

r̃λ,4
4 , g

r̃λ,4
5) or

Case 2 (b = 1): (g
r̃λ,1
1 T

∑n
i=1 ai,1 , g

r̃λ,1
2 T

∑n
i=1 bi,1 , g

r̃λ,2
2 T

∑n
i=1 ai,2 , g

r̃λ,2
3 T

∑n
i=1 bi,2 ,

g
r̃λ,3
3 T

∑n
i=1 ai,3 , g

r̃λ,3
4 T

∑n
i=1 bi,3 , g

r̃λ,4
4 T

∑n
i=1 ai,4 , g

r̃λ,4
5 T

∑n
i=1 bi,4).

Next B1 uses the obtained (ũλ,1, · · · , ũλ,8) and the secret keys to compute ẽλ via Eq. (7) for A.
In the meantime, B1 can also simulate Dec for A since it knows the secret keys. Finally, B1

outputs 1 if the event Win occurs.

In Case 1, B1 perfectly simulates game G3 for A. In Case 2, B1 perfectly simulates game
G4 for A. Any difference between Pr3[Win] and Pr4[Win] results in B1’s advantage over the IV5

problem.

– Game G5: This game is the same as game G4, except that, the challenger chooses random
r∗ ∈

[
bN/4c

]
and α1, · · · , α5 ∈ ZN beforehand (in Initialize). In addition, to respond to the

λ-th (λ ∈ [Qe]) Enc query (fλ, iλ), the challenger computes (uλ,1, · · · , uλ,5) as follows:

• (uλ,1, · · · , uλ,5) := ((gr
∗

1 T
α1)rλ , · · · , (gr∗5 Tα5)rλ) mod N2.

The only difference between G4 and G5 is the distribution of (uλ,1, · · · , uλ,5). In game G4,
(uλ,1, · · · , uλ,5) = (grλ1 , · · · , grλ5) mod N2, while in game G5, (uλ,1, · · · , uλ,5) = ((gr

∗
1 T

α1)rλ , · · · ,
(gr
∗

5 T
α5)rλ) mod N2. Similar to the previous lemma, it is straightforward to construct a PPT

adversary to solve IV5 problem by employing the power of adversary A. Thus
∣∣Pr4[Win] −

Pr5[Win]
∣∣ ≤ Adviv5

GenN(`), and its proof is similar to the previous one.

– Game G6: This game is the same as game G5, except that, the challenger chooses a random tuple
k∗ = (k∗1, k

∗
2, k
∗
3, k
∗
4) beforehand (in Initialize). In addition, to respond to the λ-th (λ ∈ [Qe])

Enc query (fλ, iλ), the challenger uses a different way to generate kλ = (kλ,1, kλ,2, kλ,3, kλ,4)
and (eλ,1, · · · , eλ,4):

• pick sλ = (sλ,1, sλ,2, sλ,3, sλ,4) ← $ Z4
N and rλ ← $

[⌊
N/4

⌋]
uniformly, and compute kλ =

(kλ,1, kλ,2, kλ,3, kλ,4) := (rλk
∗
1 + sλ,1, · · · , rλk∗4 + sλ,4).

• (eλ,1, · · · , eλ,4) := (hr
∗rλ
iλ,1

T rλ·(k
∗
1−α1xiλ,1−α2yiλ,1)+sλ,1 , · · · , hr∗rλiλ,4

T rλ·(k
∗
4−α4xiλ,4−α5yiλ,4)+sλ,4).

Clearly kλ is uniformly distributed over Z4
N , as in game G5. At the same time, observe that

for j ∈ {1, 2, 3, 4},

eλ,j
G5= u

−xiλ,j
λ,j u

−yiλ,j
λ,j+1 T

kλ,j = (gr
∗
j T

αj)−rλ·xiλ,j (gr
∗
j+1T

αj+1)−rλ·yiλ,jT kλ,j

= (g
−xiλ,j
j g

−yiλ,j
j+1)r

∗rλT kλ,j−rλ·(αjxiλ,j+αj+1yiλ,j)

G6= hr
∗rλ
iλ,j

T rλ·(k
∗
j−αjxiλ,j−αj+1yiλ,j)+sλ,j mod N2.

24

Thus G6 is identical to G5, and Pr5[Win] = Pr6[Win].

– Game G7: This game is the same as game G6, except for a modification to answering the Dec
queries (〈aux, aiae.ct〉, i ∈ [n]). The challenger uses the i-th user’s secret key ski = (xi,1, yi,1, · · · ,
xi,4, yi,4) together with φ(N) to compute the decryption of ciphertext 〈aux, aiae.ct〉, where aux =
(u1, · · · , u5, e1, · · · , e4). More precisely, it computes k = (k1, · · · , k4) and m as follows:

• (α′1, · · · , α′5) :=
(
dlogT (u

φ(N)
1)/φ(N), · · · , dlogT (u

φ(N)
5)/φ(N)

)
mod N ,

(γ′1, · · · , γ′4) :=
(
dlogT (e

φ(N)
1)/φ(N), · · · , dlogT (e

φ(N)
4)/φ(N)

)
mod N ,

k = (k1, · · · , k4) := (α′1xi,1 + α′2yi,1 + γ′1, · · · , α′4xi,4 + α′5yi,4 + γ′4) mod N ,

• E .ct = (ũ1, · · · , ũ8, ẽ, t)/⊥ ← AIAE.Dec
(
k, aiae.ct, aux

)
,

• (α̃1, · · · , α̃8) :=
(
dlogT (ũ

φ(N)
1)/φ(N), · · · ,dlogT (ũ

φ(N)
8)/φ(N)

)
mod N s−1,

γ̃ := dlogT (ẽφ(N))/φ(N) mod N s−1,
m := α̃1xi,1 + α̃2yi,1 + α̃3xi,2 + α̃4yi,2 + α̃5xi,3 + α̃6yi,3 + α̃7xi,4 + α̃8yi,4 + γ̃ mod N s−1.

According to Eq. (1), for j ∈ {1, 2, 3, 4}, we have that

kj
G6= dlogT (eju

xi,j
j u

yi,j
j+1) = dlogT

(
(eju

xi,j
j u

yi,j
j+1)φ(N)

)
/φ(N) mod N

= dlogT (u
φ(N)·xi,j
j)/φ(N) + dlogT (u

φ(N)·yi,j
j+1)/φ(N) + dlogT (e

φ(N)
j)/φ(N)

G7= dlogT (u
φ(N)
j)/φ(N)

︸ ︷︷ ︸
α′j

·xi,j + dlogT (u
φ(N)
j+1)/φ(N)

︸ ︷︷ ︸
α′j+1

·yi,j + dlogT (e
φ(N)
j)/φ(N)

︸ ︷︷ ︸
γ′j

,

m
G6= dlogT (ẽũ

xi,1
1 ũ

yi,1
2 ũ

xi,2
3 ũ

yi,2
4 ũ

xi,3
5 ũ

yi,3
6 ũ

xi,4
7 ũ

yi,4
8) mod N s−1

G7= dlogT (ũ
φ(N)
1)/φ(N)︸ ︷︷ ︸
α̃1

·xi,1 + · · ·+ dlogT (ũ
φ(N)
8)/φ(N)︸ ︷︷ ︸
α̃8

·yi,4 + dlogT (ẽφ(N))/φ(N)︸ ︷︷ ︸
γ̃

.

These changes are conceptual. So G7 is identical to G6, and Pr6[Win] = Pr7[Win].

– Game G8: This game is the same as game G7, except that, the challenger adds an additional
rejection rule when answering Dec queries as follows:

• if α′1 6= 0 ∨ · · · ∨ α′5 6= 0 ∨ α̃1 6= 0 ∨ · · · ∨ α̃8 6= 0, return ⊥.

That is, the challenger will not output m in Dec unless α′1 = · · · = α′5 = 0 and α̃1 = · · · =
α̃8 = 0 holds. Thus the values of (xi,j , yi,j)

4
j=1 mod N , in particular (xj , yj)

4
j=1 mod N , are not

used any more in Dec.

Let Bad denote the event that A makes a Dec query
(
〈aux, aiae.ct〉, i ∈ [n]

)
, such that

e1u
xi,1
1 u

yi,1
2 , · · · , e4u

xi,4
4 u

yi,4
5 ∈ RUN2 ∧ AIAE.Dec

(
k, aiae.ct, aux

)
6= ⊥ (8)

∧ ẽũxi,11 ũ
yi,1
2 ũ

xi,2
3 ũ

yi,2
4 ũ

xi,3
5 ũ

yi,3
6 ũ

xi,4
7 ũ

yi,4
8 ∈ RUNs ∧ t = gm1 mod N (9)

∧
(
α′1 6= 0 ∨ · · · ∨ α′5 6= 0 ∨ α̃1 6= 0 ∨ · · · ∨ α̃8 6= 0

)
.

Clearly, games G7 and G8 are the same until Bad happens. Therefore, we have that
∣∣Pr7[Win]−

Pr8[Win]
∣∣ ≤ Pr8[Bad].

To prove that G7 and G8 are indistinguishable, we have to show that Pr8[Bad] is negligible.
This is not an easy task, and we further divide Bad to two disjoint sub-events:

25

∗ Bad′ denotes the event that A makes a Dec query such that

Conditions (8), (9) hold ∧
(
α′1 6= 0 ∨ · · · ∨ α′5 6= 0

)
.

∗ B̃ad denotes the event that A makes a Dec query such that

Conditions (8), (9) hold ∧
(
α′1 = · · · = α′5 = 0

)
∧
(
α̃1 6= 0 ∨ · · · ∨ α̃8 6= 0

)
.

Then Pr8[Bad] ≤ Pr8[Bad′] + Pr8[B̃ad]. We give an upper bound for Pr8[Bad′] via the following

lemma. The analysis of Pr8[B̃ad] is deferred to subsequent games.

Lemma 5. Pr8[Bad′] ≤ 2Qd · Advweak-int-rka
AIAE (`) +Qd · 2−Ω(`).

Proof. In game G8, the challenger will not output m in Dec unless α′1 = · · · = α′5 = 0 and
α̃1 = · · · = α̃8 = 0 holds. As a result, the information of φ(N) and the (mod φ(N)/4) part of all
the secret keys, i.e., (xi,1, yi,1, · · · , xi,4, yi,4) mod φ(N)/4, i ∈ [n], is enough for answering Dec
queries. In particular, the values of (x1, y1, · · · , x4, y4) mod N are not needed in Dec.

We further divide Bad′ to the following two sub-events:
∗ Bad′-1 denotes the event that A makes a Dec query such that

Conditions (8), (9) hold ∧
(
α′1 6= 0 ∨ · · · ∨ α′5 6= 0

)

∧
(
∃j ∈ [4], α′j/αj 6= α′j+1/αj+1 mod N

)
.

