FruitChains: A Fair Blockchain

Rafael Pass Elaine Shi
Cornell Tech Cornell University
rafael@cs.cornell.edu elaine@cs.cornell.edu
May 5, 2017
Abstract

Nakamoto’s famous blockchain protocol enables achieving consensus in a so-called
permissionless setting—anyone can join (or leave) the protocol execution, and the pro-
tocol instructions do not depend on the identities of the players. His ingenious protocol
prevents “sybil attacks” (where an adversary spawns any number of new players) by
relying on computational puzzles (a.k.a. “moderately hard functions”) introduced by
Dwork and Naor (Crypto’92). Recent work by Garay et al (EuroCrypt’15) and Pass et
al (manuscript, 2016) demonstrate that this protocol provably achieves consistency and
liveness assuming a) honest players control a majority of the computational power in
the network, b) the puzzle-hardness is appropriately set as a function of the maximum
network delay and the total computational power of the network, and c) the computa-
tional puzzle is modeled as a random oracle. Assuming honest participation, however,
is a strong assumption, especially in a setting where honest players are expected to
perform a lot of work (to solve the computational puzzles). In Nakamoto’s Bitcoin ap-
plication of the blockchain protocol, players are incentivized to solve these puzzles by
receiving rewards for every “block” (of transactions) they contribute to the blockchain.
An elegant work by Eyal and Sirer (FinancialCrypt’14), strengthening and formalizing
an earlier attack discussed on the Bitcoin forum, demonstrates that a coalition con-
trolling even a minority fraction of the computational power in the network can gain
(close to) 2 times its “fair share” of the rewards (and transaction fees) by deviating
from the protocol instructions. In contrast, in a fair protocol, one would expect that
players controlling a ¢ fraction of the computational resources to reap a ¢ fraction of
the rewards.

In this work, we present a new blockchain protocol—the FruitChain protocol-—which
satisfies the same consistency and liveness properties as Nakamoto’s protocol (assuming
an honest majority of the computing power), and additionally is d-approzimately fair:
with overwhelming probability, any honest set of players controlling a ¢ fraction of
computational power is guaranteed to get at least a fraction (1 — §)¢ of the blocks
(and thus rewards) in any Q%) length segment of the chain (where & is the security

parameter). As a consequence, if this blockchain protocol is used as the ledger underlying
a cryptocurrency system, where rewards and transaction fees are evenly distributed
among the miners of blocks in a length x segment of the chain, no coalition controlling
less than a majority of the computing power can gain more than a factor (1 + 36) by
deviating from the protocol (i.e., honest participation is an % -coalition-safe 30-Nash
equilibrium). Finally, the FruitChain protocol enables decreasing the variance of mining

rewards and as such significantly lessens (or even obliterates) the need for mining pools.

1 Introduction

Distributed systems have been historically analyzed in a closed setting—a.k.a. the permissioned
setting—in which the number of participants in the system, as well as their identities, are com-
mon knowledge. In 2008, Nakamoto [NakO8| proposed his celebrated “blockchain protocol” which
attempts to achieve consensus in a permissionless setting: anyone can join (or leave) the protocol
execution (without getting permission from a centralized or distributed authority), and the protocol
instructions do not depend on the identities of the players. The core blockchain protocol (a.k.a.
“Nakamoto consensus”, or the “Bare-bones blockchain protocol”), roughly speaking, is a method
for maintaining a public, immutable and ordered ledger of records (for instance, in the Bitcoin ap-
plication, these records are simply transactions); that is, records can be added to the end of the
ledger at any time (but only to the end of it); additionally, we are guaranteed that records previ-
ously added cannot be removed or reordered and that all honest users have a consistent view of the
ledger—we refer to this as consistency. Additionally, the protocol should satify a liveness property:
transactions submitted by an honest user get incorporated into the ledger sufficiently fast.

The key challenge with the permissionless setting is that an attacker can trivially mount a so-
called “sybil attack”—it simply spawns lots of players (that it controls) and can thus easily ensure
that it controls a majority of all the players. Indeed, Barak et al [BCLT05] proved that this is a
fundamental problem with the permissionless model. Nakamoto blockchain protocol overcomes this
issue by relying on “computational puzzles”—a.k.a. moderately hard functions or proofs of work—
put forth by Dwork and Naor [DN92|: roughly speaking, the participants are required to solve the
computational puzzle of some well-defined diffulty in order to confirm transactions—this is referred
to as mining. Next, rather than attempting to provide robustness whenever the majority of the
participants are honest (since participants can be easily spawned in the permissionless setting),
Nakamoto’s goal was to provide robustness of the protocol under the assumption that a majority of
the computing power is held by honest participants. Indeed, recent works by Garay et al. [GKL15|
and Pass et al. [PSS17] formally proved that Nakamoto’s blockchain protocol satisfies the above-
mentioned consistency and liveness under different network assumptions, as long as the puzzle
difficulty (referred to as the mining hardness) is apporpriately set as a function of the maxiumum
delay in the network.

Nakamoto’s blockchain represents an exciting breakthrough: it demonstrated that distributed
consensus is possible on an Internet scale. The above analyses, however, assume that a majority of
the computing power is controlled by honest players, and that honest players correctly execute the
protocol. Assuming such honest participation is a strong assumption, especially in a setting where
honest players are expected to perform a lot of work (to solve the computational puzzles)—why
would we expect players to want to participate if it is costly! (This can be formalized in the Game-
Theory with Costly computation framework of Halpern and Pass [HP15]). In Nakamoto’s ingenious
Bitcoin application of the blockchain protocol, players are thus incentivized to solve these puzzles
by receiving, so-called, block rewards for every “blocks” (of transactions) they contribute to the
blockchain; additionally, the miners also receive transaction fees for all the transactions that are
confirmed in the block. The hope is that these reward mechanism (block rewards and transaction
fees) properly incentivize honest participation. Unfortunately, as shown by several recent work, this
is not the case:

o Selfish mining undermines incentive compatibility. Nakamoto’s blockchain suffers from a so-called
selfish-mining attack, where even a minority coalition that controls network delivery can manage
to reap close to twice its fair share of block rewards [mtgl0,ES14}SSZ16,|CKWN16, NKMS16]
— in particular, if the adversary wields close to a half of the computational power, it can reap
almost all of the rewards, thus denying honest players of (almost) any reward! (More specifically,
whenever the adversary mines a new block, it simply withholds it (not sharing it with the honest

players), and only releases it when some honest player mines a new block—if the adversary
controls the network it can ensure that all honest players receive the adversarial block before
the block mined by the honest players, and as such, it effectively “erases” the honest player’s
block replacing it with its own block.) This selfish mining attack was first observed in discussions
on the Bitcoin forum [mtgl0]; the first analytical study provided by Eyal and Sirer [ES14], and
subsequently improved by Sapirshtein et al. [SSZ16] and Nayak et al. [NKMS16].

e Transaction fees exacerbate instability. Due to Bitcoin’s particular coin minting schedule, the
block reward is scheduled to decrease over time and miners are expected to obtain rewards in-
creasingly more from transaction fees. A recent work by Carlsten et al. [CKWN16| (concurrent
to ours) demonstrates that the situation gets even worse once we take into account the transac-
tion fees: as a simplest example, if a block contains transactions with large fees, miners will be
incentivized to create a “fork” and attempt to confirm the transaction themselves.

e Mining pools harm decentralization. Finally, to maintain consistency of the blockchain, the puzzle
difficulty is (and by the analysis of [PSS17] need to be set) so that the whole world combined
mines a block (i.e., solves a computational puzzle) roughly every 10 minutes. As a consequence,
an individual “solo miner” with state-of-the-art equiment needs to wait on average, roughly, 2
years before it gets any rewards [sol]. This has led to the formation of “mining pools” where
miners are coordinated by a pool operator and share the rewards to reduce the variance of their
gains. In essence, the decentralized nature of the blockchain is lost.

1.1 Owur Results

In this work, we introduce a notion of fairness for blockchain protocols: Roughly speaking, we say
that a blockchain protocol that is fair if honest players that wield ¢ fraction of the computational
resources will reap at least ¢ fraction of the blocks in any sufficiently long window of the chain.
(This notion of fairness can be viewed as a strengthen form of the notion of “ideal chain quality”
considered, but not acheived, in |[GKL15,PSS17]) More precisely, we say that a blockchain protocol
is d-approximately fair w.r.t. p attackers if, with overwhelming probability, any ¢ fraction coalition
of honest users is guaranteed to get at least a (1 — §)¢ fraction of the blocks in every sufficiently
long window of the chain, even in the presence of an adversary controlling up to a p fraction of the
computing power. OQur main theorem shows how to acheive a blockchain which satisfies the same
consistency and liveness properties as Nakamoto’s one, as well as fairness:

Theorem 1.1 (Informally stated). Let p < % be a constant. Then, for every constant § > 0, there
exists a blockchain protocol that satisfies consistency, liveness and d-approximate fairness.

