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Abstract

We present the a provably secure proof-of-stake protocol called Snow White. The primary
application of Snow White is to be used as a “green” consensus alternative for a decentralized
cryptocurrency system with open enrollement. We break down the task of designing Snow White
into the following core challenges:

1. identify a core “permissioned” consensus protocol suitable for proof-of-stake; specifically
the core consensus protocol should offer robustness in an Internet-scale, heterogeneous
deployment;

2. propose a robust committee re-election mechanism such that as stake switches hands in
the cryptocurrency system, the consensus committee can evolve in a timely manner and
always reflect the most recent stake distribution; and

3. relying on the formal security of the underlying consensus protocol, prove the full end-to-
end protocol to be secure — more specifically, we show that that any consensus protocol
satisfying the desired robustness properties can be used to construct proofs-of-stake con-
sensus, as long as money does not switch hands too quickly.

Snow White was publicly released in September 2016. It provides the first formal, end-to-
end proof of a proof-of-stake system in a truly decentralized, open-participation network, where
nodes can join at any time (not necessarily at the creation of the system). We also give the
first formal treatment of a well-known issue called “costless simulation” in our paper, proving
both upper- and lower-bounds that characterize exactly what setup assumptions are needed to
defend against costless simulation attacks. We refer the reader to our detailed chronological
notes on a detailed comparison of Snow White and other prior and concurrent works, as well
as how subsequent works (including Ethereum’s proof-of-stake design) have since extended and
improved our ideas.

1 Introduction

Although consensus protocols have been investigated by the distributed systems community for
30 years, in the past decade a new breakthrough called Bitcoin established a new, blockchain-
based paradigm for reaching consensus in a distributed system. Relying on proof-of-work, Bitcoin’s
consensus protocol (often called Nakamoto consensus), for the first time, enabled consensus in an
open, unauthenticated environment where nodes do not share any pre-established public keys [28,
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44, 45, 49]. One commonly known painpoint with this approach is the enormous energy waste.
Motivated by the need for a green alternative, the community searched for a paradigm shift, and
hoped to obtain a consensus paradigm, commonly called “proof-of-stake”, that is based on the idea
of “one vote per unit of stake” (as opposed to “one vote per unit of hash-power”).

The design of proof-of-stake protocols was first initiated in online forums and blog-posts and
subsequently considered by the academic community [6,7,18,35,36,42,51,53,54]. Prior to our work,
we were not aware of any candidate protocol that offered provable guarantees.

Snow White is the first work to provide end-to-end, formal proofs of security of a full proof-of-
stake protocol. Security is proven in a truly decentralized, open-participation environment where
honest nodes can join the protocol late in time (and not necessarily at the system’s creation). We
give the first formal treatment of the well-known “costless simulation” problem (also called poste-
rior corruption in this paper) pertaining to proof-of-stake, proving upper- and lower-bounds that
precisely characterize under what assumptions it is possible to defend against costless simulation.

In the remainder of the introduction, we first present an informal technical overview of our
results. We then provide detailed chronological notes that position our work in light of other
concurrent and subsequent works, and summarize our work’s contributions and impact.

1.1 Robustly Reconfigurable Consensus

We ask the question: what is a suitable consensus protocol for a proof-of-stake system? In a proof-
of-stake system, at any point of time, we would like the present stake-holders to have voting rights
that are weighed by their respective stake amount. Thus if we examine any single snapshot in the
system, proof-of-stake in fact requires a “permissioned” core consensus protocol, since the set of
public-keys owning stake is publicly known. However, proof-of-stake systems aim to support open
participation — and this can be enabled through periodic committee reconfiguration. Suppose that
the system starts with a well-known set of stake-holders who form the initial consensus committee.
As stake switches hands in the system, the consensus committee should be updated in a timely
manner to track the present (and not the past) stake distribution. This is important for the security
of a proof-of-stake system, since users who no longer hold stake in the system may be incentivized
to deviate, e.g., to launch a double-spending attack.

We formulate the task of designing “a consensus protocol suitable for proof-of-stake” as “ro-
bustly reconfigurable consensus”. A robustly reconfiguration consensus protocol should have the
following desirable properties.

Robustness in the presence of sporadic participation. In a large-scale, decentralized envi-
ronment, users tend to have sporadic participation, and it may be difficult to anticipate how many
users will be online at any point of time. Almost all classical-style consensus protocols rely on
tallying sufficiently many votes to make progress. If fewer than the anticipated number of users
actually show up to vote, the consensus protocol may get stuck.

To address this challenge, Snow White employs the recently proposed “sleepy consensus” [48]
paradigm as its core permissioned consensus building block. Sleepy consensus [48] is inspired by the
beautiful “longest-chain” idea behind Nakamoto’s consensus [44], but the idea is instead applied
to a non-proof-of-work, permissioned setting with a public-key infrastructure (PKI). Pass and Shi
prove that the resulting consensus protocol is robust in the presence of sporadic participation:
concretely, the protocol need not be parametrized with an a-priori fixed number of players that are
expected to show up. As long as the majority of online players are honest, the protocol guarantees
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consistency and liveness.

Robust committee reconfiguration. Roughly speaking, our system proceeds in epochs. In each
epoch, a most recent set of stake-holders are elected as committee and may be randomly chosen
to generate blocks. We argue that committee reconfiguration and random block-proposer selection
are challenging and subtle due to the following two possible attacks.

1. Adaptive key selection attacks. Since proof-of-stake systems admit open participation, any-
one can buy up stake in the system and participate. This also means anyone can (possibly
maliciously) choose their public-keys through which they participate in the consensus. A pos-
sible attack, therefore, is to adaptively choose public-keys, after gathering partial information
about the randomness seed used for block-proposer selection, such that corrupt nodes are
elected more often as block-proposer than their fair chance.

2. Randomness-biasing attacks (commonly known as the “grinding attack”). Another important
question is: how do we obtain the randomness needed for block proposer selection? A most
straightforward idea is to use the hash of past blocks — but as several works have shown [10],
the blocks’ hashes can be subject to adversarial influence, and it is unclear what security can
be guaranteed when we use such randomness sources with adversarial bias for block proposer
selection. For example, the adversary can bias the randomness in a way that allows corrupt
nodes to be selected more often.

In the worst case, if through possibly a combination of the attacks, the adversary can control the
majority of the block-proposer slots, consistency of the underlying consensus (in our case, sleepy
consensus) can be broken.

Snow White proposes a novel “two-lookback” mechanism that addresses the above two challenges
simultaneously1. We determine each epoch’s new consensus committee and randomness seed in a
two-phase process, where each phase spans roughly κ blocks of time for some appropriate security
parameter2 κ. This two-phase process is enabled by two look-back parameters as we describe
informally below (a formal description is deferred to the technical sections) — henceforth suppose
that chain is the current longest chain.

1. We look back 2κ blocks, and use the prefix chain[: −2κ] (i.e., the prefix of chain removing
the trailing 2κ blocks) to determine the new consensus committee.

2. We look back κ blocks, and extract the randomness contained in the blocks chain[−2κ : −κ]
(i.e., the part of chain from 2κ blocks ago to κ blocks ago) to form a randomness seed — this
seed then seeds a random oracle used for block-proposer selection in the current epoch.

Roughly speaking, we defeat the adaptively chosen key attack by determining the consensus
committee κ blocks earlier than the randomness seed, such that when corrupt nodes choose their
public keys, they cannot predict the randomness seed, which will be generated much later in time
and with sufficient entropy contributed by honest nodes as we explain below. We argue that due

1Subsequent works, including newer versions of Algorand [17] released after our publication, Ouroboros Praos [19],
and the latest Ethereum’s proof-of-stake proposal [2] incorporated elements of this design and suggested improvements,
e.g., for concrete security. See Section 1.3 for more discussions.

2 Suppose that except with negligible in κ probability, the underlying sleepy consensus guarantees consistency by
chopping off the trailing κ blocks, and guarantees the existence of an honest block in every consecutive window of κ
blocks.
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to chain quality of the underlying sleepy consensus, the blocks chain[−2κ : −κ] must contain an
honest block. Since honest nodes embed a sufficiently long uniform random seed in its block, we
can extract sufficiently high-entropy randomness from chain[−2κ : −κ] which is then used to seed
the block-proposer-selection random oracle. Even though the extracted randomness is subject to
adversarial bias, as long as it is high-entropy, and importantly, as long as the same randomness is
used to seed the block-proposer selection sufficiently many times, we can achieve the desired measure
concentration properties. More specifically, although indeed, the adversary can bias the random
seed to allow corrupt nodes to be selected (as block-proposers) quite surely for a few number of
slots; the adversary is not able to consistently gain advantage over a sufficiently large number of
slots, i.e., corrupt nodes cannot own noticeably more block-proposer slots than its fair share.

We stress that turning the above intuitive argument into a formal proof requires significant and
non-trivial effort which is part our main contributions. In our technical sections, we formally prove
security of this approach under a mildly adaptive adversary, i.e., when the adversary is subject
to a mild corruption delay and as long as nodes remain honest till shortly after they stop serving
on a consensus committee, our robustly reconfigurable consensus protocol is secure. Subsequent
works (including newer versions of the Algorand paper that are published after the release of Snow
White, as well as the subsequent work Ourboros Praos [19]) have suggested approaches for achieving
fully adaptive security, but relying on the fact that the majority of nodes will erase secret signing
keys from memory after signing a block (and by introducing mild additional complexity in the
cryptographic schemes employed) — see Section 1.3 for a more detailed comparison.

Understanding posterior corruption, i.e., “costless simulation” attacks. A oft-cited at-
tack for proof-of-stake systems is the so-called “costless simulation” attack (also referred to as a
posterior corruption attack in this paper). The idea is that when stake-holders have sold their
stake in the system, nothing prevents them from performing a history-rewrite attack. Specifically,
suppose that a set of nodes denoted C control the majority stake in some past committee. These
nodes can collude to fork the history from the point in the past when they control majority —
and in this alternate history money can transfer in a way such that C continues to hold majority
stake (possibly transferred to other pseudonyms of the corrupt nodes) such that the attack can be
sustained.

In this paper, we formally prove that under a mild setup assumption — when nodes join the
system they can access a set of online nodes the majority of whom are honest — we can provably
defend against such a posterior corruption attack. This is achieved by having the newly joining
user obtain a somewhat recent checkpoint from the set of nodes it can access upon joining.

We also prove a corresponding lower bound, that absent this setup assumption, defense against
such posterior corruption attacks is impossible — to the best of our knowledge, ours is the first
formal treatment of this well-known costless simulation attack in the context of proof-of-stake.

1.2 From Robustly Reconfigurable Consensus to Proof-of-Stake

Application to proof-of-stake and achieving incentive compatibility. We show how to
apply such a “robustly reconfigurable consensus” protocol to realize proof-of-stake (the resulting
protocol called Snow White), such that nodes obtain voting power roughly proportional to their
stake in the cryptocurrency system. As long as money does not switch hands too fast (which is
enforceable by the cryptocurrency layer), we show that the resulting proof-of-stake protocol can
attain security when the adversary controls only a minority of the stake in the system. Further,
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borrowing ideas from the recent Fruitchain work [46], we suggest incentive compatible mechanisms
for distributing rewards and transaction fees, such that the resulting protocol achieves a coalition-
resistant ε-Nash equilibrium, i.e., roughly speaking, as long as the adversary controls a minority of
the stake, it cannot obtain more than ε fraction more than its fair share of payout, even when it
has full control of network transmission and can deviate arbitrarily from the protocol specification.

Preventing nothing-at-stake attacks. Later in Section 3, we will also discuss how to leverage
guarantees provided by our core consensus protocol, and build additional mechanisms that not only
discourage nothing-at-stake attackers, but in fact penalize them.

1.3 Chronological Notes, Closely Related, and Subsequent Works

Comparison with Algorand. The first manuscript of Algorand [17] was published prior to our
work. Algorand also proposes a proof-of-stake system. Their core consensus protocol is a newly
designed classical-style consensus protocol, and therefore they cannot guarantee progress under
sporadic participation — instead, Algorand proposes a notion of “lazy participation”, where users
know when they are needed to vote in the consensus and they only need to be online when they
are needed. However, if many users who are anticipated to show up failed to do so, progress
will be hampered. Algorand employs a Verifiable Random Function (VRF) to perform random
leader/committee election.

Algorand’s algorithm has been improved for several iterations. The version of Algorand that
existed before the publication of Snow White gave proofs of their core consensus protocol but did not
provide end-to-end proofs for the full proof-of-stake system. In particular, the version of Algorand
that existed prior to Snow White’s publication did not discuss the well-known issue of costless
simulation or clearly state the implicit assumptions they make to circumvent the lower bound we
prove in this paper.

In their subsequent versions, they adopted the erasure model and rely on honest nodes’ capa-
bility to safely erase secrets from memory to achieve adaptive security (and implicitly, by adopting
erasures one could defend against the costless simulation). The newer versions of Algorand (re-
leased after the Snow White) also started to adopt a similar look-back idea (first described by Snow
White) to secure against the adaptive chosen-key attack mentioned earlier. The recent versions also
provided more thorough mathematical proofs of this approach.

Comparison with Ouroboros and Ouroboros Praos. Snow White was publicly released in
September 2016. A closely related work (independent and concurrent from our effort) known as
Ouroboros [34] was release about 10 days prior to Snow White. Ouroboros Praos is an improvement
over Ouroboros published in 2017 [19].

The Ouroboros version that was released around the same time as Snow White focused on
proving the underlying permissioned consensus building block secure, and there is only a short
paragraph containing a proof sketch of their full proof-of-stake system (and this proof sketch has
been somewhat expanded to a few paragraphs in later versions). In comparison, our Snow White
paper adopts a permissioned consensus building block whose security was formally proven secure in
a related paper [48] — the full-length of our technical sections are dedicated to a thorough treatment
of the security of the end-to-end proof-of-stake system.

A notable difference between Snow White and Ouroboros seems to be that their formal treatment
does not seem to capture a truly decentralized environment (necessary for decentralized cryptocur-
rency applications) where nodes may join the system late and not from the very start — had
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they done so, they would have encountered the well-known costless simulation issue, which, as we
show, is impossible to defend against without extra setup assumptions (and indeed, we introduce
a reasonable setup assumption to circumvent this lower bound).

A subsequently improved work, called Ouroboros Praos [19], extends the VRF approach de-
scribed first by Algorand [17] and Dfinity [30] for random block-proposer election. Similar to the
newer versions of Algorand, Ouroboros Praos [19] also started adopting an erasure model to achieve
adaptive security (and implicitly, defend against costless simulation3).

Neither Ouroboros nor Ouroboros Praos adopts an underlying consensus mechanism that prov-
ably provides support for sporadic participation. Finally, the improved version Ouroboros Praos [19]
started adopting a look-back mechanism that appears to be inspired by Snow White to for committee
rotation and random block-proposer selection.

Comparison with Ethereum’s proof-of-stake design. Ethereum began proof-of-stake explo-
rations several years ago. Their design has undergone several versions. At the time of the writing,
Ethereum was aiming to do “hybrid proof-of-stake”, i.e., use Casper as a finality gadget on top of
their existing proof-of-work blockchain.

In the past year 2018, conversations with Ethereum core researchers suggest that Ethereum
is considering replacing their proof-of-work blockchain with a proof-of-stake blockchain similar to
Snow White. Their committee election and random block proposer selection algorithm seems to
be improvement of Snow White. Specifically, they would like to adopt an economically secure coin
toss protocol for randomness generation (commonly known as RANDAO). This specific protocol is
also subject to adversarial bias much like our randomness seed generation (although biasing attacks
may lead to economic loss). Thus they rely on exactly the same observation that was proposed
in our paper: although the adversary can bias the randomness sufficiently to control a few block
proposer slots, he cannot consistently get an advantage over a large number of slots. Interestingly,
Ethereum has several practical optimizations that improve the concrete security parameters of the
above analysis [2].

2 Snow White’s Core Consensus Protocol

We focus on an intuitive exposition of our scheme in the main body. In the appendices, we present
formal definitions, a formal description of the protocol, as well as the full proofs. We stress that
formalizing the end-to-end security of a proof-of-stake system is a significant effort and this leads
to our choice of presentation.

2.1 Background: Sleepy Consensus and Sleepy Execution Model

Sleepy execution model and terminology. We would like to adopt an execution model that
captures a decentralized environment where nodes can spawn late in time, and can go to sleep and
later wake up. In such a model, the protocol may not have a way to anticipate the number of
players at any time.

3Snow White’s approach of combining checkpointing and “bootstrapping through social consensus” to defend
against costless simulation is simpler and more practical in real-world implementations (than relying on VRFs and
erasure [17,19]). Notably, our usage of checkpointing and “bootstrapping through social consensus” already exists in
real-world cryptocurrencies. To the best of our knowledge, checkpointing was first suggested by Barber, Boyen, Shi,
and Uzun [4] as a way to defend against history revisioning attacks in Bitcoin.
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We thus adopt the sleepy model of execution proposed by Pass and Shi [48]. Nodes are either
sleepy (i.e., offline) or awake (i.e., online and actively participating). For simplicity, we also refer
to nodes that are awake and honest as alert; and all corrupt nodes are assumed to be awake by
convention.

Messages delivered by an alert node is guaranteed to arrive at all other alert nodes within a
maximum delay of ∆, where ∆ is an input parameter to the protocol. A sleepy node captures any
node that is either offline or suffering a slower than ∆ network connection. A sleepy node can later
wake up, and upon waking at time t, all pending messages sent by alert nodes before t−∆ will be
immediately delivered to the waking node.

We allow the adversary to dynamically spawn new nodes, and newly spawned nodes can either
be honest or corrupt. Further, as we discuss later, we allow the adversary to declare corruptions
and put alert nodes to sleep in a mildly adaptive fashion.

For readability, we defer a detailed presentation of the formal model to Appendix A.1.

The Sleepy protocol as a starting point. Classical consensus protocols must count sufficiently
many votes to make progress and thus the protocol must know a-priori roughly how many nodes
will show up to vote. Since Pass and Shi’s Sleepy consensus protocol is the only protocol known to
provide consensus under sporadic participation, i.e., the protocol need not have a-priori knowledge
of the number of players at any time. We thus consider Sleepy as a starting point for constructing our
notion of robustly reconfigurable consensus. We now briefly review the Sleepy consensus protocol
as necessary background.

Sleepy is a blockchain-style protocol but without proof-of-work. For practical considerations,
below we describe the version of Sleepy instantiated with a random oracle (although Pass and
Shi [48] also describe techniques for removing the random oracle). Sleepy relies on a random oracle
to elect a leader in every time step. The elected leader is allowed to extend a blockchain with a new
block, by signing a tuple that includes its own identity, the transactions to be confirm, the current
time, and the previous block’s hash. Like in the Nakamoto consensus, nodes always choose the
longest chain if they receive multiple different ones. To make this protocol fully work, Sleepy [48]
proposes new techniques to timestamp blocks to constrain the possible behaviors of an adversary.
Specifically, there are two important blockchain timestamp rules:

1. a valid blockchain must have strictly increasing timestamps; and

2. honest nodes always reject a chain with future timestamps.

All aforementioned timestamps can be adjusted to account for possible clock offsets among nodes
by applying a generic protocol transformation [48].

2.2 Handling Committee Reconfiguration

As mentioned, our starting point is the Sleepy consensus protocol, which assumes that all consensus
nodes know each other’s public keys; although it may not be known a-priori how many consensus
nodes will show up and participate.

We now discuss how to perform committee reconfiguration such that the consensus committee
tracks the latest stake distribution. To support a wide range of applications, our Snow White
protocol does not stipulate how applications should select the committee over time. Roughly
speaking, we wish to guarantee security as long as the application-specific committee selection
algorithm respects the constraint that there is honest majority among all awake nodes. Therefore,
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we assume that there is some application-specific function elect cmt(chain) that examines the state
of the blockchain and outputs a new committee over time. In a proof-of-stake context, for example,
this function can roughly speaking, output one public key for each currency unit owned by the user.
In Section 3, we discuss in a proof-of-stake context, how one might possibly translate assumptions
on the distribution of stake to the the formal requirements expected by the consensus protocol.

Strawman scheme: epoch-based committee selection. Snow White provides an epoch-based
protocol for committee reconfiguration. To aid understanding, we begin by describing a strawman
solution. Each Tepoch time, a new epoch starts, and the beginning of each epoch provides a commit-
tee reconfiguration opportunity. Let start(e) and end(e) denote the beginning and ending times of
the e-th committee. Every block in a valid blockchain whose time stamp is between [start(e), end(e))
is associated with the e-th committee.

It is important that all honest nodes agree on what the committee is for each epoch. To achieve
this, our idea is for honest nodes to determine the new committee by looking at a stabilized part
of the chain. Therefore, a straightforward idea is to make the following modifications to the basic
Sleepy consensus protocol:

• Let 2ω be a look-back parameter.