∗ Bad′-2 denotes the event that A makes a Dec query such that

Conditions (8), (9) hold ∧
(
α′1 6= 0 ∨ · · · ∨ α′5 6= 0

)

∧
(
α′1/α1 = · · · = α′5/α5 mod N

)
.

Recall that (α1, · · · , α5) are chosen in Initialize.
We will consider the two sub-events in game G8 separately via the following two claims.

Claim 2. Pr8[Bad′-1] ≤ Qd · Advweak-int-rka
AIAE (`) +Qd · 2−Ω(`).

Proof. In game G8, the values of (x1, y1, · · · , x4, y4) mod N are not used in Dec, and the compu-
tation of tλ = g

mβ
1 mod N in Enc only uses the values of (x1, y1, · · · , x4, y4) mod φ(N)/4, since

the order of g1 ∈ SCRNs is φ(N)/4. Thus the only information about (x1, y1, · · · , x4, y4) mod N
leaked to A is through the computation of (eλ,1, · · · , eλ,4) in Enc, which may leak the values
of (α1x1 + α2y1), (α2x2 + α3y2), (α3x3 + α4y3), (α4x4 + α5y4) mod N : for j ∈ {1, 2, 3, 4},

eλ,j = hr
∗rλ
iλ,j

T rλ·(k
∗
j−αjxiλ,j−αj+1yiλ,j)+sλ,j mod N2

= hr
∗rλ
iλ,j

T rλ·(k
∗
j−αjxj−αj+1yj−αj x̄iλ,j−αj+1ȳiλ,j)+sλ,j mod N2. (10)︸ ︷︷ ︸

,k̂j

If Bad′-1 occurs, for concreteness, say that α′1/α1 6= α′2/α2 mod N , then

k1 = α′1xi,1 + α′2yi,1 + γ′1 = α′1x1 + α′2y1 + α′1x̄i,1 + α′2ȳi,1 + γ′1 mod N,

the value of k1 is independent of (α1x1 +α2y1) mod N , thus uniformly distributed over ZN from
the point of view ofA. By Remark 1, for k = (k1, k2, k3, k4) where k1 ←$ ZN , AIAE.Dec

(
k, aiae.ct,

aux
)
6= ⊥ happens with probability at most Advweak-int-rka

AIAE (`) + 2−Ω(`).

26

Then Pr8[Bad′-1] ≤ Qd · (Advweak-int-rka
AIAE (`) + 2−Ω(`)) by a union bound.

Claim 3. Pr8[Bad′-2] ≤ Qd · Advweak-int-rka
AIAE (`).

Proof. Similar to the discussion in the proof of the previous claim, in game G8, the only
information about (x1, y1, · · · , x4, y4) mod N and k∗ = (k∗1, k

∗
2, k
∗
3, k
∗
4) involved is through Enc,

which uses the value of k̂1 := (k∗1 −α1x1−α2y1), k̂2 := (k∗2 −α2x2−α3y2), k̂3 := (k∗3 −α3x3−
α4y3), k̂4 := (k∗4 − α4x4 − α5y4) mod N via computing (eλ,1, · · · , eλ,4) (see Eq. (10)), and also
uses kλ = rλ · (k∗1, k∗2, k∗3, k∗4) + (sλ,1, · · · , sλ,4) as the encryption key of AIAE.Enc.

Note that because of the randomness of (x1, y1, · · · , x4, y4) mod N , (k̂1, k̂2, k̂3, k̂4) are uni-
formly distributed and independent of (k∗1, k

∗
2, k
∗
3, k
∗
4). Therefore it is possible to construct an al-

gorithm to simulate Dec and Enc of game G8 without k∗ = (k∗1, k
∗
2, k
∗
3, k
∗
4) and (x1, y1, · · · , x4, y4)

mod N . The algorithm can also simulate AIAE.Enc as long as it has access to a weak INT-Fraff-
RKA encryption oracle of the AIAE scheme.

More precisely, we construct a PPT adversary B2(prmAIAE), which has access to EncAIAE ora-
cle, against the weak INT-Fraff-RKA security of the AIAE scheme, where prmAIAE = (N, p, q, · · ·).
B2 does not choose k∗ = (k∗1, k

∗
2, k
∗
3, k
∗
4) in Initialize any more, and it implicitly sets k∗

to be the encryption key used by its weak INT-Fraff-RKA challenger. B2 does not choose
(x1, y1, · · · , x4, y4) mod N either, and instead, it chooses k̂ = (k̂1, k̂2, k̂3, k̂4) uniformly from
Z4
N . B2 picks (x1, y1, · · · , x4, y4) mod φ(N)/4 and (xi,1, yi,1, · · · , xi,4, yi,4) ∈

[
bN2/4c

]
, i ∈

[n], randomly. To simulate Enc, B2 can use (xiλ,j , yiλ,j , k̂j)
4
j=1 to compute (eλ,j)

4
j=1 via Eq.

(10), and use (xi,j , yi,j)
4
j=1, i ∈ [n], to compute ẽλ. Note that B2 is able to compute tλ =

g
mβ
1 mod N , even if β = 1, because it knows the (mod φ(N)/4) part of all the secret keys, i.e.,

(xj , yj)
4
j=1 mod φ(N)/4 and (x̄i,j , ȳi,j)

4
j=1 mod φ(N)/4, i ∈ [n]. Then B2 submits (E .ctλ, auxλ,

〈rλ, sλ = (sλ,1, · · · , sλ,4)〉) to its own EncAIAE oracle, and obtains aiae.ctλ. The final ciphertext
is 〈auxλ, aiae.ctλ〉. According to the weak-INT-Fraff-RKA security game, the EncAIAE oracle will
encrypt E .ctλ with the auxiliary input auxλ under the transformed key kλ = rλ · k∗ + sλ, that
is, the EncAIAE oracle behaves as AIAE.Enc

(
kλ, E .ctλ, auxλ

)
. Thus B2’s simulation of Enc is

identical to G8. For Dec, B2 answers decryption queries with φ(N)= (p − 1)(q − 1) and the
(mod φ(N)/4) part of all the secret keys, just like G8.

Suppose A makes a Dec query
(
〈aux, aiae.ct〉, i ∈ [n]

)
, such that Bad′-2 occurs. For concrete-

ness, say that r := α′1/α1 = · · · = α′5/α5 6= 0 mod N , then for j ∈ {1, 2, 3, 4},

kj = α′jxi,j + α′j+1yi,j + γ′j = r · (αjxi,j + αj+1yi,j) + γ′j mod N

= r · k∗j − r · (k∗j − αjxi,j − αj+1yi,j) + γ′j mod N

= r · k∗j − r · (k∗j − αjxj − αj+1yj︸ ︷︷ ︸
=k̂j

−αj x̄i,j − αj+1ȳi,j) + γ′j mod N

= r · k∗j −r · (k̂j − αj x̄i,j − αj+1ȳi,j) + γ′j︸ ︷︷ ︸
,sj

= r · k∗j + sj mod N.

Thus k = (k1, · · · , k4) = r · k∗ + s, where s := (s1, · · · , s4). B2 can compute 〈r, s = (s1, · · · , s4)〉
as above using (xi,j , yi,j , k̂j)

4
j=1, and outputs

(
aux, 〈r, s〉, aiae.ct

)
to its weak INT-Fraff-RKA

challenger as a forgery. We analyze the success probability of B2 as follows:

27

Firstly, a valid decryption query fromA satisfies 〈aux, aiae.ct〉 6= 〈auxλ, aiae.ctλ〉 for all λ ∈ [Qe],
thus

(
aux, 〈r, s〉, aiae.ct

)
6=
(
auxλ, 〈rλ, sλ〉, aiae.ctλ

)
will hold for all λ ∈ [Qe], i.e., B2 always

outputs a fresh forgery.

Secondly, if aux = auxλ for some λ ∈ [Qe], then it is easy to have that α′1 = α1 · rλ, · · · , α′5 =
α5 · rλ and thus r = rλ. Furthermore for j ∈ [4], it clearly holds that γ′j = rλ · (k̂j −αj x̄i,j −
αj+1ȳi,j) + sλ,j (cf. Eq. (10)), thus sj = −r · (k̂j − αj x̄i,j − αj+1ȳi,j) + γ′j = sλ,j and s = sλ.
That is, if aux = auxλ for some λ ∈ [Qe], then it holds that 〈r, s〉 = 〈rλ, sλ〉. Obviously it
satisfies the additional special rule required for the weak INT-Fraff-RKA security.

Finally, if Bad′-2 occurs in this decryption query, then AIAE.Dec
(
k, aiae.ct, aux

)
6= ⊥, where

k = r · k∗ + s, will imply that B2’s forgery is successful.

In conclusion, we have that Pr8[Bad′-2] ≤ Qd · Advweak-int-rka
AIAE,B2

(`).

Combining the above two claims, it holds that

Pr8[Bad′] ≤ 2Qd · Advweak-int-rka
AIAE (`) +Qd · 2−Ω(`),

and Lemma 5 follows.

– Game G9: This game is the same as game G8, except that, the challenger chooses another random
tuple k

∗
= (k̄∗1, k̄

∗
2, k̄
∗
3, k̄
∗
4) besides k∗ = (k∗1, k

∗
2, k
∗
3, k
∗
4) in Initialize. In addition, to answer the

λ-th (λ ∈ [Qe]) Enc query (fλ, iλ), the challenger uses a different key for AIAE to compute
aiae.ctλ:

• set kλ = (k̄λ,1, k̄λ,2, k̄λ,3, k̄λ,4) := (rλk̄
∗
1 + sλ,1, · · · , rλk̄∗4 + sλ,4);

• invoke aiae.ctλ ←$ AIAE.Enc
(
kλ, E .ctλ, auxλ

)
.

But the challenger still uses k∗ = (k∗1, k
∗
2, k
∗
3, k
∗
4) to compute (eλ,1, · · · , eλ,4).

In game G8, the only place that needs the value of (x1, y1, · · · , x4, y4) mod N is the compu-
tation of (eλ,1, · · · , eλ,4) in Enc. More precisely, for j ∈ {1, 2, 3, 4},

eλ,j = hr
∗rλ
iλ,j

T rλ·(k
∗
j−αjxiλ,j−αj+1yiλ,j)+sλ,j mod N2

= hr
∗rλ
iλ,j

T rλ·(k
∗
j−αjxj−αj+1yj−αj x̄iλ,j−αj+1ȳiλ,j)+sλ,j mod N2.

We stress that the computation of tλ = g
mβ
1 mod N in Enc only uses the values of (x1, y1, · · · , x4,

y4) mod φ(N)/4, since the order of g1 ∈ SCRNs is φ(N)/4. We also note that neither k∗ =
(k∗1, k

∗
2, k
∗
3, k
∗
4) nor (x1, y1, · · · , x4, y4) mod N is involved in Dec since Dec rejects the cipher-

text unless α′1 = · · · = α′5 = 0 and α̃1 = · · · = α̃8 = 0. As a result, k∗ = (k∗1, k
∗
2, k
∗
3, k
∗
4) is totally

hidden by the entropy of (x1, y1, · · · , x4, y4) mod N and is uniformly random to A.