Note that approximate fairness directly implies that an attacker cannot get “much” more than
its fair share of the block rewards (and thus it disincentivizes selfish mining). But the instability
issue with transaction fees still remains, and so does the mining pool issue. We finally demonstrate
that our protocol provides a solution to both these issues as well:

e Regarding transaction fees: we suggest a method for spreading out the transaction fees of a
block over the miners of a sequence of blocks preceeding it. As we show, any fair blockchain
protocol can be used to disincentivize deviation even in the presence of transaction fee under
this new reward rule. More precisely, we show that no coalition controlling less than a majority
of the computing power can gain more than a factor (1 + 30) of the block rewards and
transaction fees by deviating from the protocol-—that is, honest participation is an 4 -coalition-
safe 30-Nash equilibrium.

e Regarding mining pools, we demonstrate that the block (i.e., fruit) mining difficulty in our
protocol can be made almost arbitrarily small, and as a consequence, miners can get paid
much more often. Indeed, experimental results implenting our new blockchain [BHP™| show
that with Bitcoin current block size of 1MB, by sacrificing 8% to 10% of the block to new meta
data, we can ensure that miners get paid 1000x more often (and thus on average, roughly,
twice per day). Consequently, there is no longer a need for pooled mining.

1.2 Protocol Overview

To explain our protocol, let us first recall Nakamoto’s blockchain protocol as we will make use of
it.

Nakamoto’s protocol in a nutshell. Roughly speaking, players “confirm” records/transactions
by “mining blocks of transactions” through solving some computational puzzle that is a function
of the transactions and the history so far. More precisely, each participant maintains its own local
“chain” of “blocks” of records —called the blockchain. Each block consists of a triple (h_1,n, m)
where h_1 is a pointer to the previous block in chain, m is the record component of the block, and
7 is a “proof-of-work”—a solution to a computational puzzle that is derived from the pair (h_1, m).
The proof of work can be thought of as a “key-less digital signature” on the whole blockchain up
until this point.

Concretely, Nakamoto’s protocol is parametrized by a parameter p—which we refer to as
the mining hardness parameter, and a proof-of-work is deemed valid if 7 is a string such that
H(h—1,m,m) < D,, where H is a hash function (modeled as a random oracle) and D, is set so
that the probability that an input satisfies the relation is less than p. At any point of the protocol
execution, each participant attempts to increase the length of its own chain by “mining” for a new
block: upon receiving some record m, it picks a random 7 and checks whether 7 is a valid proof of
work w.r.t. m and h_1, where h_1 is a pointer to the last block of its current chain; if so, it extends
is own local chain and broadcast it to the all the other participants. Whenever a participant receives
a chain that is longer than its own local chain, it replaces its own chain with the longer one.

The FruitChain protocol. Roughly speaking, our protocol, which we refer to as the FruitChain
protocol, will be running an instance of Nakamoto’s blockchain protocol, but instead of directly
storing the records m inside the blockchain, the records are put inside “fruits” denoted f; these fruits
themselves require solving some proof of work, with a different hardness parameter py; additionally,
we require the fruits to “hang” from a block in the chain which is not too “far” from the block
which records the fruit—more specifically, the fruit needs to “point” to an earlier block in the chain
which is not too far from the block containing it (and thus, the fruit could not have been mined
“t00” long ago)—we refer to such a fruit as being recent. In this new protocol, the fruits play the
roles of “blocks”—i.e., “orange is the new block’ﬂ—and chain quality is thus defined in terms of
fruits.

In each round, honest players simultaneously mine for a fruit and a block (for Nakamoto’s
blockchain) by making one invocation of the hash function—this follows the 2-for-1 trick of [GKL15]
where, say, the prefix of the output of H determines whether fruit mining is successful, and the
suffix is used to determine whether block mining is successful. Whenever a player successfully mines
a fruit it broadcasts it to all other players; fruits that have not yet been recorded in the blockchain
(and that are still recent) are stored in a buffer and all honest players next attempt to add them
to the blockchain.

"We thank Hugo Krawczyk for this phrase!

Intuitively, the reason why “selfish mining” fails is that even if an adversary tries to “erase”
some block mined by an honest player (which contains some honest fruits), by the chain growth
and chain quality properties of the underlying blockchain, eventually an honest player will mine
a new block which is stable and this honest player will include the fruits in it—in fact, the time
before such an “honest block” arrives is short enough for the fruit to still be “recent” at the time
of the honest block arriving.

Intuitively, the reason why we require fruits to be recent is to prevent a different kind of attack:
without it, an attacker could withhold fruits, and suddenly release lots of them at the same time,
thereby creating an very high fraction of adversarial fruits in some segment of the (fruit) chain.
By requiring the fruits to be recent, we prevent the adversary from squirreling away (too many of)
its fruits: since the underlying blockchain has a guaranteed liveness, we can upperbound the extra
amount of time the attacker can withhold fruits and thus upperbound the number of extra fruits
it can release in any window.

1.3 Related Work

Comparison with GHOST, the Inclusive Blockchain, and [GKL15] Although our ap-
proach of including fruits in a main blockchain take inspiration from to the earlier elegant works on
GHOST [SZ15] and inclusive blockchains [LSZ15], we stress that these earlier works do not attain
our goals of providing a provably secure, fair blockchain. GHOST [SZ15] is a mechanism such that
forking blocks not on the main chain will affect the chain selection rule— however, as the subse-
quent work by Kiayias and Panagiotakos [KP16] shows, GHOST actually worsens “chain quality”
(i.e., the fraction of honest blocks in the chain) whereas our goal is to improve chain quality and
fairness. The inclusive blockchain work proposes to maintain a direct acyclic graph rather than
a chain, such that forking subtrees may be included in the linearized transaction log — despite
the superficial resemblance at first sight, the mechanisms employed by the inclusive blockchain is
actually quit different from how we include fruits in the main blockchain.

As mentionned above, our protocol borrows the 2-for-1 trick from the work Garay et al [GKL15]
which also relied on a separate “mining process” to acheive a different goal (namely, to implement
a broadcast channel from a blockchain).

Subsequent works. In both Nakamoto’s blockchain protocol and ours, the time needed to con-
firm transactions grows with the worst-case upper-bound on the network delay [PS16,PSS17|. In
contrast, in a responsive protocol, we require the confirmation time to only be a function of the
actual network delay, which may be a lot smaller than the worst-case one. In a companion paper
called hybrid consensus [PS16], we show how to combine any blockchain protocol with classical
asynchronous consensus to improve the latency of the blockchain protocol and achieve a responsive
protocol. Roughly speaking, hybrid consensus makes use of a blockchain to elect a committee—
more specifically, the miners of blocks in a sufficiently long segment of the chain are elected as the
committee—and then this committee executes the classical consensus protocol. The chain quality of
the blockchain determines the fraction of honest players in the committee: if we employ Nakamoto’s
blockchain, we would need to require that % of the computing power is controlled by honest player
to ensure a chain quality of % and thus a fraction % honest committee members (which is required
by the consensus protocol). In contrast, by relying on our new FruitChain protocol, it suffices to
assume that % of the computing power is controlled by honest players. We highlight that, as shown
in [PS16], achieving a responsive protocol also requires assuming that % of the computing is held
by honest parties, and as such relying on our FruitChain protocol enables achieving an optimal
resilience for low-latency blockchains.

Besides hybrid consensus, other subsequent works have also employed ideas from FruitChain

to achieve incentive compatibility in blockchain style protocols. Notably, recent provably secure

proof-of-stake protocols, including Snow White [BPS16] and Ouroboros [KRDO16|, argue that the
idea from FruitChain is applicable to non-proof-of-work blockchains as well.

Other related works. Kiayias et al. [KKKT16] model Bitcoin mining as a game, where nodes
decide on which blocks to extend and whether to release a mined block. They show that for small
players controlling less than % of the resources, following Bitcoin’s protocol specification is a Nash
equilibrium. Their results, however, only apply to a rather constrained idealistic model where
all honest miners can communicate with 0 latency, and the adversary cannot perform form any
network level attacks (such as rushing). As we mentionned in the introduction, in our model where
the adversary can control the delivery of messages, the bitcoin protocol is not incentive compatible
even for players controlling less than a % of the computational resources—there is a selfish mining
attack which enables an attacker to gain % of the block rewards.

1.4 Roadmap

In Section 2| we define the protocol execution model and the formal abstraction of a blockchain
protocol. In Section [3] we present our new fairness definition for a blockchain protocol. In Sec-
tion 4] we formally present our FruitChain protocol. In Section [5 we provide formal proofs for our
main theorem. In Section @ we describe how, given any (approximately) fair blockchain, we can
design payout mechanisms to achieve incentive compatibility and e-Nash equilibrium. Finally, in
Section [7, we describe how FruitChain can also be used to disincentivize mining pools and ensure
the decentralized nature of a blockchain.

2 Preliminaries and Definitions

2.1 Protocol Execution Model and Notations

A protocol refers to an algorithm for a set of interactive Turing Machines (also called nodes) to
interact with each other. The execution of a protocol II that is directed by an environment Z(1%)
(where & is a security parameter), which activates a number of parties 1,2,...,n as either “honest”
or corrupted parties. Honest parties would faithfully follow the protocol’s prescription, whereas
corrupt parties are controlled by an adversary A which reads all their inputs/message and sets
their outputs/messages to be sent.