• At any time t ∈ [start(e), end(e)) that is in the e-th epoch, an alert node determines the e-th
committee in the following manner: find the latest block in its local chain whose timestamp is
no greater than start(e)− 2ω, and suppose this block resides at index `.

• Now, output extractpks(chain[: `]) as the new committee.

In general, the look-back parameter 2ω must be sufficiently large such that all alert nodes
have the same prefix chain[: `] in their local chains by time start(e). On the other hand, from an
application’s perspective, 2ω should also be recent enough such that the committee composition
does not lag significantly behind.

Preventing an adaptive key selection attack. Unfortunately, the above scheme is prone to an
adaptive key selection attack where an adversary can break consistency with constant probability.
Specifically, as the random oracle H is chosen prior to protocol start, the adversary can make
arbitrary queries to H. Therefore, the adversary can spawn corrupt nodes and seed them with
public keys that causes them to be elected leader at desirable points of time. For example, since
the adversary can query H, it is able to infer exactly in which time steps honest nodes are elected
leader. Now, the adversary can pick corrupt nodes’ public keys, such that every time an honest
node is leader, a corrupt node is leader too — and he can sustain this attack till he runs out of
corrupt nodes. Since the adversary may control up to Θ(n) nodes, he can thus break consistency
for Ω(n) number of blocks.

Our idea is to have nodes determine the next epoch’s committee first, and then select the next
epoch’s hash — in this way, the adversary will be unaware of next epoch’s hash until well after the
next committee is determined. More specifically, we can make the following changes to the Sleepy
protocol:

• Let 2ω and ω be two look-back parameters, for determining the next committee and next hash
respectively.
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• At any time t ∈ [start(e), end(e)) that is in the e-th epoch, an alert node determines the e-
th committee in the following manner: find the latest block its local chain whose timestamp
is no greater than start(e) − 2ω, and suppose this block resides at index `0. Now, output
extractpks(chain[: `0]) as the new committee.

• At any time t ∈ [start(e), end(e)) an alert node determines the e-th hash in the following manner:
find the latest block its local chain whose timestamp is no greater than start(e)−ω, and suppose
this block resides at index `1. Now, output extractnonce(chain[: `1]) as a nonce to seed the new
hash.

• We augment the protocol such that alert nodes always embed a random seed in any block they
mine, and extractnonce(chain[: `1]) can simply use the seeds in the prefix of the chain as a nonce
to seed the random oracle H.

For security, we require that

1. The two look-back parameters 2ω and ω are both sufficiently long ago, such that all alert nodes
will have agreement on chain[: `0] and chain[: `1] by the time start(e); and

2. The two look-back parameters 2ω and ω must be sufficiently far part, such that the adversary
cannot predict extractnonce(chain[: `1]) until well after the next committee is determined.

Achieving security under adversarially biased hashes. It is not hard to see that the adversary
can bias the nonce used to seed the hash, since the adversary can place arbitrary seeds in the
blocks it contributes. In particular, suppose that the nonce is extracted from the prefix chain[: `1].
Obviously, with at least constant probability, the adversary may control the ending block in this
prefix. By querying H polynomially many times, the adversary can influence the seed in the last
block chain[`1] of the prefix, until it finds one that it likes.

Indeed, if each nonce is used only to select the leader in a small number of time steps (say,
O(1) time steps), such adversarial bias would indeed have been detrimental — in particular, by
enumerating polynomially many possibilities, the adversary can cause itself to be elected with
probability almost 1 (assuming that the adversary controls the last block of the prefix).

However, we observe that as long as the same nonce is used sufficiently many times, the ad-
versary cannot consistently cause corrupt nodes to be elected in many time steps. Specifically,
suppose each nonce is used to elect at least Ω(κ) leaders, then except with negl(κ) probability, the
adversary cannot increase its share by more than an ε fraction — for an arbitrarily small constant
ε > 0. Therefore, to prove our scheme secure, it is important that each epoch’s length (henceforth
denoted Tepoch) be sufficiently long, such that once a new nonce is determined, it is used to elect
sufficiently many leaders.

Reasoning about security under adversarially biased hashes. Formalizing this above in-
tuition is somewhat more involved. Specifically, our proof needs to reason about the probability
of bad events (related to chain growth, chain quality, and consistency) over medium-sized windows
such that the bad events depend only on O(1) number of hashes (determined by the nonces used
to seed them). This way, we can apply a union bound that results in polynomial security loss. If
the window size is too small, it would not be enough to make the failure probability negligible; on
the other hand, if the window were too big, the blowup of the union bound would be exponential.
Finally, we argue if no bad events occur for every medium-sized window, then no bad events happen
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for every window (as long as the window is not too small). We defer the detailed discussions and
formal proofs to Sections E and G.1

2.3 Handling Mildly Adaptive and Posterior Corruptions

We now consider how to defend against an adversary that can adaptively corrupt nodes after they
are spawned. In this paper, we will aim to achieve security against a mildly adaptive adversary.
Specifically, a mildly adaptive adversary is allowed to dynamically corrupt nodes or make them
sleep, but such corrupt or sleep instructions take a while to be effective. For example, in practice,
it may take some time to infect a machine with malware. Such a “mildly adaptive” corruption model
has been formally defined in earlier works [47], where they call it the τ -agile corruption model, where
τ denotes the delay parameter till corrupt or sleep instructions take effect. Intuitively, as long as
τ is sufficiently large, it will be too late for an adversary to corrupt a node or make the node sleep
upon seeing the next epoch’s hash. By the time the corrupt or sleep instruction takes effect, it
will already be well past the epoch.

The main challenge in handling mildly adaptive corruptions is the threat of a history rewriting
attack when posterior corruption is possible: members of past committees may, at some point, have
sold their stake in the system, and thus they have nothing to lose to create an alternative version
of history.

We rely on a checkpointing idea to provide resilience to such posterior corruption — as long
as there is no late joining or rejoining (we will discuss how to handle late joining or rejoining
later). Checkpointing is a technique that has been explored in the classical distributed systems
literature [16] but typically for different purposes, e.g., in the case of PBFT [16] it was used as an
efficiency mechanism. Suppose that we can already prove the consistency property as long as there
is no majority posterior corruption. Now, to additionally handle majority posterior corruption,
we can have alert nodes always reject any chain that diverges from its current longest chain at a
point sufficiently far back in the past (say, at least W time steps ago). In this way, old committee
members that have since become corrupt cannot convince alert nodes to revise history that is too
far back — in other words, the confirmed transaction log stabilizes and becomes immutable after
a while.

2.4 Late Joining in the Presence of Posterior Corruption

Indeed, the above approach almost would work, if there are no late spawning nodes, and if there
are no nodes who wake up after sleeping for a long time. However, as mentioned earlier, handling
late joining is important for a decentralized network.

Recall that we described a history revision attack earlier, where if the majority of an old
committee become corrupt at a later point of time, they can simulate an alternate past, and
convince a newly joining node believe in the alternate past. Therefore, it seems that the crux is
the following question:

How can a node joining the protocol correctly identify the true version of history?

Unfortunately, it turns out that this is impossible without additional trust — in fact, we can for-
malize the aforementioned attack and prove a lower bound (Section D) which essentially shows that
in the presence of majority posterior corruption, a newly joining node has no means of discerning
a real history from a simulated one:
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[Lower bound for posterior corruption]: Absent any additional trust, it is impossible to achieve
consensus under sporadic participation, if the majority of an old committee can become corrupt
later in time.

We therefore ask the following question: what minimal, additional trust assumptions can we
make such that we can defend against majority posterior corruption? Informally speaking, we
show that all we need is a secure bootstrapping process for newly joining nodes as described below.
We assume that a newly joining node is provided with a list of nodes L the majority of whom must
be alert — if so, the new node can ask the list of nodes in L to vote on the current state of the
system, and thus it will not be mislead to choose a “simulated” version of the history.

2.5 Putting it Altogether: Informal Overview of Snow White

In summary, our protocol, roughly speaking, works as follows. A formal description of the protocol,
the parameter choices and their relations, and proofs of security are deferred to Section C.

• First, there is a random oracle H that determines if a member of the present committee is a
leader in each time step. If a node is leader in a time step t, he can extend the blockchain with
a block of the format (h−1, txs, time, nonce, pk, σ), where h−1 is the previous block’s hash, txs is
a set of transactions to be confirmed, nonce is a random seed that will be useful later, pk is the
node’s public key, and σ is a signature under pk on the entire contents of the block. A node can
verify the validity of the block by checking that 1) Hnoncee(pk, time) < Dp where Dp is a difficulty
parameter4 such that the hash outcome is smaller than Dp with probability p, and noncee is a
nonce that is reselected every epoch (we will describe how the nonce is selected later); 2) the
signature σ verifies under pk; and 3) pk is a member of the present committee as defined by the
prefix of the blockchain.

• A valid blockchain’s timestamps must respect two constraints: 1) all timestamps must strictly
increase; and 2) any timestamp in the future will cause a chain to be rejected.

• Next, to defend against old committees that have since become corrupt from rewriting history,
whenever an alert node receives a valid chain that is longer than his own, he only accepts the
incoming chain if the incoming chain does not modify blocks too far in the past, where “too far
back” is defined by the parameter κ0.

• Next, a newly joining node or a node waking up from long sleep must invoke a secure bootstrap-
ping mechanism such that it can identify the correct version of the history to believe in. One
mechanism to achieve this is for the (re)spawning node to contact a list of nodes the majority
of whom are alert.

• Finally, our protocol defines each contiguous Tepoch time steps to be an epoch. At the beginning
of each epoch, committee reconfiguration is performed in the following manner. First, nodes find

4As we discuss Remark 1 in the formal sections, in practice, the next committee is read from a stabilized prefix
of the blockchain and we know its total size a-priori. Therefore, assuming that an upper bound on the fraction of
awake nodes (out of each committee) is known a-priori, we can set the difficulty parameter Dp accordingly to ensure
that the expected block interval is sufficiently large w.r.t. to the maximum network delay (and if the upper bound
is loose, then the confirmation time is proportionally slower). Although on the surface our analysis assumes a fixed
expected block interval throughout, it easily generalizes to the case when the expected block interval varies by a
known constant factor throughout (and is sufficiently large w.r.t. to the maximum network delay).
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the latest prefix (henceforth denoted chain−2ω) in their local chain whose timestamp is at least
2ω steps ago. This prefix chain−2ω will be used to determine the next committee — and Snow
White defers to the application-layer to define how specifically to extract the next committee
from the state defined by chain−2ω. Next, nodes find the latest prefix (denoted chain−ω) in
their local chain whose timestamp is at least ω steps ago. Given this prefix chain−ω, we extract
the nonces contained in all blocks, the resulting concatenated nonce will be used to seed the
hash function H for the next epoch.

Resilience condition. In the appendices, we will give a formal presentation of our protocol
and prove it secure under the following resilience condition. We require that the majority of the
committee remain honest not only during the time it is active, but also for a short duration (e.g., a
handoff period) afterwards. In particular, even if the entire committee becomes corrupt after this
handoff period, it should not matter to security.

In other words, we require that for any committee, the number of alert committee members
that remain honest for a window of W outnumber the number of committee members that become
corrupt during the same window. In particular, we will parametrize the window W such that
it incorporates this short handoff period after the committee becomes inactive. Somewhat more
formally, we require that there exists a constant ψ > 0 such that for every possible execution trace
view, for every t ≤ |view|, let r = min(t+W, |view|),

alertt(cmtt(view), view) ∩ honestr(cmtt(view), view)

corruptr(cmtt(view), view)
≥ 1 + ψ (1)

where alertt(cmts(view), view), honestt(cmts(view), view), and corruptt(cmts(view), view) output the
number of nodes in the committee of time s that are alert (or honest, corrupt, resp.) at time t.

3 From Robustly Reconfigurable Consensus to PoS

We now discuss how to apply our core consensus protocol in a proof-of-stake (PoS) application.
There are two challenges: 1) in a system where money can switch hands, how to make the committee
composition closely track the stake distribution over time; and 2) how to distribute fees and rewards
to ensure incentive compatibility.

3.1 Base Security on Distribution of Stake

Roughly speaking, our core consensus protocol expects the following assumption for security: at
any point of time, there are more alert committee members that will remain honest sufficiently long
than there are corrupt committee members. In a proof-of-stake setting, we would like to articu-
late assumptions regarding the distribution of stake among stake-holders, and state the protocol’s
security in terms of such assumptions.

Since our core consensus protocol allows a committee reelection opportunity once every epoch,
it is possible that the distribution of the stake in the system lags behind the committee election.
However, suppose that this is not the case, e.g., pretend for now that there is no money transfer,
then it is simple to translate the assumptions to distribution on stake. Imagine that the application-
defined elect cmt(chain) function will output one public key for each unit of currency as expressed
by the state of chain. If a public key has many units of coin, one could simply output the public
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key pk along with its multiplicity m — and the strings pk||1, . . . , pk||m may be used in the hash
query for determining the leader. Snow White’s core consensus protocol does not care about the
implementation details of elect cmt(chain), and in fact that is an advantage of our modular compo-
sition approach. In this way, our Snow White protocol retains security as long as the at any point
of time, more stake is alert and will remain honest sufficiently long than the stake that is corrupt.
Here when we say “a unit of stake is alert (or honest, corrupt, resp.)”, we mean that the node that
owns this unit of stake is alert (or honest, corrupt, resp.).

In the real world, however, there is money transfer — after all that is the entire point of having
cryptocurrencies — therefore the committee election lags behind the redistribution of stake. This
may give rise to the following attack: once a next committee is elected, the majority of the stake in
the committee can now sell their currency units and perform an attack on the cryptocurrency (since
they now no longer have stake). For example, the corrupt coalition can perform a double-spending
attack where they spend their stake but attempt to fork a history where they did not spend the
money.

The limited liquidity assumption. One approach to thwart such an attack is to limit the
liquidity in the system — in fact, Snow White expects that the cryptocurrency layer enforces that
money will not switch hands too quickly. For example, imagine that at any point of time, a = 30%
of the stake is alert and will remain honest sufficiently long, c = 20% is corrupt, and the rest are
sleepy. We can have the cryptocurrency layer enforce the following rule: only a−c

2 − ε = 5%− ε of
the stake can switch hands during every window of size 2ω+ Tepoch +W . In other words, if in any
appropriately long window, only l fraction of money in the system can move, it holds that as long
as at any time, 2l+ ε more stake is alert and remain honest sufficiently long than the stake that is
corrupt, we can guarantee that the conditions expected by the consensus protocol, that is, at any
time, more committee members are alert and remain honest sufficiently long, than the committee
members that are corrupt.

3.2 Fair Reward Scheme

In a practical deployment, an important desideratum is incentive compatibility. Roughly speaking,
we hope that each node will earn a “fair share” of rewards and transaction fees — and in a proof-
of-stake system, fairness is defined as being proportional to the amount of stake a node has. In
particular, any minority coalition of nodes should not be able to obtain an unfair share of the
rewards by deviating from the protocol — in this way, rational nodes should not be incentivized to
deviate.

Since Snow White is a blockchain-style protocol, we also inherit the well-known selfish mining
attack [24, 45] where a minority coalition can increase its rewards by a factor of nearly 2 in the
worst case. Fortunately, inspired by the recent work Fruitchains [46] we provide a solution to
provably defend against any form of selfish mining attacks, and ensure that the honest protocol is a
coalition-safe ε-Nash equilibrium. At a high level, Fruitchains provides a mechanism to transform
any (possibly unfair) blockchain that achieves consistency and liveness into an approximately fair
blockchain in a blackbox manner. Our key observation is that this transformation is also applicable
to our non-proof-of-work blockchain — since we realize the same abstraction as a proof-of-work
blockchain. Since we apply the essentially same techniques below as Fruitchains, we give an overview
of the mechanisms below for completeness and refer the reader to Fruitchains [46] for full details.

Two mining processes. Like in Fruitchains [46], we propose to have two “mining” processes
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piggybacked atop each other. Recall that earlier each node invokes the hash function H in every
time step to determine whether it is a leader in this time step. Now, we will use the first half of
H to determine leadership, and use the second half to determine if the user mines a “fruit” in this
time step. Additionally, we will add to the input of H the digest of a recently stablized block such
that any fruit mined will “hang” from a recently stablized block — which block a fruit hangs from
indicates the roughly when the fruit was “mined”, i.e., the freshness of the fruit. Whenever an
honest node finds a fruit, it broadcasts the fruit to all peers, and honest nodes will incorporate all
outstanding and fresh fruits in any block that it “mines”. Note that fruits incorporated in blocks
are only considered valid if they are sufficiently fresh. Finally, all valid fruits contained in the
blockchain can be linearized, resulting in an ordered “fruit chain”.

The formal analysis conducted in Fruitchains [46] can be adapted to our setting in a straight-
forward manner, giving rise to the following informal claim:

Claim 1 (Approximate fairness [46]). Assume appropriate parameters. Then for any (arbitrarily
small) constant ε, in any κ

ε number of consecutive fruits, the fraction of fruits belonging to an
adversarial coalition is at most ε fraction more than its fair share, as long as, informally speaking,
in any committee, alert committee members that remain honest by the posterior corruption window
outnumber members that become corrupt by the same window.

We refer the reader to Fruitchains [46] for a formal proof of this claim. Intuitively, this claim
holds because the underlying blockchain’s liveness property ensures that no honest fruits will ever
be lost (i.e., the adversary cannot “erase” honest nodes’ work in mining fruits like what happens in a
selfish mining attack); and moreover, in any sufficiently long window, the adversary can incorporate
only legitimate fruits belonging to this window (and not any fruits ε-far into the past or future).

Payout distribution. Based on the above claim of approximate fairness, we devise the following
payout mechanism following the approach of Fruitchain [46]. We will distribute all forms of payout,
including mining rewards and transaction fees to fruits rather than blocks. Furthermore, every time
payout is issued, it will be distributed equally among a recent segment of roughly Ω(κε ) fruits. Like
in Fruitchains, this guarantees that as long as at any time, there are more alert committee members
that remain honest sufficiently long than corrupt committee members, the corrupt coalition cannot
increase its share by more than ε no matter how it deviates from the prescribed protocol — in other
words, the honest protocol is a coalition-safe ε-Nash equilibrium.

3.3 Thwarting Nothing-at-Stake Attacks

Nothing-at-stake refers to a class of well-known attacks in the proof-of-stake context [50], where
participants have nothing to lose for signing multiple forked histories. We describe how Snow White
defends against such attacks. Nothing-at-stake attacks apply to both signing forked chains in the
past and in the present — since the former refers to posterior corruption style attacks which we
already addressed earlier, in the discussion below, we focus on signing forked chains in the present.

First, as long as the adversary does not control the majority, our core consensus protocol
formally guarantees that signing forked chains does not break consistency. In fact, we incentivize
honest behavior by proving that the adversary cannot increase its rewards by an arbitrarily small
ε fraction, no matter how it deviates from honest behavior which includes signing forked chains.

With ε-Nash equilibrium, one limitation is that players can still do a small ε fraction better by
deviating, and it would be desirable to enforce a stronger notion where players do strictly worse
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Figure 1: How many blocks to wait for a desired probability of consistency failure.
Network delay = 10 seconds, expected block interval = 10 minutes, Snow White’s leader election
interval = 1 second. The largest mining pool at the time of writing has 16.5% hashpower. In all
configurations, Snow White needs to wait for 34% to 43% more blocks than Bitcoin for the same
consistency failure probability. Note that all subfigures have different y-axes.

by deviating. We can make sure that nothing-at-stake attackers do strictly worse by introducing a
penalty mechanism in the cryptocurrency layer: by having players that sign multiple blocks with
the same timestamp lose an appropriate amount of collateral — to achieve this we need that the
underlying core consensus protocol achieves consistency, when roughly speaking, the adversary
controls only the minority. Even absent such a penalty mechanism, players currently serving on a
committee likely care about the overall health of the cryptocurrency system where they still hold
stake due to the limited liquidity assumption — this also provides disincentives for deviating.

The holy grail, of course, is to design a provably secure protocol where any deviation, not
just nothing-at-stake attacks, cause the player to do strictly worse. We leave this as an exciting
open question. It would also be interesting to consider security when the attack controls the
majority — however, if such a majority attacker can behave arbitrarily, consistency was shown to
be impossible [48]. Therefore, it thus remains an open question even what meaningful notions of
security one can hope for under possibly majority corruption.

4 Simulation and Concrete Parameters

4.1 Simulation Methodology

As mentioned earlier, in blockchain-style consensus (including Nakamoto’s proof-of-work blockchain [44]
as well as Snow White), the probability of a consistency failure (which, in practice, can lead to a
double-spending attack) drops as one waits for more blocks to be confirmed. Therefore, one in-
teresting and highly relevant question is the following: how many blocks must I wait till I can be
sure that my transaction will not be double-spent with all but X% failure probability? To the
best of our knowledge, so far, no results of this nature have been reported even for Nakamoto’s
proof-of-work blockchain protocol that is widely deployed. For this reason, we believe that our
blockchain stochastic simulator can be of independent interest to the community, and we plan to
open source the code in the near future.