Thus the challenger can use an independent k
∗

= (k̄∗1, · · · , k̄∗4) to compute kλ, and use kλ to
do the encryption of the AIAE scheme in Enc, as in G9.

Then games G8 and G9 are identically distributed from the point of view of A, thus we have
Pr8[Win] = Pr9[Win] and Pr8[B̃ad] = Pr9[B̃ad].

– Game G10: This game is the same as game G9, except that, to answer the λ-th (λ ∈ [Qe]) Enc
query (fλ, iλ), the challenger computes aiae.ctλ as follows:

• invoke aiae.ctλ ←$ AIAE.Enc
(
kλ, 0

`M , auxλ
)
.

28

That is, the challenger computes the AIAE encryption of a constant 0`M instead of E .ctλ in
Enc.

Note that in games G9 and G10, the key k
∗

= (k̄∗1, k̄
∗
2, k̄
∗
3, k̄
∗
4) is used only in the computation of

the AIAE encryption, where it uses kλ = rλ · k∗+ sλ, sλ = (sλ,1, · · · , sλ,4), as the encryption key.
The difference between G9 and G10 can be reduced to the IND-Fraff-RKA security of the AIAE
scheme directly. Thus we have that both

∣∣Pr9[Win] − Pr10[Win]
∣∣,
∣∣Pr9[B̃ad] − Pr10[B̃ad]

∣∣ ≤
Advind-rka

AIAE (`).

Now in G10, the challenger computes the AIAE encryption of a constant 0`M in Enc, thus the
challenge bit β is completely hidden. Then Pr10[Win] = 1

2 .

We give an upper bound for Pr10[B̃ad] via the following lemma.

Lemma 6. Pr10[B̃ad] ≤ (Qd + 1) · 2−Ω(`) + AdvdlGenN(`).

Proof. In game G10, neither Dec nor Enc uses the values of (x1, y1, · · · , x4, y4) mod φ(N)/4.
The only information leaked about them lies in the public keys pki, i ∈ [n], which reveal the
values of (w1x1 +w2y1), (w2x2 +w3y2), (w3x3 +w4y3), (w4x4 +w5y4) mod φ(N)/4, where we
denote wj := dlogggj mod φ(N)/4 for some base g ∈ SCRNs , j ∈ [5].

We may divide B̃ad to the following two sub-events:
∗ B̃ad-1 denotes the event that A makes a Dec query such that

Conditions (8), (9) hold ∧
(
α′1 = · · · = α′5 = 0

)
∧
(
α̃1 6= 0 ∨ · · · ∨ α̃8 6= 0

)

∧
(
α̃1/w1 6= α̃2/w2 ∨ α̃3/w2 6= α̃4/w3 ∨ α̃5/w3 6= α̃6/w4 ∨ α̃7/w4 6= α̃8/w5

)
.

∗ B̃ad-2 denotes the event that A makes a Dec query such that

Conditions (8), (9) hold ∧
(
α′1 = · · · = α′5 = 0

)
∧
(
α̃1 6= 0 ∨ · · · ∨ α̃8 6= 0

)

∧
(
α̃1/w1 = α̃2/w2 ∧ α̃3/w2 = α̃4/w3 ∧ α̃5/w3 = α̃6/w4 ∧ α̃7/w4 = α̃8/w5

)
.

We will consider the two sub-events in game G10 separately via the following two claims.

Claim 4. Pr10[B̃ad-1] ≤ Qd · 2−Ω(`).

Proof. If B̃ad-1 occurs, for concreteness, say that α̃1/w1 6= α̃2/w2, then

gm1 = g
α̃1xi,1+α̃2yi,1+···
1 = g

α̃1x1+α̃2y1+α̃1x̄i,1+α̃2ȳi,1+··· mod φ(N)/4
1 mod N,

and the value of (α̃1x1 + α̃2y1) mod φ(N)/4 is independent of (w1x1 +w2y1) mod φ(N)/4. Thus
gm1 mod N is uniformly distributed over SCRNs from the point of view of A, and t = gm1 mod N
will not hold except with a negligible probability 2−Ω(`).

Then by a union bound, Pr10[B̃ad-1] ≤ Qd · 2−Ω(`).

Claim 5. There exists a PPT adversary B3 against the DL assumption w.r.t. GenN and SCRNs ,
such that Pr10[B̃ad-2] ≤ AdvdlGenN,B3

(`) + 2−Ω(`).

Proof. In game G10, if B̃ad-2 occurs, then we can construct a PPT adversary B3(N, p, q, g, h)
to compute the discrete logarithm of h based on g, where g, h ∈ SCRNs . With (N, p, q, g, h), B3

simulates Initialize as follows. B3 picks zj , z
′
j uniformly from [φ(N)/4], and sets gj := gzjhz

′
j for

29

j ∈ [5]. Then gj is uniformly distributed over SCRNs . Next, B3 samples secret keys and computes
public keys just the same way as Initialize in G10. Since B3 knows φ(N) = (p−1)(q−1) and all
the secret keys, it can perfectly simulates Enc and Dec the same way as G10 does. Furthermore,
z′j is hidden by zj perfectly from the point of view of A. If we denote w := dloggh mod φ(N)/4,
then for j ∈ [5], wj = dlogggj = zj + wz′j mod φ(N)/4.

If B̃ad-2 occurs in Dec, for concreteness, say that α̃1/w1 = α̃2/w2 6= 0 mod φ(N)/4, i.e.,
gα̃2

1 = gα̃1
2 6= 1, then B3 can compute w by solving the equation w1α̃2 = w2α̃1 mod φ(N)/4, or

equivalently,

z1α̃2 + wz′1α̃2 = z2α̃1 + wz′2α̃1 mod φ(N)/4.

Since z′j is hidden from the point of view of A, then (z′1α̃2 − z′2α̃1) mod φ(N)/4 is multiplica-

tive invertible except with probability 2−Ω(`). Thus B3 will succeed in computing the discrete
logarithm of h based on g, and output w = (z′1α̃2 − z′2α̃1)−1 · (z2α̃1 − z1α̃2) mod φ(N)/4 to its

challenger. Clearly, we have Pr10[B̃ad-2] ≤ AdvdlGenN,B3
(`) + 2−Ω(`).

Combining the above two claims, it holds that

Pr10[B̃ad] ≤ (Qd + 1) · 2−Ω(`) + AdvdlGenN(`),

and Lemma 6 follows.

Taking all things together, the n-KDM[Faff]-CCA security of PKE follows.

6 PKE with n-KDM[Fd
poly]-CCA Security

6.1 The Basic Idea

We consider how to construct a PKE which is n-KDM-CCA secure w.r.t. the set of polynomial
functions of bounded degree d, denoted by Fdpoly, where d can be polynomial in security parameter
`. We will consider adversaries submitting f in the format of Modular Arithmetic Circuit (MAC)
[MTY11] (cf. Definition 13 in Appendix A), i.e., a polynomial-size circuit which computes f . In
particular, we do not require a prior bound on the size of circuits, but only require a prior bound d
on the degree of the polynomials. Our construction still follows the approach in Fig. 1. In fact, our
n-KDM[Fdpoly]-CCA secure PKE shares the same building blocks KEM and AIAE with the previous
PKE in Fig. 9 which has n-KDM[Faff]-CCA security. What we should do is to design a new building
block E , which can function as an entropy filter for polynomial functions. Our new E still share the
same secret/public key pair with KEM. Hence for i ∈ [n], we have ski = (xi,1, yi,1, · · · , xi,4, yi,4) and

pki = (hi,1, · · · , hi,4) with hi,1 = g
−xi,1
1 g

−yi,1
2 , · · · , hi,4 = g

−xi,4
4 g

−yi,4
5 mod N s.

6.2 Reducing Polynomials of 8n Variables to Polynomials of 8 Variables

How to Reduce 8n-Variable Polynomial fλ in Enc(fλ, iλ ∈ [n]). In the n-KDM[Fdpoly]-CCA
game, the adversary will submit (fλ, iλ ∈ [n]) to Enc as its λ-th KDM encryption query. Here fλ
is a degree-d polynomial fλ

(
(xi,j , yi,j)i∈[n],j∈[4]

)
of the n secret keys, which has 8n variables. Note

that fλ will contain at most
(

8n+d
8n

)
= Θ(d8n) monomials, which is exponentially large.

30

To reduce the number of monomials, we can always change the polynomial fλ
(
(xi,j , yi,j)i∈[n],j∈[4]

)

of 8n variables to a polynomial f ′λ
(
(xiλ,j , yiλ,j)j∈[4]

)
of 8 variables as follows. Then f ′λ will contain

at most
(

8+d
8

)
= Θ(d8) monomials, which is polynomial in `.

In Initialize, the secret keys can be generated with xi,j := xj + x̄i,j and yi,j := yj +
ȳi,j mod bN2/4c for i ∈ [n] and j ∈ [4]. Then with the values of (x̄i,j , ȳi,j)i∈[n],j∈[4], we can represent
(xi,j , yi,j)i∈[n],j∈[4] as shifts of (xiλ,j , yiλ,j)j∈[4]:

xi,j = xiλ,j + x̄i,j − x̄iλ,j , yi,j = yiλ,j + ȳi,j − ȳiλ,j ,

and reduce the polynomial fλ in 8n variables (xi,j , yi,j)i∈[n],j∈[4] to a polynomial f ′λ in 8 variables
(xiλ,j , yiλ,j)j∈[4]:

fλ
(
(xi,j , yi,j)i∈[n],j∈[4]

)
= fλ

(
(xiλ,j + x̄i,j − x̄iλ,j︸ ︷︷ ︸

xi,j

, yiλ,j + ȳi,j − ȳiλ,j︸ ︷︷ ︸
yi,j

)i∈[n],j∈[4]

)

= f ′λ
(
(xiλ,j , yiλ,j)j∈[4]

)
=

∑
0≤c1+···+c8≤d

a(c1,··· ,c8) · xc1iλ,1y
c2
iλ,1

xc3iλ,2y
c4
iλ,2

xc5iλ,3y
c6
iλ,3

xc7iλ,4y
c8
iλ,4

.

The resulting polynomial f ′λ is also of degree at most d, and the coefficients a(c1,··· ,c8) are determined
by (x̄i,j , ȳi,j)i∈[n],j∈[4] completely.