The environment Z is a terminology often used in protocol composition in the cryptography
literature — one can regard the environment Z a catch-all term that encompasses everything
that lives outside the “box” defined by the protocol. For example, as mentioned later, part of the
environment Z’s job is to provide inputs to honest nodes and receive outputs from them. This
models the fact that the inputs to the protocol may originate from external applications and the
protocol’s outputs can be consumed by external applications where any external application or
other protocols running in the system are viewed as part of Z.

e A protocol’s execution proceeds in rounds that model atomic time steps. At the beginning of
every round, honest nodes receive inputs from an environment Z; at the end of every round,
honest nodes send outputs to the environment Z.

e A is responsible for delivering all messages sent by parties (honest or corrupted) to all other
parties. A cannot modify the content of messages broadcast by honest players, but it may delay
or reorder the delivery of a message as long as it eventually delivers all messages. (Later, we

shall consider restrictions on the delivery time.) The identity of the sender is not known to the
recipientﬂ

e At any point, Z can corrupt an honest party j which means that A gets access to its local
state and subsequently, A controls party j. (In particular, this means we consider a model with
“erasures”; random coin tosses that are no longer stored in the local state of j are not visible to

AN

e At any point, Z can uncorrupt a corrupted player j, which means that A no longer controls j. A
player that becomes uncorrupt is treated in the same way as a newly spawning player, i.e., the
player’s internal state is re-initialized and then the player starts executing the honest protocol
no longer controlled by A.

Notations for randomized execution. A protocol’s execution is randomized, where the ran-
domness comes from honest players as well as the adversary denoted A that controls all corrupt
nodes, and the environment Z that sends inputs to honest nodes during the protocol execution.

We use the notation viewﬁEXECH(A, Z,k) to denote a randomly sampled execution trace, and
|view| denotes the number of rounds in the execution trace view. More specifically, view is a random
variable denoting the joint view of all parties (i.e., all their inputs, random coins and messages
received, including those from the random oracle) in the above execution; note that this joint view
fully determines the execution.

Constraints on (A4,Z7). The environment Z and the adversary A must respect certain con-
straints. We say that a p.p.t. pair (A, Z) is (n, p, A)-respecting w.r.t. II, iff for every k € N, every
view view in the support of EXEC! (A, Z, k), the following holds:

1. Z activates n parties in view;

2. For any message broadcast by an honest player at any time ¢ in view, any player that is honest at
time £+ A or later must have received the message. This means that in the case of newly spawned
players, instantly delivers messages that were sent more than A rounds ago. As long as this A
contraint is respected, A is allowed to delay or reorder honest players’ messages arbitrarily.

3. at any round r in view, A controls at most p - n parties; and

Let I'(+, -, -) be a boolean predicate. We say that a p.p.t. pair (A, Z) is I'-compliant w.r.t. protocol
m iff

o (A, Z)is (n,p,A)-respecting w.r.t. 7; and
e I'(n,p,A)=1.

In other words I' is a predicate that places constraints on additional constraints on the parameter
(n, p, A) that (A, Z) must respect. When the context is clear, we often say that (A4, Z) is I'-compliant
while omitting to specify w.r.t. which protocol.

2We could also consider a seemingly weaker model where messages sent by corrupted parties need not be delivered
to all honest players. We can easily convert the weaker model to the stronger model by having honest parties “gossip”
all messages they receive.

30ur proof actually extends also to the model “without erasures”.

2.2 Conventions

Variables that are functions of the security parameter. Unless otherwise noted, by default
we assume that all variables are a function of the security parameter k. If any variable is not a
function of k, we shall explicitly note that the variable is a constant. Variables may also be functions
of each other as defined later by relations that (A, Z) must additionally satisfy for our blockchain
protocol to be secure.

For two variables that by default are functions of k, we say that var; < vars iff for every k € N,
vari(k) < varg(k). Similarly, if we say that var is positive, we mean that var(k) is positive for any
ke N.

Other conventions. Throughout this paper, whenever we refer to p.p.t. machines, we mean that
the machine is non-uniform probabilistic polynomial-time.

2.3 Blockchain Protocols

In this section, we recall the abstract model for blockchain protocols from [PSS17] and a provide a
description of Nakamoto’s original blockchain protocol which we will heavily make use of.

In a blockchain protocol II, nodes receive input records from an environment Z, and nodes
interact with each other to agree on a linearly ordered log of transactions in a way that achieves
consistency and liveness.

Inputs and outputs of a blockchain protocol. At the beginning of each time step, the
environment Z inputs a record m to each honest player. At the end of each time step, each honest
player outputs a chain to the environment Z, where chain denotes an ordered sequence of records
(also referred to as blocks). Each record (or block) may in turn contain an ordered sequence of
transactions. Henceforth we use the notation

output of node i in round ¢ : chain(view)

to denote the output of node ¢ in round ¢ to Z in a given execution trace view.

Modeling proofs-of-work. To model Nakamoto’s blockchain protocol, we need to extend the
protocol execution model with a random oracle. In an execution with security parameter k, we
assume all parties have access to a random function H : {0,1}* — {0,1}* which they can access
through two oracles: H(z) simply outputs H(z) and H.ver(z,y) output 1 iff H(z) = y and 0
otherwise. In any round r, the players (as well as A) may make any number of queries to H.ver. On
the other hand, in each round 7, honest players can make only a single query to H, and an adversary
A controlling ¢ parties, can make g sequential queries to H. (This modeling is meant to capture the
assumption that we only “charge” for the effort of finding a solution to a “proof of work” [DN92|,
but checking the validity of a solution is cheap. We discuss this further after introducing Nakamoto’s
protocol.) We emphasize that the environment Z does not get direct access to the random oracle
(but can instruct A to make queries).

2.4 Nakamoto’s Blockchain Protocol

We turn to describing Nakamoto’s protocol [Nak08|, which we refer to as I,k (p). hak(p) takes
in a puzzle difficulty parameter p that denotes the probability that each player mines a block in a
single round.

Protocol overview. In Il i, each honest node maintains an internal state chain at any point of
time. Each chain|i] is referred to as a (mined) block and is of the format chain[i| := (h_1,m, m,h),
containing the hash of the previous block denoted h_1, a nonce 7, a record m, and a hash h E] Let
chain := extract(chain) be the sequence of records contained in the sequence of blocks chain. chain
is the version that honest nodes output to the environment.

The II,, works as follows:

e Nodes that are newly spawned or that have been become uncorrupt start with initial chain
containing only a special genesis block: chain := (0,0, L, H(0,0, L)).

e In every round: a node reads all incoming messages (delivered by A). If any incoming message
chain’ is a valid sequence of blocks that is longer than its local state chain, replace chain by
chain’. We define what it means for a chain to be valid later. Note that checking the validity of
chain’ can be done using only H.ver queries.

e Read an input record m from the environment Z. Now parse chain[—1] := (-, -, ,h_1), pick a
random nonce 1 € {0,1}", and issue query h = H(h_1,n, m). If h < D,,, then append the newly
mined block (h_1,7n,b,h) to chain and broadcasts the updated chain.

More specifically, D, = p(x) - 2% such that for all (h,m), Pr,[H(h,n,m) < D,] = p. In other
words, D, is appropriately parameterized such that the probability that any player mines a
block in a round is p.

e Output chain := extract(chain) to the environment Z. Note that the notation chain extracts
only the sequence of records from chain removing all other metadata that are not needed by
external applications.

Valid chain. We say a block chain[i| = (h—1,m, m, h) is valid with respect to (a predecessor block)
chainli — 1] = (h_y,n’, m',h') if two conditions hold: h_y; = A/, h = H(h_1,n,m), and h < D,. A
chain of blocks chain is valid if a) chain[0] = (0,0, L,H(0,0, L)) is the genesis block, and b) for all
i € [4], chain[i] is valid with respect to chainli — 1].

Remark: on our use of the random oracle. Recall that in our model, we restrict players to
a single evaluation query H per round, but allow them any number of verification queries H.ver
in the same round. We do this to model the fact that checking the validity of mined blocks is
“cheap” whereas the mining process is expensive. (To enable this, we have included a pointer h to
the current record in every mined block in the description of Nakamoto; thus a player need not
spend an H query to compute the pointer to the previous record.)

In practice, the cost of evaluating a hash function (which is used to instantiate the random
oracle) is the same as verifying its outputs, but our modeling attempts to capture the phenomena
that a miner typically use various heuristics (such as black lists of IP addresses that have sent
invalid blocks) and different hardware to check the validity of a mined block versus to mine a new
block.

2.5 Security of Blockchain Protocols

In this section, we recall the security properties of blockchains from [PSS17], which in turn are based
on earlier definitions from [GKL15, KP15] For our purposes, we slightly generalize the properties

“In reality (as well as in the description in the introduction), h is not included in the block (as it can be easily
determined from the remaining elements); we include it to ensure that we can verify validity of a block using only
H.ver.

from [PSS17| (see below for a discussion of this generalization), but point out that our generalized
definitions suffice for all known applications of them; see [PSS17] for more discussion (and historical
remarks) on these definitions.

Negligible functions. A function €(+) is said to be negligible if for every polynomial p(-), there
exists some kg such that e(k) < ﬁ for all kK > k.