The simulator. Our blockchain simulator has been implemented in two languages, namely, C++
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and Python, such that we could corroborate the correctness of the results. For both Nakamoto’s
blockchain and Snow White, our simulator simulates the stochastic block mining process for both
honest and corrupt nodes.

Stochastic simulation methodology. For each configuration, we simulate 12.7 million to 13.3
million runs. For each run, we first run the blockchain simulation for sufficiently long such that the
stochastic process enters steady state. Then, we choose a block and simulate the “optimal attack”
on this block where adversary aims to maintain divergence for as long as possible. The maximum
number of blocks for which the adversary can maintain divergence before a forced convergence
occurs is henceforth referred to as the maximum divergence length, and this is equivalent to the
number of blocks one must wait before this given transaction becomes stable. We then plot the
fraction of runs during which this maximum divergence length exceeds Y for different choices of Y .
The simulation considers the hash function to be a perfect random oracle, and for Snow White, at
the moment the simulation does not consider the effects of attacks where the adversary biases the
hashes.

Parameter configurations. We plot our results for the following typical setting. For Bitcoin, we
choose a network delay of 10 seconds as Decker and Wattenhofer’s excellent measurement result
suggests [20]; and we adopt an average inter-block time of 10 minutes as in Bitcoin. To be fair in
the comparison, we choose the same network delay for Snow White, and we perform leader election
per second (i.e., each node only computes one hash function per second).

4.2 Simulation Results

Our results are shown in Figure 1, where the x-axis denotes the security parameter, and the y-axis
is the maximum divergence length (i.e., the number of blocks to wait till convergence). A specific
data point (x, y) can be read as:

For any given transaction that I care about, if I waited for at least y blocks, the probability that
my transaction will be double-spent is less than 2−x.

We highlight a couple interesting findings:

Comparison of Snow White and Bitcoin. Our result shows that for a fixed network delay, and
suppose that the expected block interval is set to be 60 times the network delay (as is the case
with Bitcoin), to achieve a desired probability of consistency failure, Snow White needs to wait for
34% to 43% more blocks than Bitcoin — this can be regarded as a reasonable price one pays
for removing the proof-of-work and the enormous energy waste. As explain earlier, this slowdown
stems from the fact that the Snow White adversary can reuse an earned time slot which gives the
adversary additional advantage in a consistency attack. Further, the result (particularly, the fact
that all are straight lines) shows that in both Bitcoin and Snow White, the probability of divergence
drops exponentially in terms of the number of blocks one waits.

Concrete parameters. At the time of the writing, the largest mining pool, AntPool, controls
about 16.5% of the hashpower; and the second largest pool, F2Pool, controls about 12.5% of the
hashpower [1]. Our results show the following:

1. To defend against a 16.5% adversary (comparable to Bitcoin’s largest mining pool), one needs to
wait for roughly 7 blocks for Bitcoin, and roughly 10 blocks for Snow White, to get 99% assurance
that any given transaction will not be double-spent — note that there is no proof-of-work in Snow
White, but we still use Bitcoin’s pool size as an interesting data point to compare with Bitcoin.
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2. To defend against a 30% adversary (e.g., comparable to the sum of the largest two Bitcoin pools),
one needs to wait for roughly 23 blocks in Bitcoin and 33 blocks for Snow White, to obtain a 99%
assurance.

3. As is theoretically proven [45], Bitcoin can resist a 49% attack under these parametrizations
(10-second network delay and 10-minute block interval). However, our simulation shows that
the concrete parameters needed for consistency may not be as optimistic as some might have
imagined — even when the adversary controls only 45% of the hashpower, one must wait for 81
blocks to obtain only 75% assurance. Similarly, Snow White can also resist a 49% percent attack
if one waited sufficiently long, but the concrete wait time needed for consistency are rather large
(assuming optimal attack conditions).

Our simulation assumes optimal attack conditions for the adversary, i.e., the adversary has full
control over the network as long as honest nodes’ messages are delayed by at most 10 seconds
— specifically, this means that the adversary can perform a network rushing attack such that
adversarial blocks on the fly can arrive at honest nodes earlier. In practice, when the condition
is not so ideal for the adversary, the practical parameter needed for consistency can be smaller.

5 Implementation and Evaluation

To further prove the efficacy of Snow White in production environments, we implemented the Snow
White protocol. It would have been ideal to deploy Snow White on a wide scale in a production
setting and perform a more realistic evaluation — but we leave this as future work. Instead we
evaluate the throughput of Snow White in a 40-node deployment, under a high-bandwidth and low
latency environment. We focus on reporting best-case throughput results through comparison with
a crash-fault resilient Proof-of-Stake solution implemented by Parity, called Authority chains [29].
Specifically, we compare with the “Authority Round” protocol, the default recommendation for Par-
ity Authority chains. Since the latter does not support committee reconfiguration at this moment,
we compare both schemes’ throughput under a static committee. Our throughput experiments are
conducted in a benign environment absent any attacks. Note that “Authority Round” does not
have provable security: our evaluation results will show comparable performance of both schemes,
with Snow White providing the added benefits of rigorous security guarantees.

5.1 Design

We start with the Parity, the Rust-based Ethereum client [23]. During recent stress tests and
attacks on the Ethereum network, the Parity client has proved by far the most robust and fastest
client available [9]. We choose this client exclusively for its speed; because our evaluation attempts
to establish performance bounds for Snow White, choosing a base client for its speed (transaction
throughput and block processing time) is the only logical criterion. Other available Ethereum
clients include pyethereum (in Python) and geth (in Go). We intend the combination of our
reference implementation for Parity and the specification in this work to be sufficient to port Snow
White to these clients if desired.

Also beneficial in Parity is the ability to define modules with “puzzle engines”, or replacements
for the proof of work mechanism underlying Ethereum, as plugins [29]. This allowed us to cleanly
define Snow White as a plugin to Parity, making it compatible with Parity’s full infrastructure and
any tools developed for Ethereum (including contract languages, compilers, blockchain explorers,
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Figure 2: Best-case performance evaluation

and many more). This also allows us to easily leverage Parity’s rapid pace of development (with
dozens of commit per day typically) without large refactors.

We base our prototype on Parity’s “Basic Authority” chain security algorithm, in which a static
set of authorities is specified in a chain specification file, and these authorities are allowed to sign
blocks with no further restrictions. Adding in the restrictions required for Snow White results in
our functional implementation.

5.2 Evaluation

We manually configured the network such that each node was fully peered, ensuring a fully con-
nected network graph. We also took advantage of Amazon’s relatively low latency connections
between regions to push our parameters beyond normal operation, establishing an upper bound
for our system and a reasonable performance estimate on well connected infrastructure (such as in
a private deployment at a bank). Obviously, requiring performance across a wide variety of lower
quality Internet connections would decrease throughput substantially. We also used a minimum
time interval (time between blocks) of 5 seconds in both security algorithms; minimum times lower
than this lead to excess on-chain contention and thus decreased throughput.

To measure the throughput, we took the longest blockchain generated by our experiment and
took a moving average of number of transactions processed per second over 60 seconds. This is
because blocks are generated in discrete intervals, which cause unreadable throughput spikes.
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The results are shown in Figure 2. The two upper lines represent the observed performance of
both Snow White and Parity’s Authority chain over a fifteen minute run, in which all nodes were
submitting the maximum amount of possible transactions through the Parity RPC interface. This
mimics real-world deployments of such chains, in which users (and other software components)
submit transactions through RPC.

The performance of Snow White and Parity is so close as to be virtually indistinguishable,
demonstrating that Snow White is able to hit the theoretical upper bound of the Ethereum soft-
ware’s performance without hitting any mining-related bottlenecks. Both Snow White and Parity’s
Authority chains operate in a range between 100 and 150 transactions per second, which with an
average observed transaction size of 111 bytes, corresponds to under 16kB of block space per second
and is obviously nowhere near saturating the bandwidth or block latency bottlenecks we describe
in this work.

We also graph the capacities of the permissionless Bitcoin and Ethereum networks in the same
figure, showing that they are approximately 1 and 2 orders of magnitude lower than our system’s
empirical upper bound. While obviously a tit-for-tat comparison is disingenuous, as both Bitcoin
and Ethereum use significantly lower quality network links on a wider variety of machines, this does
show that adoption of Snow White by the permissionless blockchain community is feasible today
without approaching the upper-bound capacity of Snow White.

We thus conclude that Snow White is a useful replacement for Authority chains today. As tested,
Authority chains are not Byzantine fault tolerant, making it a significantly weaker protocol than
Snow White. Additionally, claims of BFT operation modes in Authority chains are not accompanied
by proof or justification as found in this paper, making the claims highly dubious. It is thus our
recommendation that the Ethereum community switch to Snow White for Authority chains, at a
significant security gain with zero performance penalty.

This CPU bottleneck demonstrated by the performance of our widely distributed network ap-
proaches the performance of a single node which engages in no network communication, which
we measured at approximately 125 tx/s. As we have shown, our theoretical upper bound on per-
formance in the current prototype is already an order of magnitude higher than the maximum
throughput of the decentralized Bitcoin network. As the permissionless algorithm adds little to no
additional computational overhead, we expect Snow White to fully satisfy the performance require-
ments of securing a distributed and permissionless ledger.

We hope to continue developing and refining this prototype into a robust implementation usable
by both permissioned and permissionless blockchains, providing the ultimate in provable security,
performance, and simplicity for future blockchain deployments.

Full Formalism and Proofs

We present the full formalism and proofs in the appendices.
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A Definitions

A.1 Protocol Execution Model

Our protocol execution model extends and enriches the sleepy model [48]. To capture a more pow-
erful adversary, we make the following notable changes in modeling in comparison with sleepy [48]:

• We allow dynamic node spawning whereas the basic sleepy model [48] requires that all nodes
(including honest and corrupt ones) be spawned prior to protocol start.

• We allow the adversary to issue corrupt and sleep instructions after protocol execution starts,
whereas in the basic sleepy model [48], all corrupt and sleep instructions must be declared
upfront prior to protocol start. Later when we describe our protocol, we will specify further
constraints on the adversary, in particular, under what conditions the adversary can corrupt
nodes or make them sleep.

• Our model distinguishes between a light sleeper and a deep sleeper and treats them differently.
As explained in Sections 2 and C, such a distinction is necessary so as not to tread on theoretical
impossibility.

Below we elaborate on our execution model in detail. We note that this section focuses on
describe the basic execution model. We defer it to later sections to specify precise constraints (e.g.,
how long it takes for corruption to take effect, what parameters are admissible, etc.) that must be
placed on the adversary to prove our protocol secure.

We assume a standard Interactive Turing Machine (ITM) model [13–15] often adopted in the
cryptography literature.

(Weakly) synchronized clocks. We assume that nodes have a globally synchronized clock. In
fact, with our network model (to be explained later), we can, without loss of generality, relax this
assumption to weakly synchronized, where honest nodes clocks are offset by some a-priori known
upper bound ∆clock, basically by absorbing the clock offset ∆clock into the maximum network delay
parameter ∆ (see earlier work [48] for a more detailed explanation).

Corruption model. At any point of time, the environment Z can communicate with corrupt nodes
in arbitrary manners. This also implies that the environment can see the internal state of corrupt
nodes. Corrupt nodes can deviate from the prescribed protocol arbitrarily, i.e., exhibit byzantine
faults. All corrupt nodes are controlled by a probabilistic polynomial-time adversary denoted A,
and the adversary can see the internal states of corrupt nodes. For honest nodes, the environment
cannot observe their internal state, but can observe any information honest nodes output to the
environment by the protocol definition. Specifically, we assume the following corruption model.

• Spawn. At any time, Z can spawn fresh nodes, either alert or corrupt ones.
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We assume that upon spawning an alert node i at (the beginning of) time t, (A,Z) must deliver
an initialization message to node i. Our protocols later will impose further constraints on this
initialization message, and these constraints may imply additional trust assumptions necessary
for a node to securely join the protocol. Therefore we defer requirements for the initialization
message to protocol-specific compliance rules.

We allow the adversary A to spawn corrupt nodes on its own without informing Z.

• Corrupt. At any time t, A can issue to Z a corruption instruction of the form:

(corrupt, i, t′) where t′ ≥ t

A (corrupt, i, t′) instruction causes node i to become corrupt at time t′ ≥ t (if it did not already
become corrupt earlier).

• Sleep. At any time t, A can issue to Z a sleep instruction of the form:

(sleep, i, t0, t1) where t0 ≤ t ≤ t1

A (sleep, i, t0, t1) instruction causes node i to be asleep (or sleeping/sleepy) between time [t0, t1]
— as long as it did not already become corrupt earlier. A sleeping honest node (also called a
sleeper) stops receiving or sending messages. If a sleeper does not become corrupt during the
time it is asleep, it may wake up later again.

Our model distinguishes between a deep sleeper and a light sleeper. A sleeper that sleeps for a
long time before waking up is called a deep sleeper and one that wakes up soon is called a light
sleeper. The definition of long and short depends on the protocol, and therefore we defer the
concrete parameter specifications to protocol-specific compliance rules.

When a light sleeper wakes up, (A,Z) is required to deliver a wakeup message that is an
unordered set containing

– all the pending messages that node i would have received (but did not receive) had it not
slept; and

– any polynomial number of adversarially inserted messages of (A,Z)’s choice.

By contrast, a deep sleeper waking up is treated the same way as node respawning. Specifically,
(A,Z) is required to resend the node an initialization message which must satisfy the same
requirement of an initialization message for a newly spawning node.

To summarize, a node can be in one of the following states:

1. Honest. An honest node can either be awake or asleep (or sleeping/sleepy). Henceforth we
say that a node is alert if it is honest and awake. When we say that a node is asleep (or
sleeping/sleepy), it means that the node is honest and asleep.

2. Corrupt. Without loss of generality, we assume that all corrupt nodes are awake.

Network delivery. The adversary is responsible for delivering messages between nodes. We
assume that the adversary A can delay or reorder messages arbitrarily, as long as it respects the
constraint that all messages sent from alert nodes must be received by all alert nodes in at most ∆
time steps.
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A.2 Notational Conventions

Negligible functions. A function negl(·) is said to be negligible if for every polynomial p(·), there
exists some κ0 such that negl(κ) ≤ 1

p(κ) for all κ ≥ κ0.

Convention for parameters. In this paper, unless otherwise noted, all variables are by default
(polynomially bounded) functions of the security parameter κ. Whenever we say var0 > var1, this
means that var0(κ) > var1(κ) for every κ ∈ N. Variables may also be functions of each other. How
various variables are related will become obvious when we define derived variables and when we
state parameters’ admissible rules for each protocol.

Importantly, whenever a parameter does not depend on κ, we shall explicitly state it by calling
it a constant.

Compliant executions. In this paper, for each protocol we introduce (including intermediate
ones used in the proofs), we will define compliant executions by specifying a set of constraints on
the p.p.t. pair (A,Z). Roughly speaking, our theorems will state that desirable security properties
are respected except with negligible probability in any compliant execution. Since compliance is
defined per protocol, we will often use the notation Π-compliant (A,Z) to mean that (A,Z) must
respect the constraints expected by the Π protocol.

B Preliminaries: Blockchain Formal Abstraction

In this section, we define the formal abstraction and security properties of a blockchain. Our
definitions follow the approach of Pass et al. [45], which in turn are based on earlier definitions
from Garay et al. [28], and Kiayias and Panagiotakos [33].

Since our model distinguishes between two types of honest nodes, alert and sleepy ones, we
define chain growth, chain quality, and consistency for alert nodes. However, we point out the
following: 1) if chain quality holds for alert nodes, it would also hold for sleepy nodes (since sleepy
nodes stop receiving new messages); 2) if consistency holds for alert nodes, then sleep nodes’ chains
should also satisfy common prefix and future self-consistency, although obviously sleepy nodes’
chains can be much shorter than alert ones.

Notations. For some A,Z, consider some view in the support of EXECΠ(A,Z, κ); we use the
notation |view| to denote the number of time steps in the execution.

We assume that in every time step, the environment Z provides a possibly empty input to every
honest node. Further, in every time step, an alert node sends an output to the environment Z.
Given a specific execution trace view with non-zero support where |view| ≥ t, let i denote a node
that is alert at time t in view, we use the following notation to denote the output of node i to the
environment Z at time step t,

output to Z by node i at time t in view: chainti(view)

where chain denotes an extracted ideal blockchain where each block contains an ordered list of
transactions. Sleepy nodes stop outputting to the environment until they wake up again.

Later in the text, if the context is clear, we sometimes omit writing a subset of the sub- or
super-scripts and/or the view — for example, sometimes we simply write chain if the context is
clear.
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B.1 Chain Growth

The first desideratum is that the chain grows steadily over time, not too slow, not too fast.
Let growtht0,t1(view,∆, T ) = 1 iff the following holds:

• (consistent length) for all time steps t ≤ |view| −∆, t+ ∆ ≤ t′ ≤ |view|, for every two players
i, j such that in view i is alert at t and j is alert at t′, we have that

|chaint′j (view)| ≥ |chainti(view)|

• (chain growth lower bound) for every time step t ≤ |view| − t0, for any node i alert at t and
any j alert at t+ t0, it holds that

|chaint+t0j (view)| − |chainti(view)| ≥ T.

• (chain growth upper bound) for every time step t ≤ |view|− t1, for any node i alert at t and
any j alert at t+ t1, it holds that

|chaint+t1j (view)| − |chainti(view)| ≤ T.

In other words, growtht0,t1 is a predicate which tests that a) alert parties have chains of roughly
the same length, and b) during any t0 time steps in the execution, all alert parties’ chains increase
by at least T , and c) during any t1 time steps in the execution, alert parties’ chains increase by at
most T .

Definition 1 (Chain growth). A blockchain protocol Π satisfies (T0, g0, g1)-chain growth, if for all
Π-compliant p.p.t. pair (A,Z), there exists some negligible function negl such that for every κ ∈ N,
T ≥ T0, t0 ≥ T

g0
and t1 ≤ T

g1
the following holds:

Pr
[
view←$EXEC

Π(A,Z, κ) : growtht0,t1(view,∆, κ) = 1
]
≥ 1− negl(κ)

B.2 Chain Quality

The second desideratum is that the number of blocks contributed by the adversary is not too large.
Given a chain, we say that a block B := chain[j] is honest w.r.t. view and prefix chain[: j′]

where j′ < j if in view there exists some node i alert at some time t ≤ |view|, such that 1)
chain[: j′] ≺ chainti(view), and 2) Z input B to node i at time t. Informally, for an honest node’s
chain denoted chain, a block B := chain[j] is honest w.r.t. a prefix chain[: j′] where j′ < j, if earlier
there is some alert node who received B as input when its local chain contains the prefix chain[: j′].

Let qualityT (view, µ) = 1 iff for every time t and every player i such that i is alert at t in view,
among any consecutive sequence of T blocks chain[j+1..j+T ] ⊆ chainti(view), the fraction of blocks
that are honest w.r.t. view and chain[: j] is at least µ.

Definition 2 (Chain quality). A blockchain protocol Π has (T0, µ)−chain quality, if for all Π-
compliant p.p.t. pair (A,Z), there exists some negligible function negl such that for every κ ∈ N
and every T ≥ T0 the following holds:

Pr
[
view←$EXEC

Π(A,Z, κ) : qualityT (view, µ) = 1
]
≥ 1− negl(κ)

26



Global GΣ
sign functionality (possibly shared with other protocols)

On initialization: Γ = ∅

On receive gen from P:

(pk, sk)← Σ.gen(1κ), and add the tuple (P, pk, sk) to table Γ

Notify A of (P, pk), and return pk

On receive sign(pk,msg) from P in protocol sid :

assert that a tuple of the form (P, pk, sk) ∈ Γ exists for some sk

return Σ.Signsk,sid (msg)

On receive getkey(P) from A: if P is corrupt, return all tuples in Γ of the form (P, , ) to A

Figure 3: Global signing functionality, parametrized by a signature scheme denoted Σ = (Sign,Ver).
We use the shorthand Signsk,sid and Verpk,sid to denote that the message is prefixed with the
protocol’s session identifier sid .

B.3 Consistency

Roughly speaking, consistency stipulates common prefix and future self-consistency. Common
prefix requires that all honest nodes’ chains, except for roughly O(κ) number of trailing blocks
that have not stabilized, must all agree. Future self-consistency requires that an honest node’s
present chain, except for roughly O(κ) number of trailing blocks that have not stabilized, should
persist into its own future. These properties can be unified in the following formal definition (which
additionally requires that at any time, two alert nodes’ chains must be of similar length).