How to Determine Coefficients a(c1,··· ,c8) for f ′λ Efficiently with Only (x̄i,j , ȳi,j)i∈[n],j∈[4].
Repeat choosing values of (xiλ,j , yiλ,j)j∈[4] randomly, feeding MAC (which functions as fλ) with
input of (xiλ,j + x̄i,j − x̄iλ,j , yiλ,j + ȳi,j − ȳiλ,j)i∈[n],j∈[4], where (x̄i,j , ȳi,j)i∈[n],j∈[4] always takes the

values chosen in Initialize, and recording the output of MAC. After about
(

8+d
8

)
= Θ(d8) times, we

can extract all a(c1,··· ,c8) by simply solving a system of linear equations (with a(c1,··· ,c8) unknowns):

fλ
(
(xiλ,j + x̄i,j − x̄iλ,j , yiλ,j + ȳi,j − ȳiλ,j)i∈[n],j∈[4]

)

=
∑

0≤c1+···+c8≤d
a(c1,··· ,c8) · xc1iλ,1y

c2
iλ,1

xc3iλ,2y
c4
iλ,2

xc5iλ,3y
c6
iλ,3

xc7iλ,4y
c8
iλ,4

.

This can be done in time polynomial in `.

6.3 How to Design E: A Warmup

Let us first consider a simple case: design E w.r.t. a specific type of monomials

f ′λ
(
(xiλ,j , yiλ,j)j∈[4]

)
= a · xiλ,1yiλ,1xiλ,2yiλ,2xiλ,3yiλ,3xiλ,4yiλ,4.

We describe the encryption and decryption algorithms E .Enc, E .Dec in Fig. 10.

Security proof. We can prove KDM-CCA security w.r.t. the specific type of monomials, i.e.,
a ·xiλ,1yiλ,1 xiλ,2yiλ,2xiλ,3yiλ,3xiλ,4yiλ,4, in a similar way as the proof of Theorem 2 (cf. Table 3). The
only difference lies in games G3-G4, which are related to E . We replace G3-G4 with the following
three steps (Step 1 - Step 3), as shown in Fig. 11. More precisely, we change the E .Enc part of
Enc so that it can reserve the entropy of (x1, y1, · · · , x4, y4) mod N , behaving like an entropy filter
w.r.t. this specific kind of monomials.

Suppose that the adversary submits (fλ, iλ ∈ [n]) to Enc. Our aim is to reserve the entropy of
(xj , yj)

4
j=1 mod N from E .Enc

(
pkiλ , fλ

(
(xi,j , yi,j)i∈[n],j∈[4]

))
.

31

E .ct←$ E .Enc
(
pk = (h1, h2, h3, h4),m

)
:

For l ∈ [0, 8],

r̃l,1, r̃l,2, r̃l,3, r̃l,4 ←$
[⌊
N
4

⌋]
.

(ũl,1, · · · , ũl,8) := (g
r̃l,1
1 , g

r̃l,1
2 , g

r̃l,2
2 , g

r̃l,2
3 ,

g
r̃l,3
3 , g

r̃l,3
4 , g

r̃l,4
4 , g

r̃l,4
5) mod Ns.

ṽl := h
r̃l,1
1 h

r̃l,2
2 h

r̃l,3
3 h

r̃l,4
4 mod Ns.

table :=

ũ0,1 ũ0,2 · · · ũ0,8

ũ1,1 · ṽ0 ũ1,2 · · · ũ1,8

ũ2,1 ũ2,2 · ṽ1 · · · ũ2,8

...
...

. . .
...

ũ8,1 ũ8,2 · · · ũ8,8 · ṽ7

ẽ := ṽ8 · Tm mod Ns.

t := gm1 mod N ∈ ZN .

Return E .ct := (table, ẽ, t).

m/⊥ ← E .Dec
(
sk = (x1, y1, · · · , x4, y4), E .ct

)
:

Parse E .ct = (table, ẽ, t).

Parse table =

û0,1 û0,2 · · · û0,8

û1,1 û1,2 · · · û1,8

...
...

. . .
...

û8,1 û8,2 · · · û8,8

v̂0 := û−x10,1 û−y10,2 û
−x2
0,3 û−y20,4 û

−x3
0,5 û−y30,6 û

−x4
0,7 û−y40,8 mod Ns.

v̂1 := (û1,1/v̂0)−x1 û−y11,2 û
−x2
1,3 û−y21,4 û

−x3
1,5 û−y31,6 û

−x4
1,7 û−y41,8 mod Ns.

v̂2 := û−x12,1 (û2,2/v̂1)−y1 û−x22,3 û−y22,4 û
−x3
2,5 û−y32,6 û

−x4
2,7 û−y42,8 mod Ns.

...

v̂8 := û−x18,1 û−y18,2 û
−x2
8,3 û−y28,4 û

−x3
8,5 û−y38,6 û

−x4
8,7 (û8,8/v̂7)−y4 mod Ns.

If ẽ/v̂8 ∈ RUNs , m := dlogT (ẽ/v̂8) mod Ns−1.

If t = gm1 mod N , Return m.

Otherwise, Return ⊥.

Fig. 10. E designed for the specific type of monomials a · xiλ,1yiλ,1xiλ,2yiλ,2xiλ,3yiλ,3xiλ,4yiλ,4.

Step 0: In Initialize, the secret keys are generated with xi,j := xj + x̄i,j and yi,j := yj +
ȳi,j mod bN2/4c for i ∈ [n], j ∈ [4]. This is the same as G2 in the proof of Theorem 2.

Step 1: Use (x̄i,j , ȳi,j)i∈[n],j∈[4] to re-explain (fλ, iλ ∈ [n]) as (f ′λ, iλ ∈ [n]), and determine the
coefficient a of the monomial

f ′λ
(
(xiλ,j , yiλ,j)j∈[4]

)
= a · xiλ,1yiλ,1xiλ,2yiλ,2xiλ,3yiλ,3xiλ,4yiλ,4.

Step 2: Use secret key skiλ = (xiλ,j , yiλ,j)j∈[4] (together with public key pkiλ = (hiλ,j)j∈[4]) to
implement E .Enc (This corresponds to G3 in the proof of Theorem 2).

– Setup table, just like E .Enc.
– Compute v̂0, · · · , v̂8 from table, just like E .Dec.
– Use v̂8 instead of ṽ8 to compute ẽ with ẽ := v̂8 · T f

′
λ((xiλ,j ,yiλ,j)j∈[4]) mod N s, and

t := g
f ′λ((xiλ,j ,yiλ,j)j∈[4])

1 mod N .

It is easy to check that v̂0, · · · , v̂8 computed from table (via E .Dec) are identical to ṽ0, · · · , ṽ8

that are used to generate table (via E .Enc). Thus this change is conceptual.

Step 3: This corresponds to G4 in the proof of Theorem 2.

– table is set up in a similar way as in E .Enc, but with the following difference. The item of
row 1 and column 1 in table now is computed as û1,1 = (ũ1,1T

a) · ṽ0 instead of û1,1 = ũ1,1 · ṽ0.
This change is computationally indistinguishable, due to the IV5 assumption. (We refer to
a detailed analysis in Appendix C.2.)

– Compute v̂0, · · · , v̂8 from table, just like E .Dec.
– ẽ := v̂8 · T f

′
λ((xiλ,j ,yiλ,j)j∈[4]) mod N s, and t := g

f ′λ((xiλ,j ,yiλ,j)j∈[4])

1 mod N .

It is easy to check that v̂0 = ṽ0, v̂1 = ṽ1 · T−axiλ,1 , v̂2 = ṽ2 · T−axiλ,1yiλ,1 , · · · , v̂8 = ṽ8 ·
T−axiλ,1yiλ,1···xiλ,4yiλ,4 = ṽ8 ·T−f

′
λ((xiλ,j ,yiλ,j)j∈[4]), thus ẽ = v̂8 ·T f

′
λ((xiλ,j ,yiλ,j)j∈[4]) = ṽ8. Therefore

32

E .ct←$ E .Enc(fλ, iλ ∈ [n]): // Step 1, Step 2, Step 3 ,
�� ��Step 3 (Equivalent Form)

For l ∈ [0, 8],

r̃l,1, r̃l,2, r̃l,3, r̃l,4 ←$
[⌊
N
4

⌋]
.

(ũl,1, · · · , ũl,8) := (g
r̃l,1
1 , g

r̃l,1
2 , g

r̃l,2
2 , g

r̃l,2
3 , g

r̃l,3
3 , g

r̃l,3
4 , g

r̃l,4
4 , g

r̃l,4
5) mod Ns.

ṽl := h
r̃l,1
1 h

r̃l,2
2 h

r̃l,3
3 h

r̃l,4
4 mod Ns.

table :=

ũ0,1 ũ0,2 ũ0,3 · · · ũ0,8

ũ1,1 · ṽ0

ũ1,1T
a · ṽ0

ũ1,2 ũ1,3 · · · ũ1,8

ũ2,1 ũ2,2 · ṽ1 ũ2,3 · · · ũ2,8

ũ3,1 ũ3,2 ũ3,3 · ṽ2 · · · ũ3,8

...
...

...
. . .

...

ũ8,1 ũ8,2 ũ8,3 · · · ũ8,8 · ṽ7

,

û0,1 û0,2 û0,3 · · · û0,8

û1,1 û1,2 û1,3 · · · û1,8

û2,1 û2,2 û2,3 · · · û2,8

û3,1 û3,2 û3,3 · · · û3,8

...
...

...
. . .

...

û8,1 û8,2 û8,3 · · · û8,8

.

v̂0 := û
−xiλ,1
0,1 û

−yiλ,1
0,2 û

−xiλ,2
0,3 û

−yiλ,2
0,4 û

−xiλ,3
0,5 û

−yiλ,3
0,6 û

−xiλ,4
0,7 û

−yiλ,4
0,8 mod Ns.

v̂1 := (û1,1/v̂0)−xiλ,1 û
−yiλ,1
1,2 û

−xiλ,2
1,3 û

−yiλ,2
1,4 û

−xiλ,3
1,5 û

−yiλ,3
1,6 û

−xiλ,4
1,7 û

−yiλ,4
1,8 mod Ns.

v̂2 := û
−xiλ,1
2,1 (û2,2/v̂1)−yiλ,1 û

−xiλ,2
2,3 û

−yiλ,2
2,4 û

−xiλ,3
2,5 û

−yiλ,3
2,6 û

−xiλ,4
2,7 û

−yiλ,4
2,8 mod Ns.

...

v̂8 := û
−xiλ,1
8,1 û

−yiλ,1
8,2 û

−xiλ,2
8,3 û

−yiλ,2
8,4 û

−xiλ,3
8,5 û

−yiλ,3
8,6 û

−xiλ,4
8,7 (û8,8/v̂7)−yiλ,4 mod Ns.

ẽ := ṽ8 · T f
′
λ((xiλ,j

,yiλ,j
)j∈[4]) mod Ns.

ẽ := v̂8 · T f
′
λ((xiλ,j

,yiλ,j
)j∈[4]) mod Ns.�� ��ẽ := ṽ8 mod Ns.

t := g
f ′λ((xiλ,j

,yiλ,j
)j∈[4])

1 mod N ∈ ZN .

Return E .ct := (table, ẽ, t).

Fig. 11. Security proof of E .Enc as an entropy filter for specific monomials a ·xiλ,1yiλ,1 xiλ,2yiλ,2xiλ,3yiλ,3xiλ,4yiλ,4.

we can also implement Step 3 equivalently as follows.