We now define three useful properties, referred to as chain growth, chain quality, and consistency
respectively. Note that all properties are defined over honest nodes’ outputs to the environment

that are visible at the abstraction level (rather than over nodes’ internal states chain).

2.5.1 Chain Growth
The first desideratum is that the chain grows proportionally with the number of time steps. Let,

min-chain-increase; » (view) = min |chain§+t/ (view)| — |chainf (view)|
z?]

t+t

max-chain-increase; (view) = max [chain}™" (view)| — |chain} (view)|
b

%)

where we quantify over nodes 7, j such that 4 is honest at round ¢ and j is honest at round ¢ + ¢’ in
view.
Let growth® ! (view, A, T') = 1 iff the following two properties hold:

e (consistent length) for all time steps ¢t < |view|—A, t+A < ¢/ < |view/|, for every two players i, j
such that in view i is honest at ¢ and j is honest at ¢’, we have that |chain§l (view)| > |chain!(view)|

e (chain growth lower bound) for every time step ¢t < |view| — to, we have

min-chain-increase; 4, (view) > T..

e (chain growth upper bound) for every time step ¢ < |view| — ¢, we have

max-chain-increase; 4, (view) < 7.

In other words, growth’ ! is a predicate which tests that a) honest parties have chains of roughly
the same length, and b) during any ¢, time steps in the execution, all honest parties’ chains increase
by at least T, and ¢) during any ¢; time steps in the execution, honest parties’ chains increase by
at most 7.

Definition 2.1 (Chain growth). A blockchain protocol 11 satisfies (To, go, g1)-chain growth in I'-
environments, if for all T-compliant p.p.t. pair (A,Z), there exists some negligible function negl
such that for every k € N, T > Ty, to > QZO and t; < 911 the following holds:

Pr [view + EXECY(A, Z, k) : growth™ ! (view, A, k) = 1] > 1 — negl(x)

2.5.2 Chain Quality

The second desideratum is that the number of blocks contributed by the adversary is not too large.

Given a chain, we say that a block B := chain[j] is honest w.r.t. view and prefix chain[: j']
where j° < j if in view there exists some node ¢ honest at some time ¢ < |view|, such that 1)
chain[: j] < chainf(view) where < denotes “is a prefix of” and 2) Z input B to node i at time t.
Informally, for an honest node’s chain denoted chain, a block B := chain[j] is honest w.r.t. a prefix

chain[: j'] where j’ < j, if earlier there is some honest node who received B as input when its local
chain contains the prefix chain[: j'].

Let qualityT(view, u) = 1 iff for every time ¢ and every player i such that i is honest at t in
view, among any consecutive sequence of T' blocks chain[j + 1..j +T] C chainf(view), the fraction of
blocks that are honest w.r.t. view and chain[: j] is at least pu.

Definition 2.2 (Chain quality). A blockchain protocol 11 has (Tp,p)—chain quality, in T'-
environments if for all T-compliant p.p.t. pair (A,Z), there exists some negligible function negl
such that for every k € N and every T > Ty the following holds:

Pr [view EXECY(A, Z, k) : quality” (view, 1) = 1] > 1 — negl(x)

2.5.3 Consistency

Roughly speaking, consistency stipulates common prefix and future self-consistency. Common prefix
requires that all honest nodes’ chains, except for roughly O(x) number of trailing blocks that have
not stabilized, must all agree. Future self-consistency requires that an honest node’s present chain,
except for roughly O(k) number of trailing blocks that have not stabilized, should persist into its
own future. These properties can be unified in the following formal definition (which additionally
requires that at any time, two honest nodes’ chains must be of similar length).

Let consistent” (view) = 1 iff for all times ¢ < ¢/, and all players 4, (potentially the same) such
that 4 is honest at ¢ and j is honest at ¢ in view, we have that the prefixes of chain!(view) and
chain? (view) consisting of the first £ = |chain§(view)] — T records are identical — this also implies
that the following must be true: chain? (view) > ¢, i.e., chaing-/ (view) cannot be too much shorter
than chainf(view) given that ¢ > t.

Definition 2.3 (Consistency). A blockchain protocol 11 satisfies Ty-consistency, in I'-environments
if for all T'-compliant p.p.t. pair (A, Z), there exists some negligible function negl such that for every
k € N and every T > Ty the following holds:

Pr [view - EXEC'Y(A, Z, k) : consistent (view) = 1] > 1 — negl(x)
Note that a direct consequence of consistency is that at any time, the chain lengths of any two
honest players can differ by at most 7" (except with negligible probability).
2.6 Preliminaries from [PSS17]: Security of Nakamoto’s Blockchain

The results from |[PSS17] (and as we shall shortly see, also ours) are parametrized by the following
quantities (which are defined for some fixed mining hardness function p(-); recall that Nakamoto’s
protocol is parametrized a single hardness parameter p):

o let a:=1—(1—p)1=P)" That is, a is the probability that some honest player succeeds in
mining a block in a round;

e let 5 := pnp. That is § is the expected number blocks that an attacker can mine in a round.

o let v := 7% 7 is a “discounted” version of a which takes into account the fact that
messages sent by honest parties can be delayed by A rounds and this may lead to honest
players “redoing work”; v corresponds to their “effective” mining power.

In essence, the quantities capture the per round expected “chain length increase” by the honest
parties and the adversary; the reason that a, 8 are defined differently is that we assume that the

10

adversary can sequentialize its queries in a round, whereas honest players make a single parallel
query (they each act independently), and thus even if they manage to mine several blocks, the
longest chain held by honest players can increase by at most 1. Note, however, that when p is
small (in comparison to 1/n), which is case for the Bitcoin protocol, « is well approximated by
(1 — p)np and thus % R l;pp, so this difference is minor; additionally, when p is small, v = a and

Y l=p
thusBN -

Compliant executions for Nakamoto’s blockchain. We now specify the compliance predicate
r? . (-) for the Nakamoto blockchain. We say that I'¥ . (-,-,-) = 1 iff there is a constant A > 1

nak nak

such that
a(l-=2(A+1)a) > Ap

where « and 3 are functions of the parameters n, p, A and « as defined above.
As shown in Pass et al. [PSS17], this condition also implies the following:

Fact 2.4. If (A, Z) is I | -compliant, then npA < 1.
We directly get the following corollary that will be useful to us.
Fact 2.5. If (A, Z) is T | -compliant, then v > 2 and
Proof. Recall that v = 7% Since a < np, by Fact we directly get that

«
’YZEﬁ

Recall that, o = 1 — (1 — p)(1=”)"_ Since by Fact n < 1/p, by the binomial expansion we have
that

Thus, v > W > % since under our restrictions, we have that p < % O

Formal guarantees of Nakamoto’s blockchain. The following theorem was proven in [PSS17].

Theorem 2.6 (Security of Nakamoto [PSS17]). For any constant 6 > 0, any 0 < p < 1, any super-
logarithmic function Ty = w(log k) Nakamoto’s blockchain protocol 11,k (p) satisfies the following
properties in Fﬁak-envimnments:

e Ty-consistency;

e chain growth rate (Ty, go, g1) where

go = (1=19)y
g1=(1+0)np
e chain quality (Ty,) where
w=1—(1+ 5)é
~

Remark 2.7 (Blockchain quality and consistency). The consistency property proven in [PSS17] is
actually a bit stronger than stated. Not only it shows that players agree on the records contained in
their blockchains, but also that the actual blockchains agree except for potentially the last k blocks.
We refer to this property as blockchain consistency, and will rely on it in the sequel.

Additionally, the chain quality property is also stronger in that not only the records of honest
blocks are contributed by honest players, but also the actual blocks are mined by honest players. We
refer to this property as blockchain quality, and will rely on it in the sequel.

11

2.6.1 Liveness

The liveness property from [PSS17] (which generalized the one from [GKL15]), stipulates that from
any given round 7, if a sufficiently long period of time t elapses—we refer to this time as the wait-
time of the blockchain—every honest player will have a record m sufficiently “deep” in their chain
(technically, x blocks from the end of the chain), where m was provided as an input to some honest
player between rounds r and r + 1E| More precisely, let live(view,t) = 1 iff for any ¢ consecutive
rounds r,...,r +t in view there exists some round 7’ s.t. » < v’ < r +t and player i such that in
view, 1) i is honest at 7/, 2) i received a record m as input at round 7/, and 3) for every player j
that is honest at v + ¢ in view, m € chain§+t(view) [} —K].

Definition 2.8. We say that blockchain (11, chain) satisfies liveness with wait-time w in I'-
environments if for all T'-compliant p.p.t. pair (A,Z), there exists a negligible function € in the
security parameter k € N, such that

Pr [view <~ EXEC (A, Z, k) : live(view,w) = 1] > 1 — €(k)
The following theorem was shown in the prior work [PSS17].

Theorem 2.9 ([PSS17]). For any boolean predicate I'(-, -, -), let II be a blockchain protocol satisfying

chain growth (T, go,91), chain quality (To, u) and Ty-chain consistency in T'-environments where
w and gog are strictly positive, and Ty is sublinearﬁ Then, 11 satisfies liveness with wait-time

K

w=(14+9)—

(1+9) 7

against in I'-environments
As a direct corollary of 2.9 and we get:

Corollary 2.10 ([PSS17]). For any constant 6 > 0, and any 0 < p < 1, I,.k(p) satisfies liveness
with wait-time .
w=(146)—

(1+9)

. p .
m Fnak -environments.