Let consistentT (view) = 1 iff for all times t ≤ t′, and all players i, j (potentially the same)
such that i is alert at t and j is alert at t′ in view, we have that the prefixes of chainti(view) and
chaint

′
j (view) consisting of the first ` = |chainti(view)| − T records are identical — this also implies

that the following must be true: chaint
′
j (view) > `, i.e., chaint

′
j (view) cannot be too much shorter

than chainti(view) given that t′ ≥ t.

Definition 3 (Consistency). A blockchain protocol Π satisfies T0-consistency, if for all Π-compliant
p.p.t. pair (A,Z), there exists some negligible function negl such that for every κ ∈ N and every
T ≥ T0 the following holds:

Pr
[
view←$EXEC

Π(A,Z, κ) : consistentT (view) = 1
]
≥ 1− negl(κ)

Note that a direct consequence of consistency is that at any time, the chain lengths of any two
alert players can differ by at most T (except with negligible probability).

C The Snow White Protocol

C.1 Modeling Digital Signatures

Our protocol makes use of digital signatures. We model digital signatures in a way such that the
signature keys can be shared between our consensus protocol and any application-level protocol. For
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example, imagine that the cryptocurrency layer uses the same signing keys to sign transactions. Our
modeling approach guarantees that the security of our Πsleepy protocol is retained when composed
with arbitrary application-level protocols, as long as the application-level protocols respect the
compliance rules expected by Πsleepy.

Specifically, we follow the GUC paradigm [14] and model the signature as a signing functionality
shared across protocols. Figure 3 illustrates this signature functionality denoted GΣ

sign, which is
parametrized by a signature scheme denoted Σ. We often omit writing the superscript Σ without
risk of ambiguity. We now explain the Gsign functionality. Gsign generates and remembers a new
signature key pair for a party upon the gen call; and signs messages for parties upon the sign

call using any of the party’s signing keys. Finally upon a getkey query, Gsign discloses the secret
signing keys of corrupt parties to the adversary A.

Note that in practice, such a functionality is actually realized in the following way: every honest
node implements a trusted signing wrapper that is shared across all protocols instances executed by
the honest node. This trusted signing wrapper is in charge of generating signature keys and perform
signing operations. Following the GUC modeling paradigm [14], the union of the trusted signing
wrappers across all honest nodes is considered as the trusted computing base (TCB), and therefore
conceptually grouped into this single functionality Gsign. When a node becomes corrupt, its signing
wrapper is then controlled by the adversary, therefore the secret signing keys get disclosed to the
adversary.

Like in the standard GUC paradigm, we assume that the environment Z can interact with Gsign

in the following ways:

• Z can interact with Gsign acting as an honest party executing other (possibly rogue) protocols.
Since other protocols have different session identifiers, Z cannot ask Gsign to sign messages
pertaining to the challenge session identifier, which is the protocol instance that we are proving
security for.

• Z can interact with Gsign acting as a corrupt party or A by routing messages through the
adversary A.

Mapping from public keys to nodes. In addition to defining honest, alert, and corrupt for
nodes, it will be convenient later for us to refer to public keys as being honest, alert, or corrupt.
This is defined in the most natural manner.

Given an execution trace denoted view, a public key pk is said to be honest (or alert resp.) at
time t ≤ |view| in view, if some tuple of the form (P, pk, ) ∈ Gsign.Γ at time t in view, and further,
P is honest (or alert resp.) at time t in view. If a public key pk is not honest at t, we say that it is
corrupt at t. Note that a corrupt pk may not exist in Gsign.

C.2 Format of Real-World Blocks

We use the notation chain to denote a real-world blockchain. Our protocol also defines an extract
function that outputs an ordered list of transactions from a blockchain. A real-world blockchain is
a chain of real-world blocks. We now define a valid block and a valid blockchain.

Valid blocks. We say that a tuple

B := (h−1, txs, time, nonce, pk, σ, h)

is a valid block iff
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1. Σ.Verpk,sid ((h−1, txs, time, nonce);σ) = 1 where sid is the session identifier of the proof-of-stake
protocol — as mentioned earlier, we use the notation Verpk,sid to indicate that the message is
prefixed with the protocol’s session identifier sid ; and

2. h = d(h−1, txs, time, nonce, pk, σ), where d : {0, 1}∗ → {0, 1}κ is a collision-resistant hash func-
tion — technically collision resistant hash functions must be defined for a family, but here for
simplicity we pretend that the sampling from the family has already been done before protocol
start, and therefore d is a single function.

Valid blockchain. Let eligiblet(chain, pk) be a function that given the current state of chain,
determines whether pk is elected as a leader in time step t, by making calls to a random oracle H.
We defer the concrete specification of eligiblet(chain, pk) to Figure 4.

Let chain denote an ordered chain of real-world blocks, we say that chain is a valid blockchain
w.r.t. eligible and time t iff

• chain[0] = genesis := (⊥,⊥, time = 0, nonce0,⊥,⊥, h = ~0) where nonce0 is a nonce randomly
generated prior to protocol start;

• chain[−1].time ≤ t; and

• for all i ∈ [1..`], the following holds:

1. chain[i] is a valid block;

2. chain[i].h−1 = chain[i− 1].h;

3. chain[i].time > chain[i− 1].time, i.e., timestamps are strictly increasing; and

4. let t := chain[i].time, pk := chain[i].pk, it holds that eligiblet(chain[: i− 1], pk) = 1.

C.3 Epoch-Based Committee Election

Epochs. Our protocol proceeds in epochs, where in each epoch, a different committee will be
elected and will be eligible to mine blocks. Let Tepoch be a protocol parameter that denotes the
length of each epoch. We define a round-down function

rnddown(t) := b t

Tepoch
c · Tepoch

to denote the starting time of the epoch that time t belongs to.

Per-epoch committee election. Let view be an execution trace where the current time t :=
|view|. Let i denote a node that is honest at time t in view. Let chain := chainit(view) be node’s
i’s chain at time t in view. At this point of time, node i will apply an election function to decide
the set of public keys eligible in the current time step t. To this end, node i will examine its local
chain, and select a block that is sufficiently far back — the set of public keys contained in the
prefix up to this block will be eligible to mine in time t.

We have yet to define what it means to be “sufficiently far back”. To this end, we define
a look-back parameter denoted ω. An honest node i will select the largest index j such that
chain[j].time + 2ω ≤ rnddown(t). Then the public keys extracted by calling extractpks(chain[: j])
will be the committee for time t. Later, we will choose the parameter ω to be reasonably large
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(and yet not too long ago) such that all honest nodes will agree on committee at time t with
overwhelming probability.

elect cmtt(chain) :=
extractpks(chain[: j]) where j is the largest index s.t. chain[j].time + 2ω ≤ rnddown(t)

Per-epoch hash reseeding. Given a set of eligible committee members, a hash function will be
applied to choose a leader for each time step. We now define a rule for selecting this hash function.
Let H denote a globally known hash function modeled as a random oracle. We henceforth use the
notation

Hnonce(x) := H(nonce||x)

In other words, we elect a hash by choosing a nonce.

elect ht(chain) := chain[j].nonce where j is the largest index s.t. chain[j].time + ω ≤ rnddown(t)

Later, we will choose an appropriate parameter ω such that

1. ω is reasonably large (and yet not too long ago) such that all honest nodes will agree on the
hash function elected at time t with overwhelming probability; and

2. ω is smaller than 2ω by a reasonable margin, such that the hash will be selected sufficiently
long after the committee is determined by the blockchain.

C.4 Protocol Overview

We describe our Snow White protocol in Figure 4. The protocol proceeds in epochs whose length
is determined by the parameter Tepoch. At the start of each epoch, the protocol switches to a new
committee that can be determined by examining the current state of the blockchain. Further, a
new hash is used for each different epoch, and the hash is selected by computing a new nonce from
the current state of the blockchain.

Once a committee and a hash is determined for an epoch, we can now describe the “mining”
process. Let pkse denote the e-th committee. In every time step during the e-th epoch, if a node
iis in the e-th committee, it will compute H(pk, t) and if the outcome is smaller than Dp, then node
i is a leader in time t. In this case, node i will extend its current chain by signing a new block
containing the following: 1) the previous block’s hash, 2) a set of transactions to be confirmed, 3)
the current time, 4) a freshly generated nonce, and 5) its own public key. The node then announces
the new chain to the network.

In each time step, regardless of whether a node is in the present committee, a node receives
chains from the network and verify their validity. If a received chain is valid but deviates from a
node’s current chain too far in the past, such a chain is not punctual and will be rejected. Nodes
always choose the longest chain among all chains it did not reject.

Finally, when a node spawns or wakes up from deep sleep (henceforth referred to as respawning),
an initialization procedure is invoked. At this moment, A must deliver to the node an initialization
message containing a list of chains denoted {chaini}i∈L such that the majority of these chains reflect
the true state of an alert node at time t− 1 (see protocol compliance rules defined in Section C.6).
If this is the protocol start, this list can simply be the genesis block. As mentioned earlier, this
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Protocol Πsnowwhite(κ0, p, ω, Tepoch, extractpks)

On input init() from Z:

let pk := Gsign.gen(), output pk to Z, wait to receive (pks0, {chaini}i∈L)

find the longest valid chain0 that is a prefix of the majority of chains in {chaini}i∈L
find the longest valid chain ∈ {chaini}i∈L such that chain0 ≺ chain

record chain and pk

On receive chain ′:

assert |chain ′| > |chain| and chain ′ is valid w.r.t. the current time t

assert chain[: −κ0] ≺ chain ′

chain := chain ′ and gossip chain

Every time step:

• receive input transactions(txs) from Z, and pick nonce←${0, 1}κ

• let t be the current time, if eligiblet(chain, pk):

let σ := Gsign.sign(pk, chain[−1].h, txs, t, nonce), h′ := d(chain[−1].h, txs, t, nonce, pk, σ),

let B := (chain[−1].h, txs, t, nonce, pk, σ, h′), let chain := chain||B and gossip chain

• output extract(chain) to Z where extract is the function outputs an ordered list containing
the txs extracted from each block in chain

Subroutine eligiblet(chain, pk)

Assume: chain[0].nonce = nonce0, extractpks(chain[: 0]) = pks0

Let elect cmtt(chain) be a function that returns extractpks(chain[: j]) s.t. j is the largest index
satisfying chain[j].time + 2ω ≤ rnddown(t)

Let elect ht(chain) be a function that returns extractnonce(chain[: j]) s.t. j is the largest index
satisfying chain[j].time + ω ≤ rnddown(t)

Let pks∗ := elect cmtt(chain), let nonce∗ := elect ht(chain)

Return 1 if Hnonce∗(pk, t) < Dp and pk ∈ pks∗; else return 0

extractnonce(chain): output the concatenation of the nonces in all blocks in chain

Figure 4: The Snow White consensus protocol. The difficulty parameter Dp is set such that
a committee member is elected leader with probability p in a single time step. pks0 denotes the
initial committee. Chain validity is stated w.r.t. eligible although we omit writing w.r.t. eligible for
simplicity.
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reflects the fact that a spawning (or respawning) node can contact a list of nodes in the network
the majority of whom must be alert. As we argue in Sections 2 and D, this process allows a
spawning or respawning node to determine the correct version of history to believe in. Without
this additional trust assumption, consensus would have been impossible in the presence of majority
posterior corruption. Now the spawning/respawning node computes its state as follows: First, it
computes the longest valid chain0 that is a prefix of the majority of chains in the list. Next, it
finds the longest chain in the list that contains chain0. This chain now becomes the internal state
of the spawning/respawning node.

Remark: committee members and non-members. We remark that in each epoch, there are
two types of nodes in the system, the current committee members and committee non-members.
Although only committee members are contributing blocks, our consistency and liveness guarantees
extend to all nodes, including members and non-members.

C.5 Theorem Statement

Additional useful notations. Before we state our theorem, we will need to define some additional
notations. Recall that p is the probability that a node is elected leader in a given time step. 1 + φ
is the minimum ratio of alert nodes over corrupt ones across time. n is the total number of awake
nodes at any given time (see also Remark 1). We define a set of intermediate variables α, β, and γ
which are defined as functions of p, n, φ, and possibly ∆.

1. Let α := 1− (1− p)
n(1+φ)
2+φ be the probability that some alert node is elected leader in one round;

and

2. Let β := 1− (1−p)
n

2+φ be the probability that some corrupt node is elected leader in one round;

3. Let γ := α
1+∆α . γ is a “discounted” version of α which takes into account the fact that messages

sent by alert nodes can be delayed by ∆ time steps; γ corresponds to alert nodes’ “effective”
proportion among all awake nodes.

Theorem 1. For any constant ε0, ε > 0, any T0 ≥ ε0κ, Πsnowwhite satisfies (T0, g0, g1)-chain growth,
(T0, µ)-chain quality, and T0-consistency against any Πsnowwhite-compliant p.p.t. pair (A,Z), with
the following parameters:

• chain growth lower bound parameter g0 = (1− ε)γ;

• chain growth upper bound parameter g1 = (1 + ε)np; and

• chain quality parameter µ = (1− ε)(1− β
γ );

where α, β, γ are defined earlier.
The proof of this theorem will be provided in Sections F, G, and H. The theorem requires that

the parameters of the scheme, including κ0, p, ω, and Tepoch, be set appropriately in relation to
the parameters of (A,Z). We describe the parameter constraints and intuitively explain why the
constraints are necessary in Section C.6.
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Table 1: Notations

κ security parameter
chainti extracted ideal-world chain for node i honest at time t
chainti real-world formatted chain for node i honest at time t
W posterior corruption window

φ
φ fraction more must be alert and remain honest for W more steps

than those corrupt within W steps

τ agility parameter, time till corruption/sleep operations take effect
∆ maximum network delay for alert nodes

∆̃ maximum duration of a light sleep
2ω, ω time to look back to decide committee/hash respectively
κ0 := κ

2 incoming chain must agree with all but the last κ0 blocks
p probability that a node gets elected leader in any time step

Tepoch length of an epoch

C.6 Compliant Execution

We now articulate a set of constraints that (A,Z) must respect for our protocol to guarantee
security. For convenience, we summarize our notations and parameters in Table 1.

Admissible parameters. Without loss of generality due to rescaling of κ, we shall henceforth
assume that

κ0 =
κ

2

We say that the parameters (p, κ0, Tepoch, ω; n, φ,∆, τ, ∆̃,W ) are Πsnowwhite-admissible iff the
following constraints hold:

• np∆ < 1 and moreover, there exists a constant ψ > 0 such that

(1− 2α(∆ + 1))α > (1 + ψ)β

• W > ω ≥ 2κ
γ + ∆̃;

• Tepoch ≥ 3ω;

• τ > W + Tepoch + 2ω;

Intuitions for admissible parameters. We now given an intuitive explanation for these param-
eters. All these intuitions will later arise as technicalities in our proof.

• First, the requirement (1 − 2α(∆ + 1))α > (1 + ψ)β roughly says that the alert committee
members that remain honest till the near future, even when discounted by a parameter related
to the network delay, must outnumber the committee members that are corrupt or to become
corrupt in the near future — where “near future” is characterized by the posterior corruption
window W . Specifically, the discount factor (1−2α(∆ + 1)) arise due to technicalities that arise
in the consistency proof.
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• Second, the look-back parameters 2ω and ω must be reasonably large, such that

1. The prefix of the chain that is used to decide the next epoch’s committee and hash has
stabilized, such that all nodes will agree on the next epoch’s committee and hash;

2. The two look-back parameters are spaced out far enough such that when the committee is
determined, the adversary cannot predict the nonce that determines the next hash; and

3. Further, the parameters ω and 2ω are related to the light sleep bound ∆̃ and the punctuality
parameter κ0 = κ

2 , ensuring that even when a light sleeper wakes up, it suffices to use its
old chain (before going to sleep) with the last κ0 blocks removed — henceforth denoted
chains[: −κ0] where s is the time the node last went to sleep — to decide the next committee
and hash. Specifically, this requires that chains[: −κ0] must have a block with a recent
enough timestamp relative to ω and 2ω.

• Next, nodes reject blocks that modify κ0 blocks back into their past, and for light sleepers this
is adjusted by another ∆̃ parameter — therefore the posterior corruption window W has to be
reasonably large to be commensurate with these two parameters.

• Next, the epoch length Tepoch has to be reasonably large, since as we mention in Section 2.2 and
Section G.1, once a random oracle is chosen, it must be used sufficiently many times to prove
security. Also in our current parameterization, we do not treat the first epoch specially, so Tepoch

must also be large enough for the protocol to warm up — roughly speaking, the blockchain must
be at least 2ω time long for a committee (that is not the initial committee) to be determined.

• Finally, the agility parameter τ , which stipulates how long it takes for corrupt and sleep

instructions to take effect, must be reasonably large to eliminate possible “adaptive” corruption
behaviors, where the adversary first sees the next committee and hash, and then decides who
to corrupt or make sleep. If τ is sufficiently large, such an attack will not succeed. Specifically,
if an adversary attempts to corrupt a node (or make it sleep) after seeing the next hash, then
when the corrupt or sleep instruction takes effect, it will already be well after this epoch for
such “adaptivity” to be effective, where the notion of “well after” is related to the posterior
corruption parameter W . Roughly speaking, from the time the adversary sees the next hash till
“well after” the next epoch takes a total of W + Tepoch + c · ω time; therefore, the requirement
that τ > W + Tepoch + 2ω is easy to understand.

Compliant executions. We say that the pair (A,Z) is Πsnowwhite-compliant if the following holds
for any view with non-zero support:

• Initialization. At the start of the execution, the following happens. First, Z can spawn a
set of either honest or corrupt nodes. Z learns the honest nodes’ public keys after calling their
init() procedure. Next, Z provides the inputs (pks0, {genesis}) to all honest nodes.

At this point, protocol execution starts. A is not allowed to query the random oracle H prior to
protocol start.

• τ-agility. Whenever A issues a (corrupt, t) or a (sleep, t, t′) instruction at time r, it must
hold that t− r ≥ τ .
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• Sleeping. If a sleeper wakes up within ∆̃ time since it last went to sleep, it is considered a light
sleeper. Otherwise, if it sleeps for more than ∆̃ time before waking up it is considered a deep
sleeper and must reinitialize as if it is re-spawning (see below).

• Spawning. When a new node spawns or a deep sleeper wakes up, (A,Z) must deliver the same
pks0 to this node, and further (A,Z) must deliver to this node a message {chaint−1

i }i∈L that
contains the internal chains of a set of nodes (denoted L) the majority of whom are alert at
t− 1. If a node i ∈ L is corrupt5, it can provide an arbitrarily chaint−1

i .

Intuitively, this captures the requirement that a newly spawning node must be able to connect
to a subset of nodes the majority of which are alert.

• Resilience. Let t ≤ |view|, and let i be a node that is honest at time t in view. Let chainti(view)
denote node i’s protocol internal state at time t in view, and define

cmtti(view) := elect cmtt(chainti(view))

We require that for every t ≤ |view|, for every honest node i that is honest at t in view, let
r = min(t+W, |view|),

alertt(cmtti(view), view) ∩ honestr(cmtti(view), view)

corruptr(cmtti(view), view)
≥ 1 + φ (2)

where alertt, honestr, corruptr are defined as below:

– alertt(S, view) outputs those in S that are alert at time t in view.

– honestr(S, view) outputs those in S that are honest at time r.

– corruptr(S, view) outputs those in S that are corrupt at time r.

Informally, we require that among committee of time t (as perceived by any node honest at time
t), more are alert at time t and remain honest till r (but possibly can go to sleep), than those
corrupt at time r.

• Number of awake nodes. For every honest node i that is honest at time t in view, let
r = min(t+W, |view|), we have that

(alertt(cmtti(view), view) ∩ honestr(cmtti(view), view)) + corruptr(cmtti(view), view) = n

• Admissible parameters. The parameters (p, κ0, Tepoch, ω;n, φ,∆, τ, ∆̃,W ) are Πsnowwhite-

admissible, where p, κ0, Tepoch, ω are input parameters to the Πsnowwhite protocol, and (n, φ,∆, τ, ∆̃,W )
are parameters related to (A,Z).

5Considering that in practice, it may take ∆ time for messages to be transmitted to the newly spawned node, it is
possible to relax this condition where (A,Z) is only required to deliver to a spawning node a message {chaintii }i∈L
where for more than majority of L, it must hold that i is alert at ti ∈ [t−∆, t]. It is not hard to adjust the proofs of
our theorems to this relaxed case.
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Remark 1 (Clarifications on n and difficulty parameter). For notational simplicity, our analysis
assumes that (imprecisely speaking) the number of awake nodes is n throughout. We assume that
some upper bound on n is a-priori known so we can choose the protocol’s difficult parameter Dp

to satisfy the complicance rules — note that if the upper bound on n is loose, then the expected
block interval will be proportionally larger and thus transaction confirmation is slower (but all of
our proofs still hold).