Step 3 (Equivalent Form):
– table is set up in a similar way as in E .Enc, but with the following difference. The item of

row 1 and column 1 in table is computed as û1,1 = (ũ1,1T
a) · ṽ0 instead of û1,1 = ũ1,1 · ṽ0.

– ẽ := ṽ8 mod N s, and t := g
f ′λ((xiλ,j ,yiλ,j)j∈[4]) mod φ(N)/4

1 mod N .
In this step, E .Enc does not use (x1, y1, · · · , x4, y4) mod N at all (only uses (x̄i,j , ȳi,j)i∈[n],j∈[4]

and (x1, y1, · · · , x4, y4) mod φ(N)/4).

Consequently, through the computationally indistinguishable change, the entropy of (x1, y1, · · · , x4,
y4) mod N is reserved by the E .Enc part of Enc.

Similarly, Dec can be changed to do decryptions without (xj , yj)
4
j=1 mod N . This can be done

with φ(N) and the (mod φ(N)/4) part of secret key. (This corresponds to G7-G8 in the proof of
Theorem 2). Use φ(N) to make sure that all items in table of E .ct belong to SCRNs . If not, reject
immediately. As a result, Dec does not leak any information of (x1, y1, · · · , x4, y4) mod N . This
change is computationally indistinguishable, just like the analysis of Pr[Bad] as in the proof of
Theorem 2.

33

6.4 The General E Designed for Fd
poly

The previous subsection showed how to design E for a specific type of monomials. A general f ′λ
of degree d contains at most

(
8+d

8

)
= Θ(d8) monomials. To design a general E for Fdpoly, we have

to consider all possible types of monomials. For each type of non-constant monomial, we create a
table and each table is associated with a ṽ, which is called a title, and those ṽ’s are used to hide
message in ẽ. We describe E .Enc and E .Dec in Fig. 12.

There are totally
(

8+d
8

)
− 1 types of non-constant monomials of degree at most d if we neglect

the coefficients. Each type of non-constant monomial xc1iλ,1y
c2
iλ,1

xc3iλ,2 y
c4
iλ,2

xc5iλ,3y
c6
iλ,3

xc7iλ,4y
c8
iλ,4

is asso-
ciated with a tuple c = (c1, · · · c8), which determines degrees of each variable. Denote by S the set
containing all such tuples, i.e., S :=

{
c = (c1, · · · c8)

∣∣ 1 ≤ c1 + · · ·+ c8 ≤ d
}

.

For each c = (c1, · · · c8) ∈ S, we generate table(c) and its title ṽ(c) for monomial xc1iλ,1y
c2
iλ,1

xc3iλ,2y
c4
iλ,2

xc5iλ,3y
c6
iλ,3

xc7iλ,4y
c8
iλ,4

via the algorithm TableGen illustrated in Fig. 12. Intuitively, TableGen generates

table(c) of 1 + c1 + · · · + c8 rows. The 0-th row of table(c) is ũ0,1, · · · , ũ0,8. The form of other rows
are similar to row 0 with a small difference: the next c1 rows in the 1-st column are multiplied with
ṽ0, ṽ1, · · · , ṽc1−1 respectively; the next c2 rows in the 2-nd column are multiplied with ṽc1 , ṽc1+1,
· · · , ṽc1+c2−1 respectively, and so forth. TableGen also generates a title ṽ(c) for table(c). The product
of all the titles, i.e.,

∏
c∈S ṽ

(c), is used to hide Tm in ẽ.

On the other hand, the title v̂(c) = ṽ(c) can be recovered from table(c) with secret key sk =
(x1, y1, · · · , x4, y4) via the CalculateV algorithm in Fig. 12. Therefore, one can always use the secret
key to extract the titles (ṽ(c))c∈S from tables

(
table(c)

)
c∈S one by one with CalculateV and then

recover m correctly.

Security proof. The proof of KDM[Fdpoly]-CCA security is similar to that of Theorem 2 (cf. Table
3). But games G3-G4 should be replaced with the following three steps (Step 1 - Step 3), so that
the E .Enc part of Enc can be changed to work as an entropy filter, i.e., reserving the entropy of
(x1, y1, · · · , x4, y4) mod N , w.r.t. any polynomial of degree at most d.

Suppose that the adversary submits (fλ, iλ ∈ [n]) to Enc. Our aim is to reserve the entropy of
(xj , yj)

4
j=1 mod N from E .Enc

(
pkiλ , fλ

(
(xi,j , yi,j)i∈[n],j∈[4]

))
.

Step 0: In Initialize, the secret keys are generated with xi,j := xj + x̄i,j and yi,j := yj +
ȳi,j mod bN2/4c for i ∈ [n], j ∈ [4]. This is the same as G2 in the proof of Theorem 2.

Step 1: Use (x̄i,j , ȳi,j)i∈[n],j∈[4] to re-explain (fλ, iλ ∈ [n]) as (f ′λ, iλ ∈ [n]), and determine the coef-
ficients a(c1,··· ,c8) of each monomial of f ′λ, as discussed in Subsection 6.2. Note that a(c1,··· ,c8) = 0
if the associated monomial does not appear in f ′λ. Then

f ′λ
(
(xiλ,j , yiλ,j)j∈[4]

)
=

∑
(c1,··· ,c8)∈S

a(c1,··· ,c8) · xc1iλ,1y
c2
iλ,1

xc3iλ,2y
c4
iλ,2

xc5iλ,3y
c6
iλ,3

xc7iλ,4y
c8
iλ,4

+ δ,

where δ = a(0,··· ,0) denotes the constant term of f ′λ.

Step 2: Use secret key skiλ = (xiλ,j , yiλ,j)j∈[4] (together with public key pkiλ = (hiλ,j)j∈[4]) to
implement E .Enc (This corresponds to G3 in the proof of Theorem 2).

– For each c = (c1, · · · , c8) ∈ S
(1) (table(c), ṽ(c))←$ TableGen(pkiλ , c),

(2) v̂(c) ← CalculateV(skiλ , table
(c), c).

34

E .ct←$ E .Enc
(
pk,m

)
:

For each c = (c1, · · · , c8) ∈ S
(table(c), ṽ(c))←$ TableGen(pk, c).

ẽ :=
∏

c∈S ṽ
(c) · Tm mod Ns.

t := gm1 mod N ∈ ZN .

Return E .ct :=
(
(table(c))c∈S , ẽ, t

)
.

m/⊥ ← E .Dec
(
sk, E .ct

)
:

Parse E .ct =
(
(table(c)

)
c∈S , ẽ, t

)
.

For each c = (c1, · · · , c8) ∈ S
v̂(c) ← CalculateV

(
sk, table(c), c

)
.

If ẽ ·
(∏

c∈S v̂
(c)
)−1 ∈ RUNs

m := dlogT
(
ẽ ·
(∏

c∈S v̂
(c)
)−1)

mod Ns−1.

If t = gm1 mod N , Return m.

Otherwise, Return ⊥.

TableGen
(
pk = (h1, h2, h3, h4), c = (c1, · · · , c8)

)
:

For each l ∈ {0, 1, · · · ,
∑8
j=1 cj}

r̃l,1, r̃l,2, r̃l,3, r̃l,4 ←$
[⌊
N
4

⌋]
.

(ũl,1, · · · , ũl,8) := (g
r̃l,1
1 , g

r̃l,1
2 , g

r̃l,2
2 , g

r̃l,2
3 , g

r̃l,3
3 , g

r̃l,3
4 , g

r̃l,4
4 , g

r̃l,4
5) mod Ns.

ṽl := h
r̃l,1
1 h

r̃l,2
2 h

r̃l,3
3 h

r̃l,4
4 mod Ns.

table(c) :=

ũ0,1 ũ0,2 · · · ũ0,8

ũ1,1 · ṽ0 ũ1,2 · · · ũ1,8

...
...

. . .
...

ũc1,1 · ṽc1−1 ũc1,2 · · · ũc1,8

ũc1+1,1 ũc1+1,2 · ṽc1 · · · ũc1+1,8

...
...

. . .
...

ũc1+c2,1 ũc1+c2,2 · ṽc1+c2−1 · · · ũc1+c2,8

...
...

...
...

ũ∑7
j=1 cj+1,1 ũ∑7

j=1 cj+1,2 · · · ũ∑7
j=1 cj+1,8 · ṽ∑7

j=1 cj

...
...

. . .
...

ũ∑8
j=1 cj ,1

ũ∑8
j=1 cj ,2

· · · ũ∑8
j=1 cj ,8

· ṽ∑8
j=1 cj−1





c1
rows





c2
rows





c8
rows

Return (table(c), ṽ(c) := ṽ∑8
j=1 cj

).

CalculateV
(
sk = (x1, y1, · · · , x4, y4), table(c), c = (c1, · · · , c8)

)
:

Parse table(c) =
{
ûl,1 ûl,2 · · · ûl,8

}
l∈{0,1,··· ,

∑8
j=1 cj}

.

v̂0 := û−x10,1 û−y10,2 û
−x2
0,3 û−y20,4 û

−x3
0,5 û−y30,6 û

−x4
0,7 û−y40,8 mod Ns.

For each l ∈ {1, · · · , c1}
v̂l := (ûl,1/v̂l−1)−x1 û−y1l,2 û−x2l,3 û−y2l,4 û−x3l,5 û−y3l,6 û−x4l,7 û−y4l,8 mod Ns.

For each l ∈ {c1 + 1, · · · , c1 + c2}
v̂l := û−x1l,1 (ûl,2/v̂l−1)−y1 û−x2l,3 û−y2l,4 û−x3l,5 û−y3l,6 û−x4l,7 û−y4l,8 mod Ns.

...

For each l ∈ {
∑7
j=1 cj + 1, · · · ,

∑8
j=1 cj}

v̂l := û−x1l,1 û−y1l,2 û−x2l,3 û−y2l,4 û−x3l,5 û−y3l,6 û−x4l,7 (ûl,8/v̂l−1)−y4 mod Ns.

Return v̂(c) := v̂∑8
j=1 cj

.

Fig. 12. Top: E .Enc (left) and E .Dec (right) of E designed for Fdpoly; Middle: TableGen, which generates table(c)

together with a title ṽ(c); Bottom: CalculateV, which calculates a title v̂(c) from table(c) using secret key.

35

– Use
(
v̂(c)
)
c∈S instead of

(
ṽ(c)
)
c∈S to compute ẽ with ẽ :=

∏
c∈S v̂

(c)·T f ′λ((xiλ,j ,yiλ,j)j∈[4]) mod N s,

and t := g
f ′λ((xiλ,j ,yiλ,j)j∈[4])

1 mod N .

It is easy to check that for each c = (c1, · · · , c8) ∈ S, v̂(c) computed from table(c) via CalculateV
is identical to ṽ(c) associated with table(c) via TableGen. Thus this change is conceptual.