3 Defining Fairness

We turn to defining our notion of fairness. Roughly speaking, a blockchain protocol is J-
approximately fair w.r.t. p attackers if, with overwhelming probability, any honest subset controlling
¢ fraction of the compute power is guaranteed to get at least a

(1—0)¢

fraction of the blocks in every sufficiently long window, even in the presence of an adversary
controlling a p fraction of the computation power. Note that this condition trivially implies (1 —
9)(1—p) chain quality (by considering ¢ = 1—p, that is, the full set of honest players). Consequently,
to formally define this notion, we first generalize the definition of quality (used in the definition of
chain quality, see Definition to consider “quality” w.r.t to any subset S of the honest players.

5The weaker liveness property from |[GKL15] only requires this is all honest players have m as their input; this
weaker property is not enough for our purposes.

6 |[PSS17] only explicitly considered the case when Tj is some slightly super-logarithmic function, but their proof
actually only assumes that Ty is sublinear. We also remark that any blockchain protocol which satisfies the security
properties w.r.t. to a polynomial Ty which potentially is super-linear can always be modified to satisfy security w.r.t.
a sublinear Ty by redefining the security parameter.

12

Warmup: fairness definition for static corruption. As a warmup, let us consider how to
define (approximate) fairness in a static corruption model where the adversary must declare corrupt
nodes upfront — once we show how to do this, we then discuss how to extend the definition to
an adaptive corruption model. Under a static corruption model, we say that a blockchain protocol
satisfies (7, §)-approximate fairness, iff the following holds except with negligible probability over
the protocol’s execution: for any honest node’s chain during the protocol execution, for any constant
¢ > 0, for any subset S of honest users such that |S| = ¢ - n where n denotes the total number of
users, for any T' consecutive blocks chain[j 4+ 1..j + T in chain, it holds that the fraction of blocks
in chain[j + 1..j + T'] contributed by nodes in S is at least (1 —).

Fairness definition for adaptive corruption. In general, the corruptions can be declared in
an adaptive fashion, therefore nodes in any subset S may become corrupt during the course of
the window we care about. To define (approximate) fairness with adaptive corruptions, we need to
allow the subset S to change over time. We formalize the definition below.

e Let a player subset selection, S(view,), be a function that given (view,r) outputs a subset of
the players that are honest at round r in view.

e We say that S is a ¢-fraction player subset selection if S(view, r) always outputs a set of size ¢n
(rounded upwards) where n is the number of players in view.

e Given a player subset selection S, we say that a record m is S-compatible w.r.t. view and prefix
chain if there exists a player j and round 7’ such that j is in S(view, r’), the environment provided
m as an input to j at round 7/, and chain < chain?l (view) where < denotes “is a prefix of”;

e Let quality”® (view, u) = 1 iff for every round r and every player ¢ such that i is honest in round
r of view, we have that among any consecutive sequence of 1" records chain (view)[j +1: 7+ T7,
the fraction of records that are S-compatible w.r.t. view and prefix chain} (view)[: j] is at least u.

We now define fairness analogously to chain quality.

Definition 3.1. A blockchain protocol I has (approzimate) fairness (Ty,d) in I'-environments, if
for all T'-compliant p.p.t. (A, Z), every positive constant ¢ < 1—p, every ¢-fraction subset selection
S, there exists some negligible function € such that for every k € N and every T > T}y the following
holds:

Pr [view < EXEC'Y (A, Z, k) : quality™ (view, (1 — §)$)) = 1] > 1 — €(r)

As a sanity check, note that the definition of quality”**(view,) collapses down to
quality” (view, 1) if S is the full set of the honest players. As a consequence, (Tp, §)-fairness trivially
implies (Tp, (1—0)(1— p))-chain quality (by considering ¢ = 1— p). Additionally, when p < % which
is the case we consider in this paper,

(1=0)A—-p)=1-b0—p+op=1-[0+(1-06)p| 21-[20p+(1—-d)p]=1—-(1+0)p
Thus, no p-size coalition can get more than a factor (1 4+) more than its “fair” share of blocks.

Fact 3.2. If a blockchain protocol 11 satisfies (To,0)-fairness in I'-environments, then it satisfies
(To, p)-chain quality where p = (1 —6)(1 —p) > 1 — (14 §)p in ['-environments.

13

4

The FruitChain Protocol

We now turn to formally defining our FruitChain protocol. Roughly speaking, the FruitChain proto-
col will be running an instance of Il (p) but instead of directly putting the records m inside the
blockchain, the records are put inside “fruits” denoted f; these fruits themselves requires solving
some proof of work—with a different hardness parameter p;; additionally, we require a fruit to
“hang” from a block which isn’t too far from from the block which records the fruit—more specifi-
cally, the fruit needs to “point” to an earlier block in the chain which is not too far from the block
containing it (and thus, the fruit could not have been mined “too” long ago); the recency parameter
R will be used to specify how far back a fruit is allowed to hang.

4.1 Valid Blocks, Fruits, and Blockchain

Towards formalizing the protocol, we start by introducing some notation:

We assume that the random oracle H outputs strings of length at least 2«. Let d be a collision-
resistant hash-function (technically, it is a family of functions, and the instance from the family
is selected as a public-parameter; in the sequel we ignore this selection and simply treat it as a
single function (for instance, selected using randomness H(0).)

Our protocol is parametrized by two “hardness” parameters p = p,py = py, and a recency
parameter R. (p is the mining hardness parameter for the underlying Nakamoto blockchain, and
py is the “fruit mining” hardness parameter, as mentioned above, the recency parameter will
specify how far back a fruit is allowed to “hang”); the quantity ¢ = %f will be useful in our
analysis.

Valid fruits. A fruit is of the format f = (h_1;h’;n, digest; m; h) where each entry means the
following:

h_1 points to the previous block’s reference — this entry is an artifact of the fruit mining and
block mining piggybacked on top of each other; a fruit actually does not care about this entry
(but a block does). However the value still needs to be included for the fruit to be verified;

h' points to a (recently stablized) block that the fruit is hanging from — we call i’ the pointer
of the fruit f;

7 is a random nonce denoting the puzzle solution;

digest is the digest of some fruit-set F' — this is an artifact since the fruit mining and block
mining are piggybacked on top of each other. The block must contain a set of fruits denoted
F', but the fruit does not care about the fruit-set, and therefore we include only its d that is
necessary for checking that the fruit is correct;

m is the record to be contained in the fruit; and

h is the hash or reference of the fruit.

We say that a fruit denoted f = (h_1;h';n, digest; m; h) is valid iff

(i) H(h_1;h';n;digest; m) = h;
(ii) [h]_,. < Dp, where [h]_x. denotes the last & bits of h.

We say that F is a valid fruit-set if either F = () or F is a set of valid fruits.

14

Valid blocks. Since the block mining and the fruit mining are piggybacked on top of each other,
a block looks very much like a fruit, except that a block must additionally include the actual fruit-
set F. More specifically, a block is of the following format b = ((h_1; h'; n; digest; m; h), F') where
each entry means the following:

e h_1 points to the previous block’s reference, this represents the chain that the block extends
from;

e I/ is an artifact of the fruit mining and block mining piggybacked atop each other; a block
actually does not care about this field (but a fruit does), but it still needs to be included for
block verification;

e 7 is a random nonce denoting the puzzle solution;
e digest is the digest of some fruit-set £’ to be included in the block later;

e m is a record — the block also does not care about this field, and this is an artifact of the two
piggybacked mining processes;

h is called the reference of the block, which is a hash of the previous fields; and
F' is a fruit-set to be included in the block.

We say that a block denoted b = ((h_1; h';n; digest; m; h), F), is valid iff

(i) digest = d(F') where d is a collision-resistant hash function as mentioned earlier;
(i)
(iii) H(h_1;h';n,d(F);m) = h;
(iv) [h].x < Dp, where [h].., denotes the first & bits of h.

F' is a valid fruit-set;

Valid blockchain. We say that a chain is valid iff

e chain|0] = genesis where genesis := ((0;0;0;0; L;H(0;0;0;0, L)),0) is the “genesis” block;
o foralli € [¢], chain[i].h_1 = chain[i—1].h, i.e., each block refers to the previous block’s reference;

e for all © € [{], all f € chain[i].F, there exists some j > i — Rk such that the pointer of f is
chainlj].h.

Recency of fruits. Finally, we say that the fruit f is recent w.r.t. chain if the pointer of f is
the reference of a block in chain[—Rk :] (i.e., one of the last Rx blocks in chain).

4.2 The FruitChain Protocol and our Main Theorem

The FruitChain protocol denoted Il is described in Figure [1} Henceforth, we say that
) 7R .
Ffrl}zlft (n’p’ A) = 1iff Fgak(na P,A) =1

Moreover, we assume the following quantities are constants throughout this paper:

Pr _
q:=) o(1), R=0(1)

We are now ready to state our main theorem.