It is not difficult to see that our analysis holds not only for fixed n, the requirement we actually
rely on is for the expected block interval (had all awake nodes been honest) to stay fixed throughout.
In practice, the protocol is reading the next committee from a stabilized prefix of the blockchain
itself, at any time we actually know the total committee size a-priori. Assuming that the fraction
of awake nodes (out of each committee) is fixed, we can simply set each committee’s Dp such that
the expected block interval is fixed. Finally, it is easy to generalize our analysis to further relax the
above requirement — we only need that the expected block interval varies by a known constant
factor (rather than staying fixed throughout).

D Lower Bounds

Recall that in our protocol, when a node first spawns or after a deep sleeper wakes up, the node
must perform an initialization procedure where it contacts a list of nodes the majority of whom are
alert. We show that this additional trust assumption is necessary if one wishes to tolerate majority
posterior corruption.

We state our lower bound for a blockchain protocol, but it is not hard to see that the same
lower bound proof holds for any consensus protocol (often referred to as state machine replication
in the classical distributed systems literature) as defined by Pass and Shi [47]. Note that Pass and
Shi also show that a formal blockchain abstraction implies a classical consensus (i.e., state machine
replication) abstraction.

Theorem 2 (Access to a majority honest set for (re)spawning nodes is necessary). Assuming
common knowledge of the initial committee cmt0, and absent any additional trust assumptions, it
is impossible to realize a secure blockchain protocol in our execution model if there exists 1

poly(κ)
fraction of views such that no node ever sleeps, and at some time T ,

corruptT (cmt0, view) > alert1(cmt0, view) ∩ honestT (cmt0, view)

The lower bound holds even if at any time, there are more alert present committee members than
corrupt ones, even if all corruptions are declared statically upfront, and even if assuming a PKI.

Proof. Consider the following (A,Z) pair:

• (A,Z) first provides an initial committee cmt0 consisting of n = 2f + 1 nodes, where f of them
are corrupt, and the remaining are alert. Then at time T , one additional node among cmt0
becomes corrupt — at this moment, f + 1 among cmt0 are corrupt, and f are still alert.

• (A,Z) constructs appropriate transactional inputs such that this will cause the committee to
switch completely at some time t∗ < T , such that the new committee, denoted cmt1, does not
intersect with cmt0. Further, (A,Z) makes sure that all nodes in cmt1 are alert all the time.
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• At time T , when the majority of cmt0 become corrupt, (A,Z) creates a simulated execution
in its head with the f + 1 corrupt cmt0 members that he has: in the simulated execution, a
different set of transactions are provided to the initial committee cmt0, such that at time t∗ the
simulated execution switches to a new committee cmt′1 consisting only of corrupt nodes. In this
way, (A,Z) can continue with the simulation after the committee switch. Further, S′1 also does
not intersect with cmt0 just like the real execution.

• (A,Z) spawns a new alert node i after time T , and delivers messages from both the simulated
and the real executions to node i.

Since the simulated execution and the real one are identically distributed, the newly joining
node i cannot output the correct log with probability more than 1

2 .

We note that the same lower bound proof holds for a deep sleeper that sleeps for a long time
and then wakes up. In other words, if we changed our model to prevent dynamic spawning of nodes,
but still allow sleeping, the same lower bound would still hold if majority posterior corruption can
happen.

E Proof Roadmap

In this section, we give an intuitive overview of the proof roadmap; highlighting key elements of
the proof without going into formal details. The full proof is provide in Sections F, G, and H.

We will describe our proof roadmap in a roughly temporal order, but note that the most non-
trivial technical steps are the following: 1) how we prove security when rotating hash functions are
used and when the adversary can potentially bias the choice of the hash function; 2) how the proof
handles posterior corruption; and 3) the simulation proof that the real-world protocol emulates the
ideal-world protocol (and particularly, how this proof breaks circularity).

Ideal-world protocol: Πideal. We first consider a simple ideal-world protocol denoted Πideal. In
this ideal-world protocol, we consider an ideal mining process where an ideal functionality Ftree

performs leader election and keeps track of all valid chains during the course of the protocol execu-
tion. We assume that there is no posterior corruption in the ideal world, and slightly imprecisely,
for any committee during the entire course of execution, the majority of its members will remain
honest (and possibly sleepy) forever.

Such an ideal-world protocol is quite similar to the ideal-world protocol of Sleepy [48] but with
a few notable differences. Most notably, our ideal protocol allows the adversary to rotate the
consensus committee over time (where as Sleepy’s ideal protocol assumes a fixed committee), as
long as for every committee, the majority remains honest forever (imprecisely speaking). We will
argue that these changes are inconsequential to the proofs for Sleepy’s ideal protocol; and thus
chain growth, chain quality, and consistency hold for our Πideal.

This ideal-world protocol Πideal is rather far removed from the real-world execution; and thus in
the remainder of the proof, we will need to gradually augment the protocol to more and more closely
capture the real-world execution. In each step, we will need to argue that the augmentation, roughly
speaking, preserves the properties we desire, including chain growth, chain quality, and consistency.

Handling adversarially biased hashes: Πbias. Our next step is to augment the ideal-world
protocol to capture the rotating hashes that happens in the real-world protocol Πsnowwhite. Notice
that in the real-world protocol, there is a new hash function for each epoch (as determined by a
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nonce that seeds the random oracle). More importantly, the adversary can bias the choice of the
new hash function.

We therefore consider a hybrid protocol called Πbias. Πbias is similarly defined as Πideal, except
that now the new ideal functionality Fbias would allow the adversary to influence the choice of the
hash function by allowing the adversary to pick a nonce that seeds the random oracle. Further, this
nonce must be chosen after the adversary chooses the public keys of the next consensus committee
to avoid an adpative key selection attack.

In our proof, we will argue that as long as each hash function is used for sufficiently long and
to elect at least Ω(κ) leaders where κ is the security parameter, despite the adversary’s influence
over the choice of the hash function, it cannot increase the probability of bad events by more than
a polynomial amount. To formalize this intuition turns out to be somewhat subtle, and requires us
to open up the stochastic analysis of the ideal protocol Πideal in a somewhat non-blackbox manner.
Specifically, Πideal’s stochastic analysis for chain growth, chain quality, and consistency works for
any long enough window. Unfortunately, we cannot adopt the same strategy in the proof of Πbias.
Instead, we constrain our analysis to each medium-sized window consisting of O(1) number of
epochs — and we argue that the bad events we care about during a medium-sized window depends
on only O(1) number of hashes. When this is true, we can apply a union bound with polynomial
security loss to argue that no bad event will happen over any medium-sized window except with
negligible probability — note that when the window is too long, such a union bound would cease
to work since the security loss can be exponential in the number of hashes the bad event depends
on. On the other hand, if the window is too short, it would not be enough to attain a negligible
failure probability. This explains why the window must be medium-sized.

Finally, we argue that if chain growth, chain quality, and consistency hold for every medium-
sized window, these properties hold for any window (as long as the window is not too small).

Handling posterior corruption: Πpunctual. So far, our proof has focused on an ideal or hybrid
execution where we assumed that no posterior corruption takes place. To handle posterior cor-
ruption, we introduce yet another intermediate hybrid protocol called Πpunctual. Πpunctual is very
similar to Πbias; however, the new ideal functionality denoted Fpunctual would simply reject any
chain that arrives too late (i.e., Fpunctual enforces punctuality).

Specifically, Fpunctual would reject a chain if the suffix of the chain that has not been observed
before has a timestamp that is too far back in the past. To argue that this modification does not
affect our desired security properties, we first argue that our earlier Πbias protocol satisfies a “no
long block withholding” lemma: honest nodes in Πbias will never accept a new chain that arrived
too late, i.e., if the suffix of the chain that has not been observed before has a timestamp too far
back in the past. Therefore, if there were no posterior corruption, then making this modification
to our ideal functionality would not have mattered to security.

Next, we argue that with this new ideal functionality Fpunctual that rejects blocks that arrive
too late, then we can actually prove the desired properties under a stronger adversarial model that
allows posterior corruption! This is achieved through a somewhat involved simulation proof where
we construct a simulator that does not have to rely on the ability to perform posterior corruption
to simulate any attack that relies on corrupting committees in the past.

Hybrid protocol with real-world block format: Πhyb. For technical reasons that are some-
what tedious but necessary, before we conduct a simulation proof, we have to introduce a hybrid
protocol Πhyb that is almost the same as Πpunctual, but in Πhyb we use the real-world block format.
We defer the reader to the full proof for details of this hybrid step.
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Real-world protocol emulates Πhyb. Finally, in a rather sophisticated simulation proof, we
will show that 1) the real-world protocol Πsnowwhite emulates the hybrid protocol Πhyb; and 2) if
the real-world (A,Z) respects the constraints expected by Πsnowwhite, then (SA, Z) respects the
constraints expected by Πhyb where SA denotes the the simulator.

This proof is somewhat tricky because it would seem at first sight that there is a circularity: in
order to reason that (SA, Z) respects Πhyb’s compliance rules, we would have to rely on that chain
growth, chain quality, and/or consistency hold in the simulated exeuction; but then to obtain those
properties in the simulated execution, we would have to rely on the fact that (SA, Z) respects
Πhyb’s compliance rules. As an example, our simulator SA needs to inform the ideal functionality

F̃punctual about the next committee and the nonce to seed the next hash function. In the real-world
protocol Πsnowwhite, the next committee and next nonce are extracted by an early enough prefix of
the current blockchain. Therefore, naturally SA would inform F̃punctual of the next committee or
next hash when it has seen a long enough chain in the real-world execution. We now have to argue
that the time at which SA would chooses the next committee or hash satisfies Πhyb’s compliance
rules — but to make such an argument, we would have to rely on properties such as chain growth
to both upper- and lower-bound the times when such choices are made by SA.

To break the circularity in the argument, we construct a self-checking simulator: whenever the
simulator is about to break Πhyb’s compliance rules, it simply aborts. Therefore, as long as the
simulation does not abort, we can rely on the desired properties such as chain growth, chain quality,
and consistency in our proof. We then argue that as long all of these properties hold till any time
t, the simulator’s internal compliance checks are not going to fail at the beginning of the time step
t+ 1.

F Proofs: Analyzing A Simplified Ideal Protocol

Proof roadmap. Instead of directly analyzing the real-world protocol which is rather complex, we
first describe some ideal protocols where nodes interact with each other, and an ideal functionality
will act as as a trusted third party and keep track of all legitimate chains. The ideal protocols are
much simpler to analyze in comparison with the real-world protocol. Further, the ideal protocols
are meant to capture of the essence of the real-world protocol in some way, such that analyzing
possible attacks in the ideal protocols will be indicative of the possible attacks in the real-world
protocol.

In this section, we start by analyzing a very simple ideal protocol denoted Πideal, and then
through a sequence of hybrid steps. In the next section, we gradually augment the ideal protocol
such that it becomes increasingly closer to the real-world protocol. At the end of this section, we
will arrive at a hybrid protocol called Πhyb, which captures ideal-world attack behavior but sends
messages that contain real-world formatted chains. Finally, in Section H, we will show that the
real-world protocol Πsnowwhite is as secure as the hybrid protocol Πhyb.

F.1 Simplified Ideal Protocol Πideal

We first define a simplified protocol Πideal parametrized with an ideal functionality Ftree — see
Figures 5 and 6. The ideal functionality Ftree allows the adversary A to choose the committee for
every time step separately, specifically, by calling Ftree.setpids(t, pidst). Ftree flips random coins to
decide whether a committee member is the elected leader for every time step. Once the A commits
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Ftree(Tepoch, p)

On init: tree := genesis

On receive setpids(t, pidst) from A:

assert no tuple of the form (t, ) has been recorded

assert pidst contain only parties that have been spawned

record (t, pidst)

On receive leader(P, t) from A or internally:

assert (t, pidst) has been recorded, and P ∈ pidst

if Γ[P, t] has not been set, let Γ[P, t] :=

{
1 with probability p

0 o.w.

return Γ[P, t]

On receive extend(chain,B) from P: let t be the current time:

assert chain ∈ tree, chain||B /∈ tree, and leader(P, t) outputs 1

append B to chain in tree, record time(chain||B) := t, and return “succ”

On receive extend(chain,B, t′) from corrupt party P∗: let t be the current time

assert chain ∈ tree, chain||B /∈ tree, leader(P∗, t′) outputs 1, and time(chain) < t′ ≤ t
append B to chain in tree, record time(chain||B) = t′, and return “succ”

On receive verify(chain) from P: return (chain ∈ tree)

Figure 5: Ideal functionality Ftree. The ideal functionality allows A to choose a committee on a
time-based granularity. A is not able to query the leader entry point for time t until it has chosen
a committee for time t.

Protocol Πideal

On receive init(chain0): record chain := chain0

On receive chain′: if |chain′| > |chain| and Ftree.verify(chain′) = 1: chain := chain′, gossip chain

Every time step:

• receive input B from Z
• if Ftree.extend(chain,B) outputs “succ”: chain := chain||B and gossip chain

• output chain to Z

Figure 6: Ideal protocol Πideal
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to a committee for a specific time step t, it is now allowed to query a function called Ftree.leader
that tells A which committee member is elected as the leader in time t (if any at all). However,
A cannot query Ftree.leader( , t) for time t function before committing to the t-th committee
(since otherwise A could adaptively choose a committee such that honest nodes never get elected
as leaders). Further, we require that the adversary A follow a somewhat static corruption model:
once it chooses a node i as a member of any committee, it is not allowed to corrupt node i any
more — since otherwise A could simply query Ftree.leader and adaptively corrupt those that have
been elected as leaders. Finally, alert and corrupt nodes can call Ftree.extend to extend known
chains with new blocks if they are the elected leader for a specific time step. Ftree keeps track of
all valid chains, such that alert nodes will call Ftree.verify to decide if any chain they receive is
valid. Alert nodes always store the longest valid chains they have received, and try to extend it.

Given some view sampled from EXECΠideal(A,Z, κ), we say that a chain ∈ Ftree(view).tree has
an Ftree-timestamp of t if Ftree(view).time(chain) = t.

Compliant (A,Z). A compliant (A,Z) pair for protocol Πideal is defined as a pair of p.p.t.
algorithms such that every view of non-zero support satisfies the following constraints:

• Sleeping. No matter how long a node sleeps till it wakes up, it is treated as a light sleeper (as
long as the node has not become corrupt during its sleep).

• Spawning. When a new, alert node spawns at time t, (A,Z) must deliver to it an initialization
message chain0 such that chain0 ∈ Ftree and chain0 is no shorter than the shortest chain of any
alert node at time t− 1. If this is the protocol start, then chain0 is simply genesis. All spawned
nodes must have distinct party identifiers.

• A-priori commitment of future committee. A must have called Ftree.setpids(t, pidst)
before t. In other words, A must choose the committee pidst before time t.

• Epoch-wise somewhat static corruption. Instead of delayed corruption/sleep, we consider
a more permissive but easier to analyze corruption model. Roughly speaking, we require that
A cannot adaptively corrupt a node after examining whether it is elected a leader in any time
step. Further, A cannot adaptively make a node sleep for the duration [t0, t1] after observing
whether the node is elected leader during [t0, t1]. We formalize this intuition below.

At any time t ≤ t′, A is allowed to issue (corrupt, i, t′) iff

– A has not called Ftree.setpids(r, pidsr) for any r such that i ∈ pidsr;

At time t ≤ t0 ≤ t1, A is allowed to issue (sleep, i, t0, t1) iff

– for every r ∈ [t0, t1], A has not called Ftree.setpids(r, pidsr) such that i ∈ pidsr.

In other words, after a node i has been selected for any committee, A can no longer corrupt it
— this also means that if a node is honest when it is chosen into the committee, it will remain
honest forever. Further, before choosing the e-th committee, A must commit to which nodes
will be asleep and exactly when during epoch e.

• Resilience. At any time step t, let cmtt(view) be the (t, pidst) committee set that A sends to
Ftree in view. It must hold that

alertt(cmtt(view), view) ∩ honest(cmtt(view), view)

corrupt(cmtt(view), view)
≥ 1 + φ
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where alertt(S, view) denotes those among S are alert at time t; honest(S, view) denotes those
among S remain honest forever; and and corrupt(S, view) denotes those among S are ever corrupt
in view.

• Number of awake nodes. Let cmtt(view) be the (t, pidst) committee set that A sends to Ftree

in view. It must hold that for every t ≤ |view|,

(alertt(cmtt(view), view) ∩ honest(cmtt(view), view)) + corrupt(cmtt(view), view) = n

In other words, at every time step t, the number of alert committee members and the number
of corrupt committee members must sum up to n.

• Admissible parameters. The parameters (p, n, φ,∆) satisfy the following constraints: np∆ <
1 and moreover, there exists a constant ψ > 0 such that

(1− 2α(∆ + 1))α > (1 + ψ)β

where α and β are derived variables whose definitions were presented in Section C.5.

Theorem 3 (Security of Πideal). For any constant ε0, ε > 0, any T0 ≥ ε0κ, Πsnowwhite satisfies
(T0, g0, g1)-chain growth, (T0, µ)-chain quality, and T0 consistency against any Πideal-compliant
p.p.t. pair (A,Z), with the following parameters:

• chain growth lower bound parameter g0 = (1− ε)γ;

• chain growth upper bound parameter g1 = (1 + ε)np; and

• chain quality parameter µ = (1− ε)(1− β
γ );

where α, β, γ are defined as in Section C.5.

Proof. Although our ideal protocol Πideal is different from the ideal protocol for Sleepy [48], we
stress that the differences are inconsequential to the induced stochastic process. We claim that the
proof follows in the same manner as that of Sleepy [48], by pointing out the differences between our
ideal protocol and that of Sleepy [48].

Recall that Sleepy [48] defines an ideal protocol where they assume that there is a fixed com-
mittee known upfront. All nodes are spawned upfront, and all corrupt and sleep instructions
are declared upfront. Our Πideal is more fine-grained: First, each time step can have a different
committee. Second, nodes can get spawned dynamically, and corrupt and sleep instructions need
not be declared at the time of spawning. However, it is important to observe that the compliance
rule for our Πideal basically stipulates that from the perspective of every committee: 1) if the adver-
sary wants a committee member to ever be corrupt, he must commit to this decision before seeing
random coins that decide if the committee member gets elected as leader; and 2) if the adversary
wants a committee member at t to be asleep at t, he also must commit to this decision before seeing
the random coins that decide if this committee member is elected leader at t.
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G Proofs: Intermediate Hybrid Protocols

G.1 Ideal Protocol with Adversarially Biased Hashes

We now consider a hybrid protocol denoted Πbias that effectively allows the adversary to bias the
hash functions. The definition of Πbias is almost identical to Πideal, except that all honest nodes’
interactions with Ftree are now replaced with Fbias.

Compliant executions. A compliant (A,Z) pair for Πbias is defined in almost the same way as
a compliant environment for Πideal, except now we additionally require that

• A must have Fbias.sethash(e, noncee) before epoch e starts. In other words, A must choose the
next hash function before the next epoch begins.

• We additionally require that Tepoch ≥ κ
γ .

A useful lemma. Henceforth we will sometimes use the terminology “hash for an epoch” to refer
to the randomness used by Fbias (or Ftree) for the epoch. Recall that the only difference between
Πbias and Πideal is that in Πbias, when Fbias picks the hash for an epoch, the adversary is allowed to
look at polynomially many choices for each epoch’s hashes, and then instruct Fbias which hash to
use. In particular, the adversary can choose the worst-case combination of different epochs’ hashes
to maximize its own advantage.

Given a view, we say that A looks at q hashes for an epoch in view, if all of its queries to
Fbias.leader for a given epoch has q distinct nonces. Further, let view←$EXEC

Πideal(A,Z, κ), and
let bad-event(view) be a random variable defined over view. We now define the same bad-event(view′)
over an execution trace view′←$EXEC

Πbias(A,Z, κ) in the most natural manner. In particular,
view′ can be thought of as a superset of the bits in view. We can define a function compress(view′)
which removes all additional bits that are in view′ but not in view, such as the Fbias.sethash
calls made by A; and moreover only the hashes chosen by A are preserved in compress(view′), the
remaining hashes are thrown away in compress(view′). In this way we can define bad-event(view′) :=
bad-event(compress(view′)).