Step 3: This corresponds to G4 in the proof of Theorem 2.

– For each c = (c1, · · · , c8) ∈ S
(1) Compute table(c) via (table(c), ṽ(c)) ←$ TableGen(pkiλ , c), but with one difference. The

item of row 1 and column j := min{i | 1 ≤ i ≤ 8, ci 6= 0} in table(c) now is computed
as û1,j = (ũ1,jT

a(c1,··· ,c8)) · ṽ0 instead of û1,j = ũ1,j · ṽ0. This change is computationally
indistinguishable, due to the IV5 assumption.

(2) Invoke v̂(c) ← CalculateV(skiλ , table
(c), c) to extract a title v̂(c) from the modified table(c).

– ẽ :=
∏

c∈S v̂
(c) · T f ′λ((xiλ,j ,yiλ,j)j∈[4]) mod N s, and t := g

f ′λ((xiλ,j ,yiλ,j)j∈[4])

1 mod N .

Observe that for each c = (c1, · · · , c8) ∈ S,

v̂(c) = ṽ(c) · T−a(c1,··· ,c8)x
c1
iλ,1

y
c2
iλ,1

x
c3
iλ,2

y
c4
iλ,2

x
c5
iλ,3

y
c6
iλ,3

x
c7
iλ,4

y
c8
iλ,4 .

Then ẽ =
∏

c∈S v̂
(c) · T f ′λ((xiλ,j ,yiλ,j)j∈[4])

=
∏

c∈S ṽ
(c) ·∏c∈S T

−a(c1,··· ,c8)x
c1
iλ,1

y
c2
iλ,1

x
c3
iλ,2

y
c4
iλ,2

x
c5
iλ,3

y
c6
iλ,3

x
c7
iλ,4

y
c8
iλ,4 · T f ′λ((xiλ,j ,yiλ,j)j∈[4])

=
∏

c∈S ṽ
(c) · T δ,

where δ is the constant term of f ′λ. Therefore we can implement Step 3 equivalently as follows.

Step 3 (Equivalent Form):

– For each c = (c1, · · · , c8) ∈ S
Compute table(c) via (table(c), ṽ(c)) ←$ TableGen(pkiλ , c), but with one difference. The

item of row 1 and column j := min{i | 1 ≤ i ≤ 8, ci 6= 0} in table(c) now is computed as
û1,j = (ũ1,jT

a(c1,··· ,c8)) · ṽ0 instead of û1,j = ũ1,j · ṽ0.

– ẽ :=
∏

c∈S ṽ
(c) · T δ mod N s, and t := g

f ′λ((xiλ,j ,yiλ,j)j∈[4]) mod φ(N)/4

1 mod N .

In this step, E .Enc does not use (x1, y1, · · · , x4, y4) mod N at all (only uses (x̄i,j , ȳi,j)i∈[n],j∈[4]

and (x1, y1, · · · , x4, y4) mod φ(N)/4).

As a result, through the computationally indistinguishable change, the entropy of (x1, y1, · · · , x4,
y4) mod N is reserved by the E .Enc part of Enc.

Similarly, Dec can be changed to do decryptions without (xj , yj)
4
j=1 mod N , the same argument

as in Subsection 6.3.

Acknowledgments. The authors are supported by the National Natural Science Foundation of
China Grant (Nos. 61672346, 61373153 and 61133014). We thank the anonymous reviewers for their
comments and suggestions.

36

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009, LNCS, vol. 5677, pp.
595–618. Springer (2009)

[BG10] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup in-
distinguishability - (or: Quadratic residuosity strikes back). In: Rabin, T. (ed.) CRYPTO 2010, LNCS,
vol. 6223, pp. 1–20. Springer (2010)

[BGK11] Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions.
In: Ishai, Y. (ed.) TCC 2011, LNCS, vol. 6597, pp. 201–218. Springer (2011)

[BHHI10] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In: Gilbert,
H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp. 423–444. Springer (2010)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-
Hellman. In: Wagner, D. (ed.) CRYPTO 2008, LNCS, vol. 5157, pp. 108–125. Springer (2008)

[BRS02] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent
messages. In: Nyberg, K., Heys, H.M. (eds.) Selected Areas in Cryptography 2002, LNCS, vol. 2595,
pp. 62–75. Springer (2002)

[CCS09] Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure against key dependent
chosen plaintext and adaptive chosen ciphertext attacks. In: Joux, A. (ed.) EUROCRYPT 2009, LNCS,
vol. 5479, pp. 351–368. Springer (2009)

[CL01] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with
optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001, LNCS, vol. 2045, pp.
93–118. Springer (2001)

[DJ01] Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic
public-key system. In: Kim, K. (ed.) PKC 2001, LNCS, vol. 1992, pp. 119–136. Springer (2001)

[GHV12] Galindo, D., Herranz, J., Villar, J.L.: Identity-based encryption with master key-dependent message
security and leakage-resilience. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012, LNCS,
vol. 7459, pp. 627–642. Springer (2012)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. vol. 28(2), pp. 270–299 (1984)
[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.)

EUROCRYPT 2008, LNCS, vol. 4965, pp. 415–432. Springer (2008)
[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way

function. SIAM J. Comput. vol. 28(4), pp. 1364–1396 (1999)
[Hof13] Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson, T., Nguyen,

P.Q. (eds.) EUROCRYPT 2013, LNCS, vol. 7881, pp. 520–536. Springer (2013)
[KD04] Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M.K. (ed.)

CRYPTO 2004, LNCS, vol. 3152, pp. 426–442. Springer (2004)
[LLJ15] Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryption. In: Oswald, E.,

Fischlin, M. (eds.) EUROCRYPT 2015, Part I, LNCS, vol. 9056, pp. 559–583. Springer (2015)
[MTY11] Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key encryption with KDM

security. In: Paterson, K.G. (ed.) EUROCRYPT 2011, LNCS, vol. 6632, pp. 507–526. Springer (2011)
[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N.,

Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)
[WC81] Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J.

Comput. Syst. Sci. vol. 22(3), pp. 265–279 (1981)

A Modular Arithmetic Circuit and Leftover Hash Lemma

Definition 13 (Modular Arithmetic Circuit [MTY11]). A Modular Arithmetic Circuit (MAC)
is a circuit whose inputs and constants belong to ZK for some K ∈ N. Each gate in this circuit is
+,− or · over ZK with unbounded number of fan-out. The size of a MAC is defined as the number
of gates in this circuit.

We state a simplified version of Leftover Hash Lemma [HILL99] with uniform input.

37

Lemma 7 (Leftover Hash Lemma). Let H = {H : X −→ Y} be a family of universal hash
functions. Let X be the uniform distribution over X . Then for H ← $ H, where H and X are
independent, it holds that

∆((H,H(X)), (H,UY)) ≤ 1

2
·
√
|Y|/|X |,

where UY is the uniform distribution over Y. In particular, if |Y|/|X | ≤ 2−Ω(`), (H,H(X)) is
statistically close to the uniform distribution over H× Y.

B The LLJ Scheme

We review the encryption algorithm of the LLJ scheme as follows.

The public parameter is prm = (N, g1, g2, N̄ , g) where N = pq, g1 and g2 are generators of group

SCRNs , N̄ = 2N + 1, and g is a generator of group QRN̄ .

The secret key is x1, x2 ∈
[
bN2/4c

]
and public key is h = gx1

1 gx2
2 .

Let H be a universal hash function.

The ciphertext (u1, u2, e, ae.ct) is computed as follows.

– k ←$ ZN , r ←$ [bN/4c] and r̃ ←$ [bN/4c].
– u1 = gr1 mod N2, u2 = gr2 mod N2, e = hrT k mod N2.

– ũ1 = gr̃1 mod N s, ũ2 = gr̃2 mod N s, ẽ = hr̃Tm mod N s, t = H
(
u1||u2||e||(gm1 mod N)

)
.

– ae.ct←$ AE.Enc(k, t||ũ1||ũ2||ẽ).
We explain their encryption algorithm with three components.

– KEM.Enc(h) outputs a key k and kem.ct = u1||u2||e, where u1 = gr1 mod N2, u2 = gr2 mod N2, e =

hrT k mod N2, with k ←$ ZN and r ←$ [bN/4c].
– E .Enc(h,m, kem.ct = u1||u2||e) outputs E .ct = t||ũ1||ũ2||ẽ, where ũ1 = gr̃1 mod N s, ũ2 = gr̃2 mod N s,

ẽ = hr̃Tm mod N s, t = H
(
u1||u2||e||(gm1 mod N)

)
, with r̃ ←$ [bN/4c].

– ae.ct←$ AE.Enc(k, E .ct = t||ũ1||ũ2||ẽ).

C Omitted Proofs

C.1 Proof of Claim 1

We construct a PPT adversary B against the INT-OT security of the AE scheme. Suppose that the
INT-OT challenger picks a secret key κ̂ ←$ KAE randomly. B has access to the oracle EncAE(·) =
AE.Enc(κ̂, ·) one time.
B will simulate game G′1,i for adversary A. First, B prepares prmAIAE the same way as in G′1,i.

That is, invoke (N, p, q)←$ GenN(1`), compute N̄ := 2N + 1, pick g1, g2 = gw1 ←$ QRN̄ , H1 ←$ H1,
H2 ←$ H2 randomly, and set prmAIAE := (N, p, q, N̄ , g1, g2,H1,H2). B sends prmAIAE to A.

38

B does not generate the secret key k = (k1, k2, k3, k4) explicitly, and instead, it picks k̄1,2,
k̄3,4 ←$ ZN randomly, and implicitly sets k1 +wk2 = k̄1,2 and k3 +wk4 = k̄3,4, where w = dlogg1

g2.

To answer the λ-th (λ ∈ [Qe]) Enc query (mλ, auxλ, fλ), where fλ = 〈aλ, bλ = (bλ,1, bλ,2, bλ,3,
bλ,4)〉 ∈ Fraff, B prepares the challenge ciphertexts as follows:

– If λ ∈ [i− 1], B does not use the secret key k at all, and proceeds the same way as in game G′1,i.
That is, B picks wλ,1, wλ,2 ←$ ZN\{0} randomly and sets (cλ,1, cλ,2) := (g

wλ,1
1 , g

wλ,2
2) ∈ QR2

N̄ .
Then B chooses κλ ←$ KAE and invokes χλ ←$ AE.Enc(κλ,mλ).

– If λ ∈ [i+1, Qe], B can always use the value of k̄1,2 = k1+wk2 and k̄3,4 = k3+wk4 to prepare the
response. That is, B picks wλ ←$ ZN\{0} randomly and sets (cλ,1, cλ,2) := (gwλ1 , gwλ2) ∈ QR2

N̄ .
Then B computes tλ := H1(cλ,1, cλ,2, auxλ),

κλ = H2

(
g
wλaλ·(k̄1,2+tλ·k̄3,4)
1 · gwλ·((bλ,1+wbλ,2)+tλ·(bλ,3+wbλ,4))

1

)
,

and invokes χλ ←$ AE.Enc(κλ,mλ).