15

it (p, pr, R): FruitChain protocol
Initialize: chain := genesis, F =)

Upon receiving a valid fruit,
e let F:= F U {fruit}
Upon receiving a valid chain’, if |chain’| > |chain|:
e let chain := chain’
Every time step, upon receiving input m from the environment:

let F' be all fruits f € F that are recent w.r.t. chain and not already in chain;
let b’ be the reference of chain[pos] where pos = max(1, |chain| — k);
let h_1 be the reference of chain|—1];
Pick random n € {0,1}" and let h := H(h_1;h/;n;d(F’); m)
If [h] . < Dp, (i.e., we “mined a fruit”)
— let fruit := (h—_1;h/;n;d(F’);m, h), F := F U {fruit}, and broadcast fruit
e If [h]., < D, (i.e., we “mined a block”)
— let chain := chain||((h—1; h';n,d(F");m, h), F’), and broadcast chain

e Output extractgyit(chain) to Z, where extractgit(+) is defined as below:

extractgyit (chain):

On input a valid chain,

o first extract a sequence of distinct fruits from chain, where if the same fruit is included multiple
times, only the first occurrence is included. The extracted fruits are ordered by the first block
that contains the fruit; and for fruits in the same block, follow the order in which the fruits
are serialized within the block.

e then, output the sequence of records m contained in the extracted sequence of fruits, where
records contained in earlier fruits are extracted earlier.

Figure 1: The FruitChain protocol. Nodes not only mine for blocks, but also fruits. Blocks confirm
“recent” fruits; whereas fruits confirm transactions.

16

Theorem 4.1 (Security of FruitChain). For any constant 0 < 6 < 1, and any p,pys, let R = 17,
kf = 2qRk, and Ty = 5%. Then the FruitChain protocol denoted gyt (p, ps, R) satisfies

e rr-consistency;
e chain growth rate (Ty, go, g1) where
g0 = (1 =6)(1 = p)npy,
g1 = (1+6)npy
o fairness (1py,9).

. pps, R .
m Ffruit -environments.

5 Proof of the Main Theorem

We start by introducing some additional notation and useful lemmas, and then turn to proving
each of the three security properties.

5.1 Additional Notations
Let us introduce some additional notation that will be useful in the analysis of the protocol:

e We say that a fruit f = (h_1;h';n, digest; m; h) was mined at round r if r is the first time H
outputs h.

e We say that a block, b = ((h_1;h'; n; digest; m; h), F') was mined at round r if r is the first time
H outputs h.

e We say that a block/fruit was mined by an honest player if there it was an honest players that
first mined it.

To simplify notation, in addition to the parameters «, 5,y previously defined, we also define analogs
of a and B with respect to the “fruit mining” process:

o let ay = (1 — p)npy (that is, the expected number of fruits mined by honest players in one
round);

e let Sy = pnpys (that is, the expected number of fruits mined by corrupt players in one round).

5.2 The Fruit Freshness Lemma

In this section, we present a lemma demonstrating the key property of the FruitChain protocol: any
fruit mined by an honest player will be incorporated sufficiently deep in the chain (and thus never
lost). We refer to this as the Fruit Freshness Lemma—fruits stay “fresh” (i.e., recent) sufficiently
long to be incorporated.

Let fruitfreshness(view, w, k) = 1 iff for every honest player i and every round r < |view| — w,
if ¢ mines a fruit at round r in view, then for every honest player j, there exists some index pos
such that f is at position pos in the record chain (w.r.t. Nakamoto’s protocol) of j at every round
r>r4+w (e, f € chaz‘ngl (view)[pos]) and additionally pos is at least x positions from the end of
the chain.

Let 5
wait = 2A + il
~y

17

P.Pf 7R
fruit

Lemma 5.1. Let R = 17. For any p, py, for any T -compliant (A, Z), there exists a negligible

function € such that for any k € N,
Pr |view <+ EXECT it PR (A 7 1) : fruitfreshness(view, wait, k) = 1] >1—¢€(k)

Proof. Disregard the blockchain consistency (see Remark , liveness and chain growth failure
events—they only happen with negligible probability. Let wait = wait(k,n, p, A).

e By blockchain consistency, at any point in the execution, whenever an honest player mines a
fruit f, the block pointed to by the fruit is at some fized position pos on the blockchain of
every honest player, now and at every time in the future. (Recall that honest players try to
mine fruit that point back to a block that is s steps back in the chain, and thus the consistency
condition kicks in.) Let ¢ denote the length of the chain of the player that mines f; by definition
pos = — K.

e By the description of the protocol, if the fruit f is mined at a round 7, it gets seen by all honest
players by round r’ + A; additionally, when this happens all honest players attempt to add f to
their chain as long as it remains recent (w.r.t. all honest players).

e By liveness, it thus follows that f gets incorporated into the record chain of all honest players
at some position pos that is at least « records from the end of their chain by round

P+ A+ (1+6)% <+ +wait — A

=2

as long as f is recent by then (w.r.t. all honest players).

e By the upperbound on chain growth, at most
2K

blocks are “added” in time wait — A; more precisely, by round 7’ + wait — A, no honest player
has ever had a chain of length ¢ such that

2
>0+ (1+0)np <A+j>
Thus, by round r’ + wait — A, for every such honest player’s chain length ¢ we have
, 2K
pos=L—Kk>0—k—(1+0np| A+ —
Y

By our compliance assumption and by Fact and Fact we have that v > % and npA < 1,
thus
pos >V —k—(14+0)— (1+0)16x <17k = — Rk

which means that f remains recent until round " + wait — A w.r.t. all honest players.

e Finally, by consistency, all honest players agree that f is found at position pos in their blockchain
at any point after ' +wait — A; additionally, by the consistent length property all honest players
agree that position pos is at least x from the end of the chain by ' + wait — A + A = v’ +wait.

O

18

We also observe the following fact about wait, which says that the expected number of fruits
mined by all players during wait + 2 steps is upper bounded by k;.
Fact 5.2. For any p,ps, any Fp’pf’R—compliant (A, Z),

fruit
(wait +2) -nps < Ky
Proof. Note that by Fact and Fact we have that v > %2 and npA < 1, thus

(wait—|—2)-npf:(2A+2E—|—2)-qpn§2q—|—2/<-8q—|—2§2qR/<:/-$f
Y

5.3 Some Simplifying Assumptions

Towards proving our main theorem we state some simplifying assumptions that can be made without
loss of generality. These assumptions (which all follow from properties of the random oracle H) will
prove helpful in our subsequent analysis.

e WLOG1: We may without loss of generality assume that honest players never query the RO
on the same input—more precisely, we analyze an experiment where if some honest player wants
to query it on an “old” input, it resamples nonce until the input is “new”; since nonce is selected
from {0, 1}", this “resampling” experiment is identical to the real one with except with negligible
probability, thus we can WLOG analyze it.

e WLOG2: We may without loss of generality assume that any fruit that points to a block b
which was first mined at time ¢, has been mined after ¢. Additionally, any fruit that points to a
block that comes after b in a valid chain must have been mined after ¢. (If not, we can predict the
outcome of the random oracle H on some input before having queries H which is a contradiction.
We omit the standard details.)

e WLOGS3: We may assume without loss of generality that all fruit mined by honest players
are “‘new” (i.e., different from all valid fruit previously seen by honest players); this follows by
WLOGT1 and the fact that the probability of seeing a collision in the random oracle is negligible
(by a simple union bound over the number of random oracle queries).

e WLOG4: We may assume without loss of generality that any valid fruit which appears in some
honest players chain at round r was mined before r; this follows from the unpredictability of the
random oracle (and a simple union bound over the number of random oracle queries).

e WLOGS5: We may assume without loss of generality that there are no “blockchain collisions” —
namely, there are no two different valid sequences of blocks which end with the same block.

We now turn to proving the three security properties.

5.4 Proof of Fruit Consistency

Disregard the chain growth and consistency, and blockchain quality (see Remark failure
events—they happen with negligible probability. Consider some view view in the support of
EXECHruit (Ppy.F) (A, Z, k), rounds r,7’ s.t. ' > r, and players i,j that are honest respectively
at r,r’ in view. By consistency, the chains of i, at r,7’ agree except for potentially the last x
blocks in the chain of i—let C' = by, ..., bjc| denote those initial blocks on which they agree, and
let bjc|41, - - - denote the (max «) blocks in the chain of i at r which are not in the chain of j at 7;
we now bound the number of fruits that can be contained in these remaining (max) “inconsistent”

blocks.

19

e By the “recency condition” of valid fruit, any valid fruit in the chain of ¢ at r which is after C'
must point to a block b such that j' > |C| — Rk.

e By the blockchain quality condition, there exists some j” s.t. |C| — Rk — k < j” < |C| — Rk and

b;» was mined by an honest player. Let 7(, denote the round when this block was mined.

e Note that at 7{, bj» was mined by an honest player holding a chain of length j” > |C| — Rk — k;
additionally, at r, i is honest, holding a chain of length at most |C|+ k (recall that |C| contains
the blocks on which ¢ and j agree, and by consistency, all but the last x blocks in the chain of ¢
must be in the chain of 7). Thus, by the chain growth upperbound, at most

2k + Rk

p=(1+0) =

rounds could thus have elapsed between r{, and r.

e By WLOG?2, any fruit which gets added after C' must have been mined after r,. By WLOG4,
any such fruit that is part of the chain of ¢ by r was mined before r.

e We thus conclude by the Chernoff bound (see Lemma [A.1]) that for every sufficiently small §’,

Qnpy "G _ —(g(R42)x)

except with probability e , there were at most

w(E+2)

p = (1+8)%q(R+2)k < 2qRr = Ky

(1+ 5')2 “npy -
“Inconsistent” fruits in the chain of 7 at r.