Lemma 1 (Union bound over small number of hashes). Let bad-event(view) ∈ {0, 1} be a random
variable that depends only on the randomness for c epochs, i.e., there exists E ⊂ N where |E| = c,
such that for any Πideal-compliant p.p.t. pair (A,Z), the following holds where ~υ(view) returns
all the randomness Ftree generated for all epochs in view, and υe(view) denotes the randomness
generated by Ftree corresponding to the e-th epoch:

Pr
[
view←$EXEC

Πideal(A,Z, κ) : bad-event(view) = 1
∣∣ ~υ(view)

]
= Pr

[
view←$EXEC

Πideal(A,Z, κ) : bad-event(view) = 1
∣∣ {υe(view)}e∈E

]
We have that any p.p.t. pair Πbias-compliant p.p.t. pair (A′,Z ′) such that A′ looks at no more

than q hashes for each epoch in any view ← EXECΠbias(A′,Z ′, κ) of non-zero support, there exists
a Πideal-compliant p.p.t. pair (A,Z), the following holds:

Pr
[
view←$EXEC

Πbias(A′,Z ′, κ) : bad-event(view) = 1
]

≤ Pr
[
view←$EXEC

Πideal(A,Z, κ) : bad-event(view) = 1
]
· qc
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Fbias(Tepoch, p)

On init: tree := genesis

On receive setpids(t, pidst) from A:

assert no tuple of the form (t, ) has been recorded,

assert pidst contain only parties that have been spawned

record (t, pidst)

On receive leader(nonce,P, t) from A or internally:

assert (t, pidst) has been recorded, and P ∈ pidst

if Γ[nonce,P, t] has not been set, let Γ[nonce,P, t] :=

{
1 with probability p

0 o.w.

return Γ[nonce,P, t]

On receive sethash(e, noncee) from A: record (e, noncee)

On receive extend(chain,B) from P: let e = epoch(t) where t denotes the current time

assert chain ∈ tree, chain||B /∈ tree, and a pair (e, noncee) was recorded

assert leader(noncee,P, t) outputs 1

append B to chain in tree, record time(chain||B) = t, and return “succ”

On receive extend(chain,B, t′) from corrupt party P∗: let e = epoch(t′):

assert chain ∈ tree, and chain||B /∈ tree,

assert a pair (e, noncee) was recorded, and leader(noncee,P∗, t′) outputs 1

assert time(chain) < t′ ≤ t where t is current time

append B to chain in tree, record time(chain||B) = t′, and return “succ”

On receive verify(chain) from P: return (chain ∈ tree)

Figure 7: Ideal functionality Fbias, allowing adversarially biased hash functions.

Proof. By a straightforward union bound. More specifically, for any p.p.t. pair Πbias-compliant
p.p.t. pair (A′,Z ′) that attacks Πbias, we can construct a Πideal-compliant p.p.t. pair (A,Z) and
an execution of Πideal, where (A,Z) is allowed to choose the random bits of Ftree for epochs not
in E, i.e., epochs that bad-event does not depend on; however for epochs in E, Ftree gets to choose
the randomness.

(A,Z) calls (A′,Z ′) as a blackbox. Whenever (A′,Z ′) makes leader queries on a future time
step t that is not in any of the epochs in E, (A,Z) generates the answer at random. Whenever
(A′,Z ′) calls sethash for an epoch in E, (A,Z) asks Ftree to use the same random bits as what
(A′,Z ′) has chosen for the corresponding epoch. Whenever (A′,Z ′) makes leader queries on a
future time step t that is in an epoch in E, and the query contains a nonce that has not been seen, at
this moment, (A,Z) flips a random coin with probability 1

q and guesses whether the nonce queried

will be chosen by (A′,Z ′). If the coin turns up heads, (A,Z) returns answers to (A′,Z ′) consistent
with its Ftree. Otherwise, (A,Z) returns fresh random answers. If the choice later turns out to be
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wrong, (A,Z) simply aborts. If eventually (A′,Z ′) calls sethash for a challenge nonce it has never
queried (for an epoch in E), for any future leader query related to this challenge nonce, (A,Z)
returns answers consistent with its own Ftree. Finally, whatever other actions (A′,Z ′) outputs,
(A,Z) replays it in the execution of Πideal. It is not hard to see that (A,Z) will not abort with 1

qc

probability. If (A,Z) does not abort, then bad-event happens in the execution of Πbias iff it happens
in the execution of Πideal. Due to the definition of conditional independence, the probability of bad-
event happening in Πideal does not depend on the randomness of any other epoch not in E (recall
that we had (A,Z) fix the randomness of Ftree for any epoch not in E).

Theorem 4 (Security of Πbias). Πbias satisfies T0-consistency, (T0, µ)-chain quality, and (T0, g0, g1)-
chain growth against any Πbias-compliant (A,Z) for the same parameters T0, µ, g0, g1 as defined in
Theorem 3.

Proof. We now prove the above Theorem 4. Due to Lemma 1, it suffices to show that every bad
event we care about bounding is a subset of the union of poly(κ) bad events each of which depends
only on a constant number of hashes. Recall that the proof of Theorem 3 essentially follows the
proof in the Sleepy paper [48] — as mentioned earlier even though our ideal protocol is different
from that of Sleepy [48], the differences are inconsequential and does not alter the induced stochastic
process.

In the remainder of the proof, we will revisit Sleepy’s proof [48]. Instead of presenting the full
proof again from scratch, we focus on pointing out how to express every bad event as the union of
polynomially many bad events each of which depends only on a constant number of hashes.

Chain growth lower bound. It is easy to see that the consistent length property still holds with
our new Πbias.

We now prove chain growth lower bound. We will show that and every window of medium
length, i.e., for every T0

g0
≤ t0 ≤ 2T0

g0
, the chain growth lower bound holds for the parameter t0

over views sampled from EXECΠbias(A,Z, κ). It is not hard to see that if the chain growth lower
bound holds for every window of medium length T0

g0
≤ t0 ≤ 2T0

g0
, then it also holds for every T ≥ T0

and every t0 ≥ T
g0

, since every longer window can be broken up into disjoint windows of medium
lengths, and we simply have to take a union bound over these windows.

To complete the proof, it suffices to observe the following:

• In Sleepy’s chain growth lower bound proof [48] which in turn follows that of Pass et al. [45], for
any window [t, t′], conditioned on any execution trace viewt up till time t, the minimum chain
growth during the window [t, t′] is upper bounded by a random variable that depends only on
the randomness generated by Ftree corresponding to the time window [t, t′], but does not depend
on any other random bits generated by Ftree. Our chain growth lower bound proof then goes to
show that conditioned on any viewt, the minimum chain growth during the window [t, t′] has to
be large. Note that the minimum chain growth during the window [t, t′] may depend on random
bits before this window, but the proof lower bounds the minimum chain growth during [t, t′] with
another (implicitly defined) random variable that does not depend on any randomness before t.

• Since Tepoch ≥ κ
γ , it holds that every window of medium length (where medium length is as

defined above) involves only O(1) number of epochs.

However, as mentioned earlier, since the chain growth lower bound for a medium sized window
is lower bounded by a random variable that depends only on c = O(1) hashes, by Lemma 1, chain
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growth lower bound holds except with negligible probability over view←$EXEC
Πbias(A,Z, κ) for any

medium sized window.

Chain quality. We examine the chain quality proof of Sleepy [48]. Below we use the same notations
as in Sleepy [48].

If t ≤ 2Tepoch is small, then the random variable Q(view)[r : r + t] depends on only c = O(1)
number of hashes. Similarly, the random variable A(view)[r : r + t] also depends only on c = O(1)
number of hashes for t ≤ 2Tepoch.

Applying Lemma 1, for fixed [r, r+ t] such that t ≤ 2Tepoch is small, we have that for any ε > 0,
any p.p.t. pair (A,Z) compliant for Πbias,

Pr
[
view←$EXEC

Πbias(A,Z, κ) : Q(view)[r : r + t] > (1 + ε)np · t
]
< negl(npt) · q(κ)c

and
Pr
[
view←$EXEC

Πbias(A,Z, κ) : A(view)[r : r + t] > (1 + ε)βt
]
< negl(βt) · q(κ)c

where q(κ) denotes the maximum number of hash queries made by A.
Now, taking a union bound, we can upper bound Qt(view) and At(view) for any t ≤ 2Tepoch —

see the Sleepy work [48] for definitions of Qt and At. Specifically, for any t ≤ 2Tepoch, any ε > 0,
any Πbias-compliant p.p.t. pair (A,Z), there exists a negligible function negl(·) and a polynomial
function poly(·) such that for all κ,

Pr
[
view←$EXEC

Πbias(A,Z, κ) : Qt(view) > (1 + ε)np · t
]
< negl(npt) · poly(κ)

Pr
[
view←$EXEC

Πbias(A,Z, κ) : At(view) > (1 + ε)βt
]
< negl(βt) · poly(κ)

The above proved bounds for Qt(view) and At(view) for small values of t, assuming t ≤ 2Tepoch.
We now consider large windows. Similarly as before, we can break up large windows into medium-
sized windows of lengths [Tepoch, 2Tepoch]. By taking a union bound over all windows, we easily get
the following fact.

Fact 1. For any t > 0, any ε > 0, any p.p.t. pair (A,Z) compliant for Πbias, there exists a negligible
function negl(·) and a polynomial poly(·) such that for all κ,

Pr
[
view←$EXEC

Πbias(A,Z, κ) : Qt(view) > (1 + ε)np · t
]
< negl(np ·min(t, Tepoch)) · poly(κ)

Pr
[
view←$EXEC

Πbias(A,Z, κ) : At(view) > (1 + ε)βt
]
< negl(β ·min(t, Tepoch)) · poly(κ)

The remainder of the chain quality proof can then be completed following exactly the same
recipe as Sleepy [48], plugging in our new Fact 1 to bound the random variables At and Qt.

Consistency. In Sleepy’s consistency proof [48], they define a view to be bad if there exists

t0 ≤ t1 ≤ |view| where t1 − t0 ≥
√
κ
β , such that

A(view)[t0 : t1] ≥ chain(view)[t0 : t1]

They show that there are negl(κ) fraction of such bad views — note that the same holds in our case,
simply plugging in our new Fact 1. Conditioned on views that are not bad, the Sleepy work [48] then
argue that for every window of length 2κ

β , there has to exist a pivot point except with negligible
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Fpunctual(Tepoch, p,W )

Almost the same as Fbias, except with the following change highlighted in blue:

On receive extend(chain,B, t′) from corrupt party P∗: let e = epoch(t′):

assert chain ∈ tree, and chain||B /∈ tree

assert a pair (e, noncee) was recorded, and leader(noncee,P∗, t′) outputs 1

assert time(chain) < t′ ≤ t where t is current time

assert t′ ≥ t−W
append B to chain in tree, record time(chain||B) = t′, and return “succ”

Figure 8: Ideal functionality Fpunctual. Fpunctual enforces punctuality, and rejects stale blocks
that arrive too late. Blue denotes the difference from Fbias.

probability. Note that for any window of length 2κ
β , and ignoring views that are not bad, the bad

event that a pivot point does not exist within the window depends on randomness that are at most
∆ far from boundaries of the window — this means that the bad event depends on O(1) number
of hashes given that Tepoch ≥ κ

γ . Now by Lemma 1, the bad event that there does not exist a pivot

within a window of length 2κ
β is negl(κ). The remainder of the proof follows in the same way as

Sleepy [48].

Chain growth upper bound. First, given that we have already proved chain growth lower bound
and a bound for the random variable At, we can prove a “no long block withholding” lemma in
exactly the same way as Sleepy [48], where for a withholding time of εt, the failure probability is
replaced with negl(min(β · min(t, Tepoch))) · poly(κ) instead of negl(βt)poly(κ). For completeness,
we state this lemma below since it will be used later in the proof as well.

Let withhold-time(view) be the longest number of time steps t such that in view: 1) at some
time in view, the adversary mines a chain with purported Ftree-timestamp r; and 2) chain is first
accepted by honest nodes at time r + t in view.

Lemma 2 (No long block withholding). For every Πbias-compliant p.p.t. (A,Z) pair, for every
constant 0 < ε < 1, there exists a negligible function negl(·) such that

Pr
[
view←$EXEC

Πbias(A,Z, κ) : withhold-time(view) > εt
]
≤ negl(βmin(t, Tepoch)) · poly(κ)

We can now prove chain growth upper bound exactly in the same way as Sleepy [48], relying on
our bound on Qt as well as the new “no long block withholding” lemma.

G.2 Allowing Posterior Corruption

The “no long block withholding” lemma (see Lemma 2) states that if there is a chain ∈ Fpunctual.tree
with a sufficiently old timestamp, then if an honest node never accepted chain as its prefix earlier, it
is not going to ever accept chain as its prefix. This implies that even if the adversary A successfully
asks Fpunctual to extend a chain with a sufficiently stale timestamp, this action is useless because
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A cannot ever persuade any honest node to ever accept this chain (or any longer chain containing
it). In this section, we will augment our ideal functionality to simply reject A’s requests to extend
a chain with a sufficiently stale timestamp — see Fpunctual in Figure 8. It is not hard to show that
this modification does not affect the security of our ideal protocol.

Protocol Πpunctual. We define Πpunctual in exactly the same manner as Πbias, except that calls to
Fbias are now replaced with calls to Fpunctual.

Compliant (A,Z). We now consider a model where Z can corrupt committee members sufficiently
ancient in the past, as long as Z has not committed these nodes to serve on committees in recent,
present, or future epochs. We show that because Fpunctual rejects blocks with stale timestamps any-
way, corruption into the past does not allow the adversary to do anything interesting additionally.
As a result, we prove that Πpunctual is actually secure in this stronger corruption model.

More formally, we say that a p.p.t. pair (A,Z) is compliant for Πpunctual iff the following holds:

• A-priori commitment of committees and hashes. Same as Πbias.

• Spawning and sleeping. Same as the compliance rules for Πbias.

• Corruption model. At time t ≤ t′, A is allowed to issue (corrupt, i, t′) iff

– there does not exist r ≥ t′ − W such that A has called Fpunctual.setpids(r, pidsr) where
i ∈ pidsr;

At time t ≤ t0 ≤ t1, A is allowed to issue (sleep, i, t0, t1) if

– for every r ∈ [t0, t1], A has not called Fpunctual.setpids(r, pidsr) such that i ∈ pidsr.

In other words, A can only ask a node i to become corrupt at time t′, if A has not committed
i to be on a committee any time at t′ −W or later. However, it is possible that after A asks
a node i to become corrupt at a future time, A can then commit it to some committee. It is
also possible for A to ask a node to be corrupt at a future time if the node served on some very
old committee, but has not been committed to any committee since. Note that this “posterior
corruption” ability was not allowed for our earlier corruption model (i.e., (A,Z) compliant for
Πbias).

Further, similar as before, before A commits to a committee for time t, A must commit to which
set of honest nodes will become asleep at time t.

• Resilience. For any time step t, let cmtt(view) be the (t, pidst) committee set that A sends to
Fpunctual in view, let r = min(t+W, |view|), it must hold that

alertt(cmtt(view), view) ∩ honestr(cmtt(view), view)

corruptr(cmtt(view), view)
≥ 1 + φ

where alerts(S, view), honests(S, view), and corrupts(S, view) denote those among S are alert,
honest, and corrupt at time s respectively.

Notice that our new resilience rule is weaker now, it only requires at any time t, alert committee
members who remain honest for W more steps outnumber committee members who become
corrupt by t+W . Before in Πideal and Πbias, we essentially required W to be infinity.
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• Number of awake nodes. Let cmtt(view) be the (t, pidst) committee set that A sends to
Fpunctual in view. It holds that for every t ≤ |view|, let r = min(t+W, |view|),

(alertt(cmtt(view), view) ∩ honestr(cmtt(view), view)) + corruptr(cmtt(view), view) = n

• Admissible parameters. Same as in Πbias with the additional requirement that W ≥ κ
γ .

Theorem 5 (Security of Πpunctual). Πpunctual satisfies T0-consistency, (T0, µ)-chain quality, and
(T0, g0, g1)-chain growth against any Πpunctual-compliant (A,Z) for the same parameters T0, µ, g0, g1

as defined in Theorem 3.

Proof. First, it is not hard to see that Πpunctual satisfies consistency, µ-chain quality, and (g0, g1)-
chain growth for a weaker corruption model, i.e., against any any p.p.t. pair (A,Z) compliant w.r.t.
Πbias (rather than w.r.t. Πpunctual). Recall that a (A,Z) pair compliant w.r.t. Πbias is not allowed
posterior corruption. To see this, consider a compliant execution of Πbias. Due to the “no long
block withholding” lemma, a block with an old timestamp will never be first accepted by honest
nodes with 1 − negl(βW ) = 1 − negl(βκγ ) = 1 − negl(κ) probability, where W denotes how old the
block is.

Below we simply ignore the negligible fraction of bad views where the “no long block withhold-
ing” lemma fails. This means that in any good view, if A tries to call Fbias.extend(chain,B, t′) at
time t, where t′ < t −W and suppose that chain||B is not already in Fbias, then no honest will
later ever call Fbias.verify(chain′) where chain||B ≺ chain′. For this reason, it is equivalent if Fbias

simply ignored such adversarial requests to Fbias.extend( , , t′) at time t, where t′ < t−W . And
the only difference between Πbias and Πpunctual is precisely this: in Πpunctual, Fpunctual ignores such
adversarial requests to extend a chain with very old timestamps.

Let allchainst(view) denote the set that includes an ordered list of the output chains of all nodes
alert at time t. To complete the proof, it suffices to show the following lemma.

Lemma 3 (Posterior corruption does not matter). For any Πpunctual-compliant p.p.t. (A,Z), there
exists Πbias-compliant p.p.t. (A′,Z ′), and a function somechainst(view) that selects an appropriate
subset of alert nodes’ output chains in view and at time t, such that the following distributions are
identical:

view←$EXEC
Πpunctual(A,Z, κ) : {allchainst(view)}t∈[|view|] and

view′←$EXEC
Πpunctual(A′,Z ′, κ) : {somechainst(view′)}t∈[|view′|]

Proof. (A′,Z ′) runs (A,Z) in a sandbox and intercepts (A,Z)’s communications with outside. At
a high level, whenever (A,Z) wants to corrupt a node, (A′,Z ′) will spawn a sybil of the node and
corrupt the sybil instead. This will allow (A′,Z ′) to respect Πbias’s compliance rules and yet be
able to emulate (A,Z)’s attack. As pointed out earlier, if Πpunctual is run with such a weaker, Πbias-
compliant attacker, then the execution respects all the desired properties including chain growth,
chain quality, and consistency. Since (A′,Z ′) can emulate attacks by (A,Z), we can then infer that
Πpunctual retains these properties in the presence of a stronger, Πpunctual-compliant attacker too.

• If at some time t ≤ t′, A issues (corrupt, i, t′): if A has issued (corrupt, i, r) for r ≤ t′ earlier,
this request is ignored. Otherwise, i must not been chosen as a committee member for [t′−W,∞]
since (A,Z) is Πpunctual-compliant. Now Z ′ spawns a sybil i∗ immediately (if no sybil of i has
been spawned earlier) and provides it with i’s internal state as input. Let i∗ be the sybil of
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i spawned either at the current time t or earlier. Further, A′ issues (corrupt, i∗, t′). (A′,Z ′)
remembers (or updates) the mapping sybil[i] = (i∗, t′ −W ). We also say that t′ −W is sybil
node i∗’s effective time. Intuitively, i∗ will act as a defunct copy of i before its effective time;
and afterwards i∗ will act on behalf of i and then i will effectively become the defunct copy.

• WheneverA calls Fpunctual.setpids(t, pidst) and this is the first timeA calls Fpunctual.setpids(t, ),
(A′,Z ′) will inspect pidst. If i ∈ pidst and some tuple sybil[i] = (i∗, s) has been stored for some
s ≤ t, replace node i’s occurrence in pidst with i∗.

Whenever A calls Fpunctual.extend( , , ) or Fpunctual.verify( ) acting as node i at time t,
(A′,Z ′) finds the stored sybil identity i∗ for i — note that such a sybil identity i∗ has to exist
and i∗ has to be already corrupt at t if A is acting as i at t. Now A′ rewrites the call acting as
i∗ instead.

Similarly, whenever A calls Fpunctual.leader( , i, t), (A′,Z ′) makes the following check: if i has a
stored sybil identity i∗ and moreover i∗ is effective at time t, then A′ rewrites the call replacing
i with i∗.

• Whenever A or Z sends a message to an honest node i, A′ or Z ′ sends a duplicate of this message
to i’s sybil i∗ if one exists.

• Whenever a sybil node i∗ sends a message to A or Z at time t (this means that the sybil node
i∗ has not become corrupt yet, and is still honest), simply drop the message.

• For every other message sent by (A,Z), (A′,Z ′) directly passes through them.

If (A,Z) is Πpunctual-compliant, and let (A′,Z ′) be defined as above, then the following facts
must hold: in any view′ ← EXECΠpunctual(A′,Z ′, κ) of non-zero support, for any pair of nodes (i, i∗)
where i∗ is i’s sybil whose effective time is r, i∗ is never on any committee for any t ≤ r; and i is never
on any committee for any t > r. Further, for every sybil i∗ in view′, A′ has to issue (corrupt, i∗, )
instructions prior to any Fpunctual.setpids calls that commit i∗ to being a committee member.

Claim 2. If (A,Z) is Πpunctual-compliant, then (A′,Z ′) must be Πbias-compliant.