According to Eq. (2) in the proof of Lemma 1, the simulation is perfect.

– If λ = i, B does not use the secret key k at all, and instead, it will resort to its own EncAE(·) ora-
cle. More precisely, B picks wi,1, wi,2 ←$ ZN\{0} randomly, computes (ci,1, ci,2) := (g

wi,1
1 , g

wi,2
2) ∈

QR2
N̄ and ti := H1(ci,1, ci,2, auxi). Then B implicitly sets κi = κ̂ as the secret key used by its

challenger, and queries its EncAE(·) oracle with mi and gets the challenge χi.

According to the EncAE(·) oracle, we have χi ←$ AE.Enc(κ̂,mi). As discussed in the proof of
Lemma 3, in game G′1,i, κi is statistically close to the uniform distribution over KAE. Therefore,

the simulation of B is identical to game G′1,i except with a negligible probability 2−Ω(`).

B returns the challenge ciphertext 〈cλ,1, cλ,2, χλ〉 to A. Moreover, B puts
(
auxλ, fλ, 〈cλ,1, cλ,2, χλ〉

)

to QENC , (auxλ, fλ) to QAUXF , and (cλ,1, cλ,2, auxλ, tλ) to QT AG .

Finally B receives a forgery
(
aux∗, f∗, 〈c∗1, c∗2, χ∗〉

)
from A, where f∗ = 〈a∗, b∗ = (b∗1, b

∗
2, b
∗
3, b
∗
4)〉 ∈

Fraff. B prepares its own forgery w.r.t. the AE scheme as follows.

• If
(
aux∗, f∗, 〈c∗1, c∗2, χ∗〉

)
∈ QENC , B aborts the game.

• If there exists (auxλ, fλ) ∈ QAUXF such that auxλ = aux∗ but fλ 6= f∗, B aborts.

• If (c∗1, c
∗
2) /∈ QR2

N̄ ∨ (c∗1, c
∗
2) = (1, 1), B aborts.

• t∗ := H1(c∗1, c
∗
2, aux

∗).
• If there exists (cλ,1, cλ,2, auxλ, tλ) ∈ QT AG such that tλ = t∗ but (cλ,1, cλ,2, auxλ) 6= (c∗1, c

∗
2, aux

∗),
B aborts.

• If t∗ 6= ti, B aborts. If t∗ = ti, B outputs χ∗ to its INT-OT challenger.

We analyze the success probability of B. As discussed in the proof of Lemma 3, the sub-
event Forge ∧ ti = t∗ will imply that (aux∗, f∗, c∗1, c

∗
2) = (auxi, fi, ci,1, ci,2), χ∗ 6= χi, κ

∗ = κi and
AE.Dec(κ∗, χ∗) 6= ⊥. Since B implicitly sets κi = κ̂ as the secret key used by its challenger, then
χ∗ 6= χi, κ

∗ = κi and AE.Dec(κ∗, χ∗) 6= ⊥ implies that χ∗ 6= χi and AE.Dec(κ̂, χ∗) 6= ⊥, i.e., χ∗

outputted by B is a fresh forgery.

In summary, B simulates game G′1,i perfectly with A except with a negligible probability 2−Ω(`),
and B outputs a fresh forgery as long as the sub-event Forge ∧ ti = t∗ occurs. Thus, we have that
Pr1,i′ [Forge ∧ ti = t∗] ≤ Advint-otAE,B (`) + 2−Ω(`) and the claim follows.

39

C.2 Proof of Indistinguishability between Steps 2 and 3 in Subsection 6.3

To show that the difference between Step 2 and Step 3 can be reduced to the IV5 assumption, we

can construct a PPT adversary BChalbIV5 (N, g1, · · · , g5) to solve the IV5 problem. First, B generates
secret and public keys in Initialize as Step 0 does. When A submits an encryption query (fλ, iλ ∈
[n]), B re-explains (fλ, iλ ∈ [n]) as (f ′λ, iλ ∈ [n]) as Step 1 does and obtains the coefficient a. Then
B simulates E .Enc as follows.

– For the 0-th row of table, B computes (ũ0,1, · · · , ũ0,8) and ṽ0 as in Step 2 and Step 3.
– For the 1-st row, B queries its own ChalbIV5

oracle with (a, 0, ∗, ∗, ∗), and obtains its challenge
(ũ∗1,1, ũ

∗
1,2, ∗̃, ∗̃, ∗̃), that is

Case (b = 0): (ũ∗1,1, ũ
∗
1,2) = (g

r̃1,1
1 , g

r̃1,1
2) = (ũ1,1, ũ1,2) or

Case (b = 1): (ũ∗1,1, ũ
∗
1,2) = (g

r̃1,1
1 T a, g

r̃1,1
2) = (ũ1,1T

a, ũ1,2).
B sets û1,1 := ũ∗1,1 · ṽ0, which is û1,1 = ũ1,1 · ṽ0 if b = 0 and û1,1 = ũ1,1T

a · ṽ0 if b = 1. Then
B generates the rest elements (ũ1,3, · · · , ũ1,8) in the 1-st row of table using its public keys, and
sets the 1-st row of table to be û1,1 = ũ∗1,1 · ṽ0 ũ

∗
1,2 ũ1,3 · · · ũ1,8 .

B also computes ṽ∗1 from (ũ∗1,1, ũ
∗
1,2, ũ1,3, · · · , ũ1,8) via ṽ∗1 := ũ

∗−xiλ,1
1,1 ũ

∗−yiλ,1
1,2 ũ

−xiλ,2
1,3 · · · ũ−yiλ,41,8 ,

which equals
Case (b = 0): ṽ∗1 = ṽ1 or
Case (b = 1): ṽ∗1 = ṽ1T

−a·xiλ,1 .
– For the 2-nd row, B queries its own ChalbIV5

oracle with (0, a · xiλ,1, ∗, ∗, ∗), remember that B
has the secret keys, and obtains its challenge (ũ∗2,1, ũ

∗
2,2, ∗̃, ∗̃, ∗̃), that is

Case (b = 0): (ũ∗2,1, ũ
∗
2,2) = (g

r̃2,1
1 , g

r̃2,1
2) = (ũ2,1, ũ2,2) or

Case (b = 1): (ũ∗2,1, ũ
∗
2,2) = (g

r̃2,1
1 , g

r̃2,1
2 T a·xiλ,1) = (ũ2,1, ũ2,2T

a·xiλ,1).

B sets û2,2 := ũ∗2,2 · ṽ∗1, that is, û2,2 = ũ2,2 · ṽ1 if b = 0 and û2,2 = (ũ2,2T
a·xiλ,1)(ṽ1T

−a·xiλ,1) =
ũ2,2 · ṽ1 if b = 1. Thus û2,2 = ũ2,2 · ṽ1 in both cases. Then B generates the rest elements
(ũ2,3, · · · , ũ2,8) in the 2-nd row of table using its public keys, and sets the 2-nd row of table to
be ũ∗2,1 û2,2 = ũ∗2,2 · ṽ∗1 ũ2,3 · · · ũ2,8 .

B also computes ṽ∗2 from (ũ∗2,1, ũ
∗
2,2, ũ2,3, · · · , ũ2,8) via ṽ∗2 := ũ

∗−xiλ,1
2,1 ũ

∗−yiλ,1
2,2 ũ

−xiλ,2
2,3 · · · ũ−yiλ,42,8 ,

which equals
Case (b = 0): ṽ∗2 = ṽ2 or
Case (b = 1): ṽ∗2 = ṽ2T

−a·xiλ,1yiλ,1 .
– For the 3-rd row, B queries its own ChalbIV5

oracle with (∗, a · xiλ,1yiλ,1, 0, ∗, ∗), and obtains its
challenge (∗̃, ũ∗3,3, ũ∗3,4, ∗̃, ∗̃), that is

Case (b = 0): (ũ∗3,3, ũ
∗
3,4) = (g

r̃3,2
2 , g

r̃3,2
3) = (ũ3,3, ũ3,4) or

Case (b = 1): (ũ∗3,3, ũ
∗
3,4) = (g

r̃3,2
2 T a·xiλ,1yiλ,1 , gr̃3,23) = (ũ3,3T

a·xiλ,1yiλ,1 , ũ3,4).
B sets û3,3 := ũ∗3,3 · ṽ∗2, similarly, it is easy to check that û3,3 = ũ3,3 · ṽ2 in both cases. Then B
generates the rest elements in the 3-rd row of table using its public keys, and sets the 3-rd row
of table to be ũ3,1 ũ3,2 û3,3 = ũ∗3,3 · ṽ∗2 ũ∗3,4 ũ3,5 · · · ũ3,8 .

B also computes ṽ∗3 from (ũ3,1, ũ3,2, ũ
∗
3,3, ũ

∗
3,4, ũ3,5, · · · , ũ3,8) via ṽ∗3 := ũ

−xiλ,1
3,1 ũ

−yiλ,1
3,2 ũ

∗−xiλ,2
3,3 ũ

∗−yiλ,2
3,4

ũ
−xiλ,3
3,5 · · · ũ−yiλ,43,8 , which equals

Case (b = 0): ṽ∗3 = ṽ3 or
Case (b = 1): ṽ∗3 = ṽ3T

−a·xiλ,1yiλ,1xiλ,2 .

40

– For the 4∼8-th rows, B computes table similarly as above.
– Finally B computes v̂0, · · · , v̂8 from table, just as in Step 2 and Step 3 (also as the original E .Dec

algorithm), and computes ẽ := v̂8 ·T f
′
λ((xiλ,j ,yiλ,j)j∈[4]) mod N s, t := g

f ′λ((xiλ,j ,yiλ,j)j∈[4])

1 mod N
using the secret keys.

If b = 0, B perfectly simulates Step 2. If b = 1, B perfectly simulates Step 3. Any difference between
Steps 2 and 3 results in B’s advantage over the IV5 problem.

D Figures for Proof of Theorem 2

Initialize:

// Games G0-G10, G2-G10 , G5-G10 , G6-G10 , G7-G10 , G9-G10

prmAIAE ←$ AIAE.Setup(1`), where prmAIAE = (N, p, q, N̄ , ḡ1, ḡ2,H1,H2).

prm′AIAE := (N, N̄, ḡ1, ḡ2,H1,H2).

g1, g2, g3, g4, g5 ←$ SCRNs .
prm := (prm′AIAE, g1, g2, g3, g4, g5).

φ(N) := (p− 1)(q − 1).

x1, y1, · · · , x4, y4 ←$
[⌊
N2

4

⌋]
.

For i ∈ [n]

xi,1, yi,1, · · · , xi,4, yi,4 ←$
[⌊
N2

4

⌋]
.

x̄i,1, ȳi,1, · · · , x̄i,4, ȳi,4 ←$
[⌊
N2

4

⌋]
.