5.5 Proof of Fruit Growth
Consistent length. The consistent length property follows directly from the consistent length
property of the underlying blockchain.

Lowerbound. Disregard the fruit freshness failure event (Lemma |5.1)—it happens with negligible
probability. Consider any r,t and players ¢,j that are honest respectively at round r and r + ¢.
Consider the ¢ rounds starting from round r.

e By the fruit freshness condition, every fruit that is mined by some honest party by round
r 4+t — wait gets incorporated into (and remains in) the chain of player j by r + ¢.

e By the Chernoff bound, in the ¢ — wait rounds from r to r + t — wait, except with probability
e~ (t-wait)ay) the honest parties mine at least

(1—=08")(t — wait)ay

fruits (where ¢’ is some arbitrarily small constant), which are all included in the chain of j at
r+t. Additionally, by WLOG3 they are all “new” (i.e., not included in the chains of i at r) and
different.

e Finally, by fruit consistency (proved in Section [5.4]), we have that all but potentially ¢ of the
fruits in the chain of ¢ at r are still in the chain of j at r + t.

20

e We conclude that, except with probability e~ (—wait)ay) " the chain of j at r + ¢ contains at
least

(1 =08t — wait)ay — Ky

more fruits than the chain of j at r. By Fact wait-of = wait- (1 —p)npr < (1—p)rp < Ky;
thus, have at least
(1—6)(t—wait)af—nf Z (1—5)aft—2/<;f (1)

new fruit.

We conclude by noting that this implies that a fruit growth lowerbound of g = ﬁaf >
(1 —d)as in the desired regime: Consider any 7' > 5*fo and any
T T
t> —= 5+
90 135
As shown above (see Equation , during this time ¢, except with probability, e~ ®((t—wait)ar) the
chain must grown by at least

0 0
T1+6)(1-¢) -2k, =T(1+ 5)(1 -0+ T§(1 — &) — 2Ky
For a sufficiently small ¢’ the first term is greater than 7', and the second term greater than 2k,
and thus the chain must have grown by at least 7'. Finally note that by Equation

e—Q((t—wait)af) _ e—Q((tozf—nf) _ e—Q((T—nf) _ e—Q((5nf—/cf) _ e—Q((EJi-if—nf) _ e—Q(n)
Thus the chain growth is guaranteed except with negligible probability.

Upperbound. Disregard the chain growth, consistency and blockchain quality (see Remark
failure events—they happen with negligible probability. Consider some view view in the support
of EXEC it (p-py ’R)(A, Z,k), rounds 7,7’ = r + t and players i,j that are honest respectively at
r and r’ in view. By consistency, the chains of 7,j at r,7’ agree except for potentially the last x
blocks of the chain of i—let C' = by, ..., bjc| denote those initial blocks on which they agree, and
let bjc|41, - - . denote the blocks in the chain of j at r’ which are not in the chain of ¢ at r (there may
be more than x such blocks since we are looking at the chain of j at a later time r’); We now upper
bound the number of fruits in the new blocks in the chain of j which come after C, similarly to the
fruit consistency proof (they main difference is that we now consider the chain of j as opposed to
the chain of 7). The details follow:

e By the “recency condition” of valid fruit, any valid fruit in the chain of j at r’ which is after C
must point to a block bj such that j' > |C| — Rk,

e By the blockchain quality condition, there exists some j” s.t. |C| — Rk — k < j” <|C| — Rk and
b;» was mined by an honest player. Let 7 denote the round when this block was mined.

e Note that at 7{, bj» was mined by an honest player holding a chain of length j” > |C| — Rk — k;
additionally, at r, 4 is honest, holding a chain of length at most |C| + k (recall that |C| contains
the blocks on which 7 and j agree, and by consistency, all but the last x block in the chain of ¢
must be in the chain of j). Thus, by the chain growth upperbound, for any arbitrarily small ¢’
at most

2k + Rk

—(1+¢
p=(1+4d) p”

rounds could thus have elapsed between r{, and r.

21

e By WLOG?2, any fruit which gets added after C' must have been mined after rj,. By WLOGA4,
any such fruit that is part of the chain of j by 7’ was mined before r’.
. .- —Q(npf.M) B
e We thus conclude by the Chernoff bound that except with probability e np =
e~ a(B+2)R) there were at most

k(R +2)

ne)
(1+9)"-npy (”

+ t> =(1+8)?(g(R+2)k +npst) < ky+ (L+8)npst (2)

“new” fruits in the chain of j at 7’.

We conclude by noting that this implies a fruit growth upperbound of g; = (1 + d)np; in the
desired regime: Consider any 7' > 5% and any

75_£_T(1+5)
g1 npg .

As shown above (see Equation , during this time ¢, except with negligible probability, the chain
must have grown by at most

kp 4+ (1+8)2T(1—68) <TS/5+ (1+8)°T/(1+6)

For any 0 < § < 1 and ¢’ = 0.14, the above expression is upper bounded by T

5.6 Proof of Fruit Fairness

Disregard the chain growth, blockchain quality (see Remark , fruit freshness, and the fruit
growth failure events—they happen with negligible probability. Consider some ¢-fraction player
subset selection S, some view view in the support of EXECHtruit(Pps ’R)(A, Z, k), some round r and
player i that is honest in round r of view. Let C' = by, ..., bjc| be the blocks in the view of i at
view, let fo,..., f¢r be the fruits contained in them, and let mg,..., my be the records contained in
the fruits; let f;,..., fj47 be T consecutive fruits for some j, where T' > 5%

Let ro be the round when the block in the view of i at r containing fj., was first added to
some honest player jo’s chain[l; let 71 be the round when the block (again in the view of i at r)
containing fj,r was first added to some honest player ji’s chain, and let t = 71 — 79 — 2 be the
number of rounds from rg+1 to 1 — 1. We lower bound the number of S-compatible (honest) fruits
in the sequence, following similar lines (but slightly more complicated) to the proof of fruit growth
lowerbound:

e By the fruit freshness condition, every fruit mined by some honest player between (ro + 1) and
(r1 — 1) — wait will be in the chain of j; at some position pos that is at least x positions from
the end of the chain, before the beginning of round r; and will remain so.

e By the Chernoff bound, in the ¢ — wait rounds from ry + 1 to (r; — 1) — wait, except with
probability e~ ((t—wait)énps) the honest parties in S mine at least

(1 —=8")(t — wait)gnpy

fruits (where ¢’ is some arbitrarily small constant), which thus are all included in the chain of
Ji by ri—1

"Note that we cannot consider the time when it was added to i’s chain as 4 may potentially be corrupted up until

22

e Since fruits are ordered by the block containing them, and since in round r; a new block is added
which contains f; 7, it follows from blockchain consistency that all these fruits are contained
in the sequence fi,..., fj+r (recall that all these fruits are found in blocks that are at least &
positions from the end of the chain, so by consistency, those block cannot change and thus were
not added in round r; and consequently must come before the block containing fji7).

e By WLOGS3, these fruits are also all “new” (i.e., not included in the chains of jy at r¢) and
different. Since in round rp, the block containing fj., was added to the chain of jo, and since
by WLOGS5, the chain of jo at 7o up until (and including) the block which contains f; ., is a
prefix of C, all these fruits must in fact be contained in the sequence fjix;, ..., fj+7-

e Finally, by fruit consistency, at r¢ all honest players’ fruit chains contain fi,... f; (since recall
that some player added fji,, at ro). Thus all these fruits are S-compatible w.r.t the prefix
fi,... fj—1 before the T' segment we are considering.

We proceed to show that ¢t is sufficiently large. Recall that jg is honest at rg and j; is honest at
r1. We know that at ri, the fruit chain contains at least fj.r fruits. Additionally, at r the fruit
Jj+x, 1s added for the first time, so by fruit chain consistency, at most j + 2y fruits could have
been in the chain of 4 at this point (since a fruit at position j 4+ ¢ is modified). Thus, the fruit
chain must have grown by at least 7' — 2k ¢ from 1 to 1. By the upperbound on fruit growth (see
Equation [2)) we thus have that

T —2kp < kg +(1—8)npp(t +2)

Thus,

1

We conclude that (except with negligible probability) the number of fruits in the sequence is at
least:

(1—06")gnpy ((T — 3ry) —2—wait> =

(1+6")npy

(1-58)9 <(1+15/)2 (T — 3ks) — nps(wait + 2)) >

, 1
(1-6)¢ (W(T—3“f)—“f) >
(1—)0 <(1+15,)2 (T — 4.5nf)> >
o(T = 5ky)

where the first inequality follows by Fact and the second and third by the taking a sufficiently
small . Since T > 5%, we have that (1 —06)T > T — 5k, thus the number of fruits in the sequence
is at least

(1-8)T

6 From Fairness to Incentive Compatibility
We remark that any secure blockchain protocol that satisfies J-approximate fairness (where § <

0.3) w.r.t T(k) length windows can be used as the ledger underlying a cryptocurrency system
while ensuring 3d-incentive compatibility if players (i.e. miners) only care about how much money

23

they receive—that is, a miner’s utility is the sum of the rewards and transaction fees it receives
(potentially times some constant)ﬁ

Consider a crypto-currency which uses a blockchain protocol as the underlying ledger; we omit
a formalization of what this means, but have in mind a system such as Bitcoin where rewards and
transaction fees are somehow distributed among the miners of blocks—for instance, recall that in
Bitcoin, the miner of a block receives a mining reward as well as all the transaction fees contained
in the block it mined.