Proof. • Corruption model. Observe that a Πpunctual-compliant A will never issue (corrupt, i, t′)
at time t ≤ t′, if node i has already been committed to as a committee member for time t′ −W
of after. If A issues (corrupt, i, t′) at time t ≤ t′ for some node i that was on a committee before
t′−W but has not been committed to as a committee member since, then (A′,Z ′) captures this
request and rewrites it with a spawn and a corrupt request for a different node i∗. In this way,
it is not hard to see that A′ will never issue (corrupt, i, t′) at time t ≤ t′ if node i has ever been
committed to as any (past or future) committee member by time t.

• Resilience and correct parametrization. For any fixed sequence of random bits ~υ consumed by
all ITMs in the execution, we consider the pair of execution traces defined by ~υ, denoted view(~υ)
and view′(~υ) in the support of EXECΠpunctual(A,Z, κ) and EXECΠpunctual(A′,Z ′, κ) respectively.

It is not hard to see that for every pair view(~υ) and view′(~υ) defined by randomness ~υ,

∀t : alertt(cmtt(view′), view′) = alertt(cmtt(view), view)
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We now show that

∀t : corrupt(cmtt(view′), view′) = corruptmin(t+W,|view|)(cmtt(view), view)

which would also imply

∀t : honest(cmtt(view′), view′) = honestmin(t+W,|view|)(cmtt(view), view)

≤: For every node j that is on the committee of time t in view′ and is ever corrupt, j must be
the sybil of some node henceforth denoted i. Clearly i must be on the committee for time
t in view, therefore it suffices to show that i is corrupt by time min(t + W, |view|) in view.
Notice that if j on the committee at time t and is ever corrupt in view′, let r denote the time
that j becomes corrupt. It must be the case that (corrupt, j, r) is issued and afterwards A′
commits j to being a committee member at t. We now show r ≤ t + W . Notice that if A′
issues (corrupt, j, r), then j must be a sybil node whose effective time starts at r −W —
before r −W even though j has been spawned, it does not do anything interesting such as
being added to committees. Therefore t ≥ r −W .

To complete the proof, it is not hard to observe that (corrupt, i, r) must be in view and
further in view A must commit i to being a committee member at t.

≥: For every i on the committee at t in view and is ever corrupt in [t,min(t+W, |view|), it must
be the case that in view, A issues (corrupt, i, r) for some r ≤ min(t + W, |view|) first, and
then A commits i to the t-th committee. Therefore, in the corresponding view′, A′ will issue
(corrupt, i∗, r) where i∗ is the sybil of i in view′. Further, A′ will commit i∗ to the t-th
committee.

It is easy to verify that (A′,Z ′) satisfies the remaining compliance rules.

We now consider the most natural selection function somechains that selects a subset of alert
nodes’ output chains at every time t given view′ ← EXECΠpunctual(A′,Z ′, κ). Specifically, for each
pair (i, i∗) such that both are alert at time t, somechainst would select i∗ at time t if t is at or after
i∗’s effective time. Otherwise, somechainst would select i.

Claim 3. Under the aforementioned selection function somechainst, for every pair view(~υ) and
view′(~υ) defined by randomness ~υ,

{allchainst(view)}t∈[|view|] = {somechainst(view′)}t∈[|view′|]

Proof. To see this, notice that all (A′,Z ′) does is renaming nodes — therefore it is not hard to see
that the only way that the two can differ is if at some time t ≥ t′, A calls Fpunctual.extend( , , t′)
acting as some corrupt node i, such that i is leader for t′ in view, but i is no longer effective at time
t in view′ because its sybil node i∗ has taken over.

Now suppose that at t ≥ t′, A calls Fpunctual.extend( , , t′) acting as some corrupt node i.
There are two cases:

• t′ < t −W : In this case, Fpunctual would have ignored the request in view since the timestamp
t′ is too old.

• t′ ≥ t −W : Since we know that in view, i is corrupt at time t, it has to be the case that i∗ is
already effective at time t′.
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Protocol Πhyb

On input init() from Z:

let pk := Gsign.gen(), output pk to Z, wait to receive chain, record chain and pk

On receive chain ′:

assert |chain ′| > |chain| and F̃punctual.verify(chain ′) = 1

chain := chain ′ and gossip chain

Every time step:

• receive input transactions(txs) from Z
• pick random fresh nonce, and let t be the current time

• let σ := Gsign.sign(pk, chain[−1].h, txs, t, nonce), h′ := d(chain[−1].h, txs, t, nonce, pk, σ)

• let B := (chain[−1].h, txs, t, nonce, pk, σ, h′)

• if F̃punctual.extend(chain, B) outputs “succ”: let chain := chain||B and gossip chain

• output extract(chain) to Z

F̃punctual: Same as Fpunctual except that the extend( , B, t′) entry point now additionally asserts
that t′ = B.time

Figure 9: A hybrid protocol carrying real-world blocks.

G.3 Hybrid Protocol: Ideal Protocol with Real-World Blocks

We are almost ready to show that our real-world protocol emulates the ideal-world one which we
know how to analyze. But before that, we have to go through one more intermediate step that
correct the protocol’s interfaces to the environment Z such that the interfaces will type check by
the real-world protocol’s type definitions.

In this section, we will define a hybrid protocol Πhyb that carries real-world interfaces to the
environment Z — see Figure 9. We will show that all the properties we care about (including
consistency, chain growth, and chain quality) hold for Πhyb in exactly the same way they hold for
Πpunctual. Since Πhyb carries real-world interfaces, we can later show that our real-world protocol
Πsnowwhite emulates Πhyb; and therefore the real-world protocol satisfies all these properties as well.

Compliant (A,Z). We say that (A,Z) Πhyb-compliant if the following holds for any view with
non-zero support:

• Initialization. At the start of the execution, the following happens. First, Z can spawn a set of
either honest or corrupt nodes. Z learns the honest nodes’ public keys after calling their init()
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procedure. Next, A provides the inputs {genesis} to all honest nodes. At this point, protocol
execution starts.

• Sleeping. All sleepers are treated as light sleepers. Upon waking, all pending messages it
should have received but did not receive are delivered, plus adversarially inserted messages.

• Spawning. When a new, alert node spawns at time t, (A,Z) must deliver to it an initialization
message chain0 such that chain0 ∈ Fpunctual and chain0 is no shorter than the shortest chain of
any alert node at time t− 1.

• A-prior commitment. A must have called Fpunctual.setpids(t, pidst) before t. Similarly, A
must have called Fpunctual.sethash(e, pidse) before start(e).

• Corruption model, resilience, number of awake nodes, admissible parameters. Same
as in Πpunctual.

Theorem 6 (Security of Πhyb). Πhyb satisfies T0-consistency, (T0, µ)-chain quality, and (T0, g0, g1)-
chain growth against any Πhyb-compliant (A,Z) for the same parameters T0, µ, g0, g1 as defined in
Theorem 3.

Proof. Follows in a straightforward manner from the security of Πpunctual.

Remark: Agreement of F̃punctual timestamp and blockchain timestamp. We note that

F̃punctual checks that the claimed timestamp agrees with the timestamp in the block B when
an adversary calls extend. Observe also that alert nodes always use truthful timestamps when
calling F̃punctual.extend. Due to this reason, henceforth, for any chain ∈ F̃punctual, we may use its

F̃punctual-timestamp and chain[−1].time interchangeably.

G.4 Timestamp Freshness Lemma

We prove a useful property about timestamp freshness in any alert node’s chain. This will be useful
in the next section when we prove that the real-world protocol emulates the hybrid-world. Roughly
speaking, the timestamp freshness property says that in any alert node’s chain, the timestamp of
any block cannot be too early relative to the position of the block in the chain. This will later be
useful in Section H in proving that in a simulated execution, certain good events (whose occurrence
depends on the existence of large timestamps in alert nodes’ chains) happen early enough.

Formally, we define a property freshtime`,r(view) = 1 iff the following holds for view: at any
time t, for any node i alert at t and suppose |chainti(view)| ≥ `, then chainti(view)[−`].time > t− r.

Claim 4 (Freshness of timestamp in stablized chain). For any Πhyb-compliant p.p.t. pair (A,Z),
there exists a negligible function negl(·) such that for every κ, every ε, ε0 > 0, every ` > 0, let
r = `+εκ

g0
where g0 = (1− ε0)γ, it holds that

Pr
[
view←$EXEC

Πhyb(A,Z, κ) : freshtime`,r(view) = 1
]
≥ 1− negl(κ)
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Proof. Below we ignore the negligible fraction of views where bad events such as failure of chain
quality or chain growth happen.

If t < r, the claim trivially holds. We focus on proving the case where t ≥ r. In this case, by
chain growth, every node alert at time t must have chain length at least `+ εκ. By chain quality,
in chainti[−(` + εκ) : −`] there must be a block mined by node j honest at time t′ in view — by
definition this means that node j has chain length at least |chainti| − (`+ εκ) at time t′.

By chain growth, we have that at most t − t′ ≤ `+εκ
g0

= r time has elapsed between t′ and t.
Since honest blocks contain true timestamps reflecting when the block is mined, there exists a block
in B ∈ chainti[−`+ εκ : −`] such that B.time ≥ t− r. The rest of the proof is obvious by observing
that timestamps must be strictly increasing in chainti assuming i is alert at t.

Remark. Henceforth, whenever we apply Claim 4 in our proofs, we will assume that g0 = (1−ε0)γ
for an ε0 that is appropriately small — it is not hard to identify such a ε0 for all proofs that rely
on Claim 4 henceforth — we therefore often omit spelling out g0 as g0 = (1− ε0)γ for simplity.

H Proofs: Real World is as Secure as the Hybrid World

H.1 Theorem Statement

Theorem 7 (Πsnowwhite emulates Πhyb while preserving compliance). For any real-world p.p.t.
adversary A for Πsnowwhite, there exists a p.p.t. adversary (also called the simulator) S for Πhyb,
such that for any p.p.t. Z satisfying the condition that (A,Z) is Πsnowwhite-compliant, we have that

• (S,Z) is Πhyb-compliant; and

• EXECΠsnowwhite(A,Z, κ)
c≡ EXECΠhyb(S,Z, κ)

In the above, both Πsnowwhite and Πhyb (and specifically F̃punctual) are instantiated with “matching”
parameters. More specifically, the following must be hold:

• Both Πsnowwhite and Πhyb (or more specifically F̃punctual) are instantiated with the same (p, Tepoch).

• Suppose W is the posterior corruption parameter respected by the real-world adversary A, it
holds that in protocol Πhyb, F̃punctual is instantiated with the parameter W .

In this section, we prove the above Theorem 7.

H.2 Simulator Construction

We first describe the construction of S, which interacts in a blackbox manner with A.

Intended invariants by construction. By construction, the simulator is meant to maintain the
following invariants:

1. S keeps performing internal checks in every time step, and aborts whenever (S,Z) is about to
violate Πhyb’s compliance rules. In this way, as long as the simulation has not aborted, (S,Z)
is by construction Πhyb-compliant, and therefore we can use the security properties of Πhyb to
reason about the simulated execution. Later, we will also show aborts will not happen except
with negligible probability.
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AddtoTree(chain)

• Computes ` such that chain[: ` − 1] is the longest prefix of chain such that F̃punctual.verify
(chain[: `− 1]) = 1.

• If any block in chain[` :] is signed by a public key that does not correspond to a corrupt node,
abort outputting signature-failure.

• Else, for each `′ ∈ [`, |chain|]: call F̃punctual.extend(chain[: `′ − 1], chain[`′], chain[`′].time)
acting as the corrupt node that corresponds to chain[`′].pk at time chain[`′].time.

• If F̃punctual.verify(chain) does not return true at this point, abort outputting extend-failure.

Figure 10: AddtoTree subroutine internally called by S.

2. S always makes sure that any chain sent to alert nodes that would have been accepted by alert
nodes in the real world must be in F̃punctual. In other words, if A tries to send a chain to an alert
node i, S will first emulate node i’s Πsnowwhite-behavior to see if node i might have accepted
chain in the real-world protocol Πsnowwhite. If so, then S will make sure that chain is indeed in
F̃punctual before forwarding chain to i. This may mean that S will need to call F̃punctual.extend
to insert new chains before forwarding chain to i.

In this way, an essential step in showing the indistinguishability of the real-world and simulated
executions is to argue that S can always succeed in adding a chain to F̃punctual if chain would
have been accepted in the real-world by alert nodes (see Section H.4).

Simulator description. For convenience, we introduce the syntactic sugar

F̃punctual.setpids(e, pidse)

to allow S to set the committee for each time step t that is in epoch e, all with the same
committee pidse. Clearly F̃punctual.setpids(e, pidse) can be implemented by multiple calls to

F̃punctual.setpids(t, pidst).
Our simulator S relies on a parameter ε∗ > 0. Our proof will hold as long as ε∗ is sufficiently

small, e.g., less than 1
4 . Henceforth without loss of generality, the reader can assume that ε∗ = 1

4 .
The security failure probability will be related to ε∗, e.g., in the form of negl(poly(ε∗, κ)).

• Whenever a party calls Gsign.gen, the adversary is notified of the pair (P, pk). It stores this
party identifier and public key mapping. If an honest node’s public key ever collides with a key
that is already stored in the mapping, abort outputting duplicate-key-failure.

• Since S sees all messages sent to and from honest nodes, S can simulate the internal longest
chain kept by all honest nodes in the most natural manner. Henceforth we assume that for any
t, any i honest at time t, S knows chainti.

• Whenever A asks hash queries: if this query has been seen before, S returns the same answer
as before.

55



Else, suppose that the query is of the form Hnonce(pk, t), let e = epoch(t): if S has not yet
committed to F̃punctual the e-th committee, then S simply generates a random number of ap-

propriate length, and returns it to A. Else if S has committed to F̃punctual the e-th committee,

then S generates a random number that agrees with F̃punctual. Note that due to our simulator
description later, if S has committed to the e-th committee, then there is a spawned party
(either honest or corrupt) for each public keys in the e-th committee, and the simulator S must
have this mapping stored.

More specifically, S first looks up the party identifier P that corresponds to pk. If such a party
identifier is not found, S samples a random number of appropriate length and returns it to A.
Else, S calls b = F̃punctual.leader(nonce,P, t). If b = 1, it rejection samples an h until h < Dp,
and then returns h. Else, it it rejection samples an h until h ≥ Dp, and then returns h.

• Whenever A sends a protocol message chain to an honest party i, the simulator S checks the
validity of chain simulating node i running the real-world protocol’s checks — here the hash
function H is implemented with S’s own table. Specifically, S answers its own H queries in the
same way that it answers A’s H queries. If these real-world checks pass, the simulator S calls
AddtoTree(chain) as described in Figure 10. If the call does not abort outputting signature-failure
or extend-failure, S forwards chain to node i.

If the real-world checks fail, S drops the message chain and does not forward chain to node i
— note that this may cause S to violate the ∆ network delivery requirement. Therefore, as we
describe later, S will perform internal consistency checks, and if it ever violates the ∆ network
delivery requirement, it simply aborts outputting ∆-failure.

• Whenever A sends an initialization message {chaini}i∈L to an honest party i that has just
spawned or waken up from deep sleep: the simulator S runs the real-world algorithm to com-
pute an initial chain — as before, here the hash H is implemented by S itself. S then calls
AddtoTree(chain), and if the call did not abort with either signature-failure or extend-failure, S
sends chain to node i.

• At the beginning of every time step t, the simulator S performs the following verification. First,
if S has not called F̃punctual.setpids(e, ) or F̃punctual.sethash(e, ) where e := epoch(t), abort
outputting late-failure. The simulator additionally checks the resilience, number of awake nodes,
and admissible parameter conditions for time step t, and if the checks fail, abort outputting
param-failure.

For each honest node i, the simulator finds chainti henceforth denoted chaini for short. Recall
that the simulator keeps track of the longest chain each honest node has.

– Consistency checks. For every node i alert at time t, S computes pksi := elect cmtt(chaini). If
both i and j are alert at t but pksi 6= pksj abort outputting consistency-failure. If pksi does not

agree with the committee at t which S previously committed to F̃punctual, abort outputting
consistency-failure. Here consistency is defined by S’s internal public key to party identifier
mapping.

For every node i alert at time t, S computes noncei := elect ht(chaini). If noncei does not
agree with what S previously committed to F̃punctual, abort outputting consistency-failure.
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– Choose next committee or hash when necessary. Henceforth let chain := chainti, note that S
checks all alert nodes’ chains to see if it needs to choose the next committee or hash.

If |chain| ≥ ε∗κ + 2, S will check to see if it needs to commit to the next epoch’s committee
and/or hash. Let start(e) := e · Tepoch denote the start of epoch e ∈ N.

For any e ∈ N, if there exists consecutive blocks (B0, B1) ∈ chain[: −ε∗κ] such that B1.time +
2ω > start(e) but B0.time + 2ω ≤ start(e), S calls

F̃punctual.setpids(e, extractpids(chain0)) where chain0 := chain[: index(B0)]

if it has not already called F̃punctual.setpids(e, ) earlier. Here extractpids(chain0) first calls
pks∗ := extractpks(chain0) and then maps the public keys to their party identifiers in the
following way:

1. If S has recorded (P, pk) then map pk to P. Recall that S should have recorded such a
mapping for all honest nodes’ public keys.

2. If S has not recorded a mapping for pk, spawn a corrupt node with party identifier j, and
map pk to j. Recall that our execution model allows S to spawn corrupt nodes without Z’s
knowledge. Further S stores the mapping from the party identifier j to the public key pk.

Similarly, for any e ∈ N, if there exists consecutive blocks (B0, B1) ≺ chain[: −ε∗κ] such that
B1.time+ω > start(e) butB0.time+ω ≤ start(e), S calls F̃punctual.sethash(e, extractnonce(chain0))

where chain0 := chain[: index(B0)] if it has not already called F̃punctual.sethash(e, ) earlier.

• At the end of every time step t, S performs a network delivery check. If it has ever received a
message from some alert node by t−∆, but the message did not get delivered to any node alert
at t, then S aborts outputting ∆-failure.

• Whenever S calls F̃punctual.sethash(e, noncee), if A (or any internal call) has made a hash query

of the form Hnoncee( , ) before S called F̃punctual.setpids(e, ), abort outputting predict-failure.

• If A ever issues a (corrupt, i, t′) instruction to Z at time t ≤ t′, the simulator S checks that it
has not committed node i to any committee at time t′ −W or later. If the check fails, S aborts
outputting corruption-failure. Else, S passes through the instruction to Z; further, S queries
Gsign to obtain the secret signing keys of party i, and exposes them to A.

If A ever issues a (sleep, i, t0, t1) instruction to Z at time t ≤ t0 ≤ t1, the simulator S checks
that it has not committed node i to any committee between [t0, t1]. If the check fails, S aborts
outputting corruption-failure; else, pass through the instruction to Z.

• S directly passes through all other messages between A and Gsign. Similarly, S directly passes
through all other messages between A and Z.

• At the protocol start, whenever A sends pks0 to a spawning node as part of the initialization
message, S registers the first epoch’s committee with F̃punctual. Before doing so, if there is any
public key in pks0 that does not have a party identifier mapping, S spawns a corrupt node that
corresponds to this public key, and stores the mapping. S also registers nonce0 with F̃punctual

as the nonce for the first epoch at protocol start.

• If S ever observes that two honest nodes have different chains with the same block hash, abort
outputting hash-failure.
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We can now immediately state a few simple facts.

Fact 2 (Compliant execution). In the above simulation, for any p.p.t. (A,Z) Πsnowwhite-compliant,
the pair (SA,Z) is Πhyb-compliant.

Proof. By definition, notice that the construction of the simulator S performed internal checks and
always aborts outputting failure before it ever has a chance of being non-compliant.

Fact 3 (No hash collision). S does not abort with hash-failure except with negligible probability.

Proof. Straightforward due to the collision resistance of the digest function d.

Fact 4 (No honest key collision). S does not abort with duplicate-key-failure except with negligible
probability.

Proof. Straightforward due to the security of the signature scheme.

Due to the above facts, henceforth we will ignore the negligible fraction of views that have hash
or honest key collisions.

H.3 Consistency and Compliance of the Simulated Execution

In this section, we focus on showing that if (A,Z) is Πsnowwhite-compliant, then the simulated
execution has nice properties regarding consistency and the relative timing of events.

Lemma 4 (Consistency and a-priori commitment). For any compliant p.p.t. (A,Z) pair, there
exists a negligible function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to late-failure or consistency-failure
]
≤ negl(κ)

Proof. We consider any view for EXECΠhyb(S,Z, κ) where none of the bad events related to chain
quality, growth, and consistency happen.