(xi,1, yi,1, · · · , xi,4, yi,4) := (x1 + x̄i,1, y1 + ȳi,1, · · · , x4 + x̄i,4, y4 + ȳi,4) mod bN
2

4
c.

(hi,1, hi,2, hi,3, hi,4) := (g
−xi,1
1 g

−yi,1
2 , · · · , g−xi,44 g

−yi,4
5) mod Ns.

pki := (hi,1, hi,2, hi,3, hi,4).

ski := (xi,1, yi,1, · · · , xi,4, yi,4).

β ←$ {0, 1}. // challenge bit

r∗ ←$
[⌊
N
4

⌋]
. α1, α2, α3, α4, α5 ←$ ZN .

k∗ = (k∗1 , k
∗
2 , k
∗
3 , k
∗
4)←$ Z4

N .

k
∗

= (k̄∗1 , k̄
∗
2 , k̄
∗
3 , k̄
∗
4)←$ Z4

N .

Return (prm, pk1, · · · , pkn).

Fig. 13. Games G0-G10 for the proof of Theorem 2.

41

Enc(fλ, iλ ∈ [n]): // the λ-th query

// Games G0-G10, G3-G10 , G4-G10 , G5-G10 , G6-G10 , G9-G10 , G10

Parse fλ = ({ai,j , bi,j}i∈[n],j∈[4], c) ∈ Faff.

m1 :=
∑n
i=1(ai,1xi,1 + bi,1yi,1 + · · ·+ ai,4xi,4 + bi,4yi,4) + c.

m0 := 0|m1|.

kλ = (kλ,1, kλ,2, kλ,3, kλ,4)←$ Z4
N .

rλ ←$
[⌊
N
4

⌋]
.

sλ = (sλ,1, sλ,2, sλ,3, sλ,4)←$ Z4
N .

// kλ := rλ · k∗ + sλ ∈ Z4
N .

(kλ,1, kλ,2, kλ,3, kλ,4) := (rλk
∗
1 + sλ,1, rλk

∗
2 + sλ,2, rλk

∗
3 + sλ,3, rλk

∗
4 + sλ,4) mod N .

// kλ := rλ · k
∗

+ sλ ∈ Z4
N .

(k̄λ,1, k̄λ,2, k̄λ,3, k̄λ,4) := (rλk̄
∗
1 + sλ,1, rλk̄

∗
2 + sλ,2, rλk̄

∗
3 + sλ,3, rλk̄

∗
4 + sλ,4) mod N .

(uλ,1, · · · , uλ,5) := (g
rλ
1 , · · · , grλ5) mod N2.

(uλ,1, · · · , uλ,5) := ((gr
∗

1 Tα1)rλ , · · · , (gr
∗

5 Tα5)rλ) mod N2.

(eλ,1, · · · , eλ,4) := (h
rλ
iλ,1

T kλ,1 , · · · , hrλiλ,4T
kλ,4) mod N2.

(eλ,1, · · · , eλ,4) := (u
−xiλ,1
λ,1 u

−yiλ,1
λ,2 T kλ,1 , · · · , u−xiλ,4λ,4 u

−yiλ,4
λ,5 T kλ,4) mod N2.

(eλ,1, · · · , eλ,4) :=

(h
r∗rλ
iλ,1

T rλ·(k
∗
1−α1xiλ,1

−α2yiλ,1
)+sλ,1 , · · · , hr

∗rλ
iλ,4

T rλ·(k
∗
4−α4xiλ,4

−α5yiλ,4
)+sλ,4) mod N2.

auxλ := (uλ,1, · · · , uλ,5, eλ,1, · · · , eλ,4).

r̃λ,1, r̃λ,2, r̃λ,3, r̃λ,4 ←$
[⌊
N
4

⌋]
.

(ũλ,1, ũλ,2, · · · , ũλ,7, ũλ,8) := (g
r̃λ,1
1 , g

r̃λ,1
2 , · · · , gr̃λ,44 , g

r̃λ,4
5) mod Ns.

ẽλ := h
r̃λ,1
iλ,1

h
r̃λ,2
iλ,2

h
r̃λ,3
iλ,3

h
r̃λ,4
iλ,4

Tmβ mod Ns.

ẽλ := ũ
−xiλ,1
λ,1 ũ

−yiλ,1
λ,2 ũ

−xiλ,2
λ,3 ũ

−yiλ,2
λ,4 ũ

−xiλ,3
λ,5 ũ

−yiλ,3
λ,6 ũ

−xiλ,4
λ,7 ũ

−yiλ,4
λ,8 Tmβ mod Ns.

If β = 1

(ũλ,1, ũλ,2, · · · , ũλ,7, ũλ,8) := (g
r̃λ,1
1 T

∑
i ai,1 , · · · , gr̃λ,45 T

∑
i bi,4) mod Ns.

ρ̃iλ :=
∑
i

(
ai,1(x̄i,1 − x̄iλ,1) + bi,1(ȳi,1 − ȳiλ,1) + · · ·+ bi,4(ȳi,4 − ȳiλ,4)

)
.

ẽλ := h
r̃λ,1
iλ,1

h
r̃λ,2
iλ,2

h
r̃λ,3
iλ,3

h
r̃λ,4
iλ,4

T ρ̃iλ+c mod Ns.

tλ := g
mβ
1 mod N ∈ ZN .

E .ctλ := (ũλ,1, · · · , ũλ,8, ẽλ, tλ).

aiae.ctλ ←$ AIAE.Enc
(
kλ, E .ctλ, auxλ

)
.

aiae.ctλ ←$ AIAE.Enc
(
kλ, E .ctλ, auxλ

)
.

aiae.ctλ ←$ AIAE.Enc
(
kλ, 0

`M , auxλ
)
.

QENC := QENC ∪ {(〈auxλ, aiae.ctλ〉, iλ)}.
Return 〈auxλ, aiae.ctλ〉.

Fig. 14. Games G0-G10 for the proof of Theorem 2.

42

Dec
(
〈aux, aiae.ct〉, i ∈ [n]

)
:

// Games G0-G10, G1-G10 , G7-G10 , G8-G10

If (〈aux, aiae.ct〉, i) ∈ QENC , Return ⊥.

If (〈aux, aiae.ct〉, ·) ∈ QENC , Return ⊥.

Parse aux = (u1, · · · , u5, e1, · · · , e4).

If e1u
xi,1
1 u

yi,1
2 , · · · , e4u

xi,4
4 u

yi,4
5 ∈ RUN2

(k1, · · · , k4) :=
(
dlogT (e1u

xi,1
1 u

yi,1
2), · · · , dlogT (e4u

xi,4
4 u

yi,4
5)

)
mod N .

(α′1, · · · , α′5) :=
(
dlogT (u

φ(N)
1)/φ(N), · · · , dlogT (u

φ(N)
5)/φ(N)

)
mod N .

(γ′1, · · · , γ′4) :=
(
dlogT (e

φ(N)
1)/φ(N), · · · , dlogT (e

φ(N)
4)/φ(N)

)
mod N .

(k1, · · · , k4) := (α′1xi,1 + α′2yi,1 + γ′1, · · · , α′4xi,4 + α′5yi,4 + γ′4) mod N .

k := (k1, k2, k3, k4).

Else, Return ⊥.

E .ct/⊥ ← AIAE.Dec
(
k, aiae.ct, aux

)
.

Parse E .ct = (ũ1, · · · , ũ8, ẽ, t).

If ẽũ
xi,1
1 ũ

yi,1
2 · · · ũxi,47 ũ

yi,4
8 ∈ RUNs

m := dlogT (ẽũ
xi,1
1 ũ

yi,1
2 · · · ũxi,47 ũ

yi,4
8) mod Ns−1.

(α̃1, · · · , α̃8) := (dlogT (ũ
φ(N)
1)/φ(N), · · · , dlogT (ũ

φ(N)
8)/φ(N)) mod Ns−1.

γ̃ := dlogT (ẽφ(N))/φ(N) mod Ns−1.

m := α̃1xi,1 + α̃2yi,1 + · · ·+ α̃7xi,4 + α̃8yi,4 + γ̃ mod Ns−1.

If α′1 = · · · = α′5 = α̃1 = · · · = α̃8 = 0

If t = gm1 mod N , Return m.

Else, Return ⊥.

Finalize(β′): // Games G0-G10

Return (β′ = β).

Fig. 15. Games G0-G10 for the proof of Theorem 2.

43

Contents

1 Introduction . 1
2 Preliminaries . 5

2.1 Public-Key Encryption and KDM-CCA Security . 5
2.2 Key Encapsulation Mechanism . 6
2.3 Authenticated Encryption: One-Time Security and Related-Key Attack Security . . . 6
2.4 DCR, DDH, DL and IVd Assumptions . 8
2.5 Collision Resistant Hashing and Universal Hashing . 9

3 AE of the LLJ Scheme and Its INT-RKA Security . 9
4 Authenticated Encryption with Auxiliary-Input . 10

4.1 AIAE and Its Related-Key Attack Security . 10
4.2 Construction of AIAE from OT-secure AE and DDH Assumption 11

5 PKE with n-KDM[Faff]-CCA Security . 19
6 PKE with n-KDM[Fdpoly]-CCA Security . 30

6.1 The Basic Idea . 30
6.2 Reducing Polynomials of 8n Variables to Polynomials of 8 Variables 30
6.3 How to Design E : A Warmup . 31
6.4 The General E Designed for Fdpoly . 34

A Modular Arithmetic Circuit and Leftover Hash Lemma . 37
B The LLJ Scheme . 38
C Omitted Proofs . 38

C.1 Proof of Claim 1 . 38
C.2 Proof of Indistinguishability between Steps 2 and 3 in Subsection 6.3 40

D Figures for Proof of Theorem 2 . 41

	Efficient KDM-CCA Secure Public-Key Encryption for Polynomial Functions
	Introduction
	Preliminaries
	Public-Key Encryption and KDM-CCA Security
	Key Encapsulation Mechanism
	Authenticated Encryption: One-Time Security and Related-Key Attack Security
	DCR, DDH, DL and IVd Assumptions
	Collision Resistant Hashing and Universal Hashing

	AE of the LLJ Scheme and Its INT-RKA Security
	Authenticated Encryption with Auxiliary-Input
	AIAE and Its Related-Key Attack Security
	Construction of AIAE from OT-secure AE and DDH Assumption

	PKE with n-KDM[F_aff]-CCA Security
	PKE with n-KDM[F_poly^d]-CCA Security
	The Basic Idea
	Reducing Polynomials of 8n Variables to Polynomials of 8 Variables
	How to Design E: A Warmup
	The General E Designed for F_poly^d

	Modular Arithmetic Circuit and Leftover Hash Lemma
	The LLJ Scheme
	Omitted Proofs
	Proof of Claim 1
	Proof of Indistinguishability between Steps 2 and 3 in Subsection 6.3

	Figures for Proof of Theorem 2