We say that honest mining is a p-coalition-safe e-Nash equilibrium if, with overwhelming prob-
ability, no p’ < p fraction coalition can gain more than a multiplicative factor (1 + €) in utility,
no matter what transactions are being processed—formally, consider some environment providing
transactions into the system. We restrict to a setting where the total rewards and transaction fees
during the run of the system is some fixed constant Vﬂ

We now remark that if rewards and transaction fees are evenly distributed among the (miners of
the) blocks in the T'(k)-length segment of the chain preceeding the block (and in the initial phase,
before the chain is of length T'(k), simply the first T'(x) blocks) then it follows that honest mining is
a p-coalition-safe 35-Nash equilibrium as long as the underlying blockchain satisfies J-approximate
fairness w.r.t. p attackers: as noted above, fairness implies that no matter what deviation the
coalition performs, with overwhelming probability, the fraction of adversarial blocks in any T'(k)-
length window of the chain is upperbounded by (1+4d)p and thus the total amount of compensation
received by the attacker is bounded by (1 + d)p - V; in contrast, by fairness, if the coalition had
been following the honest protocol, they are guaranteed to receive at least (1 — §)p - V; thus, the

multiplicative increase in utility is 5

1+

- <1436
when 6 < 0.3[1]

To see why the “standard” bitcoin approach of giving all rewards and fees to the miner of the
block does not work, consider an freshly mined (honest) block containing a transaction with a very
high transaction fee. A coalition controlling a constant fraction of the computing power would have
a huge incentive to “drop” this block and instead try to mine a new block which contains it. Fairness
does not prevent such an attack, and indeed, even in our protocol such an attack will be successful
with constant probability. (Indeed, it has been informally conjectured in the bitcoin community
that e-incentive compatibility is impossible to achieve in the presence of transaction fees, due to
exactly this reason. Our method of distributing the fees over a segment overcomes this “barrier”.)

7 Disincentivizing Pooled Mining

An issue with the Bitcoin protocol (which relies on Nakamoto’s blockchain protocol) is that the
mining hardness is set so that the world (combined) finds a new block every 10 minutes—as shown
in [PSS17], the mining hardness needs to be set in such a way to ensure consistency. This not
only leads to a long latency (which can be remedied by the Hybrid Consensus approach discussed

8This may not always be a realistic assumption. For instance, a miner can care about what transactions get added
into the blockchain etc, but following earlier approaches to modeling incentives in blockchains (e.g., |[ES14]), we focus
only on miners’ monetary rewards.

9The analysis directly extends to a setting where the total rewards and fees are only guaranteed to be withing
some multiplicative factor (1 + 6’) of V at the cost of a degradation of the quality of the Nash equilibrium (i.e.,
increasing the ¢).

10Let us remark that an alternative approach would be to give the whole mining reward to the miner of a block
(as in Bitcoin) but still distribute the transaction fees among the group of miners in a T'(x)-segment of the chain.
This approach works by the same analysis as long as mining rewards are fized throughout the experiment (which is
not the case for e.g., Bitcoin where mining rewards decrease over time).

24

above), but also leads to the issue that it may take a very long time for an individual miner to
be successful in mining a block and consequently reap a reward for its work. In other words, the
payments received by miners has a very high variance. This has lead to the creation of mining
pools, where miners come together and pool their work and then share the reward once someone in
the pool mines a block—such pooling decreases the variance. To prevent free-riding, miners submit
“partial proofs of work” (that is, “near” solutions to the mining puzzles) that are significantly easier
to find, and rewards are distributed (according to some distribution rule) among the contributors
of the partial proofs-of-work.

An undesirable effect of such pools is that the pool operator effectively controls a large number
of participants and potentially could get them to deviate; in a sense, the decentralized nature of
the system gets lost.

We note that since the FruitChain protocol is parametrized by two mining hardnesses—the
block hardness p, and the fruit hardness p;—which are independent of each other, we can set p
appropriately to ensure consistency, but py can be set to be much larger—for instance, as large as
the probability of find a partial proof-of-work in mining pools—and consequently, we would reduce
the variance of the rewards received by miners in exactly the same way as in mining pool, but now
in a fully decentralized way.

Today, a solo miner (assuming one unit of typical commodity mining ASIC) would take 2 to
5 years to obtain its first reward [sol]. With FruitChain, suppose we allocate space for 1000 fruits
per block where each fruit is 80 bytes (same size as a Bitcoin puzzle solution), this would occupy
roughly 8% of a 1IMB block — however, this would allow a solo miner to get its first rewards 1000x
faster, roughly on the order of a day (or days) rather than years.

References

[sol] http://www.coinwarz.com/calculators/bitcoin-mining-calculator.

[BCLT05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure com-
putation without authentication. In CRYPTO’05, 2005.

[BHP] Iddo Bentov, Yuncong Hu, Rafael Pass, Elaine Shi, and Sigiu Yao. Decentralized pooled
mining: An implementation of fruitchain. Manuscript.

[BPS16] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake.
Cryptology ePrint Archive, Report 2016/919, 2016. http://eprint.iacr.org/2016/
919.

[CKWN16] Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, and Arvind Narayanan. On
the instability of bitcoin without the block reward. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 154-167, 2016.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
CRYPTO’92, pages 139147, 1992.

[ES14] Ittay Eyal and Emin Giin Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In Financial Cryptography and Data Security, pages 436-454. Springer, 2014.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptologyg-EUROCRYPT 2015, pages 281—
310. Springer, 2015.

25

http://www.coinwarz.com/calculators/bitcoin-mining-calculator
http://eprint.iacr.org/2016/919
http://eprint.iacr.org/2016/919

[HP15]

[KKKT16]

[KP15]

[KP16]

[KRDO16]

[LSZ15]

[mtgl0]

[NakO8g)]
[NKMS16]

[PSS17]

[PS16]

[SSZ16]

[SZ15]

Joseph Y. Halpern and Rafael Pass. Algorithmic rationality: Game theory with costly
computation. J. Economic Theory, 156:246-268, 2015.

Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis.
Blockchain mining games. In Proceedings of the 2016 ACM Conference on Economics
and Computation, EC ’16, pages 365-382, 2016.

Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain pro-
tocols, 2015.

Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains and fast transactions in
the blockchain. TACR Cryptology ePrint Archive, 2016:545, 2016.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. Cryptology ePrint
Archive, Report 2016/889, 2016. http://eprint.iacr.org/2016/889.

Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain proto-
cols. In Financial Crypto’15, 2015.

mtgox. https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606)
2010.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: Gener-
alizing selfish mining and combining with an eclipse attack. In IEEE European Sympo-
sium on Security and Privacy, EuroS€P 2016, Saarbriicken, Germany, March 21-24,
2016, pages 305-320, 2016.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Furocrypt, 2017.

Rafael Pass and Elaine Shi. Hybrid consensus. http://eprint.iacr.org/2016/917,
2016.

Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining
strategies in bitcoin. In Financial Crypto’16, 2016.

Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in
bitcoin. In Financial Cryptography and Data Security - 19th International Conference,
FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers, pages
507-527, 2015.

A Appendix

We recall the standard Chernoff bound.

Lemma A.1 (Multiplicative Chernoff Bound). Let Xi,...X, be independent Boolean random
variables, such that for all i, Pr[X; = 1] = p; let X be the sum of these variables, and u be the
expectation of the sum. Then for any ¢ € (0, 1], we have

PriX > (146)] < e 0%

PriX < (1-26)u < e %)

26

http://eprint.iacr.org/2016/889
https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606
http://eprint.iacr.org/2016/917

	Introduction
	Our Results
	Protocol Overview
	Related Work
	Roadmap

	Preliminaries and Definitions
	Protocol Execution Model and Notations
	Conventions
	Blockchain Protocols
	Nakamoto's Blockchain Protocol
	Security of Blockchain Protocols
	Chain Growth
	Chain Quality
	Consistency

	Preliminaries from PSS16: Security of Nakamoto's Blockchain
	Liveness

	Defining Fairness
	The FruitChain Protocol
	Valid Blocks, Fruits, and Blockchain
	The FruitChain Protocol and our Main Theorem

	Proof of the Main Theorem
	Additional Notations
	The Fruit Freshness Lemma
	Some Simplifying Assumptions
	Proof of Fruit Consistency
	Proof of Fruit Growth
	Proof of Fruit Fairness

	From Fairness to Incentive Compatibility
	Disincentivizing Pooled Mining
	Appendix