We prove the lemma for hashes, and the argument for the committee goes in the same way. It
suffices to prove the following: For any e ∈ N in view, let t = start(e), it holds that for every node
i honest at time t− 1, there exists

1. an honest block B ∈ chaint−1
i [: −ε∗κ] with B.time > t− ω; and

2. an honest block B′ ∈ chaint−1
i [: −ε∗κ] with B′.time ≤ t− ω.

where chaint−1
i (view) denotes the internal chain maintained by node i at time t − 1 in view. We

often write chaint−1
i in place of chaint−1

i (view) without risk of ambiguity.
Notice that due to the definition of S which runs the real-world checks on any chain received

from A before forwarding them onto honest nodes, and due to the definition of Πhyb, chaint−1
i must

have strictly increasing timestamps. Therefore if the above conditions regarding the existence of B
and B′ in chaint−1

i are satisfied then

• S will have called F̃punctual.sethash(e, ) before time t;

• Due to consistency and definition of S, S will not abort with consistency-failure due to disagree-
ment on the hash for epoch e in view.
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Notice that the existence of the block B′ trivially holds since the genesis block is defined to
have a timestamp of 0. The existence of a block B is proved in Claim 4 given that ω ≥ 2κ

γ + ∆̃.
This completes our proof.

Lemma 5 (Unpredictability of future hashes). For any compliant p.p.t. (A,Z) pair, there exists
a negligible function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to predict-failure
]
≤ negl(κ)

Proof. Given a view ← EXECΠhyb(SA,Z) where none of the bad events related to chain qual-
ity, growth, consistency happen. Let e ∈ N denote an epoch in view such that S has called
F̃punctual.sethash(e, ). Note that by definition, S must have called F̃punctual.setpids(e, ) too.
Let T = start(e).

• Henceforth in this proof we shall adopt small enough constants ε0 and ε′. The proof holds for
any constant small enough. For example, one may assume ε0 = ε′ = 1/8.

• Let chainti(view) be the chain that triggered S to call F̃punctual.sethash(e, ), where i is a node
honest at time t. Let (B∗−1, B

∗) be two consecutive blocks in chainti[: −ε∗κ], where B∗.time >
T − ω and B∗−1 ≤ T − ω.

Let Bl denote the last honest block to the left of B∗ in chainti that is not genesis. We will
first pretend that such a block Bl exists, and later we will prove that indeed it does. Let
Br ∈ chainti[index(B

∗) :] be the first honest block to the right of B∗ — such a block must exist
due to chain quality, and that there are at least ε∗κ blocks to the right of B∗. By chain quality,
index(Br) − index(B∗) ≤ ε0κ in chainti, and index(B∗) − index(Bl) ≤ ε0κ in chainti. Therefore,
index(Br) − index(Bl) ≤ 2ε0κ. Further, since Bl is honest, T1 := Bl.time is the time when an
honest node first mines Bl. Similarly, T2 := Br.time is the time when an honest node first mines
Br. By chain growth, T2 − T1 ≤ 2ε0κ

g0
. By definition, we also know that T1 ≤ B∗.time ≤ T2, and

therefore B∗.time− T1 ≤ 2ε0κ
g0

, i.e., T1 ≥ B∗.time− 2ε0κ
g0

> T − ω − 2ε0κ
g0

.

For the above bound on T1 to hold, it remains to show that such a Bl exists. To show this, we
prove that there is a constant ε′ > 0 such that index(B∗) (w.r.t. chainti) is greater than ε′κ, since
then Bl must exist by chain quality. Suppose for the sake of contradiction that index(B∗) < ε′κ.
As before, let Br be the first honest block to the right of B∗ in chainti. Such a Br must exist
within at most ε0κ blocks from B∗. Therefore index(Br) < (ε′ + ε0)κ. Since Br is an honest
block, Br.time denotes the time Br was first mined by an honest node. By chain growth,

Br.time ≤ (ε′+ε0)κ
g0

. Since T ≥ Tepoch ≥ 3ω ≥ 3κ
g0

, it holds that for sufficiently small constants

ε′, ε0 > 0,

B∗.time ≤ Br.time ≤ (ε′ + ε0)κ

g0
≤ T − ω

Therefore we reach a contradiction.

• Let T0 be the time in view that S called F̃punctual.setpids(e, ). We now show that T0 ≤ T−1.5ω.

It is not hard to see that S will definitely have called F̃punctual.setpids(e, ) by time t, if there is
a node i honest at t− 1, such that chaint−1

i [: −ε∗κ] contains a block whose timestamp is greater
than T − 2ω where T = start(e).
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By Claim 4, let r = T − 1.5ω ≥ 1.5ω, for every node i honest at r − 1, chainr−1
i [: −ε∗κ] must

contain a block whose timestamp is greater than r − ω
2 = T − 2ω — notice that this relies on

our choice of ε∗ being sufficiently small. This suffices for showing that T0 ≤ T − 1.5ω.

Given our extractnonce definition, it suffices to prove that T1 > T0. Recall that T1 is the time
the honest block Bl is mined, and the block Bl contains a random string that is unpredictable any
time before T1. We now show that indeed T1 > T0. Observe that since T ≥ Tepoch and Tepoch ≥ 3ω,
and that for small enough ε0, 2ε0κ

g0
< 0.5ω, it clearly holds that T1 > T0.

Lemma 6 (Simulator respects ∆-network delivery). For any compliant p.p.t. (A,Z) pair, there
exists a negligible function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to ∆-failure
]
≤ negl(κ)

Proof. Fix some view← EXECΠhyb(SA,Z, κ) where none of the bad events related to chain growth,
chain quality, and consistency happen. Suppose that a node i alert at t sends a chainti at time t in
view. Due to the Πsnowwhite-compliance of (A,Z), for every node that is alert at t+ ∆, A will ask
S to deliver chainti to node j at some tj ∈ [t, t+ ∆].

Clearly, chainti ∈ F̃punctual starting at time t in view. Due to consistency, for any node j that
is alert at sometime s ∈ [t, t + ∆], including ones that might have just waken up from a light
sleep, it must hold that chainsj [: −κ0] ≺ chainti. Therefore, j’s real-world checks will not cause j to

reject chainti had j received chainti at any s ∈ [t, t+ ∆]. As a result, S will not drop this message
chainti.

Lemma 7 (Compliant corruptions). For any compliant p.p.t. (A,Z) pair, there exists a negligible
function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to corruption-failure
]
≤ negl(κ)

Proof. Suppose that A issues (corrupt, i, t′) at some time t. Since (A,Z) is Πsnowwhite-compliant,
it must hold that t′ − t > τ . We now show that by time t, S cannot have called F̃punctual.setpids
for any time during [t′ −W,∞].

Notice that the only way S could have called F̃punctual.setpids(s, ) by time t is if there is a node
i honest at t such that chainti[: −ε∗κ] contains a block B such that B.time > rnddown(s) − 2ω >
s − Tepoch − 2ω. This means that S can only have called F̃punctual.setpids(s, ) by time t if
t ≥ s−Tepoch−2ω. If s ≥ t′−W , this means that t ≥ t′−W −Tepoch−2ω. However, we also know
that t < t′ − τ . Since τ > W + Tepoch + 2ω, it cannot be the case that t ≥ t′ −W − Tepoch − 2ω;

and therefore S cannot have called F̃punctual.setpids(s, ) for any time s ∈ [t′ −W,∞].
Similarly, suppose that A issues (sleep, i, t′) at some time t. Since (A,Z) is Πsnowwhite-

compliant, it must hold that t′ − t > τ . we can similarly show that S cannot have called
F̃punctual.setpids for any time during [t′,∞].

Lemma 8 (Parameter preservation). For any compliant p.p.t. (A,Z) pair, there exists a negligible
function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to param-failure
]
≤ negl(κ)

Proof. Straightforward to verify.
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H.4 All Real-World Valid Chains are in F̃punctual

In this section, we show that for any chain that would have been accepted by an honest node by
the real-world verification algorithm, S must succeed in adding it to F̃punctual if the chain does not

exist in F̃punctual already.

Lemma 9 (Unforgeability of signatures). For any compliant p.p.t. (A,Z) pair, there exists a
negligible function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to signature-failure
]
≤ negl(κ)

Proof. Straightforward reduction to the security of the signature scheme. Conditioned on no hash
collision, if there is ever signature-failure, the adversary A must have forged a signature on a new
message that the simulator S has not sent A. We can easily leverage such an adversary A to build
a reduction to break signature security. More specifically, the reduction will simulate Gsign, honest
parties, and S and interact with (A,Z). The reduction will guess at random which honest party’s
which signature key the adversary will break, and embed the instance from the signature challenger
there. Note also that Gsign is a global functionality, however, the environment Z cannot query Gsign

for signatures pertaining to the challenge session identifier — this is important for the reduction to
work.

Simulation valid chains. Given a view of the simulated execution, we say that a chain is
simulation valid w.r.t. time t in view if it is valid as defined in the real-world protocol, but where
the hash function H is replaced by hash queries to the simulator S. The simulator S answers these
hash queries in the same way it answers A’s hash queries.

Sufficiently long honest prefix. Given a view of the simulated execution, we say that a simula-
tion valid chain (w.r.t. t) has a sufficiently long honest prefix at time t in view, iff

There exists a prefix chain0 ≺ chain such that chain0[−1].time > t − ω, and moreover, there
exists s ≤ t and a node i alert at time s, such that chain0 ≺ chainsi [: −ε∗κ].

Claim 5. Let chain be simulation valid in view at time t, and suppose that chain has a sufficiently
long honest prefix at t. It holds that the following two ways for determining whether a public key
pk is a leader in any time r ≤ t are equivalent in the simulated execution:

1. Using the real-world eligibler(chain, pk) function where H is implemented by S; and

2. Calling F̃punctual.leader(noncer,P, r) where noncer denotes the nonce previously chosen by S
for time step r, and P is the party identifier corresponding to pk (as determined by S’s stored
mapping) — if no such mapping is found, then P is simply ⊥.

Proof. Recall that if the simulation does not abort, there is no duplicate-key-failure. If r < Tepoch,
pks0 will be selected as the committee by the real-world algorithm, and recall that S has registered
with F̃punctual the party identifiers for pks0 as the initial committee.

The more interesting case is when r ≥ Tepoch ≥ 3ω. In this case, since chain0[−1].time > t− ω,
the prefix that determines the committee or hash for any r ≤ t must be contained in chain0. Due
to consistency and the definition of S, it holds that the committee for any r ≤ t determined by the
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real-world algorithm based on chain must agree with what S committed to F̃punctual. Similarly, S
must have committed to F̃punctual the same nonce for each r ≤ t as what the real-world algorithm
would output as the nonce for each r ≤ t based on chain.

Further, due to no predict-failure, consistency, and the way S answers H queries, it holds that
using H to elect leaders agrees with the random coins used by F̃punctual for electing leaders.

Claim 6. Let (A,Z) be Πsnowwhite-compliant. Given any view of EXECΠhyb(SA,Z, κ), let chain be
a simulation valid chain w.r.t. time t in view, and suppose that chain has a sufficiently long honest
prefix at t in view. Then if SA calls AddtoTree(chain) at time t in view, the call must succeed.

Proof. First, since chain0[−1].time > t−ω, and W > ω, and since timestamps must strictly increase
for a simulation valid chain, it is clear that none of the adversarial blocks at the end will be rejected
by F̃punctual due to staleness. The rest of proof follows in a straightforward manner due to Claim 5
and no signature-failure.

Claim 7. In the simulated execution, if S sends a chain to an alert node, then chain must be
simulation valid at t and have a sufficiently long prefix at t.

Proof. We now prove the above lemma. Recall that S simulates the real-world verification algorithm
for node i, and only forwards a chain to alert node i if the real-world checks succeed. It suffices to
prove that if the real-world checks pass, then the chain has a sufficiently long prefix.

There are three possible scenarios, and we analyze them one by one.

Case 1: A sends chain to a node i that has been alert. This case is very similar to Case 2,
except that the ∆̃ in Case 2 is now replaced with ∆. By our parameter admissible rules, it is not
hard to see that ∆ ≤ 1

2γ . The rest of the proof follows in the same way as Case 2.

Case 2: A sends chain to node i that has just waken up after a light sleep. Suppose that
at time t, A wants to send chain to honest node i who has waken up at time t after a short sleep,
and let s denote the most recent time node i went to sleep before t. By Πsnowwhite-compliance, we
know that t− s ≤ ∆̃.

We know that it must be the case chainsi [: −κ0] ≺ chain for chain to be accepted by node i’s
real-world checks. Also observe that by Claim 4, chainsi [−κ0].time > s− κ

g0
≥ t− ∆̃− κ

g0
≥ t− ω.

Case 3: A sends a newly spawned node i an initialization message. Fix any view of
non-zero support in the execution EXECΠhyb(SA,Z, κ). All of the following statements are with
respect to this view. Given a set SL := {chaini}i∈L, we say that a chain is real-world admissible
w.r.t. SL if 1) chain is simulation valid; 2) chain ≺ chaini for some i ∈ L; and 3) let chain ′ be the
longest common prefix of any majority subset of S, it holds that chain ′ ≺ chain.

Suppose L is a node set the majority of whom are alert at time t. Suppose that chain is real-
world admissible w.r.t. SL. Now we take the set of honest nodes in L and compute the longest
prefix of their chains; and chainh denote this longest prefix. Suppose the aforementioned chain ′

is computed by taking a subset S′ ⊆ SL that comprise majority. Since the majority are alert at
time t in L, one alert node must exist in S′. Clearly chain ′ should be at least as long as chainh.
Therefore we conclude that chainh ≺ chain ′.

It suffices to argue that chainh[−ε∗κ].time > t−ω. Let i ∈ L be a node alert at time t, we know
that chainh ≺ chainti. Due to consistency, there cannot be more than ε1κ blocks after chainh in
chainti. Now the fact that chainh[−ε∗κ].time > t− ω follows from Claim 4.
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Lemma 10 (Success of AddtoTree). For any compliant p.p.t. (A,Z) pair, there exists a negligible
function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to extend-failure
]
≤ negl(κ)

Proof. Straightforward by Claim 6, Claim 7, and the definition of S.

H.5 Indistinguishability of the Real-World and Simulated Executions

Lemma 11 (Indistinguishability of the real-world and simulated executions). For any Πsnowwhite-
compliant p.p.t. pair (A,Z), conditioned on the simulated execution not aborting, then Z’s view
in the simulated execution and real execution are identically distributed.

Proof. We now prove this lemma.

Hybrid 1. Same as the simulated execution, but with the following modification: when the an
honest node needs to call the ideal-world F̃punctual.extend(chain, B), a real-world algorithm is
adopted for extending the chain: the honest node calls eligiblet(chain, pk) where H is implemented
by S. If the outcome is 1, add chain||B to F̃punctual.tree.

Claim 8. No p.p.t. Z can distinguish the simulated execution and Hybrid 1 except with negligible
probability.

Proof. It suffices to show that if an alert node tries to extend a chain at time t, then chain is
simulation valid and has a sufficiently long prefix at t. If this is true, then by Claim 5, using
the real-world algorithm to decide whether a node is leader is equivalent to what F̃punctual thinks.

Therefore, using the real-world algorithm to extend the chain rather than calling F̃punctual.extend
would be equivalent. Given Claim 7 and the definition of the simulated execution, it is not hard
to see that every chain an alert node tries to extend is simulation valid and has a sufficiently long
prefix.

Hybrid 2. Same as Hybrid 1, but with the following modification: whenever an honest node
receives a chain ′ whose length is longer than its own chain, do real-world checks instead of calling
F̃punctual.verify.

Claim 9. No p.p.t. Z can distinguish Hybrid 1 and Hybrid 2 except with negligible probability.

Proof. Notice that S always performs real-world checks on behalf of an alert node i before forward-
ing any chain to an alert node i. Therefore, it is easy to see that the claim is true given that we
have proved Lemma 10.

Finally, to prove Lemma 11, it suffices to observe that Hybrid 2 is equivalent to the real-world
execution by a standard argument of redrawing algorithm boundaries.
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I Additional Related Work

We briefly review the rich body of literature on consensus protocols including permissioned and
permissionless consensus. Part of this section borrows from an earlier work [48].

Models for permissioned consensus protocols. Consensus in the permissioned setting [5,8,11,
12,16,21,22,25–27,31,32,37–41,52] has been actively studied for the past three decades; and we can
roughly classify these protocols based on their network synchrony, their cryptographic assumptions,
and various other dimensions.

Roughly speaking, two types of network models are typically considered, the synchronous model,
where messages sent by honest nodes are guaranteed to be delivered to all other honest nodes in
the next round; and partially synchronous or asynchronous protocols where message delays may
be unbounded, and the protocol must nonetheless achieve consistency and liveness despite not
knowing any a-priori upper bound on the networks’ delay. In terms of cryptographic assumptions,
two main models have been of interest, the “unauthenticated Byzantine” model [40] where nodes are
interconnected with authenticated channels6; and the “authenticated Byzantine” model [21], where
a public-key infrastructure exists, such that nodes can sign messages and such digital signatures
can then be transferred.

Permissioned, synchronous protocols. Many feasibility and infeasibility results have been
shown. Notably, Lamport et al. [40] show that it is impossible to achieve secure consensus in
the presence of a 1

3 coalition in the “unauthenticated Byzantine” model (even when assuming
synchrony). However, as Dolev and Strong show [21], in a synchronous, authenticated Byzantine
model, it is possible to design protocols that tolerate an arbitrary number of corruptions. It is
also understood that no deterministic protocol fewer than f rounds can tolerate f faulty nodes [21]
— however, if randomness is allowed, existing works have demonstrated expected constant round
protocols that can tolerate up to a half corruptions [25,32].

Permissioned, asynchronous protocols. A well-known lower bound by Fischer, Lynch, and
Paterson [26] shows if we restrict ourselves to protocols that are deterministic and where nodes
do not read clocks, then consensus would be impossible even when only a single node may be
corrupt. Known feasibility results typically circumvent this well-known lower bound by making
two types of assumptions: 1) randomness assumptions, where randomness may come from various
sources, e.g., a common coin in the sky [12, 27, 43], nodes’ local randomness [5, 52], or randomness
in network delivery [11]; and 2) clocks and timeouts, where nodes are allowed to read a clock and
make actions based on the clock’s value. This approach has been taken by well-known protocols
such as PBFT [16] and FaB [41] that use timeouts to re-elect leaders and thus ensure liveness even
when the previous leader may be corrupt.

Another well-known lower bound in the partially synchronous or asynchronous setting is due
to Dwork et al. [22], who showed that no protocol (even when allowing randomness or clocks) can
achieve security in the presence of a 1

3 corrupt coalition.

Permissionless consensus. The permissionless model did not receive sufficient academic at-
tention, perhaps partly due to the existence of strong lower bounds such as what Canetti et al.
showed [3]. Roughly speaking, we understand that without making additional trust assumptions,
not many interesting tasks can be achieved in the permissionless model where authenticated chan-

6This terminology clash stems from different terminology adopted by the distributed systems and cryptography
communities.
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nels do not exist between nodes.
Amazingly, cryptocurrencies such as Bitcoin and Ethereum have popularized the permissionless

setting, and have demonstrated to us, that perhaps contrary to the common belief, highly interesting
and non-trivial tasks can be attained in the permissionless setting. Underlying these cryptocurrency
systems is a fundamentally new type of consensus protocols commonly referred to as proof-of-work
blockchains [44]. Upon closer examination, these protocols circumvent known lower bounds such
as those by Canetti et al. [3] and Lamport et al. [40] since they rely on a new trust assumption,
namely, proofs-of-work, that was not considered in traditional models.

Formal understanding of the permissionless model has just begun [28, 45–47]. Notably, Garay
et al. [28] formally analyze the Nakamoto blockchain protocol in synchronous networks. Pass et
al. [45] extend their analysis to asynchronous networks. More recently, Pass and Shi [47] show
how to perform committee election using permissionless consensus and then bootstrap instances of
permissioned consensus — in this way, they show how to asymptotically improve the response time
for permissionless consensus.

Finally, existing blockchains are known to suffer from a selfish mining attack [24], where a
coalition wielding 1

3 of the computation power can reap up to a half of the rewards. Pass and
Shi [46] recently show how to design a fair blockchain (called Fruitchains) from any blockchain
protocol with positive chain quality. Since our Snow White consensus protocol is a blockchain-style
protocol, we also inherit the same selfish mining attack. Fortunately, Snow White can leverage the
same techniques as Pass and Shi [46] to achieve incentive compatibility (see Section 3).

Dynamic reconfiguration for consensus protocols. Dynamic reconfiguration has been studied
in the classical setting for permissioned consensus. For example, Vertical Paxos [39] and BFT-
SMART [8] allow nodes to be reconfigured in a dynamic fashion. The more recent Hybrid Consensus
protocol by Pass and Shi [47] also performs committee reconfiguration over time, however, their
protocol requires that in some transient windows, multiple instances of the permissioned consensus
protocol are run concurrently.

In this paper, we also consider dynamic reconfiguration, but we consider it for blockchain-style
protocols and rely on new techniques. One compelling advantage of our approach is that group
reconfiguration is seamless in our protocol and does not need to introduce special execution paths.
We also do not need to invoke multiple concurrent consensus instances.
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